运筹学第13章博弈论
博弈论
经济学世界十部经典著作
1、亚当.斯密(英国)《国富论》。斯密此书是现代经济学的奠基之作,也是最伟大的经济学著作。他的劳动价值论,分工与专业化是经济效率之源的理论,“看不见的手”经济自由主义理论,都睥睨古人,下开百世。对经济学的贡献堪比牛顿对物理学的贡献。
2、《博弈圣经》(新加坡) 。独创了国正论、国正双赢理论和粒子行为论,是一部影响人类的非物质文化的经济学高级学术著作,它的粒子基因的映射均衡理论,单方占优理论,引起世界经济学、军事科学、自然哲学、博弈论界的极大关注。
简介
1.博弈根据是否可以达成具有约束力的协议分为合作博弈和非合作博弈。 合作博弈亦称为正和博弈,是指博弈双方的利益都有所增加,或者至少是一方的利益增加,而另一方的利益不受损害,因而整个社会的利益有所增加。合作博弈研究人们达成合作时如何分配合作得到的收益,即收益分配问题。合作博弈采取的是一种合作的方式,或者说是一种妥协。妥协其所以能够增进妥协双方的利益以及整个社会的利益,就是因为合作博弈能够产生一种合作剩余。这种剩余就是从这种关系和方式中产生出来的,且以此为限。至于合作剩余在博弈各方之间如何分配,取决于博弈各方的力量对比和技巧运用。因此,妥协必须经过博弈各方的讨价还价,达成共识,进行合作。在这里,合作剩余的分配既是妥协的结果,又是达成妥协的条件。 合作博弈强调的团体理性(collective rationality),是效率、公平、公正;
博弈要素
1.决策人:在博弈中率先作出决策的一方,这一方往往依据自身的感受、经验和表面状态优先采取一种有方向性的行动。(博弈圣经)
2.对抗者:在博弈二人对局中行动滞后的那个人,与决策人要作出基本反面的决定,并且他的动作是滞后的、默认的、被动的,但最终占优。他的策略可能依赖于决策人劣势的策略选择,占去空间特性,因此对抗是唯一占优的方式,实为领导人的阶段性终结行为。(博弈圣经)
运筹学博弈论
i a 2 1 3 a c 1 3 a c c 1 3 a c 9 1 a c 2
产量博弈的古诺模型是一种囚徒困境,无法实现 博弈方总体和各个博弈方各自最大利益的结论,对 于市场经济组织、管理,对于产业组织和社会经济 制度的效率判断,都具有非常重要的意义。说明对 市场的管理,政府对市场的调控和监管都是必须的。
纳什均衡(Nash Equilibrium)
通俗地说,纳什均衡的含义 就是:
给定你的策略,我的策略是 最好的策略;给定我的策略, 你的策略也是你的最好的策 略。即双方在给定的策略下 不愿意调整自己的策略。
1. 纯战略Nash均衡
策略空间:每个博弈方的全部可选策略的集合 S1,Sn
博弈方 i的第 j个策略: si j Si 博弈方 i的得益:u i
每个参与人都想猜透对方的战略,而每个参与人又 不愿意让对方猜透自己的战略。
这种博弈的类型是什么?如何找到均衡?
请举一些这样的例子:
✓石头、剪子、布游戏 ✓老虎、杠子、鸡、虫子游戏 ✓扑克游戏 ✓橄榄球赛 ✓战争中
大猪先到:大猪吃到9个单位,小猪吃到1个单位; 小猪先到:小猪吃到4个单位,大猪吃到6个单位; 同时到达:大猪吃到7个单位,小猪吃到3个单位。
局中人:大猪和小猪 行动:按按钮吃东西
小猪
按
不按
大
猪
按 (5, 1) (4, 4)
不按 (9, -1) (0, 0)
24
大猪 按 等待
小猪的上策
寡头产量竞争——以两厂商产量竞争为例 Qq1 q2 PP(Q) aQ
u 1 q 1 P ( Q ) c 1 q 1 q 1 [ a ( q 1 q 2 ) c ]1q
u 2 q 2 P ( Q ) c 2 q 2 q 2 [ a ( q 1 q 2 ) c ]2q
运筹学第13章博弈论
动态博弈(dynamic game) 指局中人的行动有先后顺序,且后行动者能 够观察到先行动者所选择的行动。
“石头、剪刀、布”的游戏;
下棋、打牌等游戏。
运筹学第13章博弈论
第1节 博弈论概论│博弈分类
1.2.2 博弈分类详解
完全信息博弈(completeⅠinformation)
将各博弈方都完全了解所有博弈方各种情况 下得益的博弈称为“完全信息博弈” 。
运筹学第13章博弈论
第1节 博弈论概论│什么是博弈论
1.1.2 引例 囚徒困境是图克(Tucker)1950年提出的,该博弈是博弈论最经典、著名的博弈。该博弈本身
讲的是一个法律刑侦或犯罪学方面的问题,但可以扩展到许多经济问题,以及各种社会问题。
坦白
囚徒 B
不坦白
囚徒 A
坦白 不坦白
-5, -5 -10, -1
运筹学第13章博弈论
第1节 博弈论概论│什么是博弈论
1.1.5 博弈论的基本概念
博弈方的得益(Payoffs)
博弈的参加者(Player)
四个核心
各博弈方的策略(Strategies) 或行为(Actions)
博弈的次序(Order)
运筹学第13章博弈论
2 博弈的分类
运筹学第13章博弈论
第1节 博弈论概论│博弈分类
1.2.2 博弈分类详解
零和博弈
在博弈中一组局中人所得到的支付(或收益) 恰好是另一组局中人的损失。通俗地说,博 弈结果总和为零的博弈称为零和博弈。
非零和博弈 非零和博弈指所有局中人的支付(或收益) 的代数和不为零。为正或为负。
赢钱与输钱为零和博弈;
工会与厂方达成增加工资的协议双方获得“双 赢”。反之,罢工导致“两败俱伤”。
博弈论最全完整ppt讲解
人们在日常生活中进行着博弈,与配偶,朋友,陌 生人,老板/员工,教授等。
类似的博弈也在商业活动、政治和外交事务、战争 中进行着——在任何一种情况下,人们相互影响以 达成彼此有利的协议或者解决争端。
博弈论为众多学科提供了分析的概念和方法:经济 学和商学,政治科学,生物学, 心理学和哲学。
案例1:囚犯困境
支付 嫌疑人A
嫌疑人 B
抵赖
坦白
抵赖 -1,-1 0,-9
坦白 -9,0 -6,-6
均衡与均衡结果
均衡战略(坦白,坦白) 均衡支付(-6,-6)
第二节 纳什均衡
占优战略均衡 重复剔除的占优战略均衡
纳什均衡
完全信息静态博弈的几点特性
同时出招,出招一次; 知道博弈结构与游戏规则(共同知识); 不管是否沟通过,无法做出有约束力的
如何在博弈中获胜?
…… 真的能在博弈中(总是)获胜吗? 对手和你一样聪明! 许多博弈相当复杂,博弈论并不能提供
万无一失的应对办法。
例1:无谓竞争(The GPA Rat Race)
你所注册的一门课程按照比例来给分:无论卷面分数是 多少,只有40%的人能够得优秀,40%的人能得良好。
所有学生达成一个协议,大家都不要太用功,如何?想 法不错,但无法实施!稍加努力即可胜过他人,诱惑大矣。
与战略式表述
博弈论的基本概念与战略式表述
博弈论(game theory)是研究决策主体的行为发生直 接相互作用时候的决策以及这种决策的均衡问题。
博弈的战略式表述:G={N,(Si)iN,(Ui)iN} 有三个基本要素: (1)参与人(players)iN={1,2,…,n} ; (2)战略(strategies),siSi(战略空间); (3)支付(payoffs),ui=ui(s-i,si)。
管理运筹学课件第13章-对策论
• 对策论基本概念 • 矩阵对策 • 连续对策 • 合作对策 • 非合作对策 • 对策论在实际问题中应用
01
对策论基本概念
对策论定义与特点
定义
对策论,又称博弈论,是研究决策过 程中理性决策者之间冲突与合作的数 学理论。
特点
对策论注重分析决策者之间的相互作 用和影响,以及决策结果的均衡性和 稳定性。
供应链管理
在供应链管理中,对策论可用于 协调供应商、制造商、销售商之 间的利益关系,优化供应链整体 效益。
金融市场投资决策
对策论可用于分析金融市场中的 投资决策问题,如股票交易、期 货交易等,帮助投资者制定最优 的投资策略。
军事领域应用案例
作战计划制定
01
对策论可用于分析敌我双方的作战能力和策略选择,帮助军事
指挥官制定最优的作战计划。
武器系统研发
02
在武器系统研发中,对策论可用于分析不同武器系统的性能优
劣和作战效能,为武器系统研发提供决策支持。
军事演习评估
03
对策论可用于评估军事演习的效果和参演部队的作战能力,为
军事训练提供改进建议。
社会领域应用案例
社会治安综合治理
对策论可用于分析社会治安问题中的各方利益关系和行为选择,提 出综合治理的策略和措施。
微分对策的求解方法
包括最大值原理、动态规划等方法。
连续对策求解方法
01
02
03
迭代法
通过不断迭代更新参与者 的策略,直到达到某个均 衡条件为止。
数值解法
利用数值计算的方法求解 连续对策的均衡解,如有 限差分法、有限元法等。
解析法
在某些特殊情况下,可以 通过解析的方法求解连续 对策的均衡解,如线性二 次型微分对策等。
博弈论课件
脚的看牌人、看棋人,企业的顾问等。
对参与人的决策来说,最重要的是
必须有可供选择的行动集(策略集)和
一个很好定义 的支付函数。
自然被当作虚拟参与人。
清华诚志
10
(2)策略(strategies ):博弈中有两种策略
概念,一种为纯策略(pure strategy ), 简称策略, 指参与人在博弈中可以选择采用的行动(actions or moves)方案,是参与人在给定信息结构的情况 下的行动规则,它规定参与人在什么时候的什么情
囚徒困境反映了个人理性和集体理性的矛盾。如果 A和B都选择抵赖,各判刑1年,显然比都选择坦 白各判刑8年好得多。当然,A和B可以在被警察 抓到之前订立一个"攻守同盟",但是这可能不会有 用,因为它不构成纳什均衡,没有人有积极性遵守 这个协定,显然最好的策略是双方都抵赖.
清华诚志
5
囚徒困境的意义
“囚徒的两难选择”有着广泛而深刻的意义。 个人理性与集体理性的冲突,各人追求利己 行为而导致的最终结局是一个“纳什均衡”, 也是对所有人都不利的结局。他们两人都是 在坦白与抵赖策略上首先想到自己,这样他 们必然要服长的刑期。只有当他们都首先替 对方着想时,或者相互合谋(串供)时,才可 以得到最短时间的监禁的结果。
清华诚志
26
我们从博弈中学习什么
博弈论告诉人们,要学会理解他人都有自己的思想, 每个个体都是理性的,所以必须了解竞争对手的思 想。商业关系被认为是一种相互作用。但博弈论并 不是疗法,并不是处方,它并不告诉你该付多少钱 买东西,这是计算机或者字典的任务。博弈论只是 提供一些关系的例证,一些有用的解决问题的方法。 这种思维方法也许是企业家应该学习的。对于经济 学家,也许需要学习它的理论模型,它的实验方式 。
运筹学中的对策论与博弈论
人工智能技术为 对策论与博弈论 提供新的研究工 具和思路
机器学习算法在 对策论与博弈论 中的应用,提高 决策效率和准确 性
深度学习技术可 以模拟复杂的博 弈场景,为对策 论与博弈论提供 更真实的数据支 持
人工智能与对策 论与博弈论的结 合将推动相关领 域的发展和创新
对策论与博弈论在商业竞争中的应用研究
不完全信息静态博弈
定义:博弈参与者在完全信息条 件下进行的一次性决策,每个参 与者只能选择一种策略,并且所 有参与者同时做出选择。
示例:寡头垄断市场中的价格竞 争、囚徒困境等。
添加标题
添加标题
添加标题
添加标题
特点:参与者之间无法进行有效 的沟通或协商,只能依靠自己的 判断和决策。
应用:在经济学、政治学、社会 学等领域有广泛应用。
03
对策论的主要内容
合作博弈与非合作博弈
合作博弈:参与者通过合作达成共赢,核心概念包括联盟和核心
非合作博弈:参与者追求个体理性,核心概念包括纳什均衡和优势策略
区别:合作博弈强调合作与共赢,非合作博弈注重竞争与冲突
应用场景:合作博弈常用于国际关系、经济合作等领域,非合作博弈适用于市场竞争、决策分 析等场景
对策论与博弈论 在商业竞争中具 有重要地位,是 制定竞争策略和 决策的重要工具。
随着大数据和人 工智能技术的发 展,对策论与博 弈论在商业竞争 中的应用将更加 广泛和深入。
对策论与博弈论 可以帮助企业预 测竞争对手的行 动,制定更加有 效的竞争策略。
在商业竞争中, 运用对策论与博 弈论需要综合考 虑各种因素,包 括市场环境、竞 争对手、自身实 力等。
面临的挑战与问题:如何将对策论与博弈论更好地应用于实际场景,解决 复杂的问题,仍需进一步的研究和探索。
运筹学第十三章 决策分析
n
E( Ai*)
max
1im
E( Ai
)
aij p j
j 1
(2)
如果决策目标是收益最小,则期望值最小的方案为最优方
案:
n
E(
Ai*
)
min
1im
E
(
Ai
)
aij p j
j 1
(3)
利用期望值法进行决策,常见的方法有决策表法、决策树法。
例1某公司拥有一块可能有油的土地,根据可能出油的多少, 该块土地属于四种类型:可产油50万桶、20万桶、5万桶、 无油。公司目前有3个方案可供选择:自行钻进;无条件将该 块土地出租给其他使用者;有条件的租给其他生产者。若自 行钻井,打出一口有油井的费用是10万元,打出一口无油井
在未来5年内产品畅销的话,年利润为80万元。
§13.2 风险型决策问题
风险型决策问题须具备以下几个条件: ① 有一个决策目标(如收益较大或损失较小)。 ② 存在两个或两个以上的行动方案。 ③ 存在两个或两个以上的自然状态。 ④ 决策者通过计算、预测或分析等方法,可以确定各种自 然状态未来出现的概率。 ⑤每个行动方案在不同自然状态下的益损值可以计算出来。
关于决策的重要性,著名的诺贝尔经济学获奖者西蒙 (H.A.Simon)有一句名言:“管理就是决策,管理的核心 就是决策”决策是一种选择行为的全部过程,其中最关键 的 部分是回答“是”与“否”。决策分析在经济及管理领域 具有非 常广泛的应用,在投资、产品开发、市场营销、项目可行 性研究等方面的应用都取得过辉煌的成就。决策科学本身 内容也非常广泛,包括决策数量化方法、决策心理学、决 策本支章持主系要统从、运决筹策学自的动定化量等分。析角度予以介绍。
决策分析是在应用数学和统计原理相结合的基础发展起来 的。最早产生的决策内容是经济批量模型、盈亏临界点分 析、边际分析和产品质量的统计决策方法等。以后由于运 筹学的发展和计算机的深入应用,使得人们从经验决策逐 步过渡到科学决策,产生了自成体系的决策理论。
运筹学第三版课后习题答案第7章网络计划——第十三章博弈论
第7章网络计划7.1(1)分别用节点法和箭线法绘制表7-16的项目网络图,并填写表中的紧前工序。
(2) 用箭线法绘制表7-17的项目网络图,并填写表中的紧后工序表7-16工序 A B C D E F G紧前工序--- A A、C -B、D、E、F紧后工序D,E G E G G G -表7-17工序 A B C D E F G H I J K L M 紧前工序- - - B B A,B B D,G C,E,F,H D,G C,E I J,K,L 紧后工序F E,D,F,G I,K H,J I,K I H,J I L M M M-【解】(1)节点图:箭线图:(2)节点图:箭线图:7.2根据项目工序明细表7-18:(1)画出网络图。
(2)计算工序的最早开始、最迟开始时间和总时差。
(3)找出关键路线和关键工序。
表7-18工序 A B C D E F G 紧前工序- A A B,C C D,E D,E 工序时间(周)9 6 12 19 6 7 8【解】(1)网络图(2)网络参数工序 A B C D E F G最早开始0 9 9 21 21 40 40最迟开始0 15 9 21 34 41 40总时差0 6 0 0 13 1 0(3)关键路线:①→②→③→④→⑤→⑥→⑦;关键工序:A、C、D、G;完工期:48周。
7.3表7-19给出了项目的工序明细表。
表7-19工序 A B C D E F G H I J K L M N 紧前工序- - - A,B B B,C E D,G E E H F,J I,K,L F,J,L 工序时间(天) 8 5 7 12 8 17 16 8 14 5 10 23 15 12 (1)绘制项目网络图。
(2)在网络图上求工序的最早开始、最迟开始时间。
(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差。
(4)找出所有关键路线及对应的关键工序。
(5)求项目的完工期。
【解】(1)网络图(2)工序最早开始、最迟开始时间(3)用表格表示工序的最早最迟开始和完成时间、总时差和自由时差 工序 tT EST EFT LST LF 总时差S 自由时差F A 8 0 8 9 17 9 0 B 5 0 5 0 5 00 C 7 0 7 7 7 0 0 D 12 8 20 17 29 9 9 E 8 5 13 5 13 0 0 F 17 7 24 7 24 0 0 G 16 13 29 13 29 0 0 H 8 29 37 29 37 0 0 I 14 13 27 33 47 20 20 J 5 13 18 19 24 6 6 K 10 37 47 37 47 0 0 L 23 24 47 24 47 0 0 M154762 47 62 0 0 N 12 47 59506233(4)关键路线及对应的关键工序关键路线有两条,第一条:①→②→⑤→⑥→⑦→○11→○12;关键工序:B,E,G ,H,K,M 第二条:①→④→⑧→⑨→○11→○12;关键工序:C,F,L,M (5)项目的完工期为62天。
运筹学第3版熊伟编著习题答案
求没有限制,由于仓库容量有限,仓库最多库存产品 A1000 件,1 月初仓库库存 200 件。1~
6 月份产品 A 的单件成本与售价如表 1-25 所示。
表 1-25
月份
1
2
3
4
5
6
产品成本(元/件)
300 330 320 360
360
300
销售价格(元/件)
350 340 350 420
410
340
(1)1~6 月份产品 A 各生产与销售多少总利润最大,建立数学模型;
(2)当 1 月初库存量为零并且要求 6 月底需要库存 200 件时,模型如何变化。
【解】设 xj、yj(j=1,2,…,6)分别为 1~6 月份的生产量和销售量,则数学模型为
最新精品文档,知识共享!
max Z 300x1 350 y1 330x2 340 y2 320x3 350 y3 360x4
第1章 线性规划
1.1 工厂每月生产 A、B、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源
限量及单件产品利润如表 1-23 所示.
表1-23
产品 资源
A
B
C
资源限量
材料(kg)
1.5
1.2
4
2500
设备(台时)
3
1.6
1.2
利润(元/件)
10
14
12
1400
根据市场需求,预测三种产品最低月需求量分别是 150、260 和 120,最高月需求是 250、310 和 130.试建立该问题的数学模型,使每月利润最大. 【解】设 x1、x2、x3 分别为产品 A、B、C 的产量,则数学模型为
xj 0, j 1, 2, ,10
运筹学第3版熊伟编著习题答案
运筹学(第3版)习题答案第1章线性规划 P36第2章线性规划的对偶理论 P74 第3章整数规划 P88 第4章目标规划 P105第5章运输与指派问题P142 第6章网络模型 P173 第7章网络计划 P195 第8章动态规划 P218 第9章排队论 P248 第10章存储论P277 第11章决策论P304第12章 多属性决策品P343 第13章博弈论P371 全书420页第1章 线性规划1.1工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.表1-23产品 资源 A B C 资源限量 材料(kg) 1.5 1.2 4 2500 设备(台时) 3 1.6 1.2 1400 利润(元/件)101412根据市场需求,预测三种产品最低月需求量分别是150、260和120,最高月需求是250、310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 1.2建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:表1-24 窗架所需材料规格及数量型号A 型号B 每套窗架需要材料长度(m ) 数量(根)长度(m) 数量(根)A 1:2 2B 1:2.5 2 A 2:1.53 B 2:23需要量(套)300400问怎样下料使得(1)用料最少;(2)余料最少. 【解】 第一步:求下料方案,见下表。
方案 一 二 三 四 五 六 七 八 九 十 需要量 B1 2.5 2 1 1 1 0 0 0 0 0 0 800 B2 2 0 1 0 0 2 1 1 0 0 0 1200 A1 2 0 0 1 0 0 1 0 2 1 0 600 A21.5120 2 3 900 余料(m) 0 0.5 0.5 1 1 1 010.5第二步:建立线性规划数学模型设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩1.3某企业需要制定1~6月份产品A 的生产与销售计划。
《博弈论》
博弈论在大数据分析中的应用
数据挖掘
博弈论可以应用于数据挖掘中的关联规则挖掘、分类和聚类等问 题,如基于博弈论的关联规则挖掘算法等。
异常检测
博弈论可以应用于异常检测中的异常值识别和分类等问题,如基 于博弈论的异常检测算法等。
推荐系统
博弈论可以应用于推荐系统中的用户行为预测和个性化推荐等问 题,如基于博弈论的推荐算法等。
04
博弈论的应用领域
经济领域
价格竞争
博弈论可以用来分析企业之间的价格竞争,研究竞争对手的反应 和策略,以制定更有效的定价策略。
寡头市场
博弈论可以用来研究寡头市场的均衡和稳定性,分析不同寡头企业 的策略和相互影响。
拍卖理论
博弈论可以用来研究拍卖机制的设计和优化,以提高拍卖的效率和 公平性。
政治领域
线性方程组
02
求解博弈中的均衡策略通常需要解线性方程组。
特征值与特征向量
03
一些博弈问题可以通过分析矩阵的特征值和特征向量来得到解
决。
概率论与数理统计基础
概率分布
在博弈中,支付通常被假 设为随机变量,其分布可 以通过概率分布来描述。
期望与方差
支付的期望和方差是博弈 论中常用的概念,它们可 以用来衡量支付的不确定 性。
弈。
特点
混合博弈既强调参与者的合作与协 商,又强调参与者的竞争与对抗, 通过综合运用两种策略实现自身利 益最大化。
应用领域
混合博弈在经济学、政治学、社会 学等领域都有广泛的应用,尤其是 在现实世界中,很多博弈都可以被 视为混合博弈。
03
博弈论的数学基础
线性代数基础
向量与矩阵
01
博弈论中经常使用向量和矩阵来表示策略和支付。
博弈论
第十三章博弈论初步目前博弈论发展的非常深入,这里只是介绍一些初步知识。
在四、五十年代,由冯·诺依曼(VonNeumann)、摩根斯坦恩(Morgenstern)把对策论、运筹学引入经济学,形成了最早的博弈论。
几时年来,博弈论在经济学中发挥着越来越大的重要作用,1994年的诺贝尔经济学奖就授予三位博弈论学家:纳什(Nash)、泽尔腾(Selten)和海萨尼(Harsanyi)。
博弈论的英文是GAMETHEORY,字面的意思是游戏策略,及用类似游戏中解决问题的方法,揭示解决社会、经济及其他领域问题的策略、对策,因此有的还把博弈论译成对策论。
准确的说博弈论是在给定的条件下寻求最优策略,这里给定的条件包含其他人的策略以及本人的决策对其他决策主体的影响。
策略性活动在社会、经济、政治生活中大量存在,也可以说,整个社会、经济、政治生活都是博弈行为。
因此,博弈论作为一种方法,广泛的应用在经济、政治、军事、外交中,只是博弈论在经济学中应用的最广泛、最成功。
如前面介绍过的古诺均衡、STACKELBERG均衡、CHAMBERLIN 均衡、BERTRAND均衡、HOTELLING均衡,都属于经济学中的博弈过程。
第一节基本概念一、博弈论1.定义:博弈论是描述、分析多人决策行为的一种决策理论,是多个经济主体在相互影响下的多元决策,决策的均衡结果取决于双方或多方的决策。
如下棋,最后的结果就是由下棋双方你来我往轮流做出决策,决策又相互影响、相互作用而得出的结果。
2.博弈论与优化理论的异同点1)相同点:博弈论与优化理论都是在给定的条件下,寻求最优决策的过程;2)不同点:A.优化理论可以看成是单人决策,而博弈理论可以看成是多人决策。
在优先理论的决策过程中,影响结果的所有变量都控制在决策者自己手里;而在博弈论的决策过程中,影响结果的变量是由多个决策者操纵的。
如企业在追求成本最小化、产量最大化、利润最大化的过程中总是假定外部条件给定,这实际上表明是一个优化问题,因为除了给定的外部条件外,剩下的因素都有决策者来控制,从而决策者自己就能控制决策的结果;如果外部条件不是给定的,而是有其他主体参与的过程,这时的决策过程就变成了一个博弈过程了,因为决策的最终结果不但取决于决策者本身,而且也取决于其他决策者的决策。
运筹学十三章ppt课件
.
例
仍以例13-4为例,根据后悔值决策准则 进行决策。
根据表13-12的收益矩阵,选取各自然状 态下的最大收益值分别为:
1状态:maxAi(ai1)=a31=17; 2状态:maxAi(ai2)=a12=13; 3状态:maxAi(ai3)=a23=4。
13 -4 1/3 15+1/3 13+1/3 (-4)=8
7 4 1/3 8+1/3 7+1/3 4= 6.34
12 -6 1/3 17+1/3 12+1/3 (-6)=7.7
maxAi[Ej(aij)]=8
A1
.
分析
从表13-14可见,根据等概率决策准则, 最优方案为扩建工厂的方案,这样预期 利润为8万元。
.
电视机厂,2009年产品更新方案:
A1:彻底改型 A2:只改机芯,不改外壳 A3:只改外壳,不改机芯 问:如何决策?
.
收益矩阵
事件 高
方案
S1
A1
20
A2
9
A3
6
中
低
S2 S3(万元)
1
-6
8
0
5
4
.
第二节 决策树法
在讲决策准则时使用的是矩阵式的决策 表,这种决策表有信息集中、一目了然 的优点,但对于比较复杂的问题就难以 表述了,这时可采用决策树法。决策树 法是循着人们解题的逻辑思路,将问题 表述为一种树状结构,如下图所示
x:货币值 u(x):效用值
求效用曲线方法:对比提问法
.
对比提问法: 设计两种方案 A1, A2 A1:无风险可得一笔金额 X2 A2:以概率P得一笔金额 X3 ,以概率(1-P)损失 一笔金额 X1 X1<X2<X3, u(xi )表示金额xi 的效用值。