第8全等三角形与角平分线

合集下载

《角的平分线的性质》全等三角形

《角的平分线的性质》全等三角形
应用。
05
CATALOGUE
复习与巩固
复习全等三角形和角的平分线的性质的基本概念和性质
总结全等三角形的定义、判定方法以及性质。 回顾角的平分线的性质的定义、判定方法和性质。
与前一章节的内容进行衔接,展示如何利用前一章节的知识来证明全等三角形。
通过练习巩固所学知识
选择题
根据全等三角形和角的平分线 的性质的定义和判定方法,设 计多个选择题,考察学生对基
角的平分线的性质
一个角的平分线将对应的边分成两段,其中较长 的一段等于较短的一段。
利用角的平分线的性质证明全等三角形的实例
题目
在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,且BD=CD.求证:△ABC是等腰三角形。
证明过程
∵AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,且BD=CD,∴根据角的平分线的性质和HL定理可得 △ADE≌△ADF(HL),∴∠ADE=∠ADF,又∵DE⊥AB于E,DF⊥AC于F,∴根据角的平分线的性质和AAS定理可得 △ABC是等腰三角形。
常见的错误和注意事项
常见的错误
在证明过程中,容易忽略HL定理的应用 ,或者在应用HL定理时忽略了对应边相 等的前提条件。
VS
注意事项
在利用角的平分线的性质证明全等三角形 时,需要仔细分析题目的条件和结论,选 择合适的判定定理和性质进行证明。同时 ,需要注意定理应用的前提条件和限制条 件。
04
CATALOGUE
角角边定理(AAS)
如果两个三角形的两个角对应相等, 且其中一个角的对应边也相等,则这 两个三角形全等。
02
CATALOGUE
角的平分线的性质
角的平分线的定义

(完整版)利用角平分线构造全等三角形

(完整版)利用角平分线构造全等三角形

善于构造 活用性质安徽 张雷几何问题中,若出现角平分线这一条件时,可联想角平分线的特性,灵活利用角平分线的特性来解决问题.1.显“距离”, 用性质很多时候,题意中只给角平分线这个条件,图上并没有出现“距离”,而角平分线性质的运用又离不开这个“距离”,所以同学们应大胆地让“距离”现身(过角平分线上的一点向角的两边作垂线段)例:三角形的三条角平分线交于一点,你知道这是为什么吗? 分析:我们知道两条直线是交于一点的,因此可以想办法证明第三条角平分线通过前两条角平分线的交点.已知:如图,△ABC 的角平分线AD 与BE 交于点I ,求证:点I 在∠ACB 的平分线上. 证明:过点I 作IH ⊥AB 、IG ⊥AC 、IF ⊥BC ,垂足分别是点H 、G 、F . ∵点I 在∠BAC 的角平分线AD 上,且IH ⊥AB 、IG ⊥AC ∴IH=IG (角平分线上的点到角的两边距离相等) 同理 IH=IF ∴IG=IF (等量代换) 又IG ⊥AC 、IF ⊥BC∴点I 在∠ACB 的平分线上(到一个角的两边的距离相等的点,在这个角的平分线上).即:三角形的三条角平分线交于一点.【例2】已知:如图,PA 、PC 分别是△ABC 外角∠MAC 和∠NCA 的平分线,•它们交于点P ,PD ⊥BM 于D ,PF ⊥BN 于F .求证:BP 为∠MBN 的平分线.【分析】要证BP 为∠MBN 的平分线,只需证PD=PF ,而PA 、PC 为外角平分线,•故可过P 作PE ⊥AC 于E .根据角平分线性质定理有PD=PE ,PF=PE ,则有PD=PF ,故问题得证.【证明】过P 作PE ⊥AC 于E .∵PA 、PC 分别为∠MAC 与∠NCA 的平分线.且PD ⊥BM ,PF ⊥BN ∴PD=PE ,PF=PE,∴PD=PF又∵PD ⊥BM ,PF ⊥BN,∴点P 在∠MBN 的平分线上,D C A EHI F G2DCBA35EF14即BP是∠MBN的平分线.2.构距离,造全等有角平分线时常过角平分线上的点向角两边引垂线,根据角平分线上的点到角两边距离相等,可构造处相应的全等三角形而巧妙解决问题.例3.△ABC中,∠C=90°,AC=BC,DA平分∠CAB交BC于D点,问能否在AB•上确定一点E使△BDE的周长等于AB的长.请说明理由.解:过D作DE⊥AB,交AB于E点,则E点即可满足要求.因为∠C=90°,AC=BC,又DE⊥AB,∴DE=EB.∵AD平分∠CAB且CD⊥AC、ED⊥AB,∴CD=DE.由“HL”可证Rt△ACD≌Rt△AED.∴AC=AE.∴L△BDE=BD+DE+EB =BD+DC+EB =BC+EB=AC+EB =AE+EB =AB.例4.如图,∠B=∠C=90°,M是BC上一点,且DM平分∠ADC,AM平分∠DAB.求证:AD=CD+AB.证明:过M作ME⊥AD,交AD于E.∵DM平分∠ADC,∠C=90°.MC=ME.根据“HL”可以证得Rt△MCD≌Rt△MED,∴CD=ED.同理可得AB=AE.∴CD+AB=ED+AE=AD.即AD=CD+AB.3.巧翻折, 造全等以角平分线为对称轴,构造两三角形全等.即在角两边截取相等的线段,构造全等三角形.例5.如图,已知△ABC中∠BAC=90°,AB=AC,CD•垂直于∠ABC•的平分线BD 于D,BD交AC于E,求证:BE=2CD.分析:要证BE=2CD,想到要构造等于2CD的线段,结合角平分线,•利用翻折的方法把△CBD沿BD翻折,使BC重叠到BA所在的直线上,即构造全等三角形(△BCD ≌△BFD),然后证明BE和CF(2CD)所在的三角形全等.证明:延长BA、CD交于点F∵BD ⊥CF (已知) ∴∠BDC=∠BDF=90° ∵BD 平分∠ABC (已知) ∴∠1=∠2 在△BCD 和△BFD 中21()()()BD BD BDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩已知公共边已证∴△BCD ≌△BFD (ASA ) ∴CD=FD , 即CF=2CD∵∠5=∠4=90°,∠BDF=90° ∴∠3+∠F=90°,∠1+∠F=90°。

人版八年级数学[上册]第十二章《全等三角形的综合、角平分线》讲义(有答案解析)

人版八年级数学[上册]第十二章《全等三角形的综合、角平分线》讲义(有答案解析)

第7讲 全等三角形的综合、角平分线⑴平移全等型⑵ 对称全等型⑶ 旋转全等型⑴、角平分线上的点到角的两边的距离相等; ⑵、到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB ,这种对称的图形应用得也较为普遍,ABOPPOBAABOP角平分线的作法(尺规作图)①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.考点1、三角形全等综合1、如图,要测量河两岸相对的两点A、B间的距离,先在过B点的AB的垂线L 上取两点C、D,使CD=BC,再在过D点的垂线上取点E,使A、C、E在一条直线上,ED=AB这时,测ED的长就得AB得长,判定△ACB≌△ECD的理由是()A. SASB. ASAC. SSS D .AAS2、如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是( B )A.PO B.PQ C.MO D.MQ(1)(2)3、如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的点B处打开,墙壁厚是35cm,点B与点O的垂直距离AB长是20cm,在点O处作一直线平行于地面,在直线上截取OC=35cm,过C作OC的垂线,在垂线上截取CD=20cm,连接OD,然后,沿着D0的方向打孔,结果钻头正好从点B处打出.这是什么道理?4、1805年,法军在拿破仑的率领下与德军在莱茵河畔激战.德军在莱茵河北岸Q处,如图所示,因不知河宽,法军大炮很难瞄准敌营.聪明的拿破仑站在南岸的点O处,调整好自己的帽子,使视线恰好擦着帽舌边缘看到对面德国军营Q 处,然后他一步一步后退,一直退到自己的视线恰好落在他刚刚站立的点0处,让士兵丈量他所站立位置B与0点的距离,并下令按照这个距离炮轰德军.试问:法军能命中目标吗?请说明理由.用帽舌边缘视线法还可以怎样测量,也能测出河岸两边的距离吗?5、某校七年级学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.乙:如图②,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上三位同学所设计的方案,可行的有______;(2)请你选择一可行的方案,说说它可行的理由.1、已知: 如图,AB=AE,BC=ED, ∠B= ∠E,AF ⊥CD,F 为垂足, 求证:CF=DF.2、已知:如图,AB=CD,BC=DA,AE=CF.求证:BF=DE.3、如图,AB=AD,BC=DE,且BA⊥AC,DA⊥AE,你能证明AM=AN吗?1、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC. 求证:(1)EC=BF;(2)EC⊥BF.2、已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。

全等三角形的角平分线

全等三角形的角平分线

第十讲全等三角形中的角平分线全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.奥数赛点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.重点:本节的重点是全等三角形的概念和性质以及判定,全等三角形的性质是以后证明三角形问题的基础,也是学好全章的关键。

同时全等三角形的判定也是本章的重点,特别是几种判定方法,尤其是当在直角三角形中时,HL的判定是整个直角三角形的重点难点:本节的难点是全等三角形性质和判定定理的灵活应用。

为了能熟练的应用性质定理及其推论,要把性质定理和推论的条件和结论弄清楚,哪几个是条件,决定哪个结论,如何用数学符号表示,即书写格式,都要在讲练中反复强化与角平分线相关的问题角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等; ⑵到角的两边距离相等的点在角的平分线上. 它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式: 1. 由角平分线上的一点向角的两边作垂线,2. 过角平分线上的一点作角平分线的垂线,从而形成等腰三角形, 3. OA OB =,这种对称的图形应用得也较为普遍,AB OPPOB A A B OP【例1】 如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且3OD =,求ABC ∆的面积.【例2】 在ABC ∆中,D 为BC 边上的点,已知BAD CAD ∠=∠,BD CD =,求证:AB AC =.【例3】 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:OA 平分DAE ∠.ABCDEOADOCB例题精讲D CBA【例4】 已知ABC ∆中,AB AC =,BE 、CD 分别是ABC ∠及ACB ∠平分线.求证:CD BE =.ED CB A【例5】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.OED CBA【例6】 如图,在ABC ∆中,60B ∠=︒,AD 、CE 分别平分BAC ∠、BCA ∠,且AD 与CE 的交点为F .求证:FE FD =.FBEDCA【例7】 如图,已知E 是AC 上的一点,又12∠=∠,34∠=∠.求证:ED EB =.E DC B A4321【例8】 如图所示,OP 是AOC ∠和BOD ∠的平分线,OA OC =,OB OD =.求证:AB CD =.PDBOCA【例9】 (“希望杯”竞赛试题)长方形ABCD 中,AB =4,BC =7,∠BAD 的角平分线交BC 于点E ,EF ⊥ED交AB 于F ,则EF =__________.FEDCBA【例10】 如图所示,已知ABC ∆中,AD 平分BAC ∠,E 、F 分别在BD 、AD 上.DE CD =,EF AC =.求证:EF ∥ABFA CD E B【巩固】如图,在ABC ∆中,AD 交BC 于点D ,点E 是BC 中点,EF AD ∥交CA 的延长线于点F ,交AB于点G ,若BG CF =,求证:AD 为BAC ∠的角平分线.F GE DCBA【例11】 如图所示,AD 是ABC ∆的角平分线,DE 、DF 分别是ABD ACD ∆∆和的高,0DEF 20∠=,则BAC ∠等于________.FEDC BA【例12】 如图,已知△ABC 中,AD 平分∠BAC ,AB =6,AC =3,∠BAC =120°.求AD 的长.DCBA【例13】 附加题,黄冈市数学竞赛试题)如图所示,在ABC ∆中,AD 是BAC ∠的外角平分线,P 是AD 上异于点A 的任意一点,试比较PB PC +与AB AC +的大小,并说明理由.DPC A【巩固】在ABC ∆中,AB AC >,AD 是BAC ∠的平分线.P 是AD 上任意一点.求证:AB AC PB PC ->-.CD B PA【例14】 如图,在ABC ∆中,2B C ∠=∠,BAC ∠的平分线AD 交BC 与D .求证:AB BD AC +=.DC B A【巩固】如图,ABC ∆中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.AB CD【巩固】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.BAF EDC321【例15】 如图所示,在ABC ∆中,AD 是BAC ∠的平分线,M 是BC 的中点,ME AD ⊥且交AC 的延长线于E ,12CE CD =,求证2ACB B ∠=∠.EMDCBA【例16】 如图所示,在ABC ∆中,AC AB >,M 为BC 的中点,AD 是BAC ∠的平分线,若CF AD ⊥且交AD的延长线于F ,求证()12MF AC AB =-.MFD CB A【巩固】如图所示,AD 是ABC ∆中BAC ∠的外角平分线,CD AD ⊥于D ,E 是BC 的中点,求证DE AB ∥且1()2DE AB AC =+.E DCBA【巩固】如图所示,在ABC ∆中,AD 平分BAC ∠,AD AB =,CM AD ⊥于M ,求证2AB AC AM +=.MD CBA【例17】 如图,ABC ∆中,AB AC =,BD 、CE 分别为两底角的外角平分线,AD BD ⊥于D ,AE CE ⊥于E .求证:AD AE =.HG D AB C E【巩固】已知:AD 和BE 分别是ABC △的CAB ∠和CBA ∠的外角平分线,CD AD ⊥,CE BE ⊥,求证:⑴DE AB ∥;⑵ ()12DE AB BC CA =++.EBA D C【例18】 在ABC ∆中,MB 、NC 分别是三角形的外角ABE ∠、ACF ∠的角平分线,AM BM ⊥,AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =++FEN M CBA【巩固】在ABC ∆中,MB 、NC 分别是三角形的内角ABC ∠、ACB ∠的角平分线,AM BM ⊥,AN CN ⊥垂足分别是M 、N .求证:MN BC ∥,()12MN AB AC BC =+-N MCBA【例19】 在ABC △中,CD 、AE 分别为AB 、BC 边上的高,60B =∠,求证:12DE AC =.CE DB A【巩固】(北京市中考模拟题)如图,在四边形ABCD 中,AC 平分BAD ∠,过C 作E AB CE 于⊥,并且)(21AD AB AE +=,则ADC ABC ∠+∠等于多少?EDCBA【例20】 如图,180A D ∠+∠=︒,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上.① 探讨线段AB 、CD 和BC 之间的等量关系. ② 探讨线段BE 与CE 之间的位置关系.EDCB A【例21】 如图所示,在ABC ∆中,90BAC ∠=︒,AD BC ⊥于D ,BCA ∠的角平分线交AD 与F ,交AB于E ,FG 平行于BC 交AB 于G . AE =4,AB =14,则BG =______.GFE DCBA【巩固】如图所示,在Rt 三角形ABC 中,090,C CH AB ∠=⊥于H ,AG 平分BAC ∠,交CH 于D ,交BC 于G ,在BC 上取BE =CG ,连接ED ,证明:CDE ∆是直角三角形.HEG DCBA【例22】 如图所示,90BAC DAE ︒∠=∠=,M 是BE 的中点,AB AC =,AD AE =,求证AM CD ⊥.MECDBA【巩固】 在ABC ∆中,96A ∠=,延长BC 到D ,ABC ∠与ACD ∠ 的角平分线相交于点1A ,1A BC ∠与1ACD ∠的角平分线交于2A ,…,依次类推4A BC ∠与4A CD ∠的角平分线交于5A ,求5A ∠大小.A 2A 1ABC D A B CDEFG⑵(初二第5届希望杯1试)如右上图,BF 是ABD ∠的角平分线,CE 是ACD ∠角的平分线,BE 与CF交于G ,若140BDC ∠=,110BGC ∠=,求A ∠的度数.【例23】 如图,在ABC ∆中,AB AC =,BD 、AM 分别是ABC ∠、BAC ∠的平分线,DN BC ⊥,GF BD ⊥.求证:14MN BF =.F NM G DCB A【例24】 在直角三角形ABC 中,90C ∠=︒,A ∠的平分线交BC 于D .自C 作CG AB ⊥交AD 于E ,交AB 于G .自D 作DF AB ⊥于F ,求证:CF DE ⊥.GABC D EF12【习题1】在ABC △中,3AB AC =,BAC ∠的平分线交BC 于D ,过B 作BE AD ⊥,E 为垂足,求证:AD DE =.C EDB A【习题2】如图,在ABC ∆中,AB BD AC +=,BAC ∠的平分线AD 交BC 与D .求证:2B C ∠=∠.家庭作业DC B A【习题3】 AD 是ABC ∆的角平分线,BE AD ⊥交AD 的延长线于E ,EF AC ∥交AB 于F .求证:AF FB =.DECFBA【习题4】如图所示,AD 平行于BC ,DAE EAB ∠=∠,ABE EBC ∠=∠,AD =4,BC =2,那么AB =________.【习题5】ABC ∆中,D 为BC 中点,DE BC ⊥交BAC ∠的平分线于点E ,EF AB ⊥于F EG AC ⊥于G .求证:BF CG =.EGF DC BA【备选1】 在ABC ∆中,AD 平分BAC ∠,AB BD AC +=.求:B C ∠∠的值.月测备选EDCB ACD B A【备选2】如图,已知在ABC ∆中,3ABC C ∠=∠,12∠=∠,BE AE ⊥.求证:2AC AB BE -=.21ECBA【备选3】如图所示,在四边形ABCD 中,AD BC ∥,A ∠的平分线AE 交DC 于E ,求证:当BE 是B ∠的平分线时,有AD BC AB +=.EBCDA。

《角的平分线的性质》全等三角形PPT课件(第1课时)

《角的平分线的性质》全等三角形PPT课件(第1课时)
2. 探究并认知角平分线的性质.
1. 学会角平分线的画法.
探究新知
知识点 1 角平分线的画法
问题1: 在纸上画一个角,你能得到这个角的平分线吗?
用量角器度量,也可用折纸的方法.
问题2:如果把前面的纸片换成木板、钢板等,还能用对折的方法得到 木板、钢板的角平分线吗?
探究新知
提炼图形
探究新知
问题3: 如图,是一个角平分仪,其中AB=AD,BC=DC.将点A放在角的顶 点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线, 你能说明它的道理吗?
人教版 数学 八年级 上册
12.3 角的平分线的性质 第1课时
导入新知
下图是一个平分角的仪器,其中AB= AD,BC=DC.将点A放在角的顶 点,AB和AD 沿着角的两边放下,沿AC画一条射线AE,AE 就是这个角 的平分线,你能说明它的道理吗?
A
D
B
C E
素养目标
3. 熟练地运用角平分线的性质解决实际 问题.

1.明确命题中的已知和求证; 2.根据题意,画出图形,并用数学符号表示已知和求证; 3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.
探究新知
性质定理:角的平分线上的点到角的两边的距离相等.
应用所具备的条件:
(1)角的平分线;
(2)点在该平分线上; (3)垂直距离.
O
定理的作用: 证明线段相等.
拓广探索题
如图,已知AD∥BC,P是∠BAD与∠ABC的平分线的交点,PE⊥AB于E,且PE=3,
求AD与BC之间的距离.
解:过点P作MN⊥AD于点M,交BC于点N. ∵ AD∥BC, ∴ MN⊥BC,MN的长即为AD与BC之间的距离. ∵ AP平分∠BAD, PM⊥AD , PE⊥AB, ∴ PM= PE. 同理, PN= PE. ∴ PM= PN= PE=3. ∴ MN=6.即AD与BC之间的距离为6.

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

全等三角形辅助线系列之一 与角平分线有关的辅助线作法大全一、角平分线类辅助线作法角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等.对于有角平分线的辅助线的作法,一般有以下四种.1、角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题; 2、截取构全等利用对称性,在角的两边截取相等的线段,构造全等三角形; 3、延长垂线段题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形; 4、做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形.至于选取哪种方法,要结合题目图形和已知条件.图四图三图二图一QPONMPONM BAAB MNOP PONM BA典型例题精讲【例1】 如图所示,BN 平分∠ABC ,P 为BN 上的一点,并且PD ⊥BC 于D ,2AB BC BD =+.求证:180BAP BCP ∠∠=︒+.【解析】过点P 作PE ⊥AB 于点E .∵PE ⊥AB ,PD ⊥BC ,BN 平分∠ABC ,∴PE PD =. 在Rt △PBE 和Rt △PBC 中, BP BPPE PD =⎧⎨=⎩, ∴Rt △PBE ≌Rt △PBC (HL ),∴BE BD =.∵2AB BC BD +=,BC CD BD =+,AB BE AE =-,∴AE CD =. ∵PE ⊥AB ,PD ⊥BC ,∴90PEB PDB ∠=∠=︒. 在△P AE 和Rt △PCD 中, ∵PE PD PEB PDC AE DC =⎧⎪∠=∠⎨⎪=⎩, ∴△P AE ≌Rt △PCD ,∴PCB EAP ∠=∠.∵180BAP EAP ∠+∠=︒,∴180BAP BCP ∠+∠=︒.【答案】见解析.【例2】 如图,已知:90A ∠=︒,AD ∥BC ,P 是AB 的中点,PD 平分∠ADC ,求证:CP 平分∠DCB .【解析】因为已知PD 平分∠ADC ,所以我们过P 点作PE ⊥CD ,垂足为E ,则PA PE =,由P 是AB的中点,得PB PE =,即CP 平分∠DCB .【答案】作PE ⊥CD ,垂足为E ,∴90PEC A ∠=∠=︒,∵PD 平分∠ADC ,∴PA PE =, 又∵90B PEC ∠=∠=︒,∴PB PE =, ∴点P 在∠DCB 的平分线上, ∴CP 平分∠DCB .【例3】 已知:90AOB ∠=︒,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .(1)PC 和PD 有怎样的数量关系是__________. (2)请你证明(1)得出的结论.PDCBA A BCDPE【解析】(1)PC PD =.(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F , ∴90CFP DEP ∠=∠=︒,∵OM 是∠AOB 的平分线,∴PE PF =,∵190FPD ∠+∠=︒,且90AOB ∠=︒,∴90FPE ∠=︒, ∴290FPD ∠+∠=︒,∴12∠=∠, 在△CFP 和△DEP 中12CPF DEPPF PE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CFP ≌△DEP ,∴PC PD =. 【答案】见解析.【例4】 如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,60B ∠=︒,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ,请你判断并写出FE 与FD 之间的数量关系(不需证明); (2)如图③,在△ABC 中,60B ∠=︒,请问,在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【解析】如图①所示;(1)FE FD =.(2)如图,过点F 作FG ⊥AB 于G ,作FH ⊥BC 于H ,作FK ⊥AC 于K , ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴FG FH FK ==, 在四边形BGFH 中,36060902120GFH ∠=︒-︒-︒⨯=︒, ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,60B ∠=︒, ∴()118060602FAC FCA ∠+∠=︒-︒=︒. 在△AFC 中, ()180********AFC FAC FCA ∠=︒-∠+∠=︒-︒=︒, ∴120EFD AFC ∠=∠=︒,∴EFG DFH ∠=∠, 在△EFG 和△DFH 中,EFG DFH EGF DHF FG FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFG ≌△DFH ,∴FE FD = 【答案】见解析.【例5】 已知120MAN ∠=︒,AC 平分∠MAN ,点B 、D 分别在AN 、AM 上.(1)如图1,若90ABC ADC ∠=∠=︒,请你探索线段AD 、AB 、AC 之间的数量关系,并证明之;(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【解析】(1)得到30ACD ACB ∠=∠=︒后再可以证得12AD AB AC ==,从而,证得结论; (2)过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ,证得△CED ≌△CFB后即可得到AD AB AE ED AF FB AE AF +=-++=+,从而证得结论.【答案】(1)关系是:AD AB AC +=.证明:∵AC 平分∠MAN ,120MAN ∠=︒ ∴60CAD CAB ∠=∠=︒ 又90ADC ABC ∠=∠=︒, ∴30ACD ACB ∠=∠=︒ 则12AD AB AC ==(直角三角形一锐角为30°,则它所对直角边为斜边一半) ∴AD AB AC +=; (2)仍成立.证明:过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ∵AC 平分∠MAN∴CE CF =(角平分线上点到角两边距离相等) ∵180ABC ADC ∠+∠=︒,180ADC CDE ∠+∠=︒ ∴CDE ABC ∠=∠ 又90CED CFB ∠=∠=︒, ∴△CED ≌△CFB (AAS ) ∵ED FB =,∴AD AB AE ED AF FB AE AF +=-++=+ 由(1)知AE AF AC +=, ∴AD AB AC +=.【例6】 如图,在△ABC 中,2C B ∠=∠,AD 平分∠BAC ,求证:AB AC CD -=.【解析】在AB 上截取点E ,使得AE AC =.∵AD 平分∠BAC ,∴EAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ).∴AED C ∠=∠,ED CD =. ∵2C B ∠=∠,∴=2AED B ∠∠.∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠,∴BE DE =. ∴CD BE AB AE AB AC ==-=-.【答案】见解析.【例7】 如图,△ABC 中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.【解析】在BC 上截取E 点使BE BA =,连结DE .∵BD 平分ABC ∠,∴ABD EBD ∠=∠. 在ABD ∆与EBD ∆中∵AB EB =,ABD EBD ∠=∠,BD BD = ∴ABD EBD ∆∆≌,∴A DEB ∠=∠∵AB AE =, ∴BAD BED ∠=∠,∴72DEC ∠=︒. 又∵361854ADB ∠=︒+︒=︒,∴72CDE ∠=︒ABCDE DCBAAB CD∴CDE DEC ∠=∠,∴CD CE = ∵BC BE EC =+,∴BC AC CD =+【答案】见解析.【例8】 已知ABC ∆中,60A ∠=︒,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【解析】在BC 上截取一点F 使得BF BE =,易证BOE BOF ∆∆≌,在根据120BOC ∠=︒推出60BOE COF ∠=∠=︒,再证明OCF OCD ∆∆≌即可.【答案】BC BE CD =+.【例9】 如图:已知AD 为△ABC 的中线,且12∠=∠,34∠=∠,求证:BE CF EF +>.【解析】在DA 上截取DN DB =,连接NE ,NF ,则DN DC =,在△DBE 和△DNE 中:E DCB AOED CBAFOED CBA∵12DN DB ED ED =⎧⎪∠=∠⎨⎪=⎩∴△DBE ≌△DNE (SAS ),∴BE NE = 同理可得:CF NF =在△EFN 中,EN FN EF +>(三角形两边之和大于第三边) ∴BE CF EF +>.【答案】见解析.【例10】 已知:在四边形ABCD 中,BC BA >,180A C ∠+∠=︒,且60C ∠=︒,BD 平分∠ABC ,求证:BC AB DC =+.【解析】在BC 上截取BE BA =,∵BD 平分∠ABC ,∴ABD EBD ∠=∠, 在△BAD 和△BED 中, BA BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△BED ,∴AD DE =,A BED ∠=∠. ∵180BED DEC ∠+∠=︒,180A C ∠+∠=︒. ∴C DEC ∠=∠,∴DE DC =.∴DC AD =.∵60∠=︒,∴△CDE是等边三角形,C∴DE CD CE=+=+.==,∴BC BE CE AB CD【答案】见解析.【例11】观察、猜想、探究:在△ABC中,2∠=∠.ACB B(1)如图①,当90=+;C∠=︒,AD为∠BAC的角平分线时,求证:AB AC CD (2)如图②,当90∠≠︒,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量C关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【解析】(1)过D作DE⊥AB,交AB于点E,理由角平分线性质得到ED=CD,利用HL得到直角三角形AED与直角三角形ACD全等,由全等三角形的对应边相等,对应角相等,得到AE AC=,A CB B∠=∠,利用等量代换及外角性质得到一对角相等,利用等角对等∠=∠,由2AED ACB边得到BE DE=+,等量代换即可得证;=,由AB AE EB(2)AB CD AC=+,理由为:在AB上截取AG AC=,如图2所示,由角平分线定义得到=,利用SAS得到三角形AGD与三角形ACD全等,接下来同(1)一对角相等,再由AD AD即可得证;(3)AB CD AC=,如图3所示,同(2)即可得证.=-,理由为:在AF上截取AG AC【答案】(1)过D作DE⊥AB,交AB于点E,如图1所示,∵AD为∠BAC的平分线,DC⊥AC,DE⊥AB,∴DE DC=,在Rt △ACD 和Rt △AED 中,AD AD =,DE DC =, ∴Rt △ACD ≌Rt △AED (HL ),∴AC AE =,ACB AED ∠=∠, ∵2ACB B ∠=∠,∴2AED B ∠=∠, 又∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠, ∴BE DE DC ==,则AB BE AE CD AC =+=+; (2)AB CD AC =+,理由为: 在AB 上截取AG AC =,如图2所示, ∵AD 为∠BAC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG ACGAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADC (SAS ),∴CD CG =,AGD ACB ∠=∠, ∵2ACB B ∠=∠,∴2AGD B ∠=∠, 又∵AGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BE DG DC ==,则AB BG AG CD AC =+=+; (3)AB CD AC =-,理由为: 在AF 上截取AG AC =,如图3所示, ∵AD 为∠F AC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ADC (SAS ), ∴CD GD =,AGD ACD ∠=∠,即ACB FGD ∠=∠,∵2ACB B ∠=∠,∴2FGD B ∠=∠,又∵FGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BG DG DC ==,则AB BG AG CD AC =-=-.【例12】 如图所示,在△ABC 中,3ABC C ∠=∠,AD 是∠BAC 的平分线,BE ⊥AD 于F .求证:()12BE AC AB =-.【解析】延长BE 交AC 于点F .则AD 为∠BAC 的对称轴,∵BE ⊥AD 于F ,∴点B 和点F 关于AD 对称, ∴12BE EF BF ==,AB AF =,ABF AFB ∠=∠. ∵3ABF FBC ABC C ∠∠=∠=∠+,ABF AFB FBC C ∠=∠=∠∠+, ∴3FBC C FBC C ∠∠∠=∠++, ∴FBC C ∠=∠,∴FB FC =,∴()()111222BE FC AC AF AC AB ==-=-,∴()12BE AC AB =-. 【答案】见解析.【例13】 如图,已知:△ABC 中AD 垂直于∠C 的平分线于D ,DE ∥BC 交AB 于E .求证:EA EB =.【解析】由AD 垂直于∠C 的平分线于D ,可以想到等腰三角形中的三线合一,于是延长AD 交BC 与点F ,得D 是AF 的中点,又因为DE ∥BC ,由三角形中位线定理得EA EB =.【答案】延长AD 交BC 与点F ,∵CD 平分∠ACF ,∴12∠=∠,又AD ⊥CD , ∴ΔADC ≌ΔFDC ,∴AD FD =, 又∵DE ∥BC ,∴EA EB =.【例14】 已知:如图,在△ABC 中,3ABC C ∠=∠,12∠=∠,BE ⊥AE .求证:2AC AB BE -=.【解析】延长BE 交AC 于M ,∵BE ⊥AE ,∴90AEB AEM ∠=∠=︒ 在△ABE 中,∵13180AEB ∠+∠+∠=︒, ∴3901∠=︒-∠ 同理,4902∠=︒-∠∵12∠=∠,∴34∠=∠,∴AB AM =∵BE ⊥AE ,∴2BM BE =, ∴AC AB AC AM CM -=-=, ∵∠4是△BCM 的外角,∴45C ∠=∠+∠ ∵3ABC C ∠=∠,∴3545ABC ∠=∠+∠=∠+∠ ∴34525C C ∠=∠+∠=∠+∠,∴5C ∠=∠ ∴CM BM =,∴2AC AB BM BE -==【答案】见解析.【例15】 如图,已知AB AC =,90BAC ∠=︒,BD 为∠ABC 的平分线,CE ⊥BE ,求证:2BD CE =.【解析】延长CE ,交BA 的延长线于点F .∵BD 为∠ABC 的平分线,CE ⊥BE , ∴△BEF ≌△BEC ,∴BC BF =,CE FE =. ∵90BAC ∠=︒,CE ⊥BE ,∴ABD ACF ∠=∠,又∵AB AC =,∴△ABD ≌△ACF ,∴BD CF =.∴2BD CE =.【答案】见解析.EDCBAFEDCBA课后复习【作业1】如图所示,在△ABC 中,BP 、CP 分别是∠ABC 的外角的平分线,求证:点P 在∠A 的平分线上.【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =. 同理可证PF PG =. 所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上,【答案】见解析.【作业2】已知:如图,2AB AC =,BAD CAD ∠=∠,DA DB =,求证:DC ⊥AC .PCBAPABCD【解析】在AB 上取中点E ,连接DE ,则12AE BE AB ==. ∵DA DB =,∴DE ⊥AB ,90AED ∠=︒. 又∵2AB AC =,∴AE AC =.∵BAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ). ∴90AED ACD ∠=∠=︒,即DC ⊥AC .【答案】见解析.【作业3】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.【解析】如图,在BC 上截取BE BD =,连接DE ,过D 作DF BC ∥,交AB 于F ,于是32∠=∠,ADF ECD ∠=∠. 又∵12∠=∠,∴13∠=∠,故DF BF =.显然FBCD 是等腰梯形. ∴BF DC =,DF DC =.∵()111218010020222ABC ∠=∠=⨯︒-︒=︒,()11802802BED BDE ∠=∠=︒-∠=︒, ∴180100DEC BED ∠=︒-∠=︒,∴100FAD DEC ∠=∠=︒,∴AFD EDC ∆∆≌,AD EC =. 又∵BE BD =,∴BC BD EC BD AD =+=+.【答案】见解析.EDCBAABCD【作业4】如图,已知在△ABC 中,AD 、AE 分别为△ABC 的内、外角平分线,过顶点B 作BF ⊥AD ,交AD 的延长线于F ,连接FC 并延长交AE 于M .求证:AM ME =.【解析】延长AC ,交BF 的延长线于点N .∵AD 平分∠BAC ,BF ⊥AD ,∴△AFB ≌△AFN ,∴BF NF =. ∵AD 、AE 分别为△ABC 的内、外角平分线,∴EA ⊥F A . ∵BF ⊥AF ,∴BF ∥AE .∴::BF ME CF CM =,::FN AM CF CM =. ∵BF NF =,∴AM ME =.【答案】见解析.ECMF EDCBAN MFEDCBA。

【微专题】2023学年八年级数学上册常考点提分精练(人教版) 角平分线与全等三角形结合(解析版)

【微专题】2023学年八年级数学上册常考点提分精练(人教版) 角平分线与全等三角形结合(解析版)

角平分线与全等三角形结合1.如图 A B 两点分别在射线OM ON 上 点C 在MON ∠的内部且CA CB = CD OM ⊥ CE ON ⊥ 垂足分别为D E 且AD BE =.(1)求证:OC 平分MON ∠;(2)如果10AO = 4BO = 求OD 的长.【答案】(1)见解析(2)7【解析】【分析】(1)证明Rt △ACD ≌Rt △BCE (HL ) 得CD =CE .再由角平分线的判定即可得出结论;OC 平分∠MON ;(2)证Rt △ODC ≌Rt △OEC (HL ) 得OD =OE 设BE =AD =x .则OE =OD =4+x 再由AO =OD +AD =4+2x =10 得x =3.即可得出答案.(1)证明:∵CD OM ⊥ CE ON ⊥∴90CDA CEB ∠=∠=︒.在Rt ACD △与Rt BCE 中 CA CB AD BE =⎧⎨=⎩∴Rt ACD △≌Rt BCE (HL )∴CD CE =.又∵CD OM ⊥ CE ON ⊥∴OC 平分MON ∠.(2)解:在Rt ODC △与Rt OEC △中 CD CE OC OC =⎧⎨=⎩∴Rt ODC △≌Rt OEC △(HL )∴OD OE =设BE AD x ==.∵4BO = ∴4OE OD x ==+∵AD BE x == ∴4210AO OD AD x =+=+=∴3x = ∴437OD =+=.【点睛】本题考查了全等三角形的判定与性质、角平分线的判定等知识 证明Rt △ACD ≌Rt △BCE 和Rt △ODC ≌Rt △OEC 是解题的关键.2.已知∠MAN AC 平分∠MAN D 为AM 上一点 B 为AN 上一点.(1)如图①所示 若∠MAN =120° ∠ABC =∠ADC =90° 求证:AB +AD =AC ;(2)如图②所示 若∠MAN =120° ∠ABC +∠ADC =180° 则(1)中的结论是否仍然成立?请说明理由.【答案】(1)见解析;(2)成立 见解析【解析】【分析】(1)根据AC 平分∠MAN 可得CB =CD ∠CAB =60° 即可证明RT △ACD ≌RT △ACB 可得AD =AB 再根据AC =2AB 即可解题;(2)根据AC 平分∠MAN 可得CB =CD ∠CAB =60° 易证∠FCD =∠BCE 即可证明△CDF ≌△CBE 可得BE =DF 再根据(1)中证明AC =AE +AF 即可解题.【详解】解:(1)证明:∵AC 平分∠MAN∴CB =CD ∠CAB =60°在Rt △ACD 和Rt △AC B 中AC AC CD CB =⎧⎨=⎩∴Rt △ACD ≌Rt △ACB (HL )∴AD =AB∵∠ACB =90°﹣∠CAB =30°∴AC =2AB∴AD +AB =AC ;(2)成立 过C 作CE ⊥AN 于E CF ⊥AM 于F∵AC 平分∠MAN∴CB =CD ∠CAB =60°∵∠ABC +∠ADC =180°∴∠DCB =60°∵∠FCE =180°﹣∠BAD =60°∴∠FCE =∠BCD∵∠FCD +∠DCE =∠FCE ∠BCE +∠DCE =∠BCD∴∠FCD =∠BCE在△CDF 和△CBE 中90FCD BCE CF CE CFD CEB ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩∴△CDF ≌△CBE (ASA )∴BE =DF∴AD +AB =AD +AE +BE =AD +DF +AE =AE +AF∵AC =AE +AF∴AD +AB =A C .【点睛】本题考查了全等三角形的判定和性质 考查了全等三角形对应边相等的性质 本题中求证△CDF ≌△CBE 是解题的关键.3.如图:在直角△AB C 中 ∠ABC =90° 点D 在AB 边上 连接C D .(1)如图1 若CD 是∠ACB 的角平分线 且AD =CD 探究BC 与AC 的数量关系 说明理由; (2)如图2 若BC =BD BF ⊥AC 于点F 交CD 于点G 点E 在AB 的延长线上且AD =BE 连接GE 求证:BG +EG =A C .【答案】(1)12BC AC =理由见解析;(2)见解析 【解析】【分析】 (1)如图1 过点D 作DM AC ⊥于点M 证明()Rt CDM Rt CDB HL ≌ 由全等三角形的性质得出CM CB = 则可得出结论;(2)作DK AB ⊥交BF 的延长线于点K 证明()Rt CAB Rt BKD AAS ≌ 得出BK AC = DK AB = 证明()DKG DEG SAS ∆≅∆ 得出KG EG = 则结论可得出.【详解】解:(1)12BC AC =. 理由如下:如图1 过点D 作DM AC ⊥于点MAD CD =M ∴为AC 的中点12CM AM AC ∴== CD 平分ACB ∠DM DB ∴=在Rt CDM 和Rt CDB 中CD CD DM DB=⎧⎨=⎩ ()Rt CDM Rt CDB HL ∴≌CM CB ∴=12BC AC ∴=; (2)证明:如图2 作DK AB ⊥交BF 的延长线于点KBF AC ⊥90AFK ∴∠=︒A K ∴∠=∠又90BDK ABC ∠=∠=︒ BC BD =()Rt CAB Rt BKD AAS ∴≌BK AC ∴= DK AB =AD BE =AD BD BE BD ∴+=+即AB DE =DK DE ∴=又DB BC = 90ABC ∠=︒45CDB ∴∠=︒45KDG EDG ∴∠=∠=︒又DG DG =()DKG DEG SAS ∴∆≅∆KG EG ∴=AC BK KG BG EG BG ∴==+=+.【点睛】本题考查了全等三角形的判定与性质 角平分线的性质 等腰三角形的性质 等腰直角三角形的性质等知识 解题的关键是熟练掌握全等三角形的判定与性质.4.观察、猜想、探究:在△AB C 中 ∠ACB =2∠B .(1)如图① 当∠C =90° AD 为∠BAC 的角平分线时 过D 作AB 的垂线DE,垂足为E 可以发现AB 、AC 、CD 存在的数量关系是 ;(2)如图② 当∠C ≠90° AD 为∠BAC 的角平分线时 线段AB 、AC 、CD 是否还存(1)中的数量关系?如果存在 请给出证明.如果不存在 请说明理由;(3)如图③ 当AD 为△ABC 的外角平分线时 线段AB 、AC 、CD 又有怎样的数量关系?请写出你的猜想 并对你的猜想给予证明.【答案】(1)AB =AC +CD ;(2)存在 理由见解析;(3)AB =CD ﹣AC 理由见解析【解析】【分析】(1)根据∠ACB =90° ∠ACB =2∠B 得到∠B =45° CD ⊥AC 由线段垂直平分线的性质可得DE =CD 再证明∠B =∠EDB 得到BE =ED =CD 最后证明Rt △AED ≌Rt △ACD 得到AE =AC 即可得到结论;(2)在AB 上截取AG =AC 证明△ADG ≌△ADC 得到CD =DG ∠AGD =∠ACB 再由∠ACB =2∠B 得到∠B =∠GDB 则BG =DG =DC 即可得到AB =BG +AG =CD +AC ;(3)在AF 上截取AG =AC 由AD 为∠F AC 的平分线 得到∠GAD =∠CAD 可证△ADG ≌△ACD 得到CD =GD ∠AGD =∠ACD 即可推出∠ACB =∠FGD 再由∠ACB =2∠B 推出∠B =∠GDB 得到BG =DG =DC 则AB =BG ﹣AG =CD ﹣A C .【详解】解:(1)AB =AC +CD 理由如下:∵∠ACB =90° ∠ACB =2∠B∴∠B =45° CD ⊥AC∵DE ⊥AB AD 平分∠BAC∴DE =CD ∠DEB =∠DEA =90°∴∠EDB =180°-∠B -∠DEB =45°∴∠B =∠EDB∴BE =ED =CD在Rt △AED 和Rt △AD C 中DE DC AD AD =⎧⎨=⎩∴Rt △AED ≌Rt △ACD (HL )∴AE =AC∴AB +AE +BE =AC +CD ;(2)还存在AB =CD +AC 理由如下:在AB 上截取AG =AC 如图2所示∵AD 为∠BAC 的平分线∴∠GAD =∠CAD∵在△ADG 和△AD C 中AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADC (SAS )∴CD =DG ∠AGD =∠ACB∵∠ACB =2∠B∴∠AGD =2∠B又∵∠AGD =∠B +∠GDB∴∠B =∠GDB∴BG =DG =DC则AB =BG +AG =CD +AC ;(3)AB =CD ﹣AC 理由如下:在AF 上截取AG =AC 如图3所示∵AD 为∠F AC 的平分线∴∠GAD =∠CAD∵在△ADG 和△AC D 中AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ACD (SAS )∴CD =GD ∠AGD =∠ACD∵∠FGD =180°-∠AGD ∠ACB =180°-∠ACD∴∠ACB =∠FGD∵∠ACB =2∠B∴∠FGD =2∠B又∵∠FGD =∠B +∠GDB∴∠B =∠GDB∴BG =DG =DC则AB =BG ﹣AG =CD ﹣A C .【点睛】本题主要考查了全等三角形的性质与判定 角平分线的性质与定义 三角形外角的性质 三角形内角和定理 解题的关键在于能够熟练掌握全等三角形的性质与判定条件.5.已知:如图1 在ABC 中 AD 是BAC ∠的平分线.E 是线段AD 上一点(点E 不与点A 点D 重合) 满足2∠=∠ABE ACE .(1)如图2 若18∠=︒ACE 且EA EC = 则DEC ∠=________︒ AEB ∠=_______︒. (2)求证:AB BE AC +=.(3)如图3 若BD BE = 请直接写出ABE ∠和BAC ∠的数量关系.【答案】(1)36 126;(2)见解析;(3)3180∠+∠=︒ABE BAC【解析】【分析】(1)18∠=︒ACE 且EA EC = 再结合三角形的外角定理即可求DEC ∠ 18∠=︒ACE 且EA EC = AD 是BAC ∠的平分线 2∠=∠ABE ACE 再结合三角形内角和定理即可求解AEB ∠; (2)在AC 上截取AF AB = 连接FE 可证()≌AEF AEB SAS 故EF EB = AFE ABE 从而可得FEC FCE ∠=∠ 所以EF FC =进而可证得:=+=+AC AF FC AB BE (3)由BD BE = 可得BED BDE ∠=∠ BED ABE BAE ∠=∠+∠ ∠=∠+∠BDE DAC ACD 又AD 是BAC ∠的平分线 可得ABE ACD ∠=∠ 故CE 是ACD ∠的平分线 所以BE 是ABD ∠的平分线 故∠=∠=∠ABE ACD DBE 又180ACB ABC BAC ∠+∠+∠=︒ 所以ABE ∠和BAC ∠的数量关系即可求解.【详解】(1)∵18∠=︒ACE 且EA EC =∴∠EAC =∠ACE =18°∴∠DEC =∠EAC +∠ACE =36°又∵AD 是BAC ∠的平分线∴∠BAD =∠CAD =18°∵2∠=∠ABE ACE∴∠ABE =36°∴1801836126∠=︒-︒-︒=︒AEB ;故答案为:36 126(2)在AC 上截取AF AB = 连接FE又∵AE =AE EAF EAB ∠=∠∴()≌AEF AEB SAS∴EF EB = AFE ABE∵∠AFE =∠ACE +∠FEC ∠ABE =2∠ACE∴FEC FCE ∠=∠∴EF FC =∴=+=+AC AF FC AB BE ;(3)∵BD BE =∴BED BDE ∠=∠∵BED ABE BAE ∠=∠+∠ ∠=∠+∠BDE DAC ACD∠CAD =∠BAE∴∠ACD =∠ABE∵∠ABE =2∠ACE∴∠ACD =2∠ACE∴CE 平分∠ACB∴点E 到CA 、CB 的距离相等又∵AD 是BAC ∠的平分线∴点E 到AC 、AB 的距离相等∴点E 到BA 、BC 的距离相等∴BE 是ABD ∠的平分线∴∠ABE =∠CBE∴∠=∠=∠ABE ACD DBE又∵180ACB ABC BAC ∠+∠+∠=︒∴2180∠+∠+∠=︒ABE ABE BAC即3180∠+∠=︒ABE BAC .【点睛】本题考查了三角形外角的性质、三角形的内角和定理、角平分线的性质、三角形全等的判定和性质 解题的关键是熟练掌握各知识点 准确作出辅助线 熟练运用数形结合的思想.6.已知:如图 D 为△ABC 外角∠ACP 平分线上一点 且DA =DB DM ⊥BP 于点M .(1)若AC =6 DM =2 求△ACD 的面积;(2)求证:AC =BM +CM .【答案】(1)6;(2)见解析【解析】【分析】(1)如图作DN ⊥AC 于N .根据角平分线的性质定理可得DM =DN =2 由此即可解决问题; (2)由Rt △CDM ≌Rt △CDN 推出CN =CM 由Rt △ADN ≌Rt △BDM 推出AN =BM 由此即可解决问题.【详解】(1)解:如图作DN ⊥AC 于N .∵DC 平分∠ACP DM ⊥CP DN ⊥CA∴DM =DN =2∴S △ADC =12•AC •DN =12×6×2=6.(2)∵CD =CD DM =DN∴Rt △CDM ≌Rt △CDN∴CN =CM∵AD =BD DN =DM∴Rt △ADN ≌Rt △BDM∴AN =BM∴AC =AN +CN =BM +CM .【点睛】本题考查全等三角形的判定和性质、角平分线的性质定理等知识 解题的关键是学会添加常用辅助线 构造全等三角形解决问题 属于中考常考题型.7.如图 在∠EAF 的平分线上取点B 作BC ⊥AF 于点C 在直线AC 上取一动点P .在直线AE 上取点Q 使得BQ=BP .(1)如图1 当点P 在点线段AC 上时 ∠BQA +∠BP A = °;(2)如图2 当点P 在CA 延长线上时 探究AQ 、AP 、AC 三条线段之间的数量关系 说明理由; (3)在满足(1)的结论条件下 当点P 运动到在射线AC 上时 直接写出AQ 、AP 、PC 三条线段之间的数量关系为: .【答案】(1)180;(2)2AQ AP AC -=;理由见解析;(3)2AQ AP PC -=或2AP AQ PC -=.【解析】【分析】(1)作BM ⊥AE 于点M 根据角平分线的性质得到BM =BC 证明Rt BMQ ∆Rt ()BPC HL ∆≌,继而证明BQA BPC ∠=∠解题即可;(2)作BM AE ⊥于M 先证明Rt Rt ABM ABC ∆∆≌(HL ) 继而得到ABM ABC ∠=∠ AM AC = BM BC = 再证明Rt Rt BMQ BCP ∆∆≌(HL ) 从而得到PC QM = 据此解题即可;(3)分两种情况讨论 当点P 在线段AC 上时 或当点P 在线段AC 的延长线上时 分别画出适合的图 再由QBM PBC ∆∆≌(AAS )可得QBM PBC ∠=∠ QM PC = BM BC = 再由Rt Rt ABM ABC ∆∆≌(HL )可得AM AC = 利用线段和差计算即可.【详解】(1)证明:过点B 作BM AE ⊥于M∵BA 平分EAF ∠ BC AF ⊥∴BM BC =在Rt BMQ ∆和Rt BPC ∆中BQ BP BM BC =⎧⎨=⎩∴Rt Rt BMQ BPC ∆∆≌(HL )∴BQA BPC ∠=∠又∵180BPC BPA ∠+∠=︒∴180BQA BPA ∠+∠=︒故答案为180;(2)解:2AQ AP AC -=理由如下:如图2 作BM AE ⊥于M∵AB 平分∠EAF BC AF ⊥∴BM =BC 90BMA BCA ∠=∠=︒在Rt ABM ∆和Rt ABC ∆中BM BC AB AB=⎧⎨=⎩ ∴Rt Rt ABM ABC ∆∆≌(HL )∴ABM ABC ∠=∠ AM AC =在Rt BMQ ∆和Rt BCP ∆中BQ BP BM BC =⎧⎨=⎩∴Rt Rt BMQ BCP ∆∆≌(HL )∴PC QM =∴()()2AQ AP AM QM PC AC AM AC AC -=+--=+=(3)当点P 在线段AC 上时 如图 2AQ AP PC -=理由如下:作BM AE ⊥于M∵BC ⊥AF∴90BMA BCA ∠=∠=︒∵180BQA BPA ∠+∠=︒ ∠BPC +∠BP A =180°∴∠BPC =∠BQM在QBM ∆和PBC ∆中BMQ BCP BQM BPC QB PB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴QBM PBC ∆∆≌(AAS )∴QBM PBC ∠=∠ QM PC = BM BC =在Rt ABM ∆和Rt ABC ∆中BM BC AB AB =⎧⎨=⎩∴Rt Rt ABM ABC ∆∆≌(HL )∴AM AC =∴()2AQ AP AM QM AC PC QM PC PC -=+--=+=当点P 在线段AC 的延长线上时 如图 2AP AQ PC -=理由如下:作BM AE ⊥于M∵BC ⊥AF∴90BMA BCA ∠=∠=︒∵180BQA BPA ∠+∠=︒ ∠BQM +∠BQA =180°∴∠BPC =∠BQM在QBM ∆和PBC ∆中BMQ BCPBQM BPCQB PB∠=∠⎧⎪∠=∠⎨⎪=⎩∴QBM PBC ∆∆≌(AAS )∴QBM PBC ∠=∠ QM PC = BM BC =在Rt ABM ∆和Rt ABC ∆中BM BCAB AB =⎧⎨=⎩∴Rt Rt ABM ABC ∆∆≌(HL )∴AM AC =∴()2AP AQ AC CP AM QM MQ PC PC -=+--=+=故答案为:2AQ AP PC -=或2AP AQ PC -=.【点睛】本题考查全等三角形的判定与性质 角平分线性质 分类讨论思想等知识 掌握相关知识利用辅助线画出准确图形是解题关键.8.如图 在ABC 中 BAD DAC ∠=∠ DF AB ⊥ DM AC ⊥ 10AF cm = 14AC cm = 动点E 以2/cm s 的速度从A 点向F 点运动 动点G 以1/cm s 的速度从C 点向A 点运动 当一个点到达终点时 另一个点随之停止运动 设运动时间为t .(1)CM = :AE CG = ;(2)当t 取何值时 DFE △和DMG △全等;(3)在(2)的前提下 若:119:126BD DC = 228cm AED S =△ 求BFD S .【答案】(1)4 2;(2)143;(3)293cm 2.【解析】【分析】(1)根据角平分线的性质可证Rt △AFD ≌Rt △AMD 得AF =AM 从而求出即可;(2)分两种情况进行讨论:①当0<t <4时 ②当4≤t <5时 分别根据△DFE ≌△DMG 得出EF =GM 据此列出关于t 的方程 进行求解即可.(3)利用等高三角形的面积比等于对应底的比 即可求得答案.【详解】(1)∵∠BAD =∠DAC DF ⊥AB DM ⊥AC ∴DF =DM在Rt △AFD 和Rt △AM D 中DF DMAD AD =⎧⎨=⎩∴Rt △AFD ≌Rt △AMD (HL );∴10AF AM cm ==14104CM AC AM cm ∴=-=-=2AE t = CG t = :2AE CG ∴=(2)①当0<t <4时 点G 在线段CM 上 点E 在线段AF 上.EF =10﹣2t MG =4﹣t∴10﹣2t=4﹣t∴t=6(不合题意舍去);②当4<t<5时点G在线段AM上点E在线段AF上.EF=10﹣2t MG=t﹣4∴10﹣2t=t﹣4∴t=143;综上所述当t=143时△DFE与△DMG全等;(3)∵t=14 3∴AE=2t=28 3∵DF=DM∴S△ABD:S△ACD=AB:AC=BD:CD=119:126 ∵AC=14∴AB=119 9∴BF=AB﹣AF=1199﹣10=299∵S△ADE:S△BDF=AE:BF=283:299S△AED=28cm2∴S△BDF=293cm2.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、三角形的面积公式以及动点问题解题的难点在于第二问中求运动的时间此题容易漏解和错解.9.在平面直角坐标系中A(﹣3 0)、B(0 7)、C(7 0)∠ABC+∠ADC=180° BC⊥C D.(1)如图1①求证:∠ABO=∠CAD;②AB与AD是否相等?请说明理由;(2)如图2 E为∠BCO的邻补角的平分线上的一点且∠BEO=45° OE交BC于点F求BF 的长.【答案】(1)①见解析;②AB=AD见解析;(2)7【解析】【分析】(1)根据四边形的内角和定理、直角三角形的性质证明;(2)过点A作AF⊥BC于点F作AE⊥CD的延长线于点E△ABF≌△ADE得到AB=AD(3)过点E作EH⊥BC于点H作EG⊥x轴于点G根据角平分线的性质得到EH=EG证明△ABF ≌△ADE得到EB=EO根据等腰三角形的判定定理解答.【详解】证明:①在四边形ABC D中∵∠ABC+∠ADC=180°∴∠BAD+∠BCD=180°∵BC⊥CD∴∠BCD=90°∴∠BAD=90°∴∠BAC+∠CAD=90°∵∠BAC+∠ABO=90°∴∠ABO=∠CAD;解:②AB=AD如图:过点A 作AF ⊥BC 于点F 作AE ⊥CD 的延长线于点E ∵B (0 7) C (7 0)∴OB =OC∴∠BCO =45°∵BC ⊥CD∴∠BCO =∠DCO =45°∵AF ⊥BC AE ⊥CD∴AF =AE ∠F AE =90°∴∠BAF =∠DAE在△ABF 和△ADE 中BAF DAE AF AEAFB AED ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABF ≌△ADE (ASA )∴AB =AD(3)过点E 作EH ⊥BC 于点H 作EG ⊥x 轴于点G∵E 点在∠BCO 的邻补角的平分线上∴EH =EG∵∠BCO =∠BEO =45°∴∠EBC =∠EOC在△EBH 和△EOG 中EBH EOG EHB EGO EH EG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EBH ≌△EOG (AAS )∴EB =EO∵∠BEO =45°∴∠EBO =∠EOB =67.5° 又∠OBC =45°∴∠BOE =∠BFO =67.5°∴BF =BO =7.【点睛】本题考查的是全等三角形的判定和性质、角平分线的性质 掌握全等三角形的判定定理和性质定理是解题的关键.10.如图所示 直线AB 交x 轴于点A (a 0) 交y 轴于点B (0 b )且a 、b2(4)0a -= C 的坐标为(﹣1 0) 且AH ⊥BC 于点H AH 交OB 于点P .(1)如图1 写出a 、b 的值 证明△AOP ≌△BOC ;(2)如图2 连接OH 求证:∠OHP =45°;(3)如图3 若点D 为AB 的中点 点M 为y 轴正半轴上一动点 连接MD 过D 作DN ⊥DM 交x 轴于N 点 当M 点在y 轴正半轴上运动的过程中 求证:S △BDM ﹣S △ADN =4.【答案】(1)a =4 b =﹣4 见解析;(2)见解析;(3)见解析【解析】【分析】(1)先依据非负数的性质求得a 、b 的值从而可得到OA OB = 然后再90COB POA ∠=∠=︒OAP OBC ∠=∠ 最后 依据ASA 可证明OAP OBC ∆∆≌;(2)要证45OHP ∠=︒ 只需证明HO 平分CHA ∠ 过O 分别作OM CB ⊥于M 点 作ON HA ⊥于N 点 只需证到OM ON = 只需证明COM PON ∆∆≌即可;(3)连接OD 易证ODM ADN ∆∆≌ 从而有ODM ADN S S ∆∆= 由此可得12BDM ADN BDM ODM BOD AOB S S S S S S ∆∆∆∆∆∆-=-==. 【详解】(1)解:2(4)0a -=0a b ∴+= 40a -=4a ∴= 4b =-则4OA OB ==.AH BC ⊥即90AHC ∠=︒ 90COB ∠=︒90HAC ACH OBC OCB ∴∠+∠=∠+∠=︒HAC OBC ∴∠=∠.在OAP ∆与OBC ∆中90COB POA OA OBOAP OBC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()OAP OBC ASA ∴∆∆≌;(2)证明:过O 分别作OM CB ⊥于M 点 作ON HA ⊥于N 点.在四边形OMHN 中 36039090MON ∠=︒-⨯︒=︒90COM PON MOP ∴∠=∠=︒-∠.OAP OBC ∆∆≌OC OP ∴=在COM ∆与PON ∆中90COM PON OMC ONP OC OP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()COM PON AAS ∴∆∆≌OM ON ∴=.OM CB ⊥ ON HA ⊥HO ∴平分CHA ∠1452OHP CHA ∴∠=∠=︒; (3)证明:如图:连接OD .90AOB ∠=︒ OA OB = D 为AB 的中点OD AB ∴⊥ 45BOD AOD ∠=∠=︒ OD DA BD ==45OAD ∴∠=︒ 9045135MOD ∠=︒+︒=︒135DAN MOD ∴∠=︒=∠.MD ND ⊥即90MDN ∠=︒90MDO NDA MDA ∴∠=∠=︒-∠.在ODM ∆与ADN ∆中MDO NDA DOM DAN OD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ODM ADN ASA ∴∆∆≌ODM ADN S S ∆∆∴=.11114442222BDM ADN BDM ODM BOD AOB S S S S S S AO BO ∆∆∆∆∆∆∴-=-===⨯⋅=⨯⨯⨯=. 【点睛】本题是一次函数综合题 考查了全等三角形的判定与性质、等腰直角三角形的性质、角平分线的判定、二次根式及完全平方式的非负性等知识 在解决第(3)小题的过程中还用到了等积变换而运用全等三角形的性质则是解决本题的关键.11.在△AB C 中 ∠BAC =90° AB =A C .(1)如图1 若A 、B 两点的坐标分别是A (0 4) B (﹣2 0) 求C 点的坐标;(2)如图2 作∠ABC 的角平分线BD 交AC 于点D 过C 点作CE ⊥BD 于点E 求证: BD =2CE【答案】(1)(4 2);(2)证明过程见解析【解析】【分析】(1)作CM ⊥OA 垂足为M 证明△ABO ≌△CAM 即可得解;(2)延长CE 、BA 相交于点F 证明△ABD ≌△ACF (ASA ) 得到BD =CF 证明△BCE ≌△BFE (ASA ) 即可得解;【详解】(1)作CM ⊥OA 垂足为M∵∠AOB =∠BAC =90°∴∠BAO +∠CAM =90° ∠BAO +∠ABO =90°∴∠ABO =∠CAM在ABO 和CAM 中AOB CMA ABO CAM AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABO ≌△CAM∴MC =AO =4 AM =BO =2 MO =AO -AM =2∴点C 坐标(4 2);(2)如图2 延长CE 、BA 相交于点F∵∠EBF+∠F =90° ∠ACF+∠F =90°∴∠EBF =∠ACF在ABD △和ACF 中ABD ACF AB ACBAD CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABD ≌△ACF (ASA )∴BD=CF在BCE 和BFE △中CBE FBE BE BEBEF BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BCE ≌△BFE (ASA )∴CE =EF∴BD =CF =2 CE .【点睛】本题主要考查了全等三角形的判定与性质 角平分线的性质 准确分析证明是解题的关键. 12.如图1 点A 、D 在y 轴正半轴上 点B 、C 分别在x 轴上 CD 平分∠ACB 与y 轴交于D 点 ∠CAO +∠BDO =90°.(1)求证:AC =BC ;(2)如图2 点C 的坐标为(6 0) 点E 为AC 上一点 且∠DEA =∠DBO 求BC +EC 的值;(3)如图3 过D 作DF ⊥AC 于F 点 点H 为FC 上一动点 点G 为OC 上一动点 当H 在FC 上移动、点G 在OC 上移动时 始终满足∠GDH =∠GDO +∠FDH .试判断FH 、GH 、OG 这三者之间的数量关系 写出你的结论并加以证明.【答案】(1)证明见解析;(2)BC +EC =12;(3)GH =FH +OG 证明见解析.【解析】【分析】(1)由题意∠CAO +∠BDO =90° 可知∠CAO =∠CBD 再结合CD 平分∠ACB 所以可由AAS 定理证明△ACD ≌△BCD 由全等三角形的性质可得AC =BC ;(2)过D 作DN ⊥AC 于N 点 可证明Rt △BDO ≌Rt △EDN 、△DOC ≌△DNC 因此 BO =EN 、OC =NC 所以 BC +EC =BO +OC +NC -NE =2OC 即可得BC +EC 的长;(3)在x 轴的负半轴上取OM =FH 可证明△DFH ≌△DOM 、△HDG ≌△MDG 因此 MG =GH 所以 GH =OM +OG =FH +OG 即可证明所得结论.【详解】(1)证明:∵x 轴⊥y 轴∴∠CBD +∠BDO =90°∵∠CAO +∠BDO =90°∴∠CAO =∠CB D .∵CD 平分∠ACB∴ACD BCD ∠=∠在△ACD 和△BC D 中ACD BCD CAO CBD CD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCD (AAS ).∴AC =BC AD =DE ;(2)解:由(1)知∠CAD =∠DEA =∠DBO∴BD =AD =DE过D 作DN ⊥AC 于N 点 如右图所示:∵∠ACD =∠BCD∴DO =DN在Rt △BDO 和Rt △EDN 中BD DE DO DN=⎧⎨=⎩ ∴Rt △BDO ≌Rt △EDN (HL )∴BO =EN .在△DOC 和△DN C 中90DOC DNC OCD NCD DC DC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴△DOC ≌△DNC (AAS )可知:OC =NC ;∴BC +EC =BO +OC +NC -NE =2OC =12;(3)GH =FH +OG .证明:由(1)知:DF =DO在x 轴的负半轴上取OM =FH 连接DM 如图所示: 在△DFH 和△DOM 中90DF DO DFH DOM OM FH ︒=⎧⎪∠=∠=⎨⎪=⎩∴△DFH ≌△DOM (SAS ).∴DH =DM ∠1=∠ODM .∴∠GDH =∠1+∠2=∠ODM +∠2=∠GDM . 在△HDG 和△MDG 中DH DMGDH GDM DG DG=⎧⎪∠=∠⎨⎪=⎩ ∴△HDG ≌△MDG (SAS ).∴MG =GH∴GH =OM +OG =FH +OG .【点睛】本题考查坐标与图形 全等三角形的性质和判定 角平分线的性质.能正确作出辅助线构造全等三角形是解题关键.。

全等三角形与角平分线

全等三角形与角平分线

全等三角形与角平分线知识归纳1.角平分线的性质(1)角平分线上的点到角两边的距离相等;(2)角的内部到角的两边距离相等的点在角的平分线上.2.三角形三内角平分线交于一点(三角形的内心),这点到三角形三边的距离相等.基础回顾例1如图,BD是∠ABC的平分线,AB=BC,点P是BD上一点.PM⊥AD于M,PN⊥CD于N,求证:PM= PN.例2 如图,已知△ABC的∠B、∠C的外角平分线交于D点,求证:AD平分∠BAC.练习1.如图,已知∠ACB=90°,AD平分∠BAC交BC于D,DE⊥AB于E,BD=DF交CA的延长线于F点.求证:BE=AE+AF.2.如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,且AE=12(AB+AD).求∠ABC+∠ADC的度数.方法运用例3 如图,△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC 交AC延长线于G,求证:AB+AC= 2AF.例4如图,△AOB为等腰直角三角形,点P为动点,PA⊥PB.(1)如图(1),为P点在第一象限时,求∠OPA;(2)如图(2),为P点在第四象限时,求∠OPA.图①图②练习3.如图,在△ABC中,∠ABC= 100°,∠ACB=20°.CE是△ABC的角平分线,点D在AC上,且∠CBD=20°,求∠CED的度数.4.如图,已知,△ABC中,∠A=60°,BD、CE是△ABC的两条角平分线,求证:BC=CD+BE.问题探究例5 如图,正方形ABOC,点M、N分别在AB、AC上.(1)若∠NMO=∠MOC,问△AMN的周长是否变化,若不变,请求其值;(2)若点M在AB延长线上,点N在CA的延长线上,其它条件不变,问CN、MN、BM三者存在怎样的关系,试证明.图①图②例6如图,在ABCD中,E为AD上一点,F为AB上一点,且BE=DF,BE与DF交于点G.求证:CG平分∠BGD.练习5.分别以△ABC的AB、AC为边向外作等边△ABD和等边△ACE,连接CD、BE交于F.求证:AF平分∠DFE.6.如图,CA=CB,CD=CE,∠ACB=∠DCE=α.(1)当α=60°,且点D在AC上,连BD、AE,相交于点G,如图①,求∠BGA;(2)若O°<α<90°.如图②,求∠BGCA.图①图②7.如图所示,点A为∠MON的角平分线上一点,过A任作一直线分别与∠MON的两边交于B、C、P为BC的中点,过P作BC的垂线交OA于点D.(1)若∠MON= 90°,如图1,则∠BDC= ;(2)若∠MON= 60°,如图2,则∠BDC= ;(3)若∠MON=α,如图3,∠BDC= ,请给予证明.图1 图2 图3。

全等三角形与角平分线

全等三角形与角平分线

实用第四讲全等三角形与角平分线【知识回顾】1全等三角形的性质与判定 2、角平分线的性质与判定【讲解与练习】2 .如图,在平面直角坐标系中, 是线段OA 上的动点,从点O 出发,AB 上.已知A 、Q 两点间的距离是 (s )时,△ OCF 、△ FAQ >△ CBQ况 x 轴和 y 轴上,OA=10cm ,0C=6cm . FOA 方向作匀速运动,点 Q 在线段 a 倍.若用(a , t )表示经过时间t 请写出(a , t )的所有可能情3. ___________________________________________________________ 如图,已知△ ABC 三个角的平分线交于点 O ,延长BA 到点D ,使AD=AO ,连接DO , 若 BD=BC ,/ ABC=54 °,则/ BCA 的度数为 ° .7.如图,已知五边形 ABCDE 中,/ ABC= / AED=90 ° , AB=CD=AE=BC+DE=2 ,则五边 形ABCDE 的面积为 _______________________________________ .1如图,四边形ABCD 中,/ 则AC 长是 cm . 2 ABCD 的面积为24cm ,矩形OABC 的两边分别在 以1cm/s 的速度沿O 、F 两点间距离的 中有两个三角形全等. 4. 如图所示, AB=AC , AD=AE ,/ BAC= / DAE ,/ 1=24 °,/ 2=36 ° ,则/ 3= __________________ .5. 如图,AC=DB ,/ 仁/2,则△ ABC ◎△ ____________________________ ,/ ABC= / _____________________6.如图,点 D 在BC 上, DE 丄AB 于点E , DF 丄BC 交AC 于点F , BD=CF , BE=CD .若 /AFD=145 ° ,则/ EDF= ____________________________________________ .5的形网络,在网格中画出点 F ,使得△ DEF 与厶ABC 全等,这样的格点个.9. ____________________ 如图,0是厶ABC 一点,且0到三边 AB 、BC 、CA 的距离 OF=OD=OE ,若/ BAC=70 Z BOC= _________ .10. 如图,△ ABC 的周长是12, OB 、OC 分别平分Z ABC 和Z ACB , OD 丄BC 于D ,且OD=3,则△ ABC 的面积是 ____________________11. 如图,OC 平分Z AOB , Z AOC=20 ° , P 为 OC 上一点,PD=PE,OD 工 OE , Z OPE=11012. 如图,△ ABC 中,Z A=60 ° , AB > AC ,两角的平分线 CD 、BE 交于点 O , OF 平分ZBOC 交 BC 于 F , (1)Z BOC=120 ° ; (2)连 AO ,贝U AO 平分Z BAC ; (3) A 、O 、F 三点在同一直线上,(4) OD=OE , ( 5) BD+CE=BC .其中正确的结论是 _____________________________ (填序号).13. 如图1,已知△ ABC 中,AB=AC , Z BAC=90 °,直角Z EPF 的顶点P 是BC 中点,两 边PE 、PF 分别交AB 、CA 的延长线于点 E 、F .(1) 求证:AE=CF ;(2) 求证:△ EPF 是等腰直角三角形;(3) 求证:Z FEA+ Z PFC=45 ° ;S ^ABC .8.如图,在5X 三角最多可以画出 (4)求证: S A PFC _ S A PBE = 尹14.如图,△ ACO为等腰直角三角形.(1 )若C (- 1, 3),求A点坐标;(2)过A作AE丄AC,若/ FEO= / COE,求/ EOF的度数;(3)当厶ACO绕点O旋转时,过C作CN丄y轴,M为AO的中点,/ MNO的大小是否发生变化?15.如图,在△ ABC中,D是边BC上一点,AD平分/ BAC,在AB上截取AE=AC,连接BD=3cm,求线段BC的长.16.如图,在四边形ABCD 中,AC 平分/ DAE,DA // CE,AB=CB .(1)试判断BE与AC有何位置关系?并证明你的结论;(2)若/ DAC=25 °,求/ AEB 的度数.AD平分/ BAC,请利用线段之比可转化为面积之比的思路方法,求证18.如图,△ ABC 中,/ C=60 证:,AD , BE分别平分/ CAB , / CBA、AD、BE交于点P.求(1)/ APB=120 ° ;(2 )点P在/ C的平分线上;(3)AB=AE+BD .19. (1)如图1①,在△ ABC中,/ ABC= / ACB , AB的垂直平分线交AB于点N,交BC 的延长线于点M,若/ BAC=40 °,求/ AMB的度数;(2)如图1②,如果将(1)中的/ BAC的度数改为70°,其余条件不变,再求/ AMB的度数.20.在△ ABC 中, AD是/ BAC的平分线.(1)如图①,求证:S AACD AC(2)如图②,若BD=CD,求证:AB=AC ;(3)如图③,若AB=5 , AC=4 , BC=6 .求BD 的长.2. ________________________________________________________ 如图,在△ ABC 中,AB=AC ,/ BAC=90 ° , AE 是过 A 点的一条直线, CE 丄AE 于E , BD 丄 AE 于 D , DE=4cm , CE=2cm ,贝U BD= .3. 如图,在 Rt △ ABC 中,AC=BC ,/ C=90 ° , AB=8,点F 是AB 边的中点,点 D 、E 分 别在AC 、BC 边上运动,且保持 AD=CE ,连接DE 、DF 、EF .在此运动变化的过程中,下 列结论中正确的结论是(1 )△ DFE 是等腰直角三角形;(2) 四边形CDFE 不可能为形;(3) DE 长度的最小值是4;(4) 四边形CDFE 的面积保持不变;(5) △ CDE 面积的最大值为 4.4. 在直角坐标系中,如图有厶 ABC ,现另有一点D 满足以A 、B 、D 为顶点的三角形与△ABC 全等,则D 点坐标为 _____________________5. 如图所示,在△ ABC 中,/ A=90 ° , BD 平分/ ABC , AD=2cm , AB+BC=8 , S ^ABC= _____________________ .6. __________________________________________________ 如图,AD 是厶ABC 的角平分线, DF 丄AB ,垂三.【作业】1•“石门福地”小区有一块直角梯形花园,测量 则该花园面积为 _________________ 平方米.AB=20 米,/ DEC=90 °,/ ECD=45足为F, DE=DG , △ ADG和厶AED的面积分别为50和38,则厶EDF的面积为.7.如图,在△ ABC 中,/ ABC=90 ° . AB=BC , A (- 4, 0), B (0, 2) I 玖圏1 图2 图3(1)如图1,求点C的坐标;(2)如图2, BC交x轴于点M , AC交y轴于点N,且BM=CM,求证:/ AMB= / CMN ;(3)如图3,若点A不动,点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、第二象限作等腰直角厶BOF与等腰直角△ ABE,连接EF交y轴于P点,问当点B在y 轴正半轴上移动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出其长度.&如图,在厶ABC中,已知/ B= / C,AB=AC=10厘米,BC=8厘米,点D为AB的中点.点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A 点运动.(1)若点Q的运动速度与点P的运动速度相等,则经过1s,A BPD与厶CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使厶9.如图,AD // BC,/ D=90 ° .(1)如图1,若/ DAB的平分线与/ CBA的平分线交于点P,试问:点P是线段CD的中点吗?为什么?(2)如图2,如果P是DC的中点,BP平分/ ABC,/ CPB=35°,求/ PAD的度数为多10.观察、猜想、探究:在厶ABC 中,/ ACB=2 / B.(1)如图①,当/ C=90 ° , AD为/ BAC的角平分线时,求证:AB=AC+CD ;(2)如图②,当/ CM 90°, AD为/ BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.参考答案与试题解析(1, 4)(丄,5), (0 10)b.解:①当△ COF 和厶FAQ 全等时,OC=AF ,OF=AQ 或 OC=AQ ,OF=AF , •/ OC=6 , OF=t , AF=10 - t , AQ=at ,代入得:::厂或(Mt ,解得2,a=1, ,5);②同理当厶FAQ 和厶CBQ 全等时,必须BC=AF , BQ=AQ ,10=10 - t , 6- at=at ,此时不存在;③因为△ CBQ 最长直角边 BC=10,而△ COF 的最长直角 边不能等于10,所以△。

初二数学上册角平分线的性质与判定

初二数学上册角平分线的性质与判定

第六节角平分线的性质与判定中考考点分析在教材中的地位重点、难点角平分线的性质与判定在考试中常出现在综合题中,需要学生根据实际情况作辅助线来帮助分析。

角平分线的性质在教材中位于全等三角形章节的最后一节,角平分线的三种常用辅助线的作法涉及全等三角形的5个判定,角平分线的性质能够帮助学生简化书写步骤。

角平分线的判定为学生提供了另一种证明角相等的方法。

理解并熟练掌握角平分线的性质与角平分线的判定。

通过角平分线的三种常用辅助线的训练,熟悉推理证明的思路方法和书写格式,培养和提高逻辑思维能力。

讲点1 角平分线的性质例1如图,AD是△ABC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若SABC△=7,DE=2,AB=4,则AC的值为()(2013,硚口区期中)A. 4B. 3C. 6D. 5题意分析根据角平分线性质可得DE=DF,AD将△ABC的面积分成两部分,DE,DF分别为这两部分的高,巧妙地求出AC的长。

解答过程:解题后的思考:练1.1如图,已知△ABC中,AB=10,BC=15,CA=20,若点O是△ABC内角平分线的交点,则△ABO,△BCO,△CAO的面积比是________________。

练1.2如图,BD是∠ABC的平分线,AB=BC,点E在BD上,连接AE,CE,DF⊥AE,DG⊥CE,垂足分别是F,G,求证:DF=DG。

(2013,江汉区期中)讲点2 角平分线的判定例2如图,已知BE=CF,BF⊥AC于点F,CE⊥AB于点E,BF和CE交于点D。

求证:AD平分∠BAC.题意分析要证AD平分∠BAC,若证得DE=DF,问题就可以解决,因此先证DE=DF。

证明两个角相等除了利用平行线截得的同位角和内错角、全等三角形的对应角、等腰三角形两底角之外,角平分线的判定也是常用方法,应注意灵活掌握。

解答过程:解题后的思考:练2.1如图,在△ABC中,AC=AB,点D在BC上,若DE⊥AB于点E,DF⊥AC于点F,DF⊥DE,求证:AD⊥BC。

八年级数学上全等三角形12.3角的平分线的性质第2课时角的平分线的判定人教

八年级数学上全等三角形12.3角的平分线的性质第2课时角的平分线的判定人教

【点拨】∵∠AOB=∠COD=36°,
∴∠AOB+∠BOC=∠COD+∠BOC.
即∠AOC=∠BOD.
在△AOC和△BOD中, OA=OB, ∠AOC=∠BOD, OC=OD, ∴△AOC≌△BOD.
∴∠OAC=∠OBD,AC=BD,故②正确.
如图,设AC与OB交于点E. ∵∠AEO=∠BEM,∴∠AMB+∠OBD=∠OAC+∠AOB, ∴∠AMB=∠AOB=36°,故①正确. 作OG⊥AM于点G,OH⊥DM于点H, ∵△AOC≌△BOD,∴OG=OH. ∴MO平分∠AMD,故④正确. ∵MO平分∠AMD,∴∠AMO=∠DMO. 假设OM平分∠AOD,则∠DOM=∠AOM,
*5.(2020·鄂州)如图,在△AOB和△COD中,OA=OB,OC =OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD 交于点M,连接OM.下列结论:
①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO 平分∠AMD.其中正确的结论个数有( )个.
A.4 B.3 C.2 D.1
(1)CO平分∠ACD; 证明:如图,过点O作OE⊥AC于点E. ∵∠B=90°,AO平分∠BAC,∴OB=OE. ∵O为BD的中点,∴OB=OD.∴OE=OD. 又∵∠D=90°,∴点O在∠ACD的平分线上, 即CO平分∠ACD.
(2)AB+CD=AC. 证明:∵OE⊥AC,∠B=90°,∴∠B=∠AEO=90°.
证明:如图,过点P作PE⊥AO,PF⊥OB,垂足分别为E,
F,则∠AEP=∠BFP=90°.
∵∠1+∠2=180°,∠2+∠PBO=180°,∴∠1=∠PBO.
在△PAE和△PBF中, ∠ ∠A1=EP∠=P∠BFB,FP, PA=PB, ∴△PAE≌△PBF(AAS).∴PE=PF.

初二数学角平分线定义

初二数学角平分线定义

初二数学角平分线定义角平分线是指将一个角分成两个相等的角的直线。

在数学中,角平分线是一个重要的概念,它在几何学和三角学中都有广泛的应用。

本文将介绍角平分线的定义、性质以及一些相关的定理和例题。

一、角平分线的定义角平分线是指从一个角的顶点出发,将这个角分成两个相等的角的直线。

也可以说,角平分线把一个角分成两个度数相等的小角。

二、角平分线的性质1. 角平分线上的点到角的两边的距离相等;2. 角平分线将角分成两个度数相等的小角;3. 角平分线将角的两边分成相等的线段;4. 角平分线与角的两边垂直;5. 角平分线与角的两边的夹角相等。

三、角平分线的定理1. 角平分线定理:如果一条直线平分一个角,那么这条直线上的点到角的两边的距离相等。

证明:设角AOC为被平分的角,OD为角平分线,OD与OA、OC交于点B、E。

由角平分线的定义可知,∠BOD=∠DOE,∠BOA=∠COE。

因此,三角形BOA与三角形COE相似。

根据相似三角形的性质可知,OA/OB=OC/OE。

又因为∠BOA=∠COE,所以三角形BOA与三角形COE全等。

因此,AB=CE,即点B到角的两边的距离等于点E到角的两边的距离。

2. 角平分线的唯一性定理:一个角的平分线只有一条。

证明:设角AOC为被平分的角,OD和OF为两条角平分线,OD与OA、OC交于点B、E,OF与OA、OC交于点C、F。

由角平分线的定义可知,∠BOD=∠DOE,∠COF=∠FOE。

又因为∠BOD=∠COF,∠DOE=∠FOE,所以三角形BOA与三角形COF全等,三角形COE与三角形DOF全等。

因此,AB=CF,CE=DF。

由于AB=CF,CE=DF,所以线段BE与线段DF 重合。

因此,OD与OF重合,即角平分线OD和OF是同一条直线。

四、角平分线的应用角平分线在几何学和三角学中有广泛的应用。

例如,在三角形中,如果一条角平分线与对边相交,那么它将对边平分成两个相等的线段。

此外,角平分线还可以用于解决一些角度相等的问题,如证明两条线段相等、两条直线平行等。

全等三角形角平分线的判定

全等三角形角平分线的判定

全等三角形角平分线的判定一、概述全等三角形是几何学中重要的概念之一,它指的是具有相同形状和大小的两个三角形。

在判定两个三角形是否全等时,角平分线是一个重要的判定条件之一。

本文将详细探讨全等三角形角平分线的判定方法。

二、角平分线的定义和性质角平分线是指从一个角的顶点出发,将该角分成两个相等的角的线段。

在三角形中,每个内角都有一条角平分线。

角平分线的性质如下: 1. 角平分线将角分成两个相等的角。

2. 三角形的三条角平分线交于一点,该点称为角平分点。

3. 角平分线与三角形的边相交,将边分成两个与角平分线所在直线段成比例的线段。

三、全等三角形的定义和判定条件全等三角形是指具有相同形状和大小的两个三角形。

判定两个三角形全等的条件有多种,其中之一就是角平分线的相等性。

以下是判定两个三角形全等的常用条件:1. SSS(边-边-边):若两个三角形的三条边分别相等,则它们全等。

2. SAS(边-角-边):若两个三角形的两边和夹角分别相等,则它们全等。

3. ASA(角-边-角):若两个三角形的两角和一边分别相等,则它们全等。

4. AAS(角-角-边):若两个三角形的两角和一边分别相等,则它们全等。

5. RHS(直角-斜边-高):若两个直角三角形的斜边和高分别相等,则它们全等。

四、角平分线的判定方法在判定两个三角形全等时,我们可以利用角平分线的相等性来简化判定过程。

以下是角平分线的判定方法: 1. 若两个三角形的一个内角的角平分线分别与另一个三角形的两个内角的角平分线相等,则这两个三角形全等。

2. 若两个三角形的两个内角的角平分线分别与另一个三角形的两个内角的角平分线相等,则这两个三角形全等。

3. 若两个三角形的一个内角的角平分线分别与另一个三角形的一个内角的角平分线相等,并且这两个内角的角平分线所在直线段成比例,则这两个三角形全等。

五、示例分析下面通过一个示例来说明角平分线的判定方法。

假设有两个三角形ABC和DEF,已知∠A = ∠D,∠B = ∠E,AD/DE = BC/EF。

全等三角形之角平分线的性质

全等三角形之角平分线的性质

全等三角形之角平分线的性质1、如图,△ABC的角平分线BM,CN相交于点P。

求证:点P到三边AB,BC,CA的距离相等2、如图,△ABC的∠B的外角平分线BD与∠C的外角平分线CE交于点P,求证:P到三边AB、BC、CA所在的直线的距离相等3、如图,已知OC是∠MON的平分线,P是OC上一点,P到OM的距离为3cm,则P到ON的距离为cm4、如图,在△ABC中,∠C=900,AD是角平分线,DE⊥AB于E,且DE=5.6,BC=11.8m,则BD= cm5、如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,若∠B=∠C,写出你认为正确的两个结论:6、一个S区有一货易市场,在公路与铁路所成角的平分上的P点要从P点建两条路,一条到公路上,另一条到铁路上,怎样修建距离最短,这两条路在数量上有何关系?7、△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直AB、AC,垂足分别为E、F.求证:EB=FC8、在△ABC中,∠B=∠C,点D为BC边的中点,DE⊥AB, DF⊥AC,垂足分别是E,F。

求证:点D在∠A的平分线上9、已知:如图,点B、C在∠A的两边上,且AB=AC,P为∠A内一点, PB=PC,PE⊥AB,PF⊥AC,垂足分别是E、F,求证:PE=PF10、已知:AC=BC, CA⊥OA于A,BC⊥OB于B,求证:∠AOC=∠BOCAA B CD FEFCA BE D 11、如图,∠B=∠C=900,DM 平分∠ADC ,AM 平分∠DAB ,求证:MB=MC12、如图,四边形ABCD ,E 是AC 上一点,ED ⊥CD 于D ,EB ⊥BC 于B ,CA 平分∠BCD 。

求证:AD=AB 。

13、如图,PB 、PC 分别是△ABC 的外角平分线,相交于点P.求证:P 在∠A 的平分线上.14、如图:△ABC 中,AB=AC,D 是BC 的中点,DE ⊥AB ,DF ⊥ABC,垂足分别为E 、F ,求证:DE=DF15、已知,如图,CE ⊥AB,BD ⊥AC,∠B=∠C ,BF=CF 。

初中数学 角平分线有哪些全等性质

初中数学 角平分线有哪些全等性质

初中数学角平分线有哪些全等性质
角平分线的全等性质指的是,在两个全等的角中,它们的角平分线也是全等的。

下面是关于角平分线的全等性质的详细介绍:
设有两个全等的角AOB和COD,其中∠AOB∠∠COD。

性质一:角平分线的长度相等
两个全等的角中,它们的角平分线的长度相等。

具体来说,如果∠AOB∠∠COD,则角AOB的角平分线AD和角COD的角平分线CE的长度相等,即AD ∠ CE。

性质二:角平分线的夹角相等
两个全等的角中,它们的角平分线之间的夹角也相等。

具体来说,如果∠AOB∠∠COD,则角AOB的角平分线AD和角COD的角平分线CE之间的夹角∠DAE ∠ ∠CED。

性质三:角平分线与角的对应边垂直
两个全等的角中,它们的角平分线与角的对应边垂直。

具体来说,如果∠AOB∠∠COD,则角AOB的角平分线AD与边AB垂直,角COD的角平分线CE与边CD垂直。

性质四:角平分线分割角的对应边成相等的线段
两个全等的角中,它们的角平分线将角的对应边分割成相等的线段。

具体来说,如果∠AOB∠∠COD,则角AOB的角平分线AD将边AB分割成相等的线段,即AD = DB;角COD的角平分线CE将边CD分割成相等的线段,即CE = DE。

需要注意的是,在使用角平分线的全等性质时,要确保已知条件满足两个角全等的要求,并进行合理的推理和比较。

只有在满足两个角全等的条件下,我们才能得出角平分线的全等性质。

角平分线的全等性质在几何证明中经常被用来推导和证明其他角的性质,如垂直角、等腰三角形等。

通过合理运用这些性质,我们可以更好地理解和应用角平分线的概念。

人教版八年级数学全等三角形的常见模型总结(精选

人教版八年级数学全等三角形的常见模型总结(精选

人教版八年级数学全等三角形的常见模型总结(精选.)人教版八年级数学全等三角形常见模型总结要点梳理:全等三角形的判定与性质:一般三角形:边角边(SAS)、判角边角(ASA)、定角角边(AAS)、边边边(SSS)。

直角三角形:斜边、直角边定理(HL)。

性质:对应边相等,对应角相等(其他对应元素也相等,如对应边上的垂高相等)。

备判定:三角形全等必须有一组对应边相等。

注类型一:角平分线模型应用1.角平分性质模型:利用角平分线的性质。

例题解析:例1:如图1,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB的距离是多少?答案】作DE⊥XXX于点E,DE=3cm。

例2:如图2,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC。

答案】如图2,由角平分线的性质可知,PM=PN,PN=PQ,故PM=PQ,又因为PA是角BAC的平分线,所以XXX平分∠BAC。

类型二:角平分线模型应用2.角平分线,分两边,对称全等(截长补短构造全等)。

例题解析:例1:在△ABC中,∠BAC=60°,∠C=40°,AP平分∠XXX于P,BQ平分∠XXX于Q,求证:AB+BP=BQ+AQ。

答案】如图1,过O作OD∥BC交AB于D,∠ADO=∠ABC=180°-60°-40°=80°,又∵∠AQO=∠C+∠QBC=80°,∴∠ADO=∠AQO,又∵∠DAO=∠QAO,OA=AO,∴△ADO≌△AQO,∴OD=OQ,AD=AQ,又因为OD∥BP,所以∠PBO=∠DOB,又∠PBO=∠DBO,∴∠DBO=∠DOB,∴BD=OD,又∵∠XXX∠C+∠PAC=70°,∠BOP=∠OBA+∠BAO=70°,∴∠BOP=∠BPO,∴BP=OB,∴AB+BP=AD+DB+BP=AQ+OQ+BO=AQ+BQ。

如图,将△ADE逆时针旋转60°,使△ADE≌△ABC,从而得到△MDE≌△MAC,因为M为BD的中点,所以ME=MC,因此△EMC为等腰三角形,且∠MDE=∠MAC=30°,所以△EMC为等腰直角三角形。

角平分线与全等三角形

角平分线与全等三角形

角平分线与全等三角形三角形的三条角平分线交于一点,称作三角形内心。

三角形的内心到三角形三边的距离相等。

下图D是角平分线上的一点。

根据角平分线的定义可以得到两个相等的角:∠CAD=∠BAD,还知道AD=AD,所以再需要一个条件就可以构造出全等三角形。

例如过D点作角分线AD的垂线,交AC于点E,交AB于点F,则有∠ADE=∠ADF=90°,结合AD=AD,∠CAD=∠BAD,可知∆ADE≌∆ADF(ASA),可得AE=AF,DE=DF。

根据这个结论我们可以知道等腰三角形AFE中,AD即是角平分线,又是中线和高。

可以帮助我们理解等腰三角形的三线合一(八年级的知识)。

还可以过D点作AC的垂线交AC于点E,过D点作AB的垂线交AB于点F,则有∠AED=∠AFD=90°,结合∠EAD=∠FAD,AD=AD,可知∆ADE≌∆ADF(AAS)。

所以DE=DF。

这个就是角平分线的性质之一:角平分线上的点到角两边的距离相等。

虽然上面两种情况增加的都是直角,但是即使不是直角,只要知道∠AED=∠AFD或者∠ADE=∠ADF等,都可以得到∆ADE≌∆ADF。

以上增加的条件都是相等的角,但是我们还可以增加等边的条件。

例如在射线AC上截取线段AE,在射线AB上截取线段AF使AF=AE,然后连接ED 与FD。

结合∠FAD=∠EAD,AD=AD,就可以得到∆ADF≌∆ADE(SAS)。

掌握利用角平分线构造全等三角形的方法后。

这两个方法是七年级构造全等三角形最基本的方法,它们看起来很神奇,解题时也非常好用,但其实它们的实质就是:角平分线给出了等角中线可以得到等边而角相等,边相等是证明三角形全等的基本条件。

有了已知的等角或等边,我们可以通过辅助线作出其它所需的等边或等角,从而构造出全等的三角形。

熟练掌握这些基本的方法(模型),可以拓展我们的解题思路,加快解题速度。

也启发了我们:善于发现等角和等边,并充分利用它们,才是解几何题的关键。

八年级数学角平分线的性质和判定(教师版)

八年级数学角平分线的性质和判定(教师版)

角平分线的性质和判定全等三角形的性质与判定1、如图,在四边形ABCD中,AB=AD,CB=CD,求证:∠B=∠D。

2、如图,AB=CD,∠BAD=∠ADC,求证:∠B=∠C。

知识点一角平分线的性质角平分线上的点到角两边的距离相等。

如图,AB是∠CAD的平分线,则有:CB=BD。

请予以证明。

知识点二 角平分线的判定到一个角的两边的距离相等的点在这个角的平分线上。

如图:如果有CB =BD ,则有AB 是∠CAD 的平分线。

请予以证明。

知识点三 三角形中的角平分线三角形的三条角平分线交于三角形内一点,•并且这个点到三角形三边的距离相等。

如图1,在△ABC 中,AD 、BE 分别是∠BAC 、∠ABC 的角平分线,AD 、BE 交于点I ,则有IH =IG =IF 。

(图1) (图2)☆【知识拓展】三角形中,一个内角平分线分该角对边的两部分之比等于该角的两边之比。

如图2,在△ABC 中,AD 平分∠BAC ,则BD ABCD AC=。

D CBA E HIFG【例题精讲一】例1、AD平分∠EAF,过点D作BC垂直于AD,交AE、AF于点B、C。

求证:BD=CD。

【课堂练习】如图,已知,∠BAC=30°,G为∠BAC的平分线上的一点,若EG ∥AC交AB于E,GD ⊥AC 于D,求GD:GE。

【例题精讲二】例2、如图,△ABC中,P是角平分线AD、BE的交点。

求证:点P在∠C的平分线上。

例3、在△ABC中,∠ABC=100°,CE 平分∠ACB交 AB于 E,D在 AC上,且∠CBD=20°。

求∠CED的度数。

【课堂练习】如图,D、E、F分别是△ABC的三条边上的点,BE=CF,△DCF和△DBE的面积相等。

求证:AD平分∠BAC。

【例题精讲三】例4、已知,在等腰Rt△ABC中,AC=BC,∠C=90°,AD平分∠BAC,DE⊥AB于点E,AB=15cm。

(1)求证:BD+DE=AC;(2)求△DBE的周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲全等三角形与角平分线
本讲知识归纳
1.角平分线的性质
(1)角的平分线上的点到角的两边的距离相等;
(2)角的内部到角的两边距离相等的点在角的平分线上。

2.三角形三条内角平分线交于一点(此点
叫三角形的内心),这点到三角形三边的距离相等。

基础回顾
例1.如图,BD是∠ABC的平分线,AB=BC,点P是BD上一点,PM⊥AD于M,PN⊥CD于N。

求证:PM=PN。

例2.如图,已知⊿ABC的∠B、∠C的外角平分线交于点D,求证:AD平分∠BAC。

点评:证明角平分线的方法:1.角平分线的定义,证明两个小角相等;2角平分线的性质,证某点到角两边的距离相等,得点在角的平分线上,由“两点确定一条直线”,得角平分线。

练习
1.如图,已知∠ACB=90°,AD平分∠BAC
交BC于D,DE⊥AB于E,,BD=DF,DF交CA的延长线于点F。

求证:BE=AE+AF。

2. 如图,在四边形ABCD 中,AC 平分∠
BAD ,过C 作CE ⊥AB 于E ,且AE=2
1(AB +AD)。

求∠ABC +∠ADC 的度数。

方法运用
例3. 如图,⊿ABC 中,D 为BC 的中点,DE
⊥BC 交∠BAC 的平分线AE 于点E ,EF ⊥AB 于F ,EG ⊥AC 交AC 延长线于G 。

求证:AB +AC =2AF 。

例4.
如图,△AOB 为等腰直角三角形,点P
△为动点,PA ⊥PB 。

(1)
如图①,当点P 在第一象限时,求∠OPA ; (2) 如图②,当点P 在第二象限时,求∠OPA 。

练习
3.如图,在△ABC中,∠ABC=100°,∠
ACB=20°,CE是△ABC的角平分线,点D在AC上,且∠CBD=20°。

求∠CED的度数。

4.如图,已知△ABC中,∠A=60º,BD、
CE是△ABC的两条角平分线。

求证:BC=CD+BE。

问题探究
例5.如图,正方形ABCD中,点M、N分别在AB、AC上。

(1)若∠NMO=∠MOC,问△AMN的周长是否变化,若不变,请求其值;
(2)若点M在AB延长线上,点N在CA的延长线上,其它条件不变,问CN、MN、BM三者存在怎样的关系,试证明。

例6.如图,∠C=90 º,AM⊥AB,MN⊥AC,PQ⊥AB,AQ=MN。

求证:PC=AN
练习
5.分别以△ABC的AB、AC为边向外作等边△ABD和等边△ACE,连接CD、BE交于F。

求证:AF平分∠DFE。

6.如图,CA=CB,CD=CE,∠ACB=∠DCE=α。

(1)当α=60 º,且点D在AC上,连BD、AE,相交于点G,如图①,求∠BGA;
(2)若0 º<α<90 º,如图③,求∠BGC。

1.如图所示,点A为∠MON的角平分线上
一点,过A任作一直线分别与∠MON的两边交于B、C,P为BC的中点,过P作BC的垂线交OA于点D。

(1)若∠MON=90º,如图①,则∠BDC= ;
(2)若∠MON=60º,如图②,则∠BDC= ;
(3)若∠MON=α,如图③,则∠
BDC= ,请给予证明。

相关文档
最新文档