8.2(单个正态总体参数的假设检验)

合集下载

概率论与数理统计教案

概率论与数理统计教案

重点: 随机变量独立性的概念及应用,用图形定限法和分布函数法求两个独立随 机变量和的分布. 难点: 随机变量独立性的理解及应用,两个独立随机变量和的概率分布的确定.
概率统计练习题第 3 章习题
南通大学理学院教案
周 次 第 周, 第 9 次课 4.2 方差 板书结合多媒体 年 月 日
章节名称 授课方式 课堂讲授
教学目的及要求 主要教学内容 重点与难点 练习与作业 参考资料
1. 切比雪夫(Chebyshev)不等式, 切比雪夫(Chebyshev)大数定律和伯努利(Bernoulli) 大数定律; 2.独立同分布的中心极限定理和棣莫佛—拉普拉斯(De Moivre-Laplace)中心极限 定理; 3.棣莫佛—拉普拉斯中心极限定理在实际问题中的应用.
章节名称 授课方式 课堂讲授
1.4 条件概率 教学时数 3
教学目的及要求 主要教学内容 重点与难点 练习与作业 参考资料
1. 了解条件概率的概念, 掌握概率的乘法公式、 全概率公式, 会应用贝叶斯(Bayes) 公式解决比较简单的问题; 2.理解事件的独立性概念,熟练掌握独立事件的乘法公式.
1.条件概率; 2.计算概率的五大公式之: 乘法公式,全概率公式,Bayes 公式; 3.事件独立性的概念.
重点: 事件的表示;概率的性质. 难点: 复杂事件的表示与分解.
概率统计练习题第 1 章习题
南通大学理学院教案
周 次 第 周, 第 2 次课 1.3 古典概型与几何概型 课堂讲授 教学时数 3 教学手段 板书结合多媒体 年 月 日
章节名称 授课方式
教学目的及要求 主要教学内容 重点与难点 练习与作业 参考资料
章节名称 授课方式
教学手段
教学目的及要求 主要教学内容 重点与难点 练习与作业 参考资料

概率论与数理统计第8章(公共数学版)

概率论与数理统计第8章(公共数学版)
则犯弃真错误的概率为
P (弃真)
P(拒 绝H0
|
H

0
真)
P(
A
|
H

0
真)
小概率事件发生的概率就是犯弃真错误的概率
越大,犯第一类错误的概率越大, 即越显著. 故在检验中,也称为显著性水平
20
2.第二类错误:纳伪错误




设H

0



的, 但






了Hቤተ መጻሕፍቲ ባይዱ
0
此时我们便犯了“纳伪”错误,也称为第二类错误
统计量观测值 u 57.9 53.6 2.27 6 10
该批产品次品率 p 0.04 , 则该批产品不能出厂.
11
若从一万件产品中任意抽查12件发现1件次品
p 0.04 代入
取 0.01,则 P12(1) C112 p1(1 p)11 0.306 0.01
这不是小概率事件,没理由拒绝原假设,从而接受 原假设, 即该批产品可以出厂.
13
例2 某厂生产的螺钉,按标准强度为68/mm2, 而实际
称其中的一个为原假设,也称零假设或基本假设 记 为H0 称另一个为备择假设,也称备选假设或对立假设 记为H1 一般将含有等号的假设称为原假设
7
二、假设检验的基本原理
假设检验的理论依据是“小概率原理” 小概率原理:如果一个事件发生的概率很小,那么在一 次实验中,这个事件几乎不会发生. 如: 事件“掷100枚均匀硬币全出现正面”
(三)对给定(或选定)的显著性水平 ,由统计
量的分布查表确定出临界值,进而得到H0的拒绝域 和接受域.

北京工业大学《概率论与数理统计》课件 第8章 正态总体均值的假设检验

北京工业大学《概率论与数理统计》课件 第8章 正态总体均值的假设检验
● 建立一个假设:H0: μ =10。并且要经过样 本来检验该假设是否成立(其实为可以接受)。
在数理统计中,把 “ X 的均值 μ =10” 这样
的一个欲检验的假设称为 “原假设” 或 “零 假设”,记成 “ H0:μ =10”。这里的“H”是 从英文“ hypothesis ”的字头而来,“ 0 ” 是从 “null”或“zero” 含义而生。
该检验称为两样本 t 检验。
说明
上面,我们假定 12=22。当然,这是个 不得已而强加上去的条件。因为,如果不加 这个条件,就无法使用简单易行的 t 检验。
在实用中,只要我们有理由认为12和22 相差不是太大,就可使用上述方法。通常的 做法是:如果方差比检验未被拒绝(见下节), 就认为12和22相差不是太大。
又如:考察一项新技术对提高产品质量是 否有效,就把新技术实施前后生产的产品质量
指标分别看成正态总体 N(1, 12)和 N(2, 22)。
这时,所考察的问题就归结为检验这两个正态
总体的均值 1和 2是否相等的问题。
设X1, X2, …, Xm与Y1, Y2, …, Yn 分别为抽
自正态总体 N(1, 12) 和N(2, 22) 的样本,记
的大小检验 H0 是否
成立。
合理的做法应该是:找出一个界限 c,
这里的问题是:如何确定常数 c 呢? 细致地分析:根据定理 6.3.1,有
于是,当原假设 H0:μ =10 成立时,有
为确定常数 c,我们考虑一个很小的正数, 如 =0.05。当原假设H0:μ =10 成立时,有
于是,我们就得到如下检验准则:
即新技术或新配方对提高产品质量确实有效。
单边检验 H0: μ =μ0 ‹–› H1: μ >μ0

习题第8章

习题第8章

第8章 假设检验本章教学基本要求1.理解显著性假设检验的基本思想,了解其检验过程中产生的两种错误。

2.掌握单个正态总体的均值和方差的假设检验方法。

8.1 假设检验的基本概念主要知识归纳1 显著性假设检验的基本思想与基本步骤:(1)提出假设0H 称为原假设,同时也可提出其对立假设1H ,也叫做备择假设,检验的目的就是接受或是拒绝0H .(2) 假定原假设成立,选择合适的统计量并确定其分布.(3) 给定一个小概率α,α称为显著性水平,规定小概率事件是不可能事件. (4)依据样本计算,如果使得小概率事件发生则拒绝原假设,否则接受原假设. 2 两种错误: 如果原假设正确,而拒绝了它,则检验方案犯了“弃真”错误,称为第一类错误. 犯第一类错误的概率恰好就是小概率事件发生的概率α,即{}0H H P α=为真拒绝;而如果原假设本来是错误的,按照检验方案,由于样本观察随即特性导致最终接受了它,此时检验方案犯了“取伪”错误,称为第二类错误.记其概率为β,即{}0H H P β=为假接受. 8.2 单个正态总体参数假设检验一 主要知识归纳设总体),(~2σμN X ,n X X X ,,,21 为总体的样本,2,S X 分别为样本均值与样本方差,给定显著性水平α,1.提出假设00:μμ=H ,01:μμ≠H若2σ已知, 选取统计量nX Z /0σμ-=,则参数μ的拒绝域为:2Z Z α=≥;若2σ未知,选取统计量nS X T /0μ-=,则参数μ的拒绝域为:)1(/20-≥-=n t nS X T αμ2.当μ未知,提出假设2020:σσ=H ,2021:σσ≠H选取统计量2022)1(σχS n -=,则2σ拒绝域为⎭⎬⎫⎩⎨⎧->⎭⎬⎫⎩⎨⎧-<-)1()1(2222212n n ααχχχχ 二 基础练习1.设总体),,(~2σμN X 12,,,n X X X 为来自总体的样本,当μ和2σ未知时,则(1)检验假设00:μμ=H ;(2)检验假设2020:σσ=H 应选择怎样的统计量?2.打包机装糖入包,每包的标准重量为100kg ,每天开工后,要检验所装糖包的总体期望值是否合乎标准(100kg )。

单个正态总体的假设检验

单个正态总体的假设检验

计算统计量 Z 的观察值
z0
x 0

n
.
(8.3)
如果:( a ) | z0 |> zα/2,则在显著性水平 α 下,拒绝原假设 H0
(接受备择假设H1),所以| z 0|> zα/2 便是 H0 的拒绝域。
( b ) | z0 | z /2 ,则在显著性水平 α 下,接受原假设 H0,认
=0.05 下 否 定 H0 , 即 不 能 认 为 这 批 产 品 的 平 均 抗 断 强 度 是
32.50kg·cm-2。
把上面的检验过程加以概括,得到了关于方差已知的正态总体期
望值 μ 的检验步骤:
( a )提出待检验的假设 H0 :μ = μ0; H1:μ ≠ μ0。
( b )构造统计量 Z ,并计算其观察值 z0 :
1277°(可看作温度的真值),试问此仪器间接测量有无系统偏差?
这里假设测量值 X 服从 X ~ N ( μ , σ2) 分布。

①问题是要检验
提出假设 H0 :μ = μ0=1227; H1:μ ≠ μ0。
由于
σ2
未知( 即仪器的精度不知道 ),我们选取统计量 T
当 H0 为真时,T ~ t ( n -1) ,T 的观察值为
X
X 0

N ( , ) ,
n
Z
n
X 0

n
N (0,1) ,
(8.2)
作为此假设检验的统计量,显然当假设 H0 为真(即μ = μ0正确)
时, Z ~ N ( 0 , 1),所以对于给定的显著性水平 α ,可求出 zα/2,
使
P{| Z | z 2 } .
见图8-3,即

单个正态总体参数的假设检验

单个正态总体参数的假设检验

单个正态总体参数的假设检验1.提出假设:首先,我们需要提出关于总体参数的假设。

在单个正态总体参数的情况下,我们通常对总体的均值(μ)或标准差(σ)进行假设。

2.确定显著性水平:显著性水平(α)是一个事先设定的临界值。

根据显著性水平,我们可以决定接受还是拒绝原假设。

3.构建统计量:接下来,我们需要构建一个适当的统计量来判断总体参数的假设。

在单个正态总体参数的情况下,通常使用t统计量或z统计量。

4.计算统计量的值:根据样本数据,计算所选统计量的值。

如果使用t统计量,则需要计算样本均值和标准差;如果使用z统计量,则只需计算样本均值。

5.确定拒绝域:拒绝域是根据显著性水平和统计量的分布确定的。

根据统计量的值和拒绝域的临界值,我们可以决定是否拒绝原假设。

6.做出决策:根据统计量的值和拒绝域,我们可以做出决策:接受原假设或拒绝原假设。

下面以一个具体的例子来说明单个正态总体参数的假设检验。

假设我们要检验一些公司员工的平均工资是否等于5000元。

我们从公司中随机抽取了50个员工的工资数据,假设工资数据服从正态分布。

现在我们要进行假设检验。

1.假设提出:原假设(H0):员工的平均工资等于5000元;备择假设(H1):员工的平均工资不等于5000元。

2.显著性水平:我们设定显著性水平为0.053.构建统计量:由于样本量较大(n=50),我们可以使用z统计量。

z统计量的计算方法为(样本均值-总体均值)/(总体标准差/根号n)。

4.计算统计量的值:假设我们计算出样本均值为4950元,总体标准差为100元。

5.确定拒绝域:由于显著性水平为0.05,我们需要找出z值对应的临界值。

在标准正态分布表中查找z=1.96对应的值,并根据原假设的双侧检验找出拒绝域的范围。

6.做出决策:根据统计量的值和拒绝域的范围,我们可以判断是否拒绝原假设。

如果统计量的值落在拒绝域之外,我们将拒绝原假设,即认为员工的平均工资不等于5000元。

8.2正态总体均值的假设检验

8.2正态总体均值的假设检验

t t ( n1 n2 2).
x y 因为 t 4.295, 1 1 sw 10 10
t0.05 (18) 1.7341,
所以拒绝 H 0 ,
即认为建议的新操作方法较原来的方法为优.
例5 有甲、乙两台机床加工相同的产品, 从这两台机床加工 的产品中随机地抽取若干件, 测得产品直径(单位:mm)为 机床甲: 20.5, 19.8, 19.7, 20.4, 20.1, 20.0, 19.0, 19.9
X 0 P Z / n
拒绝域为 Z Z
或 H0: 0;H1:0
X 0 P Z / n
拒绝域为 Z Z
2、方差未知 问题:总体 X~N(,2),2未知 假设 H0:=0;H1:≠0 构造T统计量 T X 0 ~ t (n 1)
t检验 双边检验
X 0 由 P t 2 (n 1) S n 确定拒绝域 T t 2 (n 1) x 0 如果统计量的观测值 T t 2 (n 1) S n
则拒绝原假设;否则接受原假设
S
n
例2 化工厂用自动包装机包装化肥,每包重量服从正态 分布,额定重量为100公斤。某日开工后,为了确定包 装机这天的工作是否正常,随机抽取9袋化肥,称得平 均重量为99.978,均方差为1.212,能否认为这天的包 装机工作正常?(=0.1) 解 由题意可知:化肥重量X~N(,2),0=100 方差未知,要求对均值进行检验,采用T检验法。
得 k t / 2 (n1 n2 2).
故拒绝域为
( x y) t t / 2 ( n1 n2 2). 1 1 sw n1 n2

单个正态总体均值的检验.

单个正态总体均值的检验.
因此,检验的拒绝域为 W1 { u u },或者记为 2 W1 {x1, x2 , , xn : u u } 2
其中 u为统计量U的观测值.这种利用U统计量来 检验的方法称为U检验法.
第八章 假设检验
§8.2 单个正态总体参数的假设检验
例1 某切割机在正常工作时,切割每段金属棒的平均 长度为10.5cm,标准差是0.15cm,今从一批产品中随 机的抽取15段进行测量,其结果如下:
例3 某厂生产的某种型号的电池,其寿命长期以来
服从方差 2=5000 (小时2) 的正态分布,现有一批这
种电池,从它生产情况来看,寿命的波动性有所变 化.现随机的取26只电池,测出其寿命的样本方差 sn*=2 9200(小时2).问根据这一数据能否推断这批电池
的寿命的波动性较以往的有显著的变化? ( 0.02)
设 X1, X2 , , Xn 为来自总体 X 的样本,
因为 2 未知, 不能利用 X 0 来确定拒绝域. / n
因为 Sn*2 是 2 的无偏估计, 故用 Sn* 来取代 ,
即采用T

X Sn* /0n来自来作为检验统计量.第八章 假设检验
§8.2 单个正态总体参数的假设检验
根据第六章§3定理2知,
解 依题意 X ~ N (, 2 ) , , 2均为未知 ,
要检验假设 H0 : 10.5, H1 : 10.5, n 15, x 10.48, 0.05, sn* 0.237 ,
t
x 0
sn* / n
10.48 10.5 0.237 / 15
|
x

/
0
n
|
0.516

u0.05

§8.2 正态总体参数的假设检验

§8.2  正态总体参数的假设检验



202 2>02 2 i1
2 0
202 2<02
H0的拒绝域 2 2 2 (n)
或 2
2 1
2 (n)
2 2(n)
2 12(n)
2 检验
2 2 2(n1)


2=02 202
2
(n
1)S2
02
202 2>02
或2
2 1
2(n1)
22(n1)
202 2<02
212(n1)
例2.1 用热敏电阻测温仪间接测量地热,
检验法 条件 H0 H1 检验统计量
Z检 验


=0 0
0 >0
Z
X
0
0 <0
n
T检 验


=0
0 0
0 >0
<0
T
X 0
Sn
H0的拒绝域 |Z|z/2
Zz Z–z |T|t/2(n–1) Tt(n–1) T–t(n–1)
检验法 条件 H0 H1 检验统计量
2 检验
2=02 202
n
(Xi )2
故t 11.2811.26 0.46592.4469 1.13587
所以接受原假设, 认为用热敏电阻测温仪间接测量温度无系 统偏差。
例2.2 某厂生产的某种型号的电池, 其
寿命长期以来服从方差2=5000(小时2)的
正态分布。现有一批这种电池, 从它的生 产情况来看, 寿命的波动性有所改变。现 随机取26只电池, 测出其样本方差 s2=9200(小时2), 试根据这一数据能否推 断这批电池的寿命的波动性较以往的有

正态总体下参数的假设检验

正态总体下参数的假设检验
在二维平面上,正态分布可以表示为散点图上的椭圆,其中心 为均值$mu$,轴比为$sigma$。
正态分布的性质
1 2
3
集中性
正态分布的曲线关于均值$mu$对称。
均匀性
正态分布的曲线在均值附近最密集,向两侧逐渐扩散。
稳定性
正态分布的方差$sigma^2$决定了曲线的宽度,方差越大 ,曲线越宽。
正态分布在统计学中的应用
两个总体比例的比较案例
案例描述
某项调查显示,某地区支持甲政 策的居民占60%,支持乙政策的 居民占40%。现从该地区随机抽 取200名居民进行调查,得到支持 甲政策的居民有120名,支持乙政 策的居民有80名。
检验步骤
首先计算两组的样本比例和支持 率,然后根据正态分布的性质计 算临界值,最后根据临界值判断 两组之间是否存在显著差异。
检验步骤
首先计算两组的样本均值和标准差,然后根据正态分布的性质计算临界值,最后根据临界值判断两组之间是否存在显 著差异。
结论
如果两组之间的差异超过临界值,则可以认为两种药物治疗慢性胃炎的疗效存在显著差异;否则,不能 认为两种药物治疗慢性胃炎的疗效存在显著差异。
单个总体比例的假设检验案例
案例描述
检验步骤
03
正态总体下参数的假设检验 方法
单个总体均值的假设检验
总结词
单个总体均值的假设检验是统计学中常见的一种检验方法,用于检验单个正态总体均值 的假设。
详细描述
在假设检验中,我们通常会提出一个关于总体均值的假设,然后使用样本数据来检验这 个假设是否成立。对于单个总体均值的假设检验,我们首先需要确定样本数据和总体分 布的性质,然后选择合适的统计量进行计算,最后根据统计量的分布和临界值来判断假

单个正态总体参数的假设检验

单个正态总体参数的假设检验

单个正态总体参数的假设检验一、假设检验的基本概念假设检验是统计推断的一种方法,其基本思想是通过抽样来对总体参数进行推断,并判断总体参数是否满足其中一种假设。

在进行假设检验时,我们首先提出一个原假设(H0),这是一个既定的假设,表示总体参数满足其中一种特定的值或不满足其中一种特定的关系。

同时,我们还提出一个备择假设(H1),表示总体参数不满足原假设。

通过对样本数据的统计推断,我们可以对原假设进行拒绝或不拒绝的判断。

二、假设检验的步骤假设检验一般包括以下步骤:1.提出假设:根据问题的需求和背景条件,提出原假设和备择假设。

2.确定显著性水平:显著性水平(α)是指当原假设成立时,我们愿意犯第一类错误的概率。

一般情况下,我们常使用0.05作为显著性水平。

3.选择检验统计量:根据所需检验的问题,选择适当的检验统计量。

在单个正态总体参数的假设检验中,常用的检验统计量有Z检验和t检验。

4.计算检验统计量的观察值:根据样本数据计算出检验统计量的观察值。

5.根据显著性水平查找拒绝域:根据显著性水平和检验统计量的分布,查找拒绝域的临界值。

6.判断并作出结论:如果检验统计量的观察值落在拒绝域内,则拒绝原假设,否则不拒绝原假设。

三、应用领域1.药物临床试验:在新药物的临床试验中,可以通过对患者进行抽样,检验患者服用药物前后的药效差异是否显著,以判断药物的疗效。

2.市场调研:在市场调研中,可以通过对一定数量的顾客进行问卷调查,检验顾客对其中一种产品的满意度是否显著不同,以了解产品在市场中的竞争力。

3.品质控制:在生产过程中,可以通过抽样检验产品的质量是否符合设定的标准。

例如,食品加工厂可以通过抽样检验产品的营养成分是否达到设定的要求。

4.经济学研究:在经济学研究中,可以通过对一定数量的经济指标进行抽样,检验指标的差异是否显著,以判断宏观经济政策的有效性。

总结:单个正态总体参数的假设检验是统计学中一种重要的方法,通过对样本数据的统计推断,判断总体参数是否满足其中一种假设。

正态总体参数的假设检验

正态总体参数的假设检验

正态总体参数的假设检验 正态总体中有两个参数:正态均值与正态⽅差。

有关这两个参数的假设检验问题经常出现,现逐⼀叙述如下。

(⼀) 正态均值的假设检验 ( 已知情形) 建⽴⼀个检验法则,关键在于前三步l,2,3。

5.判断(同前) 注:这个检验法称为u检验。

(⼆) 正态均值的假设检验 ( 未知情形) 在未知场合,可⽤样本标准差s去替代总体标准差,这样⼀来,u统计量变为t统计量,具体操作如下: 1.关于正态均值常⽤的三对假设为 5.判断 (同前) 注:这个检验法称为t检验。

(三)正态⽅差的假设检验 检验正态⽅差有关命题成⽴与否,⾸先想到要⽤样本⽅差。

在基础上依据抽样分布特点可构造统计量作为检验之⽤。

具体操作如下: 1.关于正态⽅差常⽤的三对假设为 5.判断(同前) 注:这个检验法称为检验。

注:关于正态标准差的假设与上述三对假设等价,不另作讨论。

(四) ⼩结与例⼦ 上述三组有关正态总体参数的假设检验可综合在表1.5-1上,以供⽐较和查阅。

续表 [例1.5-2] 某电⼯器材⼚⽣产⼀种云母带,其厚度在正常⽣产下服从N(0.13,0.0152)。

某⽇在⽣产的产品中抽查了10次,发现平均厚度为0.136,如果标准差不变,试问⽣产是否正常?(取 =0.05)来源:考试通 解:①⽴假设:②由于已知,故选⽤u检验。

③~④根据显著性⽔平 =0.05及备择假设可确定拒绝域为{ >1.96}。

⑤由样本观测值,求得检验统计量: 由于u未落在拒绝域中,所以不能拒绝原假设,可以认为该天⽣产正常。

[例1.5-3] 根据某地环境保护法规定,倾⼊河流的废⽔中⼀种有毒化学物质的平均含量不得超过3ppm。

已知废⽔中该有毒化学物质的含量X服从正态分布。

该地区环保组织对沿河的⼀个⼯⼚进⾏检查,测定每⽇倾⼊河流的废⽔中该物质的含量,15天的记录如下(单位:ppm)3.2,3.2,3.3,2.9,3.5,3.4,2.5,4.3,2.9,3.6,3.2,3.0,2.7,3.5,2.9 试在⽔平上判断该⼚是否符合环保规定? 解:①如果符合环保规定,那么应该不超过3ppm,不符合的话应该⼤于3ppm。

单个正态总体参数假设检验

单个正态总体参数假设检验
u

n
~ N (0,1)
(3)对于给定的显著水平,查正态分布双侧临界值 表,得到临界值 u / 2 ; (4)统计判断: u u / 2 , 拒绝H ,接受H ; 0 1
u u / 2,拒绝H1,接受H0。
双侧检验 (显著性水平与拒绝域 )
假设H0成立 抽样分布
拒绝域
医药数理统计方法
小概率事件还是会发生的
医药数理统计方法
2.两类错误及记号
(1)当原假设H0为真, 观察值却落入拒绝域, 而作出
了拒绝H0的判断, 称做第一类错误, 又叫弃真错 误。犯第一类错误的概率是显著性水平 。 (2)当原假设H0不真, 而观察值却落入接受域, 而作
出了接受H0的判断, 称做第二类错误, 又叫取伪
拒绝域
/2
1-
接受域
/2
临界值
临界值
样本统计量
医药数理统计方法
例6-2.某药厂正常情况下生产的某药膏含甘草酸量 X~N(4.45,0.1082).现随机抽查了5支药膏,其含 甘草酸量分别为: 4.40 4.25 4.21 4.33 4.46 若方差不变,问此时药膏的平均含甘草酸量 是否 有显著变化?(=0.05) 分析: 0 4.45, n 5, 0.108
X 64
解: 1.建立假设: H0 : 0 60 H1 : 0 60 2. 计算统计量:
u X 0

n

64 60 4 30
5.48
医药数理统计方法
3. 根据显著水平=0.01,查正态分布临界值表; 查附表4得: u0.01 2.33 4.做出统计判断
(1) X ~ N ( , / n)
2

假设检验的习题及详解包括典型考研真题

假设检验的习题及详解包括典型考研真题

§假设检验基本题型Ⅰ 有关检验统计量和两类错误的题型【例8.1】u 检验、t 检验都是关于 的假设检验.当 已知时,用u 检验;当 未知时,用t 检验.【分析】 由u 检验、t 检验的概念可知,u 检验、t 检验都是关于均值的假设检验,当方差2σ为已知时,用u 检验;当方差2σ为未知时,用t 检验. 【例8.2】设总体2(,)XN u σ,2,u σ未知,12,,,n x x x 是来自该总体的样本,记11ni i x x n ==∑,21()ni i Q x x ==-∑,则对假设检验0010::H u u H u u =↔≠使用的t 统计量t = (用,x Q 表示);其拒绝域w = . 【分析】2σ未知,对u 的检验使用t 检验,检验统计量为(1)x t t n ==-对双边检验0010::H u u H u u =↔≠,其拒绝域为2{||(1)}w t t n α=>-.【例8.3】设总体211(,)XN u σ,总体222(,)Y N u σ,其中2212,σσ未知,设112,,,n x x x 是来自总体X 的样本,212,,,n y y y 是来自总体Y 的样本,两样本独立,则对于假设检验012112::H u u H u u =↔≠,使用的统计量为 ,它服从的分布为 .【分析】记1111n i i x x n ==∑,2121n i i y y n ==∑,因两样本独立,故,x y 相互独立,从而在0H 成立下,()0E x y -=,221212()()()D x y D x D y n n σσ+=+=+,故构造检验统计量(0,1)x yu N =.【例8.4】设总体2(,)XN u σ,u 未知,12,,,n x x x 是来自该总体的样本,样本方差为2S ,对2201:16:16H H σσ≥↔<,其检验统计量为 ,拒绝域为 .【分析】u 未知,对2σ的检验使用2χ检验,又由题设知,假设为单边检验,故统计量为222(1)(1)16n S n χχ-=-,从而拒绝域为221{(1)}n αχχ-<-.【例8.5】某青工以往的记录是:平均每加工100个零件,由60个是一等品,今年考核他,在他加工零件中随机抽取100件,发现有70个是一等品,这个成绩是否说明该青工的技术水平有了显著性的提高(取0.05α=)?对此问题,假设检验问题应设为 【 】()A 01:0.6:0.6H p H p ≥↔<. ()B 01:0.6:0.6H p H p ≤↔>. ()C 01:0.6:0.6H p H p =↔≠. ()D 01:0.6:0.6H p H p ≠↔=.【分析】一般地,选取问题的对立事件为原假设.在本题中,需考察青工的技术水平是否有了显著性的提高,故选取原假设为0:0.6H p ≤,相应的,对立假设为1:0.6H p >,故选()B .【例8.6】某厂生产一种螺钉,标准要求长度是68mm ,实际生产的产品,其长度服从2(,3.6)N u ,考察假设检验问题01:68:68H u H u =↔≠.设x 为样本均值,按下列方式进行假设检验:当|68|1x ->时,拒绝原假设0H ;当|68|1x -≤时,接受原假设0H . (1)当样本容量36n =时,求犯第一类错误的概率α; (2)当样本容量64n =时,求犯第一类错误的概率α;(3)当0H 不成立时(设70u =),又64n =时,按上述检验法,求犯第二类错误的概率β. 【解】(1)当36n =时,223.6(,)(,0.6)36xN u N u =,000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]( 1.67)[1(1.67)]0.60.6--=Φ+-Φ=Φ-+-Φ 2[1(1.67)]2[10.99575]0.095=-Φ=-=.(2)当64n =时,223.6(,)(,0.45)64xN u N u =000{|68|1|}{67|}{69|}P x H P x H P x H α=->=<+>成立成立成立67686968()[1()]0.450.45--=Φ+-Φ 2[1(2.22)]2[10.9868]0.0264=-Φ=-=.(3)当64n =,又70u =时,2(70,0.45)xN ,这时犯第二类错误的概率(70){|68|1|70}{6769|70}P x u P x u β=-≤==≤≤=69706770()()( 2.22)( 6.67)0.450.45--=Φ-Φ=Φ--Φ- (6.67)(2.22)10.98680.0132=Φ-Φ=-=.【评注】01(1)(2)的计算结果表明:当n 增大时,可减小犯第一类错误的概率α;02 当64n =,66u =时,同样可计算得到(66)0.0132β=.03 当64n =,68.5u =时,2(68.5,0.45)xN ,则(68.5){6769|68.5}P x u β=≤≤= 6968.56768.5()()(1.11)( 3.33)0.450.45--=Φ-Φ=Φ-Φ-0.8665[10.9995]0.8660=--=.这表明:当原假设0H 不成立时,参数真值越接近于原假设下的值时,β的值就越大. 【例8.7】设总体2(,)XN u σ,12,,,n x x x 是来自该总体的样本,对于检验01:0:0H u H u ≤↔>,取显著性水平α,拒绝域为:{}w u u α=>,其中u =,求:(1)当0H 成立时,求犯第一类错误的概率()u α; (2)当0H 不成立时,求犯第二类错误的概率()u β. 【解】(1)当0H 成立时,0u ≤,则(){|0}|0}u P u u u P u u ααα=>≤=>≤()|0}1()(0)P x u u u u u αα=->≤=-Φ≤因0u ≤,故()()1u u αααΦ≥Φ=-,从而()1()1(1)u u αααα≤-Φ=--=,即犯第一类错误的概率不大于α.(2)(){|0}()|0}u P u u u P x u u u ααβ=≤>=-≤>()(0)u u α=Φ>因0u >,故当u →+∞时,()0u β→,即u 与假设0H 偏离越大,犯第二类错误的概率越小;而当0u +→时,()1u βα→-,即当u 为正值且接近0时,犯第二类错误的概率接近1α-.基本题型Ⅱ 单个正态总体的假设检验【例8.8】某天开工时,需检验自动包装机工作是否正常,根据以往的经验,其包装的质量在正常情况下服从正态分布2(100,1.5)N (单位:kg ),先抽测了9包,其质量为: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.0,100.5 问这天包装机工作是否正常?【分析】 关键是将这一问题转化为假设检验问题.因检验包装机工作是否正常,化为数学问题应为双边检验01:100:100H u H u =↔≠.【解】由题意,提出假设检验问题:01:100:100H u H u =↔≠, 选取检验统计量(0,1)x u N =当0.05α=时,0.02521.96u u α==,又20.04 1.96u u α==<=,即接受原假设0H ,认为包装机工作正常.【例8.9】已知某种元件的寿命服从正态分布,要求该元件的平均寿命不低于1000h ,现从这批元件中随机抽取25知,测得平均寿命980X h =,标准差65S h =,试在水平0.05α=下,确定这批元件是否合格.【解】由题意,2σ未知,在水平0.05α=下检验假设0010:1000:1000H u u H u u ==↔<=属于单边(左边)t 检验.构造检验统计量 (1)x t t n =-,其中25,65,980n S X h ===,查t 分布表可得:0.05(1)(251) 1.7109t n t α-=-=,又0.05|| 1.538(24) 1.7109x t t ===<=.即接受原假设0H ,认为这批元件是合格的.【例8.10】某厂生产的一中电池,其寿命长期以来服从方差225000()σ=小时的正态分布,现有一批这种电池,从生产的情况来看,寿命的波动性有所改变,现随机地抽取26只电池,测得寿命的样本方差229200()S =小时,问根据这一数据能否推断这批电池寿命的波动性较以往有显著性的变化(取0.02α=).【解】 检验假设2201:5000:5000H H σσ=↔≠,选取统计量2222(1)(1)n S n χχσ-=-,由0.02α=,26n =,查2χ分布表可得220.012(1)(25)44.314n αχχ-==,220.0912(1)(25)11.524n αχχ--==, 又统计量2220.012(1)46(25)44.314n S χχσ-==>=,故拒绝原假设0H ,即认为这批电池寿命的波动性较以往有显著性的变化.【例8.11】 某种导线,要求其电阻的标准不得超过0.005(欧姆),今在生产的一批导线中取样品9根,测得0.007S =(欧姆),设总体为正态分布,问在水平0.05α=下,能否认为这批导线的标准差显著性地偏大?【解】本题属于总体均值未知,正态总体方差的单边检验问题0010:0.005:0.005H H σσσσ==↔>=选取统计量2222(1)(1)n S n χχσ-=-当0.05α=,9n =时,查2χ分布表可得:220.05(1)(8)15.507n αχχ-==,又题设0.007S =,则统计量22220.0522(1)80.00715.68(8)15.5070.005n S χχσ-⨯===>=. 故拒绝原假设0H ,认为这批导线的标准差显著性地偏大.【例8.12】 机器自动包装食盐,设每袋盐的净重服从正态分布,规定每袋盐的标准重量为500克,标准差不超过10克.某天开工以后,为了检查机器工作是否正常,从已包装好的食盐中随机抽取9袋,测得其重量(克)为:497,507,510,475,484,488,524,491,515问这天自动包装机工作是否正常(显著性水平0.05α=)? 【解】 设每袋盐重量为随机变量X ,则2(,)XN u σ,为了检查机器是否工作正常,需检验假设:01:500H u =及202:100H σ≤.下面现检验假设0111:500:500H u H u =↔≠ 由于2σ未知,故构造统计量(1)x t t n =-由于0.05α=,查t 分布表可得0.0252(1)(8) 2.306t n t α-==,又由题设计算可得499,16.03X S ==,故统计量取值0.025||0.187(8) 2.306x t t ===<=即接受原假设01H ,认为机器包装食盐的均值为500克,没产生系统误差.下面在检验假设220212:100:100H H σσ≤↔>选取统计量2222(1)(1)n S n χχσ-=-,由于0.05α=,查2χ分布表可得220.05(1)(8)15.5n αχχ-==,而统计量2220.052(1)20.56(8)15.5n S χχσ-==>=,故拒绝原假设02H ,接受12H ,即认为其标准差超过了10克.由上可知,这天机器自动包装食盐,虽没有产生系统误差,但生产不够稳定(方差偏大),从而认为这天自动包装机工作不正常.基本题型Ⅲ 两个正态总体的假设检验【例8.13】 下表给出了两个文学家马克·吐温(Mark Twain )的8偏小品文以及斯诺·特格拉斯(Snodgrass )的10偏小品文中由3格字母组成的词比例.马克·吐温: 0.225,0.262,0.217,0.240,0.230,0.229,0.235,0.217斯诺·特格拉斯:0.209,0.205,0.196,0.210,0.202,0.207,0.224,0.223,0.220,0.201 设两组数据分别来自正态分布,且两总体方差相等,两样本相互独立,问两个作家所写的小品文中包含由3格字母组成的词的比例是否有显著性的差异(0.05α=)?【分析】首先应注意题中的“比例”即“均值”的含义,因而本题应属于未知方差,却知其相等的两正态母体,考虑它们的均值是否相等的问题.【解】设题中两正态母体分别记为,X Y ,其均值分别为12,u u ,因而检验问题如下:012112::H u u H u u =↔≠选取统计量(2)X Y T t n m =+-,其中8,10n m ==,()()22122112wn S m S Sn m -+-=+-,在0.05α=时,查t 分布表可得()()/20.025216 2.1199t n m t α+-==由题设样本数据计算可得22120.2319,0.2097,0.00021,0.00009X Y S S ====,0.119w S ===.从而t统计量值为()0.025|| 3.964316 2.1199X Y T t ===>=,因而拒绝原假设0H ,认为两个作家所写的小品文中包含由3格字母组成的词的比例有显著性的差异.【例8.14】据专家推测:矮个子的人比高个子的人的寿命要长一些,下面给出了美国31个自然死亡的总统的寿命.矮个子(身高小于5英尺8英寸)总统 Modison Van Buren B.Harrison J.Adams J.Q.Adams 身高 5’4” 5’6” 5’6” 5’7” 5’7” 寿命 85 79 67 90 80高个子(身高大于5英尺8英寸)总统 W.Harrison Plok Tayler Crant Hayes Truman Fillmore Pierce A.Johson 身高 5’8” 5’8” 5’8”5’8.5” 5’8.5” 5’9” 5’9” 5’10” 5’10” 寿命 68 53 65 63 70 88 74 64 66 总统 T.Roosevelt Coolidge Eisenhower Cleveland Wilson Hoover Monroe Tyler 身高 5’10” 5’10” 5’10” 5’11” 5’11” 5’11” 6’ 6’ 寿命 60 60 78 71 67 90 73 71 总统 Buchanan Taft Harding Jaskon Washington Arthur F.Roosevelt 身高 6’ 6’ 6’ 6’1” 6’2” 6’2” 6’2” 寿命77 72 57 78 67 56 63设两个寿命总体均为正态分布且方差相等,试问以上数据是否符合上述推测(0.05α=)? 【解】设矮个子总统寿命为X ,高个子总统寿命为Y ,需检验012112::H u u H u u =↔>.由于22212σσσ==未知,故选用统计量(2)X Y T t n m =+-,其中5,26n m ==,()()22122112wn S m S Sn m -+-=+-.由题设样本数据可得80.2,69.15,X Y ==22124294.8,252183.215S S ==,故()()221221185.4492wn S m S Sn m -+-==+-,从而统计量|| 2.448X Y T ==,又当0.05α=时,查t 分布表可得()()0.05229 1.6991t n m t α+-==,即()0.05|| 2.44829 1.6991T t =>=,故拒绝原假设0H ,即推测是正确的,认为矮个子的人比高个子的人的寿命要长一些 【例8.15】总体21(,)XN u σ,22(,)Y N u σ,112,,,n x x x 与212,,,n y y y 分别时来自总体,X Y 的样本,试讨论检验问题012112::H u u H u u δδ-≤↔->.【解】取统计量12(2)X Y T t n n =+-,其中()()221122212112wn S n S S n n -+-=+-, 则检验统计量为X Y T =,当1H 成立时,t 有偏大的趋势,故取拒绝域为12{(2)}w t t n n α=>+-.【例8.16】甲乙相邻地段各取了50块和25块岩心进行磁化率测定,算出两样本标准差分别是210.0139S =,220.0053S =,问甲乙两段的标准差是否有显著性差异(0.05α=)?【解】作假设001:H σσ=,由题设有250211501500.0139()0.01425014949i i S X X =⨯⨯-===-∑, 252221521520.0053()0.00545215151ii S Y Y =⨯⨯-===-∑ 从而统计量21112222(1)0.01422.630.0054(1)n S n F n S n -===-,当0.05α=,查F 分布表可得0.0252(501,521)(501,521) 1.7494F F α--=--=,0.97512(501,521)(501,521)0.5698FF α---=--=,因为0.0252.63(49,51) 1.7494F F =>=,故拒绝原假设0H ,即认为甲乙两段的标准差有显著性差异.【例8.17】在集中教育开课前对学员进行了测试,过来一段时间后,又对学员进行了与前一次同样程度的考查,目的是了解上次的学员与这次学员的考试分类是否有显著性差别(0.05α=),从上次与这次学员的考试中随机抽取12份考试成绩,如下表考试次数 考分 合计平均分 (1) 80.5,91.0,81.0,85.0,70.0,86.0,69.5,74.0,72.5,83.0,69.0,78.5940 78.5 (2)76.0,90.0,91.5,73.0,64.5,77.5,81.0,83.5,86.0,78.5,85.0,96080.073.5【解】此为双正态总体的假设检验,两总体均值未知,先检验假设2222012112::H H σσσσ=↔≠.选取统计量211222(1,1)S F F n n S =--,由题设可计算得221253.15,60.23S S ==,则统计量212253.150.882560.23S F S ===,取0.05α=,查F 分布表可得0.0252(11,11)(11,11) 3.43F F α==,0.97510.02521(11,11)(11,11)0.2915(11,11)FF F α-===.由于122(11,11)0.8825(11,11) 3.43FF F αα-<=<=,故在0.05α=下,接受0H ,即认为两次考试中学员的成绩的方差相等. 再假设012112::H u u H u u =↔≠.构造统计量12(2)X YT t n n =+-,其中()()221122212112wn S n S S n n -+-=+-,1212,12n n ==.由样本数据可得78.5,80.0,X Y ==221253.1515,60.2273S S ==,故()()2211222121156.68942wn S n S Sn n -+-==+-,从而统计量||0.488X Y T ==,在0.05α=下,查t 分布表可得()()120.0252222 2.0739t n n t α+-==.由于()0.025||0.48822 2.0739T t =<=,即认为两次考试中学员的平均成绩相等,从而认为两次考试中学员的成绩无显著性差异.基本题型Ⅳ 非正态总体参数假设检验【例8.18】某产品的次品率为0.17,现对此产品进行了新工艺试验,从中抽取400件检查,发现次品56间,能否认为这项新工艺显著性地影响产品质量(0.05α=)? 【解】检验问题01:0.17:0.17H p H p =↔≠由题设可知56ˆ0.14400m pn ===,构造统计量 1.597u ===-,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为新工艺显著性地影响产品质量.【评注】本题的理论依据时中心极限定理:当n 充分大时,在0H 成立时,u =(0,1)N 分布.【例8.19】 已知某种电子元件的使用寿命X 服从指数分布()E λ,现抽查100个元件,得样本均值950()x h =,能否认为参数0.01λ=(0.05α=)? 【解】由题设()XE λ,故211,EX DX λλ==,当n 充分大时,1((0,1)1x u x N λλ-==-,现在检验问题01:0.001:0.001H H λλ=↔≠,则((0.0019501)0.5u x λ=-=⨯-=,当0.05α=时,查正态分布表可得0.025 1.96u =,因为0.025|| 1.96u u <=,故接受原假设0H ,认为参数0.01λ=.【评注】总体()X F x ,2,EX u DX σ==,则当n充分大时,u =从(0,1)N 分布.【例8.20】对某干洗公司去除污点的比例做下列假设检验01:0.7:0.9H p H p =↔=,选出100个污点,设其中去除的污点数为x ,拒绝域为{82}w x =>. (1)当0.7p =时,求犯第一类错误的概率α; (2)当0.9p =时,求犯第二类错误的概率β. 【解】(1)由题设有{82|0.7}1P x p α=>==-Φ1(2.62)10.99560.0044=-Φ=-=.(2){82|0.9}P x p β=≤==Φ( 2.67)1(2.67)10.99620.0038=Φ-=-Φ=-=.【评注】从计算分析,这一检验法的α,β皆很小,是较好的检验.§历年考研真题评析1、【98.1.4】设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,计算得到平均成绩为66.5,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生平均成绩为70分?并给出检验过程.【解】设该次考试的考生成绩为X ,则2(,)XN ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,根据题意建立假设001:70;:70H H .选取统计量 07036X X TnSS在70时,2(70,),(35)X T t .选取拒绝域{||}R T ,其中满足{||}0.05P T ,即{||}0.95P T .即0.975(35) 2.0301t . 由036,66.5,70,15n xs 可以计算得统计量T 的值|66.570|||361.42.030115T .因此不能拒绝0H ,即在显著性水平0.05下可以认为全体考生的平均成绩为70分.§习题全解1、在正常情况下,某炼钢厂的铁水含碳量(%)2(4.55,)XN σ.一日测得5炉铁水含碳量如下:4.48,4.40,4.42,4.45,4.47在显著性水平0.05α=下,试问该日铁水含碳量得均值是否有明显变化. 【解】设铁水含碳量作为总体X ,则2(4.55,)XN σ,从中选取容量为5的样本,测得24.444,0.0011X S ==.由题意,设原假设为0: 4.55H u = 构造检验统计量 ||(4)X u t t S -=,则7.051t ==在显著性水平0.05α=下,查表可得0.97512(4)(4) 2.77647.051tt α-==<,拒绝原假设0H ,即认为有显著性变化.2、根据某地环境保护法规定,倾入河流的废物中某种有毒化学物质含量不得超过3ppm.该地区环保组织对某厂连日倾入河流的废物中该物质的含量的记录为:115,,x x .经计算得15148ii x==∑, 1521156.26i i x ==∑.试判断该厂是否符合环保法的规定.(该有毒化学物质含量X 服从正态分布)【解】设有毒化学物质含量作为总体X ,则2(,)XN u σ,从中选取容量为15的样本,测得1511 3.215i i X x ===∑,22221111()()0.1911n ni i i i S x x x nx n n ===-=-=--∑∑.由题意,设原假设为0:3H u <,备择假设为1:3H u >.构造检验统计量(14)X t t =,则 1.777t ==,在显著性水平0.05α=下,查表可得10.95(14)(14) 1.7613 1.777t t α-==<,即拒绝原假设0H ,接受备择假设1H ,认为该厂不符合环保的规定.3、某厂生产需用玻璃纸作包装,按规定供应商供应的玻璃纸的横向延伸率不应低于65.已知该指标服从正态分布2(,)N μσ, 5.5σ=.从近期来货中抽查了100个样品,得样本均值55.06x =,试问在0.05α=水平上能否接受这批玻璃纸? 【解】设玻璃纸的横向延伸率为总体X ,则2(,5.5)XN u ,从中选取容量为100的样本,测得55.06x =.由题意,设原假设为0:65H u >,备择假设为1:65H u <.构造检验统计量||(0,1)X u U N σ-=,则|55.0665|18.07275.5U -==在显著性水平0.05α=下,查表可得10.95 1.644918.0727U U α-==<,即拒绝原假设0H ,接受备择假设1H ,不能接受该批玻璃纸..4、某纺织厂进行轻浆试验,根据长期正常生产的累积资料,知道该厂单台布机的经纱断头率(每小时平均断经根数)的数学期望为9.73根,标准差为1.60根.现在把经纱上浆率降低20%,抽取200台布机进行试验,结果平均每台布机的经纱断头率为9.89根,如果认为上浆率降低后均方差不变,问断头率是否受到显著影响(显著水平α=0.05)?【解】设经纱断头率为总体X ,则9.73u EX ==, 1.6σ==,从中选取容量为200的样本,测得9.89x =.由题意,设原假设为0:9.73H u =,备择假设为1:9.73H u ≠. 构造检验统计量(0,1)X U N =,则 1.4142U ==在显著性水平0.05α=下,查表可得0.975121.96 1.4142UU α-==>,即接受原假设0H ,认为断头率没有受到显著影响.5、某厂用自动包装机装箱,在正常情况下,每箱重量服从正态分布2(100,)N σ.某日开工后,随机抽查10箱,重量如下(单位:斤):99.3,98.9,100.5,100.1,99.9,99.7,100.0,100.2,99.5,100.9.问包装机工作是否正常,即该日每箱重量的数学期望与100是否有显著差异?(显著性水平α=0.05) 【解】设每箱重量为总体X ,则2(100,)XN σ,从中选取容量为10的样本,测得99.9x =,20.34S =.由题意,设原假设为0:100H u =,备择假设为1:100H u ≠.构造检验统计量||(9)X u t t S -=,则0.5423t ==,在显著性水平0.05α=下,查表可得0.97512(9)(9) 2.26220.5423tt α-==>,即接受原假设0H ,认为每箱重量无显著差异.6、某自动机床加工套筒的直径X 服从正态分布.现从加工的这批套筒中任取5个,测得直径分别为15,,x x (单位m μ:),经计算得到51124ii x==∑, 5213139i i x ==∑.试问这批套筒直径的方差与规定的27σ=有无显著差别?(显著性水平0.01α=) 【解】设这批套筒直径为总体X ,则2(,)XN u σ,从中选取容量为5的样本,测得151124.815i i X x ===∑,22221111()()15.9511n ni i i i S x x x nx n n ===-=-=--∑∑. 由题意,设原假设为20:7H σ=,备择假设为21:7H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2415.959.11437χ⨯==,在显著性水平0.01α=下,查表可得220.99512(4)(4)14.86αχχ-==,220.0052(4)(4)0.2070αχχ==,从而222122(4)(4)ααχχχ-<<. 即接受原假设0H ,认为这批套筒直径的方差与规定的27σ=无显著差别.7、甲、乙两台机床同时独立地加工某种轴,轴的直径分别服从正态分布211(,)N μσ、222(,)N μσ(12,μμ未知).今从甲机床加工的轴中随机地任取6根,测量它们的直径为16,,x x ,从乙机床加工的轴中随机地任取9根,测量它们的直径为19,,y y ,经计算得知:61204.6ii x==∑, 6216978.9i i x ==∑,91370.8i i y ==∑,92115280.2i i y ==∑.问在显著性水平0.05α=下,两台机床加工的轴的直径方差是否有显著差异? 【解】设两台机床加工的轴的直径分别为总体,X Y ,则211(,)XN μσ、222(,)YN μσ,从总体X 中选取容量为6的样本,测得61134.16i i X x ===∑222211111()()0.40811n ni i i i S x x x nx n n ===-=-=--∑∑. 从总体Y 中选取容量为9的样本,测得91141.29i i Y y ===∑222221111()()0.40511n ni i i i S y y y ny n n ===-=-=--∑∑ 由题意,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,8)S F F S =,则0.4081.0070.405F ==,在显著性水平0.05α=下,查表可得0.97512(5,8)(5,8) 6.76FF α-==,0.0252(5,8)(5,8)0.1479F F α==,从而122(5,8)(5,8)F F Fαα-<<.即接受原假设0H ,认为两台机床加工的轴的直径方差无显著差异.8、某维尼龙厂根据长期正常生产积累的资料知道所生产的维尼龙纤度服从正态分布,它的标准差为0.048.某日随机抽取5根纤维,测得其纤度为1.32,1.55,1.36,1.40,1.44.问该日所生产得维尼龙纤度的均方差是否有显著变化(显著性水平α=0.1)? 【解】设维尼龙纤度为总体X ,则2(,0.048)XN u ,从中选取容量为5的样本,测得511 1.4145i i X x ===∑,2211()0.00781n i i S x x n ==-=-∑.由题意,设原假设为0:0.048H σ=,备择假设为1:0.048H σ≠.构造检验统计量2222(1)(4)n S χχσ-=,则2240.007813.542(0.048)χ⨯==在显著性水平0.1α=下,查表可得220.9512(4)(4)9.487713.542αχχ-==<.即拒绝原假设0H ,认为维尼龙纤度的均方差有显著变化.9、某项考试要求成绩的标准差为12,先从考试成绩单中任意抽出15份,计算样本标准差为16,设成绩服从正态分布,问此次考试的标准差是否符合要求(显著性水平α=0.05)? 【解】 设考试成绩为总体X ,则2(,12)XN u ,从中选取容量为15的样本,测得16S =.由题意,设原假设为0:12H σ=,备择假设为1:12H σ≠. 构造检验统计量2222(1)(14)n S χχσ-=,则222141619.055612χ⨯==.在显著性水平0.05α=下,查表可得220.97512(14)(14)26.1189αχχ-==,220.0252(14)(14) 5.6287αχχ==,从而222122(14)(14)ααχχχ-<<.即接受原假设0H ,认为此次考试的标准差符合要求.10、某卷烟厂生产甲、乙两种香烟,分别对他们的尼古丁含量(单位:毫克)作了六次测定,获得样本观察值为:甲:25,28,23,26,29,22; 乙:28,23,30,25,21,27.假定这两种烟的尼古丁含量都服从正态分布,且方差相等,试问这两种香烟的尼古丁平均含量有无显著差异(显著性水平α=0.05,)?对这两种香烟的尼古丁含量,检验它们的方差有无显著差异(显著性水平α=0.1)?【解】设这两种烟的尼古丁含量分别为总体,X Y ,则211(,)X N μσ、222(,)Y N μσ,从中均选取容量为6的样本,测得61125.56i i X x ===∑,22111()7.51n i i S x x n ==-=-∑, 61125.66676i i Y y ===∑,22211()11.06671n i i S y y n ==-=-∑, 由题意,在方差相等时,设原假设为012:H u u =,备择假设为112:H u u ≠.构造检验统计量12(2)X Y t t n n =+-,其中222112212(1)(1)9.2834(2)wn S n S S n n -+-==+-.则0.0948t ==,在显著性水平0.05α=下,查表可得120.97512(2)(10) 2.22810.0948tn n t α-+-==>.即接受原假设0H ,认为这两种香烟的尼古丁平均含量无显著差异.由题意,在方差待定时,设原假设为22012:H σσ=,备择假设为22112:H σσ≠.构造检验统计量2122(5,5)S F F S =,则7.50.677711.0667F ==,在显著性水平0.1α=下,查表可得0.9512(5,8)(5,5) 5.0503FF α-==,0.052(5,8)(5,5)0.1980F F α==,由122(5,5)(5,5)F F Fαα-<<.即接受原假设0H ,认为它们的方差无显著差异.§同步自测题及参考答案一、选择题1、关于检验水平α的设定,下列叙述错误的是 【 】()A α的选取本质上是个实际问题,而非数学问题. ()B 在检验实施之前, α应是事先给定的,不可擅自改动.()C α即为检验结果犯第一类错误的最大概率. ()D 为了得到所希望的结论,可随时对α的值进行修正.2、关于检验的拒绝域W,置信水平a ,及所谓的“小概率事件”,下列叙述错误的是 【 】()A a 的值即是对究竟多大概率才算“小”概率的量化描述. ()B 事件021|),,,{(H W X X X n ∈ 为真}即为一个小概率事件.()C 设W 是样本空间的某个子集,指事件}|),,,{(021为真H W X X X n ∈ . ()D 确定恰当的W 是任何检验的本质问题.3、设总体22),,(~σσμN X 未知,通过样本n X X X ,,,21 检验假设00:μμ=H ,此问题拒绝域形式为 【 】()A }C >. ()B }/100{C n S X <-. ()C }10/100{C S X >- . ()D }{C X >.4、设n X X X ,,,21 为来自总体2(,)N μσ的样本,若μ未知, 100:20≤σH ,21:100,H 0.05a ,关于此检验问题,下列不正确的是 【 】()A 检验统计量为100)(12∑=-ni iX X. ()B 在0H 成立时,)1(~100)1(22--n x S n . ()C 拒绝域不是双边的. ()D 拒绝域可以形如})({12∑=>-ni i k X X .5、设总体服从正态分布2(,3)XN μ,12,,,n x x x 是X 的一组样本,在显著性水平0.05α=下,假设“总体均值等于75”拒绝域为12{,,,:74.0275.98}n w x x x x x =<⋃>,则样本容量n = 【 】()A 36. ()B 64. ()C 25. ()D 81.二、填空题1、为了校正试用的普通天平,把在该天平上称量为100克的10个试样在计量标准天平上进行称量,得如下结果:99.3, 98.7, 100.5, 101,2, 98.399.7 99.5 102.1 100.5, 99.2 假设在天平上称量的结果服从正态分布,为检验普通天平与标准天平有无显著差异,0H为 .2、设样本2521,,,X X X 来自总体μμ),9,(N 未知,对于检验0010::H H μμμμ=↔= 取拒绝域形如k X ≥-0μ,若取05.0=a ,则k 值为 .3、设12,,,n x x x 是正态总体2(,)XN μσ的一组样本.现在需要在显著性水平0.05α=下检验假设2200:H σσ=.如果已知常数u ,则0H 的拒绝域1w =______________;如果未知常数u ,则0H 的拒绝域2w =______________.4、在一个假设检验问题中令0H 是原假设,1H 时备择假设,则犯第一类错误的概率{______________}P ,犯第二类错误的概率{______________}P .三、解答题1、某批矿砂的5个样本中的镍含量,经测定为(%)3.25,3.27,3.24,3.26,3.24设测定值总体服从正态分布,问在0.01α=下,能否接受假设:这批矿砂的含量的均值为3.25.2、已知精料养鸡时,经若干天鸡的平均重量为4公斤.今对一批鸡改用粗料饲养,同时改善饲养方法,经同样长的饲养期后随机抽取10只,的其数据如下:3.7,3.8,4.1,3.9,4.6,4.7,5.0,4.5,4.3,3.8已知同一批鸡的重量X 服从正态分布,试推断:这一批鸡的平均重量是否显著性提高.试就0.01α=和0.05α=分别推断.3、测定某种溶液中的水份,它的10个测定值给出0.037%S =,设测定值总体为正态分布,2σ为总体方差,试在水平0.05α=下检验假设01:0.04%:0.04%H H σσ=↔<.4、在70年代后期,人们发现在酿造啤酒时,在麦芽干燥过程中形成致癌物质亚硝基二甲胺(NDMA ).到了80年代初期开发了一种新的麦芽干燥过程,下面给出了在新老两种干燥过程中形成的NDMA 的含量(以10亿份中的份数计)老过程 6,4,5,5,6,5,5,6,4,6,7,4 新过程2,1,2,2,1,0,3,2,1,0,1,3设两样本分别来自正态总体,且两总体的方差相等,两样本独立,分别以12,u u 记对应于老、新过程的总体均值,试检验假设(0.05α=)0111:2:2H u u H u u -=↔->.5、检验了26匹马,测得每100毫升的血清中,所含的无机磷平均为3.29毫升,标准差为0.27毫升;又检验了18头羊,每100毫升血清中汗无机磷平均值为3.96毫升,标准差为0.40毫升.设马和羊的血清中含无机磷的量均服从正态分布,试问在显著性水平0.05α=条件下,马和羊的血清中无机磷的含量有无显著性差异?6、某种产品的次品率原为0.1,对这种产品进行新工艺试验,抽取200件发现了13件次品,能否认为这项新工艺显著性地降低了产品的次品率(0.05α=)?7、设n X X X ,,,21 为总体(,4)XN a 的样本,已知对假设01:1: 2.5H a H a =↔=,0H 的拒绝域为{2}w X =>.(1)当9u =时,求犯两类错误的概率α和β; (2)证明:当n →∞时,0α→,0β→.同步自测题参考答案 一、选择题1.()D .2. ()C .3. ()C .4. ()B .5. ()A . 二、填空题1.100=μ.2. 1.176.3. 222210.0250.97522110011{()()()()}nniii i w x u n x u n χχσσ===->⋃-<∑∑;222220.0250.975220(1)(1){(1)(1)}n S n S w n n χχσσ--=>-⋃<- .4.10{|}P H H 接受成立,01{|}P H H 接受成立.三、解答题 1、接受0H .2、0.01α=时,显著性提高;0.05α=时,没有显著性提高 .3、 接受0H .4、拒绝0H ,接受1H .5、方差无显著性差异,均值有显著性差异,故有显著性差异.6、 拒绝0H .7、(1)0.0668α=,0.2266β=,(2)102α=-Φ→,(04β=Φ-→()n →∞.。

假设检验

假设检验
假设检验
第一节 假设检验的基本原理 第二节 单个正态总体的假设检验 第三节 两个正态总体的假设检验
第一节:假设检验的基本原理
一、基本概念 假设检验是统计推断的另一种重要形式,
其任务是通过样本对未知的总体分布特征作 出合理的推测。
先对总体分布中的某些参数或对总体分布类 型做某种假设,然后根据样本值做出接受还 是拒绝所做假设的结论。
例如 若H0 : m = m0, 则H1 有以下三种情况: (1) H0 : m = m0, H1: m m0 (2) H0 : m = m0, H1 : m > m0 (3) H0 : m = m 0, H1 : m < m0
其中(1)称为双边检验.
其中(2), (3)称为单边检验.
第二步:选取一个合适的检验统计量,并根据原假设 H0和备择假设 H1 确定H0的拒绝域.
0.05 6
因为4.9>1.96 ,即观测值落在拒绝域内
所以拒绝原假设。
二 当2未知时, 均值m的检验(t检验)
1 (双边检验) H0: m = m0 H1: m m0
此时2未知, 不能用
U

X
m0
n

T

X
m0
S
n
当H0成立时,
T

X m0
S
~ t(n 1)
n
因此, 对给定的, 查t分布表, 使
X


m0
~ N(0, 1)
n
当H0 成立时, u的值不应太大.
而当H1 成立时, u的值往往偏大.
因此, P{uu}=
于是得到H0的拒绝域为 (u, )
类似地, 若检验的假设是

第二节 正态总体参数的检验

第二节 正态总体参数的检验
∵ χ > λ2 , ∴ 否定 H 0 , 即认为方差显著地改变了. 即认为方差显著地改变了.
2
9
二、两个正态总体参数的假设检验
2 设 有 两 个 相 互 独 立 的 正 态 总 体 X ~ N ( µ1,σ 1 ) ,
Y ~ N ( µ 2,σ ) , 分别抽取独立的样本 ( X1 , X2 ,⋯, Xn1 ) 和
2
µ 第六章证明, X = ( (− , ) 第六章证明,若 χ 2 ~ Nn−1σS 证明 (2) 检验统计量 2
2 2 H 下 O χ1−α / 2(n−1) 2 0 ), 2 则
x
( n − 1) S

~ χ (n −1) ,
(4) 由样本值算得
χ的值; 的值;
2
则拒绝H 否则 不能 若 χ 2 < λ1 或 χ 2 > λ2 ,则拒绝 0 ; 否则, 拒绝H 拒绝 0 .
− tα / 2 ( n − 1) O
tα / 2 (n − 1)
x
~
(4) 由样本值算得 t 的值; 的值; 则拒绝H 如果 | t |> tα 2 (n − 1) ,则拒绝 0 ; 否则, 不能拒绝H 否则 不能拒绝 0 .
5
两家生产同一类产品, 例2 两家生产同一类产品,其质量指标假定都服从正 态分布,标准规格为均值等于120.现从甲厂抽出5 120.现从甲厂抽出 态分布,标准规格为均值等于120.现从甲厂抽出5件 产品,测得其指标值为119,120,119.2,119.7,119.6; 产品,测得其指标值为119,120,119.2,119.7,119.6; 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 122.2,113.8,117.2。 122.2,113.8,117.2。试判断这两家厂的产品是否符 合标准. 合标准. (α = 0.05 )

单个正态总体参数的假设检验

单个正态总体参数的假设检验
拒绝域为 | u | z / 2
576.2 576 x 576 0.079 其中 | U | 8 / 10 8/ n
查表 z / 2 z0.025 1.96 0.079 故未落在拒绝域之内,故接受H0 ,即可以认为 576.
综合⑴与⑵,该生跳远成绩水平与鉴定成绩无显著差异.
X -0 取统计量 t ~ t (n 1) S/ n
x -0 拒绝域为 | t | t / 2 (n 1) s/ n 计算 | t | 2.6
| t | 2.6 t0.025 (35) 2.0301
故落在拒绝域之内,拒绝H0 ,接受H1 即不能认为全体考生的平均成绩为70分。 ⑵ μ的置信水平为0.95的置信区间为
2 2 2 双边假设检验 H 0 : 2 0 , H1 : 0
拒绝域为
(n 1) s 2
2 0
12 / 2 (n 1) 或 f y

2 2
(n 1) s 2

2 0
2 / 2 ( n 1)
2 12 / 2 (n 1) / 2 ( n 1)
观测5台压缩机的冷却用水的升高温的平均值为 x 5.34,
样本方差为 s 2 0.631. ⑴ 在显著水平α=0.05下是否可以
认为冷却用水升高温度的平均值不多于5°?(2)求σ2的
置信水平为0.95的置信区间。
解: ⑴ 先提出假设 H 0 : 0 5, H1 : 0
H1 : 0 ,拒绝域为
| x -0 | | u | z / 2 / n
2. σ2未知,检验μ (t 检验法)
n 1 2 可用样本方差 S 2 ( X X ) 代替σ2 k n 1 k 1

单正态总体的参数假设检验

单正态总体的参数假设检验

单正态总体的参数假设检验在统计学中,假设检验是一种用于判断总体参数是否符合某种特定假设的方法。

而单正态总体的参数假设检验则是指对一个正态分布总体的参数进行假设检验。

单正态总体的参数假设检验通常涉及两个假设:原假设(H0)和备择假设(H1)。

原假设是我们想要进行检验的假设,而备择假设则是与原假设相反的假设。

在单正态总体的参数假设检验中,我们通常关注的参数有均值(μ)和标准差(σ)。

下面将分别介绍如何进行均值和标准差的参数假设检验。

1. 均值参数假设检验对于均值参数的假设检验,常用的方法有Z检验和T检验。

Z检验适用于总体的标准差已知的情况,而T检验适用于总体的标准差未知的情况。

假设我们要对一个正态分布总体的均值进行假设检验,原假设为均值等于某个特定值(H0: μ = μ0),备择假设为均值不等于特定值(H1: μ ≠ μ0)。

我们需要计算样本的均值(X̄)和标准差(S),然后根据样本量(n)和总体标准差(σ)的已知情况选择对应的检验方法。

如果总体标准差已知,可以使用Z检验。

计算Z统计量的公式为:Z = (X̄ - μ0) / (σ / √n)然后,根据显著性水平(α)选择临界值,比较计算得到的Z统计量与临界值的大小,以判断是否拒绝原假设。

如果Z统计量的绝对值大于临界值,则拒绝原假设;否则,接受原假设。

如果总体标准差未知,可以使用T检验。

计算T统计量的公式为:T = (X̄ - μ0) / (S / √n)同样地,根据显著性水平(α)选择临界值,比较计算得到的T统计量与临界值的大小,以判断是否拒绝原假设。

2. 标准差参数假设检验对于标准差参数的假设检验,常用的方法有卡方检验和F检验。

卡方检验适用于单个总体标准差的假设检验,而F检验适用于两个总体标准差的假设检验。

假设我们要对一个正态分布总体的标准差进行假设检验,原假设为标准差等于某个特定值(H0: σ = σ0),备择假设为标准差不等于特定值(H1: σ ≠ σ0)。

假设检验的基本概念.ppt

假设检验的基本概念.ppt
实际应用中,常将以往的经验性结论作为原假设, 与其相反的结论作为备选假设.
这样,原假设不会被轻易拒绝,一旦结果为拒绝 原假设,其结果也是可以信赖的,而且我们还知道此
时犯第一类错误的概率不超过;
如果结果为不能拒绝原假设,考虑到原假设为以 往的经验,做出接受原假设的推断也是比较合理的.
8.1.4 假设检验的步骤
因此,假设检验问题可能会犯如下两类错误:
第一类错误(“弃真”):实际情况是H0成立,而检验 的结果表明H0不成立,拒绝了H0.
第二类错误(“取伪”):实际情况是H0不成立,H1成 立,而检验的结果表明H0成立,接受了H0. 下面我们来研究一下犯这两类错误的概率.
8.1.3 假设检验的两类错误
犯第一类错误的概率:
没有足够的理由拒绝H0,应认可H0.
8.1.2 假设检验的基本思想
看来,是否拒绝 H0的关键是看U
因此
x 0
/ n
z
2
X
/
0
n
的取值是否满足

x 0
/ n
z
2 即{|
U
|
z/2}称为H0的拒绝域.
称–z/2和z/2为H0的拒绝域的临界点(值).
称 U X 0 为检验统计量.
/ n
0.499 0.515 0.508 0.512 0.498 0.515 0.516 0.513 0.524
问这台包装机工作是否正常? 通过分析知道: 要检验包装机工作是否正常,就是要检验总体均值
= 0.5kg是否成立.
Hale Waihona Puke 8.1.1 假设检验的思想方法
具体思路是:
首先提出两个对立的假设:
H0: = 0.5

假设检验

假设检验

例1 设某车床生产的钮扣的直径X服从正态分布,根据以 往的经验,当车床工作正常时,生产的钮扣的平均直径 0=26mm,方差2 =2.62。某天开机一段时间后,为检验车 床工作是否正常,随机地从刚生产的钮扣中抽检了100粒, 测得。假定方差没有什么变化。试分别在1=0.05, 2=0.01下,检验该车床工作是否正常?
/ n | z | z / 2
| z | z / 2
统计量
Z 称为X检验统0计量。 / n
当检验统计量取某个区域C中的值时,就拒绝H0,则称C为H0的拒绝域,拒绝域的
边界点称为临界值。如例1中拒绝域为
,临界值为

| z | z / 2
z z / 2 z z / 2
将上述检验思想归纳起来,可得参数的假设检验的一般步骤:
例3 设某厂生产的灯泡寿命(单位 : 小时)x ~ N ( , 2 )
0 1000, 2未知.现随机抽取样本16 只, 测得 x 946样本方差 s2 1202.试在显著性水平 0.05
检验这批灯泡的寿命与1000是否有显著差异?
解:(1)检验假设:
H0: 0 1000;H1: 1000
题设和要求而定。在许多问题中,当总体分布的类型已知时,只对其中一个或几个 未知参数作出假设,这类问题通常称之为参数假设检验,如例1。而在有些问题中, 当总体的分布完全不知或不确切知道,就需要对总体分布作出某种假设,这种问题 称为分布假设检验,如例2。
接下来我们要做的事是:给出一个合理的法则,根据这一法则,利用巳知样本做 出判断是接受假设H0 ,还是拒绝假设H0。
第Ⅱ类错误,当原假设H0不成立时,却作出接受H0的决定,这类错误称之为取 伪错误,这类错误同样是不可避免的。若将犯这类错误的概率记为 ,则有P{接 受H0|H0为假}= 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章 假 设 检 验 章
8.2 单个正态总体参数的假设检验
正态总体N(µ σ 有两个重要参数均值 正态总体 µ,σ2)有两个重要参数均值µ和方差σ2, 在实际应用中常会用到单正态总体均值与方差的 检验,以及两个正态总体均值与方差的比较问题. 检验,以及两个正态总体均值与方差的比较问题
8.2.1 单个正态总体均值的假设检验

σ0
在显著水平α 的拒绝域为: 在显著水平α下,H0的拒绝域为:
2 ( n − 1) S 2 2 ≥ χ α ( n − 1) χ = 2 σ0
8.2.1 单正态总体均值与方差的检验
同样的思路, 同样的思路,对于左边检验
2 H0 : σ 2 ≥σ 0 2 H1 : σ 2 <σ 0
H0 : σ ≤σ
2 2 0 2 H1 : σ 2 >σ 0 2 H1 : σ 2 <σ 0 2 H0 : σ 2 ≥σ 0
为已知常数. 其中 σ 02为已知常数.
8.2.1 单正态总体均值与方差的检验
对µ未知的情形讨论上面三种检验. 未知的情形讨论上面三种检验 先看双边检验: 先看双边检验 H 0 : σ 2 = σ 02 H 1 : σ 2 ≠ σ 02 真时, 由定理6.3 当H0真时 X ~ N ( µ ,σ 02 ) , 由定理
σ2 所以对给定的小概率α 所以对给定的小概率α,易知
( n − 1) S 2 由于X 由于 ~ N(µ,σ2), µ ,
~ χ 2 ( n − 1) ,
( n − 1) S 2 2 P ≥ χ α ( n − 1) = α 2 σ ( n − 1) S 2 当原假设成立时, 当原假设成立时,由于
8.2.1 单正态总体均值的检验
(2) σ2为未知的情况
0 未知时, 中含有未知的σ 当σ2未知时,由于 中含有未知的σ,不能再 σ/ n 作为检验统计量. 作为检验统计量. X − µ0 2是σ2的无偏估计 且由定理 考虑S 的无偏估计,且由定理 知 T = 且由定理6.3知 考虑 ~ t ( n − 1)
8.2.1 单正态总体均值的检验
(1) σ2为已知的情况
由8.1.1知, 检验统计量可采用 U = 知 在显著水平α下,H0的拒绝域为: 在显著水平α 的拒绝域为:
x − µ0 ≥ zα 2 | U | = σ/ n
X − µ0
σ/ n
这种检验称为均值的U检验. 这种检验称为均值的 检验. 检验
这种检验称为均值的t检验. 这种检验称为均值的 检验. 检验
均值的单边检验: 均值的单边检验: 右边检验: 右边检验: H0: µ = µ0 左边检验: 左边检验: H0: µ = µ0
H1: µ > µ0 H1: µ < µ0
已知方差, H1: µ < µ0 已知方差,检验 H0: µ = µ0 此时否定H 意味着接受H 此时否定 0意味着接受 1: µ < µ0, , 因此, 小很多时, 因此,只有当 X 的观测值比 µ0 小很多时,才有理由 否定H 接受H 否则没有理由否定H 否定 0 ,接受 1 , 否则没有理由否定 0 。即只有 的样本观测值小于0, 当 U = ( X − µ0 ) / σ 2 / n 的样本观测值小于 ,而且其绝 对值较大时,才有理由否定H 由此可得, 对值较大时,才有理由否定 0 ,由此可得, H0的拒 绝为形式为 (−∞, −λ ) ,小概率事件应为
σ 02
~ χ 2 ( n)

所以
σ
2

( n − 1) S 2
σ 02
( n − 1) S 2 2 P ≥ χ α ( n − 1) ≤ α 2 σ0
8.2.1 单正态总体均值与方差的检验
由于
( n − 1) S 2 2 P ≥ χ α ( n − 1) ≤ α 2 σ0
( n − 1) S 2 2 ≥ χα ( n − 1) 2 是小概率事件, σ0 是小概率事件 ( n − 1) S 2 作为检验统计量, 可以取 χ 2 = 作为检验统计量 2
仍可以选用 χ 2 =
( n − 1) S 2
σ 02
作为检验统计量, 作为检验统计量,
并且容易推出在显著水平α下H0的拒绝域为: 的拒绝域为: 并且容易推出在显著水平α
2 ( n −
上述三种检验称为方差的χ 检验. 上述三种检验称为方差的χ2检验
所以可取 χ 2 =
( n− 1) S 2 −
σ
2 所以,H 的拒绝域为: 所以 0的拒绝域为:χ 2 ≤ χ 12−α 2 ( n − 1)}U{ χ 2 ≥ χα 2 ( n − 1)} {
2 0
作为检验统计量, 作为检验统计量,
8.2.1 单正态总体均值与方差的检验
再看右边检验
2 H0 : σ 2 ≤σ 0 2 H1 : σ 2 >σ 0
χ2=
( n − 1) S 2
σ 02
~ χ 2 ( n − 1)
所以对给定的小概率α, 易知 所以对给定的小概率α
2 P{{ χ 2 ≤ χ 12−α 2 ( n − 1)}U{ χ 2 ≥ χ α 2 ( n − 1)}} = α 2 是小概率事件. 即 { χ 2 ≤ χ 12−α 2 ( n − 1)}U{ χ 2 ≥ χ α 2 ( n − 1)}是小概率事件.
所以对给定的小概率α, 易知 所以对给定的小概率α
2 P{{χ 2 ≤ χ12−α 2 (n)} U {χ 2 ≥ χα 2 (n)}} = α 2 是小概率事件. {χ 2 ≤ χ12−αn 2 (n)} U {χ 2 ≥ χα 2 (n)} 是小概率事件. ( X i − µ )2 作为检验统计量, 所以可取 2 ∑ 作为检验统计量, i =1 χ = σ 02 2 所以,H 的拒绝域为: 所以 0的拒绝域为: {χ 2 ≤ χ12−α 2 (n)} U {χ 2 ≥ χα 2 (n)}
8.2.1 单正态总体均值与方差的检验
对µ已知的情形讨论如下检验. 已知的情形讨论如下检验 双边检验: 双边检验
2 2 H 0 : σ 2 =σ 0 H1 : σ 2 ≠σ 0
真时, 由定理6.3 当H0真时 nX ~ N ( µ ,σ 02 ) , 由定理
χ2 =
( X i − µ )2 ∑
i =1
X − µ0 ≤ − zα σ / n
类似的, 类似的,右边检验 H0: µ = µ0 其拒绝域为
H1: µ > µ0
X − µ0 U= ≥ zα σ/ n
8.2 单正态总体均值与方差的检验
8.2.2. 单正态总体方差的检验
为来自X的样本 的样本, 设X~N(µ,σ2),X1, X2, …, Xn为来自 的样本, ~ µ , x1, x2, …, xn为样本观测值 对方差σ 的检验一般有下面三种形式: 对方差σ2的检验一般有下面三种形式 2 2 1) 双边检验 H0 : σ 2 =σ 0 H1 : σ 2 ≠σ 0 2) 右边检验 3) 左边检验
1. 单正态总体均值的检验
为来自X的样本 的样本, 设X~N(µ, σ2), X1, X2, …, Xn为来自 的样本 ~ µ x1, x2, …, xn为样本观测值 为样本观测值, H0: µ = µ0 H1: µ ≠ µ0
为已知常数. 其中µ0为已知常数 下面分两种情况给出H 的拒绝域: 下面分两种情况给出 0的拒绝域
X −µ
所以,改用 所以, 绝域为: 绝域为:
类似σ 已知的情形, 在显著水平α 类似 σ 2 已知的情形 , 在显著水平 α 下 , 上面检验的拒
x − µ0 ≥ tα 2 ( n − 1) | t | = s/ n
X − µ0 T= S/ n
S/ n
作为检验统计量, 作为检验统计量,
相关文档
最新文档