版高考数学大一轮复习课时限时检测(五)函数的单调性与最值【含答案】
5、函数的单调性与最值(含答案)
5函数的单调性与最值1.函数的单调性 (1)增函数、减函数自左向右看图象是04上升的自左向右看图象是05下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)D 叫做函数y =f (x )2.函数的最值1.(1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( )(2)设任意x 1,x 2∈[a ,b ]且x 1≠x 2,那么f (x )在[a ,b ]上是增函数⇔f (x 1)-f (x 2)x 1-x 2>0⇔(x 1-x 2)[f (x 1)-f (x 2)]>0.( )(3)若函数y =f (x ),x ∈D 的最大值为M ,最小值为m (M >m ),则此函数的值域为[m ,M ].( )(4)闭区间上的单调函数,其最值一定在区间端点取到.( ) 答案 (1)× (2)√ (3)× (4)√2.小题热身设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.答案 [-1,1],[5,7]3函数y =4x -x 2+3,x ∈[0,3]的单调递增区间是________,最小值是________,最大值是________.答案 [0,2] 3 74函数f (x )=(2a -1)x -3是R 上的减函数,则a 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫-∞,12 5函数f (x )=3x +1(x ∈[2,5])的最大值与最小值之和等于________. 答案 326.函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)答案 D7.函数f (x )=|x -2|x 的单调递减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)8.试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解 解法一:设-1<x 1<x 2<1, f (x )=a ·x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, 则f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=a (x 2-x 1)(x 1-1)(x 2-1). 由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增. 解法二:f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增. 练习二1.若函数f (x )=ax +1在R 上递减,则函数g (x )=a (x 2-4x +3)的增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)答案 B2.函数f (x )=6x -x 2的单调递减区间是________. 答案 [3,6]3.用定义法证明:f (x )=log 2(x -2)在(2,+∞)上单调递增.证明 ∀x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=log 2(x 1-2)-log 2(x 2-2)=log 2x 1-2x 2-2. 又由2<x 1<x 2,得0<x 1-2x 2-2<1.所以log 2x 1-2x 2-2<0,即f (x 1)-f (x 2)<0.所以f (x 1)<f (x 2).所以函数f (x )在区间(2,+∞)上单调递增.4.函数f (x )=-x +1x 在⎣⎢⎡⎦⎥⎤-2,-13上的最大值是( )A.32 B .-83 C .-2 D .2答案 A5.函数y =x -x -1的最小值为________. 答案 346.对a ,b ∈R ,记max{a ,b }=⎩⎨⎧a ,a ≥b ,b ,a <b ,函数f (x )=max{|x +1|,|x -2|}(x∈R )的最小值是________.答案 327.函数f (x )=2a x -2020a x +1的值域为________.答案 (-2020,2)8.函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.答案 3 9.函数y =3x +1x -2的值域为________. 答案 {y |y ∈R 且y ≠3}10.函数y =|x +1|+|x -2|的值域为________. 答案 [3,+∞)11.已知定义在R 上的函数f (x )满足f (-x )=f (x ),且函数f (x )在(-∞,0)上是减函数,若a =f (-1),b =f ⎝ ⎛⎭⎪⎫log 214,c =f (20.3),则a ,b ,c 的大小关系为( )A .c <b <aB .a <c <bC .b <c <aD .a <b <c答案 B12.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则不等式f (1-x 2)>f (2x )的x 的取值范围是( )A .(0,2-1)B .(-1,2+1)C .(0,2+1)D .(-1,2-1) 答案 D13.已知函数f (x )=⎩⎨⎧(a -3)x +5,x ≤1,2a -log a x ,x >1,对于任意x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围是( )A .(1,3]B .(1,3)C .(1,2]D .(1,2) 答案 C14.已知函数f (x )在(-∞,+∞)上单调递减,且当x ∈[-2,1]时,f (x )=x 2-2x -4,则关于x 的不等式f (x )<-1的解集为( )A .(-∞,-1)B .(-∞,3)C .(-1,3)D .(-1,+∞) 答案 D15.函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3 答案 C练习三1.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 12 B .f (x )=x3 C .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=3x答案 D2.函数y =⎝ ⎛⎭⎪⎫132x 2-3x +1的单调递增区间为( )A .(1,+∞) B.⎝ ⎛⎦⎥⎤-∞,34 C.⎝ ⎛⎭⎪⎫12,+∞ D.⎣⎢⎡⎭⎪⎫34,+∞ 答案 B3.已知f (x )在R 上是减函数,a ,b ∈R 且a +b ≤0,则下列结论正确的是( ) A .f (a )+f (b )≤-[f (a )+f (b )] B .f (a )+f (b )≤f (-a )+f (-b ) C .f (a )+f (b )≥-[f (a )+f (b )] D .f (a )+f (b )≥f (-a )+f (-b ) 答案 D4.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c 答案 D5.若函数y =ax 与y =-bx 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是( )A .增函数B .减函数C .先增后减D .先减后增 答案 B6.函数f (x )=2|x -a |+3在区间[1,+∞)上不单调,则a 的取值范围是( ) A .[1,+∞) B .(1,+∞) C .(-∞,1) D .(-∞,1] 答案 B7.设函数f (x )在R 上为增函数,则下列结论一定正确的是( )A .y =1f (x )在R 上为减函数 B .y =|f (x )|在R 上为增函数 C .y =2-f (x )在R 上为减函数 D .y =-[f (x )]3在R 上为增函数 答案 C8.已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________.答案 259.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________.答案 (3,+∞)10.已知函数f (x )=4-mxm -1(m ≠1)在区间(0,1]上是减函数,则实数m 的取值范围是________.答案 (-∞,0)∪(1,4] 练习四1.(2019·安徽合肥模拟)若2x +5y ≤2-y +5-x ,则有( ) A .x +y ≥0 B .x +y ≤0 C .x -y ≤0 D .x -y ≥0答案 B2.已知函数f (x )=⎩⎨⎧log a x ,x >3,mx +8,x ≤3.若f (2)=4,且函数f (x )存在最小值,则实数a 的取值范围为( )A .(1,3]B .(1,2] C.⎝ ⎛⎦⎥⎤0,33D .[3,+∞) 答案 A3.设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是________.答案 [0,1)4.已知函数f (x )=log a (-x +1)(a >0,且a ≠1)在[-2,0]上的值域是[-1,0],则实数a =________;若函数g (x )=a x +m -3的图象不经过第一象限,则实数m 的取值范围为________.答案 13 [-1,+∞) 5.已知f (x )=xx -a(x ≠a ). (1)若a =-2,证明:f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解 (1)证明:当a =-2时,f (x )=x x +2. 设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以f (x )在(-∞,-2)上单调递增. (2)设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1. 综上所述,0<a ≤1.6.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函数;(2)若f (3)=-1,求f (x )在[2,9]上的最小值. 解 (1)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (2)因为f (x )在(0,+∞)上是单调递减函数, 所以f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. 所以f (x )在[2,9]上的最小值为-2.。
高考数学(理科)一轮复习函数的单调性与最值学案含答案
高考数学(理科)一轮复习函数的单调性与最值学案含答案学案5函数的单调性与最值导学目标: 1.理解函数的单调性、最大值、最小值及其几何意义.2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值.自主梳理 1.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2)(f(x1)>f(x2)),那么就说f(x)在区间D上是______________.(2)单调性的定义的等价形式:设x1,x2∈[a,b],那么(x1-x2)(f(x1)-f(x2))>0⇔--x2>0⇔f(x)在[a,b]上是________;(x1-x2)(f(x1)-f(x2))<0⇔--x2<0⇔f(x)在[a,b]上是________.(3)单调区间:如果函数y=f(x)在某个区间上是增函数或减函数,那么说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的__________.(4)函数y=x+ax(a>0)在(-∞,-a),(a,+∞)上是单调________;在(-a,0),(0,a)上是单调______________;函数y=x+ax(a<0)在______________上单调递增.2.最值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M(f(x)≥M);②存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的____________.自我检测 1.(2011•杭州模拟)若函数y=ax与y=-bx在(0,+∞)上都是减函数,则y=ax2+bx在(0,+∞)上是 ()A.增函数 B.减函数C.先增后减 D.先减后增2.设f(x)是(-∞,+∞)上的增函数,a为实数,则有 ()A.f(a)<f(2a) B.f(a2)<f(a)C.f(a2+a)<f(a) D.f(a2+1)>f(a)3.下列函数在(0,1)上是增函数的是 ()A.y=1-2x B.y=x-1C.y=-x2+2x D.y=54.(2011•合肥月考)设(a,b),(c,d)都是函数f(x)的单调增区间,且x1∈(a,b),x2∈(c,d),x1<x2,则f(x1)与f(x2)的大小关系是 ()A.f(x1)<f(x2) B.f(x1)>f(x2)C.f(x1)=f(x2) D.不能确定5.当x∈[0,5]时,函数f(x)=3x2-4x+c的值域为()A.[c,55+c] B.[-43+c,c]C.[-43+c,55+c] D.[c,20+c]探究点一函数单调性的判定及证明例1 设函数f(x)=x+ax+b(a>b>0),求f(x)的单调区间,并说明f(x)在其单调区间上的单调性.变式迁移1已知f(x)是定义在R上的增函数,对x∈R有f(x)>0,且f(5)=1,设F(x)=f(x)+,讨论F(x)的单调性,并证明你的结论.探究点二函数的单调性与最值例2 (2011•烟台模拟)已知函数f(x)=x2+2x+ax,x∈[1,+∞).(1)当a=12时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.变式迁移2已知函数f(x)=x-ax+a2在(1,+∞)上是增函数,求实数a的取值范围.探究点三抽象函数的单调性例3 (2011•厦门模拟)已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-23.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.变式迁移3已知定义在区间(0,+∞)上的函数f(x)满足f(x1x2)=f(x1)-f(x2),且当x>1时,f(x)<0.(1)求f(1)的值;(2)判断f(x)的单调性;(3)若f(3)=-1,解不等式f(|x|)<-2. 分类讨论及数形结合思想例(12分)求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.【答题模板】解f(x)=(x-a)2-1-a2,对称轴为x=a.(1) 当a<0时,由图①可知,f(x)min=f(0)=-1,f(x)max=f(2)=3-4a.[3分](2)当0≤a<1时,由图②可知,f(x)min=f(a)=-1-a2,f(x)max=f(2)=3-4a.[6分](3)当1<a≤2时,由图③可知,f(x)min=f(a)=-1-a2,f(x)max=f(0)=-1.[9分] (4)当a>2时,由图④可知,f(x)min=f(2)=3-4a,f(x)max=f(0)=-1.综上,(1)当a<0时,f(x)min=-1,f(x)max=3-4a;(2)当0≤a<1时,f(x)min=-1-a2,f(x)max=3-4a;(3)当1<a≤2时,f(x)min=-1-a2,f(x)max=-1;(4)当a>2时,f(x)min=3-4a,f(x)max=-1.[12分]【突破思维障碍】(1)二次函数的单调区间是由图象的对称轴确定的.故只需确定对称轴与区间的关系.由于对称轴是x=a,而a的取值不定,从而导致了分类讨论.(2)不是应该分a<0,0≤a≤2,a>2三种情况讨论吗?为什么成了四种情况?这是由于抛物线的对称轴在区间[0,2]所对应的区域时,最小值是在顶点处取得,但最大值却有可能是f(0),也有可能是f(2). 1.函数的单调性的判定与单调区间的确定常用方法有:(1)定义法;(2)导数法;(3)图象法;(4)单调性的运算性质.2.若函数f(x),g(x)在区间D上具有单调性,则在区间D上具有以下性质:(1)f(x)与f(x)+C具有相同的单调性.(2)f(x)与af(x),当a>0时,具有相同的单调性,当a<0时,具有相反的单调性.(3)当f(x)恒不等于零时,f(x)与具有相反的单调性.(4)当f(x),g(x)都是增(减)函数时,则f(x)+g(x)是增(减)函数.(5)当f(x),g(x)都是增(减)函数时,则f(x)•g(x)当两者都恒大于零时,是增(减)函数;当两者都恒小于零时,是减(增)函数. (满分:75分)一、选择题(每小题5分,共25分)1.(2011•泉州模拟)“a=1”是“函数f(x)=x2-2ax+3在区间[1,+∞)上为增函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2009•天津)已知函数f(x)=x2+4x,x≥0,4x-x2, x<0,若f(2-a2)>f(a),则实数a的取值范围是()A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-2,1)D.(-∞,-2)∪(1,+∞)3.(2009•宁夏,海南)用min{a,b,c}表示a,b,c三个数中的最小值.设f(x)=min{2x,x+2,10-x}(x≥0),则f(x)的最大值为 ()A.4 B.5 C.6 D.74.(2011•丹东月考)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是 ()A.(-1,0)∪(0,1) B.(-1,0)∪(0,1]C.(0,1) D.(0,1]5.(2011•葫芦岛模拟)已知定义在R上的增函数f(x),满足f(-x)+f(x)=0,x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,则f(x1)+f(x2)+f(x3)的值 ()A.一定大于0 B.一定小于0C.等于0 D.正负都有可能题号 1 2 3 4 5答案二、填空题(每小题4分,共12分)6.函数y=-(x-3)|x|的递增区间是________.7.设f(x)是增函数,则下列结论一定正确的是________(填序号).①y=[f(x)]2是增函数;②y=是减函数;③y=-f(x)是减函数;④y=|f(x)|是增函数.8.设0<x<1,则函数y=1x+11-x的最小值是________.三、解答题(共38分)9.(12分)(2011•湖州模拟)已知函数f(x)=a-1|x|.(1)求证:函数y=f(x)在(0,+∞)上是增函数;(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.10.(12分)已知f(x)=x2+ax+3-a,若x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.11.(14分)(2011•鞍山模拟)已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,有++b>0成立.(1)判断f(x)在[-1,1]上的单调性,并证明它;(2)解不等式:f(x+12)<f(1x-1);(3)若f(x)≤m2-2am+1对所有的a∈[-1,1]恒成立,求实数m的取值范围.答案自主梳理1.(1)增函数(减函数)(2)增函数减函数(3)单调区间(4)递增递减(-∞,0),(0,+∞) 2.最大(小)值自我检测1.B[由已知得a<0,b<0.所以二次函数对称轴为直线x=-b2a<0,且图象开口向下.]2.D[∵a2+1>a,f(x)在R上单调递增,∴f(a2+1)>f(a).]3.C[常数函数不具有单调性.]4.D[在本题中,x1,x2不在同一单调区间内,故无法比较f(x1)与f(x2)的大小.]5.C[∵f(x)=3(x-23)2-43+c,x∈[0,5],∴当x=23时,f(x)min=-43+c;当x=5时,f(x)max=55+c.]课堂活动区例1解题导引对于给出具体解析式的函数,判断或证明其在某区间上的单调性问题,可以结合定义(基本步骤为:取点,作差或作商,变形,判断)来求解.可导函数则可以利用导数求解.有些函数可以转化为两个或多个基本初等函数,利用其单调性可以方便求解.解在定义域内任取x1,x2,且使x1<x2,则Δx=x2-x1>0,Δy=f(x2)-f(x1)=x2+ax2+b-x1+ax1+b=++-++++=--++∵a>b>0,∴b-a<0,∴(b-a)(x2-x1)<0,又∵x∈(-∞,-b)∪(-b,+∞),∴只有当x1<x2<-b,或-b<x1<x2时,函数才单调.当x1<x2<-b,或-b<x1<x2时,f(x2)-f(x1)<0,即Δy<0.∴y=f(x)在(-∞,-b)上是单调减函数,在(-b,+∞)上也是单调减函数.变式迁移1解在R上任取x1、x2,设x1<x2,∴f(x2)>f(x1),F(x2)-F(x1)=[f(x2)+-[f(x1)+=[f(x2)-f(x1)][1-,∵f(x)是R上的增函数,且f(5)=1,∴当x<5时,0<f(x)<1,而当x>5时f(x)>1;①若x1<x2<5,则0<f(x1)<f(x2)<1,∴0<f(x1)f(x2)<1,∴1-,∴F(x2)<F(x1);②若x2>x1>5,则f(x2)>f(x1)>1,∴f(x1)•f(x2)>1,∴1-,∴F(x2)>F(x1).综上,F(x)在(-∞,5)为减函数,在(5,+∞)为增函数.例2 解(1)当a=12时,f(x)=x+12x+2,设x1,x2∈[1,+∞)且x1<x2,f(x1)-f(x2)=x1+12x1-x2-12x2=(x1-x2)(1-12x1x2)∵x1<x2,∴x1-x2<0,又∵1<x1<x2,∴1-12x1x2>0,∴f(x1)-f(x2)<0,∴f(x1)<f(x2)∴f(x)在区间[1,+∞)上为增函数,∴f(x)在区间[1,+∞)上的最小值为f(1)=72.(2)方法一在区间[1,+∞)上,f(x)=x2+2x+ax>0恒成立,等价于x2+2x+a>0恒成立.设y=x2+2x+a,x∈[1,+∞),y=x2+2x+a=(x+1)2+a-1递增,∴当x=1时,ymin=3+a,于是当且仅当ymin=3+a>0时,函数f(x)恒成立,故a>-3.方法二f(x)=x+ax+2,x∈[1,+∞),当a≥0时,函数f(x)的值恒为正,满足题意,当a<0时,函数f(x)递增;当x=1时,f(x)min=3+a,于是当且仅当f(x)min=3+a>0时,函数f(x)>0恒成立,故a>-3.方法三在区间[1,+∞)上f(x)=x2+2x+ax>0恒成立等价于x2+2x+a>0恒成立.即a>-x2-2x恒成立.又∵x∈[1,+∞),a>-x2-2x恒成立,∴a应大于函数u=-x2-2x,x∈[1,+∞)的最大值.∴a>-x2-2x=-(x+1)2+1.当x=1时,u取得最大值-3,∴a>-3.变式迁移2解设1<x1<x2.∵函数f(x)在(1,+∞)上是增函数,∴f(x1)-f(x2)=x1-ax1+a2-(x2-ax2+a2)=(x1-x2)(1+ax1x2)<0.又∵x1-x2<0,∴1+ax1x2>0,即a>-x1x2恒成立.∵1<x1<x2,x1x2>1,-x1x2<-1.∴a≥-1,∴a的取值范围是[-1,+∞).例3 解题导引(1)对于抽象函数的问题要根据题设及所求的结论来适当取特殊值说明抽象函数的特点.证明f(x)为单调减函数,首选方法是用单调性的定义来证.(2)用函数的单调性求最值.(1)证明设x1>x2,则f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(x1-x2)+f(x2)-f(x2)=f(x1-x2)又∵x>0时,f(x)<0.而x1-x2>0,∴f(x1-x2)<0,即f(x1)<f(x2),∴f(x)在R上为减函数.(2)解∵f(x)在R上是减函数,∴f(x)在[-3,3]上也是减函数,∴f(x)在[-3,3]上的最大值和最小值分别为f(-3)与f(3).又∵f(3)=f(2+1)=f(2)+f(1)=f(1)+f(1)+f(1)∴f(3)=3f(1)=-2,f(-3)=-f(3)=2.∴f(x)在[-3,3]上的最大值为2,最小值为-2.变式迁移3解(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.(2)任取x1,x2∈(0,+∞),且x1>x2,则x1x2>1,由于当x>1时,f(x)<0,∴f(x1x2)<0,即f(x1)-f(x2)<0,∴f(x1)<f(x2),∴函数f(x)在区间(0,+∞)上是单调递减函数.(3)由f(x1x2)=f(x1)-f(x2)得f(93)=f(9)-f(3),而f(3)=-1,∴f(9)=-2.由于函数f(x)在区间(0,+∞)上是单调递减函数,∴当x>0时,由f(|x|)<-2,得f(x)<f(9),∴x>9;当x<0时,由f(|x|)<-2,得f(-x)<f(9),∴-x>9,故x<-9,∴不等式的解集为{x|x>9或x<-9}.课后练习区1.A[f(x)对称轴x=a,当a≤1时f(x)在[1,+∞)上单调递增.∴“a=1”为f(x)在[1,+∞)上递增的充分不必要条件.]2.C[由题知f(x)在R上是增函数,由题得2-a2>a,解得-2<a<1.]3.C[ 由题意知函数f(x)是三个函数y1=2x,y2=x+2,y3=10-x中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f(x)的图象)可知A(4,6)为函数f(x)图象的最高点.]4.D[f(x)在[a,+∞)上是减函数,对于g(x),只有当a>0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f(x)和g(x)的减区间的子集即可,则a的取值范围是0<a≤1.]5.A[∵f(-x)+f(x)=0,∴f(-x)=-f(x).又∵x1+x2>0,x2+x3>0,x3+x1>0,∴x1>-x2,x2>-x3,x3>-x1.又∵f(x1)>f(-x2)=-f(x2),f(x2)>f(-x3)=-f(x3),f(x3)>f(-x1)=-f(x1),∴f(x1)+f(x2)+f(x3)>-f(x2)-f(x3)-f(x1).∴f(x1)+f(x2)+f(x3)>0.]6.[0,32] 解析y=---画图象如图所示:可知递增区间为[0,32].7.③解析举例:设f(x)=x,易知①②④均不正确.8.4解析y=1x+11-x=-,当0<x<1时,x(1-x)=-(x-12)2+14≤14.∴y≥4.9.(1)证明当x∈(0,+∞)时,f(x)=a-1x,设0<x1<x2,则x1x2>0,x2-x1>0.f(x1)-f(x2)=(a-1x1)-(a-1x2)=1x2-1x1=x1-x2x1x2<0.………………………………………………………………………(5分)∴f(x1)<f(x2),即f(x)在(0,+∞)上是增函数.……………………………………………………………………………………………(6分)(2)解由题意a-1x<2x在(1,+∞)上恒成立,设h(x)=2x+1x,则a<h(x)在(1,+∞)上恒成立.……………………………………………………………………………………………(8分)∵h′(x)=2-1x2,x∈(1,+∞),∴2-1x2>0,∴h(x)在(1,+∞)上单调递增.…………………………………………………………(10分)故a≤h(1),即a≤3.∴a的取值范围为(-∞,3].…………………………………………………………(12分)10.解设f(x)的最小值为g(a),则只需g(a)≥0,由题意知,f(x)的对称轴为-a2.(1)当-a2<-2,即a>4时,g(a)=f(-2)=7-3a≥0,得a≤73.又a>4,故此时的a不存在.……………………………………………………………(4分)(2)当-a2∈[-2,2],即-4≤a≤4时,g(a)=f(-a2)=3-a-a24≥0得-6≤a≤2.又-4≤a≤4,故-4≤a≤2.……………………………………………………………(8分)(3)当-a2>2,即a<-4时,g(a)=f(2)=7+a≥0得a≥-7.又a<-4,故-7≤a<-4.综上得所求a的取值范围是-7≤a≤2.………………………………………………(12分)11.解(1)任取x1,x2∈[-1,1],且x1<x2,则-x2∈[-1,1],∵f(x)为奇函数,∴f(x1)-f(x2)=f(x1)+f(-x2)=+-+--x2),由已知得+-+-,x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2).∴f(x)在[-1,1]上单调递增.……………………………………………………………(4分)(2)∵f(x)在[-1,1]上单调递增,∴x+12<1x-1,-1≤x+12≤1,-1≤1x-分∴-32≤x<-1.……………………………………………………………………………(9分)(3)∵f(1)=1,f(x)在[-1,1]上单调递增.∴在[-1,1]上,f(x)≤1.…………………………………………………………………(10分)问题转化为m2-2am+1≥1,即m2-2am≥0,对a∈[-1,1]成立.下面来求m的取值范围.设g(a)=-2m•a+m2≥0.①若m=0,则g(a)=0≥0,自然对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,∴m≤-2,或m≥2.∴m的取值范围是m=0或|m|≥2.……………………………………………………(14分)。
2020高考数学理科大一轮复习导学案《函数的单调性与最值》含答案
第二节函数的单调性与最值知识点一函数的单调性1.单调函数的定义2.单调性、单调区间的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.1.思考辨析(在括号内打“√”或“×”)(1)对于函数f (x ),x ∈D ,若对任意x 1,x 2∈D ,且x 1≠x 2有(x 1-x 2)[f (x 1)-f (x 2)]>0,则函数f (x )在区间D 上是增函数.( √ )(2)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( × ) (3)对于函数y =f (x ),若f (1)<f (3),则f (x )为增函数.( × ) (4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( × )解析:(2)此单调区间不能用并集符号连接,取x 1=-1,x 2=1,则f (-1)<f (1),故应说成单调递减区间为(-∞,0)和(0,+∞).(3)应对任意的x 1<x 2,f (x 1)<f (x 2)成立才可以.(4)若f (x )=x ,f (x )在[1,+∞)上为增函数,但y =f (x )的单调递增区间可以是R .2.(必修1P39B 组T3改编)下列函数中,在区间(0,+∞)内单调递减的是( A )A .y =1x -x B .y =x 2-x C .y =ln x -xD .y =e x解析:对于A ,y 1=1x 在(0,+∞)内是减函数,y 2=x 在(0,+∞)内是增函数,则y =1x -x 在(0,+∞)内是减函数;B ,C 选项中的函数在(0,+∞)上均不单调;选项D 中,y =e x 在(0,+∞)上是增函数.知识点二 函数的最值3.函数f (x )=⎩⎨⎧log 12x ,x ≥1,2x ,x <1的值域为(-∞,2).解析:当x ≥1时,f (x )=log 12x 是单调递减的,此时,函数的值域为(-∞,0];x <1时,f (x )=2x 是单调递增的,此时,函数的值域为(0,2).综上,f (x )的值域是(-∞,2).4.(必修1P31例4改编)函数f (x )=2xx -1在[2,6]上的最大值和最小值分别是4,125.解析:函数f (x )=2x x -1=2(x -1)+2x -1=2+2x -1在[2,6]上单调递减,所以f (x )min =f (6)=2×66-1=125.f (x )max =f (2)=2×22-1=4.1.“函数的单调区间”和“函数在某区间上单调”意义不同,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.单调性的两种等价形式(1)设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f (x 1)-f (x 2)x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.(2)(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数.3.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.考向一 确定函数的单调性(区间)【例1】 (1)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-xD .y =log 0.5(x +1)(2)讨论函数f (x )=axx 2-1(a >0)在(-1,1)上的单调性.【解析】 (1)A 项,y =x +1为(-1,+∞)上的增函数,故在(0,+∞)上单调递增;B 项,y =(x -1)2在(-∞,1)上单调递减,在(1,+∞)上单调递增;C 项,y =2-x=⎝ ⎛⎭⎪⎫12x为R 上的减函数;D 项,y =log 0.5(x +1)为(-1,+∞)上的减函数.故选A.(2)法1:(定义法) 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.又a >0,∴f (x 1)-f (x 2)>0, 故函数f (x )在(-1,1)上为减函数. 法2:(导数法)f ′(x )=(ax )′(x 2-1)-ax (x 2-1)′(x 2-1)2=a (x 2-1)-2ax 2(x 2-1)2=a (-x 2-1)(x 2-1)2=-a (x 2+1)(x 2-1)2. ∵a >0,x ∈(-1,1),∴f ′(x )<0. ∴f (x )在(-1,1)上是减函数.【答案】 (1)A (2)见解析确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.(1)函数f (x )=|x -2|x 的单调递减区间是( A ) A .[1,2] B .[-1,0] C .(0,2]D .[2,+∞)解析:由题意得,f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2,当x ≥2时,[2,+∞)是函数f (x )的单调递增区间;当x <2时,(-∞,1]是函数f (x )的单调递增区间,[1,2]是函数f (x )的单调递减区间.(2)判断函数f (x )=x +ax (a >0)在(0,+∞)上的单调性,并给出证明. 解:函数f (x )在(0,a )上单调递减,在[a ,+∞)上单调递增.证明如下:任取x 1>x 2>0,则f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫x 1+a x 1-⎝ ⎛⎭⎪⎫x 2+a x 2=(x 1-x 2)+⎝ ⎛⎭⎪⎫a x 1-a x 2 =(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)⎝ ⎛⎭⎪⎫1-a x 1x 2.当a >x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,则有f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),故函数f (x )=x +ax (a >0)在(0,a )上单调递减;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0,则有f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),故函数f (x )=x +ax (a >0)在[a ,+∞)上单调递增.综上可知,函数f (x )=x +ax (a >0)在(0,a )上单调递减,在[a ,+∞)上单调递增. 考向二 函数的最值【例2】 (1)函数y =x +x -1的最小值为________. (2)函数y =2x 2-2x +3x 2-x +1的值域为________.(3)函数f (x )=⎩⎨⎧1x,x ≥1,-x 2+2,x <1的最大值为________.【解析】 (1)法1:令t =x -1,且t ≥0,则x =t 2+1, ∴原函数变为y =t 2+1+t ,t ≥0.配方得y =⎝ ⎛⎭⎪⎫t +122+34,又∵t ≥0,∴y ≥14+34=1. 故函数y =x +x -1的最小值为1.法2:因为函数y =x 和y =x -1在定义域内均为增函数,故函数y =x +x -1在其定义域[1,+∞)内为增函数,所以当x =1时y 取最小值,即y min =1.(2)y =2x 2-2x +3x 2-x +1=2(x 2-x +1)+1x 2-x +1=2+1x 2-x +1=2+1⎝⎛⎭⎪⎫x -122+34. ∵⎝ ⎛⎭⎪⎫x -122+34≥34, ∴2<2+1⎝⎛⎭⎪⎫x -122+34≤2+43=103. 故函数的值域为⎝ ⎛⎦⎥⎤2,103. (3)当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.【答案】 (1)1 (2)⎝⎛⎦⎥⎤2,103 (3)2求函数最值(值域)的五种常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.(5)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(1)若函数f(x)=x2-2x+m在[3,+∞)上的最小值为1,则实数m的值为(B)A.-3 B.-2C.-1 D.1(2)函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b=6.(3)函数y =x -x (x ≥0)的最大值为14. 解析:(1)函数f (x )=x 2-2x +m =(x -1)2+m -1的图象如图所示.由图象知在[3,+∞)上f (x )min =f (3)=32-2×3+m =1,得m =-2.(2)由题易知f (x )在[a ,b ]上为减函数,所以⎩⎨⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,所以⎩⎪⎨⎪⎧a =2,b =4.所以a +b =6.(3)令t =x ,则t ≥0,x =t 2所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,当t =12,即x =14时,y max =14.考向三 函数单调性的应用方向1 比较函数值的大小【例3】 已知函数f (x )为偶函数,当x >0时,f (x )=x -4-x ,设a =f (log 30.2),b =f (3-0.2),c =f (-31.1),则( )A .c >a >bB .a >b >cC .c >b >aD .b >a >c【解析】 因为函数f (x )为偶函数,所以a =f (log 30.2)=f (-log 30.2),c =f (-31.1)=f (31.1).因为log 319<log 30.2<log 313,所以-2<log 30.2<-1,所以1<-log 30.2<2,所以31.1>3>-log 30.2>1>3-0.2.因为y =x 在(0,+∞)上为增函数,y =-4-x 在(0,+∞)上为增函数,所以f (x )在(0,+∞)上为增函数,所以f (31.1)>f (-log 30.2)>f (3-0.2),所以c >a >b .【答案】 A 方向2 解不等式【例4】 (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( ) A .(-∞,-1] B .(0,+∞) C .(-1,0)D .(-∞,0)【解析】 当x ≤0时,函数f (x )=2-x 是减函数,则f (x )≥f (0)=1.作出f (x )的大致图象如图所示,结合图象可知,要使f (x +1)<f (2x ),则需⎩⎪⎨⎪⎧x +1<0,2x <0,2x <x +1或⎩⎪⎨⎪⎧x +1≥0,2x <0,所以x <0,故选D.【答案】 D方向3 求参数的取值范围【例5】已知函数f (x )=⎩⎨⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫14,12 B.⎣⎢⎡⎦⎥⎤14,12 C.⎝ ⎛⎦⎥⎤0,12 D.⎣⎢⎡⎭⎪⎫12,1 【解析】 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧ 0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎢⎡⎦⎥⎤14,12.【答案】 B(1)比较大小. 比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(3)利用单调性求参数.①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.1.(方向2)(2019·河北石家庄一模)已知奇函数f (x )在x >0时单调递增,且f (1)=0,若f (x -1)>0,则x 的取值范围为( A )A .{x |0<x <1或x >2}B .{x |x <0或x >2}C .{x |x <0或x >3}D .{x |x <-1或x >1}解析:∵奇函数f (x )在(0,+∞)上单调递增,且f (1)=0,∴函数f (x )在(-∞,0)上单调递增,且f (-1)=0,则-1<x <0或x >1时,f (x )>0;x <-1或0<x <1时,f (x )<0.∴不等式f (x -1)>0即-1<x -1<0或x -1>1,解得0<x <1或x >2,故选A.2.(方向1)已知f (x )是定义在(0,+∞)上的函数.对任意两个不相等的正数x 1,x 2,都有x 2f (x 1)-x 1f (x 2)x 1-x 2>0,记a =f (30.2)30.2,b =f (0.32)0.32,c =f (log 25)log 25,则( B )A .a <b <cB .b <a <cC .c <a <bD .c <b <a解析:∵f (x )是定义在(0,+∞)上的函数,对任意两个不相等的正数x 1,x 2,都有x 2f (x 1)-x 1f (x 2)x 1-x 2>0,∴函数f (x )x 是(0,+∞)上的增函数,∵1<30.2<2,0<0.32<1,log 25>2,∴0.32<30.2<log 25,∴c >a >b .故选B.3.(方向3)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于1.解析:∵f (1+x )=f (1-x ),∴f (x )的图象关于直线x =1对称,∵函数f (x )=2|x-a|(a∈R)的图象以直线x=a为对称轴,∴a=1,∴f(x)在[1,+∞)上单调递增.∵f(x)在[m,+∞)上单调递增,∴m≥1,则m的最小值为1.。
高考数学一轮复习练习 函数的单调性与最值
函数的单调性与最值基础巩固组1.已知函数f (x )={k (x +2),x ≤0,2x +k ,x >0,则“k<1”是“f (x )单调递增”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知函数f (x )={a x ,x >1,(4-a 2)x +2,x ≤1是R 上的增函数,则实数a 的取值范围是( )A.(1,+∞)B.[4,8)C.(4,8)D.(1,8) 3.已知函数f (x )=√x 2-2x -3,则该函数的单调递增区间为( )A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞) 4.若2x +5y ≤2-y +5-x ,则有( )A.x+y ≥0B.x+y ≤0C.x-y ≤0D.x-y ≥0 5.函数f (x )在(-∞,+∞)上单调递减,且为奇函数,若f (1)=-1,则满足-1≤f (x-2)≤1的x 的取值范围是 ( )A.[-2,2]B.[-1,1]C.[0,4]D.[1,3] 6.(2020全国2,理11,文12)若2x -2y <3-x -3-y ,则( )A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln |x-y|>0D.ln |x-y|<07.函数f (x )=12 -x 2+2mx -m 2-1的单调递增区间与值域相同,则实数m 的取值为( )A.-2B.2C.-1D.18.(多选)(2020山东滕州一中月考,6)下列四个说法,其中不正确的是( ) A.函数f (x )在(0,+∞)上单调递增,在(-∞,0]上单调递增,则f (x )在R 上是增函数 B.若函数f (x )=ax 2+bx+2与x 轴没有交点,则b 2-8a<0且a>0 C.当a>b>c 时,则有ab>ac 成立D.y=|1+x|和y=√(1+x )2表示同一个函数9.(多选)已知函数f (x )=x-2x ,g (x )=a cos πx2+5-2a (a>0).给出下列四个命题,其中是真命题的为( ) A.若∃x ∈[1,2],使得f (x )<a 成立,则a>-1B.若∀x ∈R ,使得g (x )>0恒成立,则0<a<5C.若∀x 1∈[1,2],∀x 2∈R ,使得f (x 1)>g (x 2)恒成立,则a>6D.若∀x 1∈[1,2],∃x 2∈[0,1],使得f (x 1)=g (x 2)成立,则3≤a ≤410.设函数f (x )={1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x-1),则函数g (x )的单调递减区间是 .11.函数f (x )=2xx+1在区间[1,2]上的值域为 .12.已知函数f (x )={x +2x -3,x ≥1,lg (x 2+1),x <1,则f [f (-3)]= ,f (x )的最小值是 .综合提升组13.(多选)(2020山东淄博4月模拟,12)函数f (x )在[a ,b ]上有定义,若对任意x 1,x 2∈[a ,b ],有fx 1+x 22≤12[f (x 1)+f (x 2)],则称f (x )在[a ,b ]上具有性质P.设f (x )在[1,3]上具有性质P ,则下列说法错误的是( ) A.f (x )在[1,3]上的图像是连续不断的 B.f (x 2)在[1,√3]上具有性质PC.若f (x )在x=2处取得最大值1,则f (x )=1,x ∈[1,3]D.对任意x 1,x 2,x 3,x 4∈[1,3],有fx 1+x 2+x 3+x 44≤12[f (x 1)+f (x 2)+f (x 3)+f (x 4)]14.(2020山东聊城二模,14)已知f (x )={1-lnx ,0<x ≤1,-1+lnx ,x >1,若f (a )=f (b ),则1a +1b 的最小值为 .创新应用组15.如果函数y=f (x )在区间I 上单调递增,且函数y=f (x )x 在区间I 上单调递减,那么称函数y=f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x+32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A.[1,+∞) B.[0,√3] C.[0,1] D.[1,√3]16.(2020山东枣庄二模,8)已知P (m ,n )是函数y=√-x 2-2x 图像上的动点,则|4m+3n-21|的最小值是( )A.25B.21C.20D.4参考答案课时规范练6 函数的单调性与最值1.D 若f (x )单调递增,则k>0且k (0+2)≤20+k ,解得0<k ≤1,因为“k<1”与“0<k ≤1”没有包含的关系,所以充分性和必要性都不成立.2.B 由f (x )在R 上单调递增,则有{a >1,4-a 2>0,(4-a2)+2≤a ,解得4≤a<8. 3.B 设t=x 2-2x-3,由t ≥0,即x 2-2x-3≥0,解得x ≤-1或x ≥3.所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t=x 2-2x-3的图像的对称轴为x=1, 所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增. 所以f (x )的单调递增区间为[3,+∞).4.B 设函数f (x )=2x -5-x ,易知f (x )为增函数,又f (-y )=2-y -5y ,由已知得f (x )≤f (-y ),∴x ≤-y ,∴x+y ≤0.5.D 由题意f (-1)=-f (1)=1,-1≤f (x-2)≤1等价于f (1)≤f (x-2)≤f (-1).又f (x )在(-∞,+∞)上单调递减,所以-1≤x-2≤1,即1≤x ≤3.所以x 的取值范围是[1,3].6.A ∵2x -2y <3-x -3-y ,∴2x -3-x <2y -3-y .∵f (t )=2t -3-t 在R 上为增函数,且f (x )<f (y ), ∴x<y ,∴y-x>0,∴y-x+1>1, ∴ln(y-x+1)>ln 1=0.故选A .7.B ∵-x 2+2mx-m 2-1=-(x-m )2-1≤-1,∴12 -x2+2mx -m 2-1≥2,∴f (x )的值域为[2,+∞),∵y=12x是减函数,y=-(x-m )2-1的单调递减区间为[m ,+∞),∴f (x )的单调递增区间为[m ,+∞).由条件知m=2.8.ABC f (x )={x ,x ≤0,lnx ,x >0,满足在(0,+∞)上单调递增,在(-∞,0]上单调递增,但f (x )在R 上不是增函数,故A 错误;当a=b=0时,f (x )=2,它的图像与x 轴无交点,不满足b 2-8a<0且a>0,故B 错误;当a>b>c ,但a=0时,ab=ac ,不等式ab>ac 不成立,故C 错误;y=√(1+x )2=|x+1|与y=|x+1|的对应关系相同,定义域也相同,是同一个函数,故D 正确.故选ABC .9.ACD 对于A,由f (x )在[1,2]上单调递增,则f (x )min =f (1)=-1,所以a>-1,故A 正确;对于B,只需g (x )min >0,由g (x )min =-a+5-2a=5-3a>0,得0<a<53,故B 错误;对于C,只需在给定的范围内f (x )min >g (x )max ,即-1>5-a ,解得a>6,故C 正确;对于D,只需g (x )min ≤f (x )min ,g (x )max ≥f (x )max ,f (x )max =f (2)=2-22=1,所以x 1∈[1,2],f (x 1)∈[-1,1],当x ∈[0,1]时,πx 2∈0,π2,所以g (x )在[0,1]上单调递减,g (x )min =g (1)=5-2a ,g (x )max =g (0)=5-a ,所以g (x )∈[5-2a ,5-a ],由题意,可得{5-2a ≤-1,5-a ≥1,解得3≤a ≤4,故D 正确.故选ACD .10.[0,1) ∵g (x )={x 2,x >1,0,x =1,-x 2,x <1,函数图像如图所示,∴函数g (x )的单调递减区间为[0,1).11.[1,43] ∵f (x )=2xx+1=2(x+1)-2x+1=2-2x+1,∴f (x )在区间[1,2]上单调递增,即f (x )max =f (2)=43,f (x )min =f (1)=1.故f (x )的值域是[1,43].12.0 2√2-3 因为f (-3)=lg [(-3)2+1]=lg 10=1,所以f [f (-3)]=f (1)=1+2-3=0.当x ≥1时,x+2x -3≥2√x ·2x -3=2√2-3,当且仅当x=2x ,即x=√2时,等号成立,此时f (x )min =2√2-3<0; 当x<1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0. 所以f (x )的最小值为2√2-3.13.ABD 对于A,函数f (x )={x 2,1≤x <3,11,x =3在[1,3]上具有性质P ,但f (x )在[1,3]上的图像不连续,故A错误;对于B,f (x )=-x 在[1,3]上具有性质P ,但f (x 2)=-x 2在[1,√3]上不满足性质P ,故B 错误;对于C,因为f (x )在x=2处取得最大值1,所以f (x )≤1,由性质P 可得1=f (2)≤12[f (x )+f (4-x )],即f (x )+f (4-x )≥2,因为f (x )≤1,f (4-x )≤1,所以f (x )=1,x ∈[1,3],故C 正确;对于D,f x 1+x 2+x 3+x 44=fx 1+x 22+x 3+x 422≤12fx 1+x 22+fx 3+x 42≤14[f (x 1)+f (x 2)+f (x 3)+f (x 4)],故D 错误.故选ABD .14.2e 因为f (x )={1-lnx ,0<x ≤1,-1+lnx ,x >1,所以函数在(0,1]上单调递减,在(1,+∞)上单调递增.由f (a )=f (b ),得1-ln a=-1+ln b ,0<a ≤1,b>1,所以ln ab=2,即ab=e 2. 设y=1a +1b=b e 2+1b ,令y'=1e2−1b2=b 2-e 2(eb )2=0,则b=e,即函数y 在(1,e]上单调递减,在(e,+∞)上单调递增,所以当b=e 时,1a+1b有最小值,最小值为2e.15.D 因为函数f (x )=12x 2-x+32的对称轴为x=1,所以函数y=f (x )在区间[1,+∞)上单调递增.又因为当x ≥1时,f (x )x =12x-1+32x ,令g (x )=12x-1+32x (x ≥1),则g'(x )=12−32x 2=x 2-32x 2,由g'(x )≤0得1≤x ≤√3,即函数f (x )x=12x-1+32x在区间[1,√3]上单调递减,故“缓增区间”I 为[1,√3 ].16.C 函数y=√-x 2-2x 的图像是半圆,圆心为C (-1,0),半径为r=1,如图,作直线4x+3y-21=0.∵C 到直线4x+3y-21=0的距离为d=|-4+0-21|√4+3=5,∴P (m ,n )到直线4x+3y-21=0的距离为d'=|4m+3n -21|5,其最小值为5-1=4,∴|4m+3n-21|的最小值为5×4=20.故选C .。
高考数学函数的单调性与最值专题检测(带答案)
2019-2019高考数学函数的单调性与最值专题检测(带答案)当函数f(x) 的自变量在其定义区间内增大(或减小)时,函数值f(x)也随着增大(或减小),则称该函数为在该区间上具有单调性。
以下是2019-2019高考数学函数的单调性与最值专题检测,请考生及时练习。
一、选择题1.下列函数中,既是偶函数又在(0,+)内单调递减的函数是().A.y=x2B.y=|x|+1C.y=-lg|x|D.y=2|x|解析对于C中函数,当x0时,y=-lg x,故为(0,+)上的减函数,且y=-lg |x|为偶函数.答案C.已知函数f(x)为R上的减函数,则满足f(|x|)A.(-1,1)B.(0,1)C.(-1,0)(0,1)D.(-,-1)(1,+)解析f(x)在R上为减函数且f(|x|)|x|1,解得x1或x-1.答案D.若函数y=ax与y=-在(0,+)上都是减函数,则y=ax2+bx在(0,+)上是()A.增函数B.减函数C.先增后减D.先减后增解析y=ax与y=-在(0,+)上都是减函数,a0,b0,y=ax2+bx的对称轴方程x=-0,y=ax2+bx在(0,+)上为减函数.答案B4.设函数f(x)=g(x)=x2f(x-1),则函数g(x)的递减区间是().A.(-,0]B.[0,1)C.[1,+)D.[-1,0]解析g(x)=如图所示,其递减区间是[0,1).故选B.答案B.函数y=-x2+2x-3(x0)的单调增区间是()A.(0,+)B.(-,1]C.(-,0)D.(-,-1]解析二次函数的对称轴为x=1,又因为二次项系数为负数,,对称轴在定义域的右侧,所以其单调增区间为(-,0).答案C.设函数y=f(x)在(-,+)内有定义,对于给定的正数K,定义函数fK(x)=取函数f(x)=2-|x|,当K=时,函数fK(x)的单调递增区间为().A.(-,0)B.(0,+)C.(-,-1)D.(1,+)解析f(x)=f(x)=f(x)的图象如右图所示,因此f(x)的单调递增区间为(-,-1).答案C二、填空题.设函数y=x2-2x,x[-2,a],若函数的最小值为g(a),则g(a)=________. 解析函数y=x2-2x=(x-1)2-1,对称轴为直线x=1.当-21时,函数在[-2,a]上单调递减,则当x=a时,ymin=a2-2a;当a1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x=1时,ymin=-1.综上,g(a)=答案.函数y=-(x-3)|x|的递增区间是_______.解析y=-(x-3)|x|作出该函数的图像,观察图像知递增区间为.答案.已知函数f(x)=2ax2+4(a-3)x+5在区间(-,3)上是减函数,则a的取值范围是________.解析当a=0时,f(x)=-12x+5在(-,3)上为减函数;当a0时,要使f(x)=2ax2+4(a-3)x+5在区间(-,3)上是减函数,则对称轴x=必在x=3的右边,即3,故0答案10.已知函数f(x)=(a是常数且a0).对于下列命题:函数f(x)的最小值是-1;函数f(x)在R上是单调函数;若f(x)0在上恒成立,则a的取值范围是a对任意的x10,x20且x1x2,恒有f.其中正确命题的序号是____________.解析根据题意可画出草图,由图象可知,显然正确;函数f(x)在R上不是单调函数,故错误;若f(x)0在上恒成立,则2a-10,a1,故正确;由图象可知在(-,0)上对任意的x10,x20且x1x2,恒有f成立,故正确.答案三、解答题.求函数y=a1-x2(a0且a1)的单调区间.当a1时,函数y=a1-x2在区间[0,+)上是减函数,在区间(-,0]上是增函数;当0x12,则f(x1)-f(x2)=x+-x-=[x1x2(x1+x2)-a],由x22,得x1x2(x1+x2)16,x1-x20,x1x20.要使f(x)在区间[2,+)上是增函数,只需f(x1)-f(x2)0,即x1x2(x1+x2)-a0恒成立,则a16..已知函数f(x)=a2x+b3x,其中常数a,b满足ab0.(1)若ab0,判断函数f(x)的单调性;(2)若ab0,求f(x+1)f(x)时的x的取值范围.解(1)当a0,b0时,因为a2x,b3x都单调递增,所以函数f(x)单调递增;当a0,b0时,因为a2x,b3x都单调递减,所以函数f(x)单调递减.(2)f(x+1)-f(x)=a2x+2b3x0.(i)当a0,b0时,x-,解得x(ii)当a0,b0时,x-,解得x0时,f(x)1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)3.(1)证明设x1,x2R,且x10,f(x2-x1)1.f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-10.f(x2)f(x1).即f(x)是R上的增函数.(2) f(4)=f(2+2)=f(2)+f(2)-1=5,f(2)=3,家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
高考数学复习函数的单调性与最值专题训练(含答案)
高考数学复习函数的单调性与最值专题训练(含答案)函数的单调性也可以叫做函数的增减性,下面是函数的单调性与最值专题训练,请考生及时练习。
一、选择题1.以下函数中,既是偶函数又在(0,+)内单调递减的函数是().A.y=x2B.y=|x|+1C.y=-lg|x|D.y=2|x|解析关于C中函数,当x0时,y=-lg x,故为(0,+)上的减函数,且y=-lg |x|为偶函数.答案 C.函数f(x)为R上的减函数,那么满足f(|x|)A.(-1,1)B.(0,1)C.(-1,0)(0,1)D.(-,-1)(1,+)解析 f(x)在R上为减函数且f(|x|)|x|1,解得x1或x-1.答案 D.假定函数y=ax与y=-在(0,+)上都是减函数,那么y=ax2+bx 在(0,+)上是()A.增函数B.减函数C.先增后减D.先减后增解析y=ax与y=-在(0,+)上都是减函数,a0,b0,y=ax2+bx的对称轴方程x=-0,y=ax2+bx在(0,+)上为减函数.答案B4.设函数f(x)=g(x)=x2f(x-1),那么函数g(x)的递减区间是().A.(-,0]B.[0,1)C.[1,+)D.[-1,0]解析 g(x)=如下图,其递减区间是[0,1).应选B.答案 B.函数y=-x2+2x-3(x0)的单调增区间是()A.(0,+)B.(-,1]C.(-,0)D.(-,-1]解析二次函数的对称轴为x=1,又由于二次项系数为正数,,对称轴在定义域的右侧,所以其单调增区间为(-,0).答案 C.设函数y=f(x)在(-,+)内有定义,关于给定的正数K,定义函数fK(x)=取函数f(x)=2-|x|,当K=时,函数fK(x)的单调递增区间为().A.(-,0)B.(0,+)C.(-,-1)D.(1,+)解析 f(x)=f(x)=f(x)的图象如右图所示,因此f(x)的单调递增区间为(-,-1).答案 C二、填空题.设函数y=x2-2x,x[-2,a],假定函数的最小值为g(a),那么g(a)=________.解析函数y=x2-2x=(x-1)2-1,对称轴为直线x=1.当-21时,函数在[-2,a]上单调递减,那么当x=a时,ymin=a2-2a;当a1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,那么当x=1时,ymin=-1.综上,g(a)=答案.函数y=-(x-3)|x|的递增区间是_______.解析y=-(x-3)|x|作出该函数的图像,观察图像知递增区间为.答案.函数f(x)=2ax2+4(a-3)x+5在区间(-,3)上是减函数,那么a的取值范围是________.解析当a=0时,f(x)=-12x+5在(-,3)上为减函数;当a0时,要使f(x)=2ax2+4(a-3)x+5在区间(-,3)上是减函数,那么对称轴x=必在x=3的左边,即3,故0答案10.函数f(x)=(a是常数且a0).关于以下命题:函数f(x)的最小值是-1;函数f(x)在R上是单调函数;假定f(x)0在上恒成立,那么a的取值范围是a对恣意的x10,x20且x1x2,恒有f.其中正确命题的序号是____________.解析依据题意可画出草图,由图象可知,显然正确;函数f(x)在R上不是单调函数,故错误;假定f(x)0在上恒成立,那么2a-10,a1,故正确;由图象可知在(-,0)上对恣意的x10,x20且x1x2,恒有f成立,故正确.答案三、解答题.求函数y=a1-x2(a0且a1)的单调区间.当a1时,函数y=a1-x2在区间[0,+)上是减函数,在区间(-,0]上是增函数;当0x12,那么f(x1)-f(x2)=x+-x-=[x1x2(x1+x2)-a],由x22,得x1x2(x1+x2)16,x1-x20,x1x20.要使f(x)在区间[2,+)上是增函数,只需f(x1)-f(x2)0,即x1x2(x1+x2)-a0恒成立,那么a16..函数f(x)=a2x+b3x,其中常数a,b满足ab0.(1)假定ab0,判别函数f(x)的单调性;(2)假定ab0,求f(x+1)f(x)时的x的取值范围.解 (1)当a0,b0时,由于a2x,b3x都单调递增,所以函数f(x)单调递增;当a0,b0时,由于a2x,b3x都单调递减,所以函数f(x)单调递减.(2)f(x+1)-f(x)=a2x+2b3x0.(i)当a0,b0时,x-,解得x(ii)当a0,b0时,x-,解得x0时,f(x)1.(1)求证:f(x)是R上的增函数;(2)假定f(4)=5,解不等式f(3m2-m-2)3.(1)证明设x1,x2R,且x10,f(x2-x1)1.f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-10.f(x2)f(x1).即f(x)是R上的增函数.(2) f(4)=f(2+2)=f(2)+f(2)-1=5,f(2)=3,原不等式可化为f(3m2-m-2)函数的单调性与最值专题训练及答案的全部内容就是这些,查字典数学网预祝考生可以取得优秀的效果。
2024年高考数学一轮复习专题05函数的单调性与最值含解析
专题05函数的单调性与最值最新考纲1.理解函数的单调性、最大值、最小值及其几何意义.2.会运用基本初等函数的图象分析函数的性质.基础学问融会贯穿1.函数的单调性(1)单调函数的定义(2)单调区间的定义假如函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,假如存在实数M满意条件(1)对于随意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于随意的x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值【学问拓展】函数单调性的常用结论(1)对∀x 1,x 2∈D (x 1≠x 2),f x 1-f x 2x 1-x 2>0⇔f (x )在D 上是增函数,f x 1-f x 2x 1-x 2<0⇔f (x )在D 上是减函数.(2)对勾函数y =x +ax(a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ]. (3)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数.(4)函数f (g (x ))的单调性与函数y =f (u )和u =g (x )的单调性的关系是“同增异减”.重点难点突破【题型一】确定函数的单调性(区间) 命题点1 给出详细解析式的函数的单调性 【典型例题】下列函数中,值域为R 且在区间(0,+∞)上单调递增的是( ) A .y =x 2+2xB .y =2x +1C .y =x 3+1D .y =(x ﹣1)|x |【解答】解:依据题意,依次分析选项:对于A ,y =x 2+2x =(x +1)2﹣1,其值域为[﹣1,+∞),不符合题意; 对于B ,y =2x +1,其值域为(0,+∞),不符合题意;对于C ,y =x 3+1,值域为R 且在区间(0,+∞)上单调递增,符合题意; 对于D ,y =(x ﹣1)|x |,在区间(0,1)上为减函数,不符合题意;故选:C .【再练一题】已知函数f (x )=ln ,则( )A .f (x )是奇函数,且在(﹣∞,+∞)上单调递增B .f (x )是奇函数,且在(﹣∞,+∞)上单调递减C .f (x )是偶函数,且在(0,+∞)上单调递增D .f (x )是偶函数,且在(0,+∞)上单调递减【解答】解:依据题意,函数f (x )=ln,其定义域为R ,有f(﹣x)=ln ln f(x),则函数f(x)为偶函数,设t,y=lnt,对于t,则导数t′,当x>0时,t′>0,即函数t在区间(0,+∞)上为增函数,又由y=lnt在区间(0,+∞)上为增函数,则函数f(x)=ln在0,+∞)上为增函数,故选:C.命题点2 解析式含参数的函数的单调性【典型例题】定义在R的函数f(x)=﹣x3+m与函数g(x)=f(x)+x3+x2﹣kx在[﹣1,1]上具有相同的单调性,则k 的取值范围是()A.(﹣∞,﹣2] B.[2,+∞)C.[﹣2,2] D.(﹣∞,﹣2]∪[2,+∞)【解答】解:依据题意,函数f(x)=﹣x3+m,其定义域为R,则R上f(x)为减函数,g(x)=f(x)+x3+x2﹣kx=x2﹣kx+m在[﹣1,1]上为减函数,必有x1,解可得k≥2,即k的取值范围为[2,+∞);故选:B.【再练一题】已知函数f(x)(a>0且a≠1)在R上单调递减,则a的取值范围是()A.[,1)B.(0,] C.[,] D.(0,]【解答】解:由题意,分段函数是在R上单调递减,可得对数的底数需满意0<a<1,依据二次函数开口向上,在(单调递减,可得,即,解得:.且[x2+(4a﹣3)x+3a]min≥[log a(x+1)+1]max故而得:3a≥1,解得:a.∴a的取值范围是[,],故选:C.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.【题型二】函数的最值【典型例题】若函数f(x),则函数f(x)的值域是()A.(﹣∞,2)B.(﹣∞,2]C.[0,+∞)D.(﹣∞,0)∪(0,2)【解答】解:当x<1时,0<2x<2,当x≥1时,f(x)=﹣log2x≤﹣log21=0,综上f(x)<2,即函数的值域为(﹣∞,2),故选:A.【再练一题】函数f(x)=e x﹣x在区间[﹣1,1]上的值域为()A.[1,e﹣1] B.C.D.[0,e﹣1]【解答】解:函数的导数f′(x)=e x﹣1,由f′(x)>0得e x﹣1>0,即e x>1,得0<x≤1,此时函数递增,由f′(x)<0得e x﹣1<0,即e x<1,得﹣1≤x<0,此时函数递减,即当x=0时,函数取得微小值同时也是最小值f(0)=1,∵f(1)=e﹣1,f(﹣1)1<e﹣1,∴函数的最大值为f(1)=e﹣1,即函数的值域为[1,e﹣1],故选:A.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再视察其最高点、最低点,求出最值.(3)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(4)导数法:先求导,然后求出在给定区间上的极值,最终结合端点值,求出最值.(5)换元法:对比较困难的函数可通过换元转化为熟识的函数,再用相应的方法求最值.【题型三】函数单调性的应用命题点1 比较大小【典型例题】已知函数,若,则a、b、c之间的大小关系是()A.a<b<c B.b<c<a C.c<a<b D.b<a<c【解答】解:依据题意,函数,其定义域为R,则f(﹣x)=|ln(x)|=|ln|=|﹣ln(x)|=|ln(x)|=f (x),即函数f(x)为偶函数,设g(x)=ln(x)=ln,有g(0)=ln1=0,设t,则y=lnt,当x≥0时,t为减函数且t>0,而y=lnt在(0,+∞)为增函数,则g(x)=ln(x)=ln在[0,+∞)上为减函数,又由g(0)=0,则在区间[0,+∞)上,g(x)≤0,又由f(x)=|g(x)|,则f(x)在区间[0,+∞)上为增函数,a=f()=f(log94),b=f(log52)=f(log254),又由log254<log94<1<1.80.2,则有b<a<c;故选:D.【再练一题】已知函数f(x)=x•ln,a=f(),b=f(),c=f(),则以下关系成立的是()A.c<a<b B.c<b<a C.a<b<c D.a<c<b【解答】解:,,;∵;∴;∴c<a<b.故选:A.命题点2 解函数不等式【典型例题】已知函数f(x)=e x﹣e﹣x,则关于x的不等式f(x)+f(x2﹣2)<0的解集为()A.(﹣2,1)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣1,2)D.(﹣∞,﹣1)∪(2,+∞)【解答】解:依据题意,函数f(x)=e x﹣e﹣x,有f(﹣x)=e﹣x﹣e x=﹣(e x﹣e﹣x)=﹣f(x),则函数f(x)为奇函数,又由f′(x)=e x+e﹣x>0,则函数f(x)在R上为增函数,f(x)+f(x2﹣2)<0⇒f(x)<﹣f(x2﹣2)⇒f(x)<f(2﹣x2)⇒x<2﹣x2,即x2+x﹣2<0,解可得﹣2<x<1,即其解集为(﹣2,1);故选:A.【再练一题】设定义在R上的奇函数f(x)满意f(x)=x3﹣8(x>0),则{x|f(x﹣2)≥0}=()A.[﹣2,0)∪[2,+∞)B.(﹣∞﹣2]∪[2,+∞)C.[0,2)∪[4,+∞)D.[0,2]∪[4,+∞)【解答】解:∵f(x)是R上的奇函数,且x>0时,f(x)=x3﹣8;∴f(0)=f(2)=f(﹣2)=0,且f(x)在(0,+∞),(﹣∞,0)上都单调递增;∴①x=2时,满意f(x﹣2)≥0;②x>2时,由f(x﹣2)≥0得,f(x﹣2)≥f(2);∴x﹣2≥2;∴x≥4;③x<2时,由f(x﹣2)≥0得,f(x﹣2)≥f(﹣2);∴x﹣2≥﹣2;∴x≥0;∴0≤x<2;综上得,f(x﹣2)≥0的解集为[0,2]∪[4,+∞).故选:D.命题点3 求参数范围【典型例题】若函数f(x)在R上是增函数,则a的取值范围为()A.(﹣∞,1] B.(0,2)C.(0,1] D.[1,2)【解答】解:∵f(x)在R上是增函数;∴;解得0<a≤1;∴a的取值范围为:(0,1].故选:C.【再练一题】若(a≠1),在定义域(﹣∞,+∞)上是单调函数,则a的取值范围是()A.B.C.D.【解答】解:f(x)在定义域(﹣∞,+∞)上是单调函数时,①函数的单调性是增函数时,可得当x=0时,(a2﹣1)e ax≤ax2+1=1,即a2﹣1≤1,解之得a∵x≥0时,y=ax2+1是增函数,∴a>0又∵x<0时,(a2﹣1)e ax是增函数,∴a2﹣1>0,得a<﹣1或a>1因此,实数a的取值范围是:1<a②函数的单调性是减函数时,可得当x=0时,(a2﹣1)e ax≥ax2+1=1,即a2﹣1≥1,解之得a或a.∵x≥0时,y=ax2+1是减函数,∴a<0又∵x<0时,(a2﹣1)e ax是减函数,∴a2﹣1>0,得a<﹣1或a>1因此,实数a的取值范围是:a综上所述,得a∈故选:C.思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f”符号脱掉,转化为详细的不等式求解,应留意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需留意若函数在区间[a,b]上是单调的,则该函数在此区间的随意子集上也是单调的;③分段函数的单调性,除留意各段的单调性外,还要留意连接点的取值.基础学问训练1.若,则下列不等式正确的是()A.B.C.D.【答案】D【解析】∵,对A选项,变形为log a x3<log a y2,而函数y=是单调递减函数,x3<y2,∴log a x3>log a y2,故A不正确;对B选项,,函数y=cosx是单调递减函数,∴,故B不正确;对C选项,y=是单调递减函数,∴, 故C不正确;而D选项,幂函数y=是单调递增函数,∴,故应选D.2.已知函数且满意,则的取值范围为()A.B.C.D.【答案】C【解析】因为,所以,所以函数为定义在R上的偶函数;又时,单调递减,所以由偶函数的对称可得:时,单调递增,所以由可得,解得.故选C3.已知函数,则函数有()A.最小值,无最大值 B.最大值,无最小值C.最小值1,无最大值 D.最大值1,无最小值【答案】D【解析】∵函数f(x)的定义域为(﹣∞,]设t,则t,且x,∴f(x)=g(t)t2+t(t﹣1)2+1,t,∴g(t)≤g(1)即g(t)≤1∴函数f(x)的最大值1,无最小值.故选D.4.若函数f(x)=log2(x2-2x+a)的最小值为4,则a=()A.16 B.17 C.32 D.33【答案】B【解析】函数f(x)=log2(x2-2x+a)的最小值为4,可得y= x2-2x+a的最小值为16,由y=(x-1)2+a-1,可得a-1=16,即a=17,故选:B.5.高斯是德国闻名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数,则函数的值域是()A. B. C. D.【答案】A【解析】.∴当时,;当时,;∴函数的值域是.故选A.6.已知函数的最小值为8,则A.B.C.D.【答案】B【解析】函数的最小值为8,可得,明显的最小值不为8;时,由对数函数的性质可得当时,的最小值为,由题意可得,设递增,,可得,故选:B.7.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”.已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A. B. C. D.【答案】A【解析】由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x),①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满意条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,故f(a)+f(b)>2.再由f(a)+f(b)>f(c)恒成立,可得2≥t,结合大前提t﹣1>0,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t<f(b)<1,t<f(c)<1,由f(a)+f(b)>f(c),可得 2t≥1,解得1>t.综上可得,t≤2,故选:A.8.奇函数单调递减,若,则满意的取值范围是()A.B.C.D.[1,3]【答案】D【解析】因为奇函数单调递减,所以函数单调递减,且为奇函数,所以,因为,所以,所以,解得,即满意的取值范围是,故选D.9.假如对定义在R上的奇函数,对随意两个不相邻的实数,全部,则称函数为“H函数”,下列函数为H函数的是A.B.C.D.【答案】D【解析】依据题意,对于全部的不相等实数,则恒成立,则有恒成立,即函数是定义在R上的增函数,则“H函数”为奇函数且在R上为增函数,据此依次分析选项:对于A,,为正弦函数,为奇函数但不是增函数,不符合题意;对于B,,为指数函数,不是奇函数,不符合题意;对于C,,为奇函数,但在R上不是增函数,不符合题意;对于D,,为奇函数且在R上为增函数,符合题意;故选:D.10.已知定义在上的函数,对随意,有,且时,有,设,则()A.B.C.D.【答案】A【解析】因为对随意,所以,因为时,有,所以函数在区间上是增函数,因为,所以,即,所以,故选A.11.已知定义在R上的函数f(x)=-1(m为实数)为偶函数,记a=f(log0.53),则a,b,c的大小关系为( )A.a<b<c B.a<c<b C.c<a<b D.c<b<a【答案】B【解析】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴﹣1=﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(||)=f(),b=f(),c=f(2);∵0<<2<;∴a<c<b.故选:B.12.已知t为常数,函数在区间上的最大值为2,则t的值为A.B.C.D.【答案】A【解析】令上的增函数.当,即时,,舍去.当,即时,由于单调递增,故函数的最值在端点处取得..若,解得(舍去).当时,符合题意.当,解得.当时,,不符合题意.当时,符合题意.故.所以选A.13.假如奇函数在区间上是减函数,值域为,那么______.【答案】12【解析】由f(x)在区间上是递减函数,且最大值为5,最小值为-2,得f(3)=5,f(7)=-2,∵f(x)是奇函数,∴.故答案为:12.14.已知函数,若上是减函数,则实数的取值范围为____.【答案】[,0)【解析】若在R上是减函数,因为y=上单调递减,故只需满意,解得:k∈[,0)故答案为:[,0)15.设函数f(x)=|x-1|在x∈[t,t+4](t∈R)上的最大值为M(t),则M(t)的最小值为______.【答案】2【解析】作出函数f(x)=|x-1|的图象,如图所示,当t+4≤1即t≤-3时,f(x)在[t,t+4]递减,可得最大值M(t)=f(t)=|t-1|=1-t,由M(t)在t≤-3递减,可得M(t)≥4,即最小值为4;当t≥1时,f(x)在[t,t+4]递增,可得最大值M(t)=f(t+4)=|t+3|=t+3,由M(t)在t≥1递增,可得M(t)≥4,即最小值为4;当t<1<t+4,即-3<t<1时,f(x)在(t,1)递减,在(1,t+4)递增,可得f(x)的最小值为0;当t=-1时,f(t)=f(t+4)=2;当-1<t<1时,f(t)<f(t+4),f(x)的最大值M(t)=f(t+4)=t+3,且M(t)∈(2,4);当-3<t<-1时,f(t)>f(t+4),f(x)的最大值M(t)=f(t)=1-t,且M(t)∈(2,4);综上可得M(t)的最小值为2.故答案为:2.16.已知函数,若当时,都有,则a的取值范围为______.【答案】【解析】①当时,即②当时,若,即时,若,即时,③当时,综上所述,17.对于区间,若函数同时满意:上是单调函数;函数的值域是,则称区间为函数的“保值”区间.求函数的全部“保值”区间.函数是否存在“保值”区间?若存在,求出实数m的取值范围;若不存在,说明理由.【答案】(1);(2)函数存在“保值”区间,此时m的取值范围是.【解析】因为函数的值域是,且的值域是,所以,所以,从而函数在区间上单调递增,故有,解得,又,所以,所以函数的“保值”区间为;若函数存在“保值”区间,若,由可得函数的“保值”区间为;若,此时函数在区间上单调递减,可得,消去m得,整理得,因为,所以,即,即有,因为,可得;若,此时函数在区间上单调递增,可得,消去m得,整理得.因为,所以,可得,可得.由,即有.综合得,函数存在“保值”区间,此时m的取值范围是.18.已知函数常数.证明上是减函数,在上是增函数;时,求的单调区间;对于中的函数和函数,若对随意,总存在,使得成立,求实数a的值.【答案】(1)见解析;(2)见解析;(3)【解析】证明::设,且,,,,当时,即,当时,即,时,,即,此时函数为减函数,当时,,即,此时函数为增函数,故上是减函数,在上是增函数;时,,,设,则,,由可知上是减函数,在上是增函数;,即,即上是减函数,在上是增函数;由于为减函数,故又由(2)得由题意,的值域为的值域的子集,从而有,解得.19.已知函数,其中.解关于x的不等式;求a的取值范围,使在区间上是单调减函数.【答案】(1)见解析;(2).【解析】的不等式,即为,即为,当时,解集为;当时,解集为;当时,解集为;,由在区间上是单调减函数,可得,解得.即a的范围是.20.已知函数.判定并证明函数的单调性;是否存在实数m,使得不等式对一切都成立?若存在求出m;若不存在,请说明理由.【答案】(1)见解析;(2)【解析】函数上R上的单调递增函数.证明如下:设,,,且,,函数上R上的单调递增函数.函数,,是R上的奇函数,不等式对一切都成立,,对一切都成立,是R上的增函数,,对一切都成立,.存在实数,使得不等式对一切都成立.实力提升训练1.已知是自然对数的底数),,则的大小关系是( ) A.B.C.D.【答案】A【解析】记,可得x=e可知:上单调递增,又∴,即故选:A2.若函数,设,则的大小关系A.B.C.D.【答案】D【解析】依据题意,函数,是二次函数,其对称轴为y轴,且在上为增函数,,则有,则;故选:D.3.已知函数,若的最小值为,则实数m的值为A. B. C.3 D.或3【答案】C【解析】函数,即,当时,不成立;当,即时,递减,可得取得最小值,且,解得成立;当,即时,递增,可得取得最小值,且,不成立;综上可得.故选:.4.若函数上的最大值与最小值的差为2,则实数的值为( ).A.2 B.-2 C.2或-2 D.0【答案】C【解析】解:①当a=0时,y=ax+1=1,不符合题意;②当a>0时,y=ax+1在[1,2]上递增,则(2a+1)﹣(a+1)=2,解得a=2;③当a<0时,y=ax+1在[1,2]上递减,则(a+1)﹣(2a+1)=2,解得a=﹣2.综上,得a=±2,故选C.5.已知直线分别与函数的图象交于两点,则两点间的最小距离为()A. B. C. D.【答案】D【解析】依据题意得到PQ两点间的距离即两点的纵坐标的差值,设t+1=u,t=u-1>0,原式等于依据均值不等式得到当且仅当u=1,t=0是取得最值.故答案为:D.6.已知函数的值域为()A. B. C. D.【答案】C【解析】由题意,设,则,又由指数函数的性质,可知函数为单调递减函数,所以函数的值域为,故选C.7.已知函数的定义域为(1)试推断的单调性;(2)若,求的值域;(3)是否存在实数,使得有解,若存在,求出的取值范围;若不存在,说明理由. 【答案】(1)单调递增(2)(3)存在,且取值范围为【解析】解:(1)设单调递增.(2)令的值域为(3)由而当时,令,所以的取值范围为8.已知函数(1)设的两根,且,试求的取值范围(2)当时,的最大值为2,试求【答案】(1)(2)【解析】(1)由题意可得的两根,且,解得故(2)当时,的最大值为2,由,可知抛物线开口向上,对称轴为①若,则当时取得最大值,即,解得②若,则当时取得最大值,即,解得故9.已知函数.(1)若,求a的值.(2)推断函数的奇偶性,并证明你的结论.(3)求不等式的解集.【答案】(1);(2)奇函数;(3).【解析】,则,得,即,则.函数的定义域为R,,即函数是奇函数.由不等式,,在R上是增函数,不等式等价为,即,即,得.即不等式的解集为.10.已知函数.(Ⅰ)推断并证明的单调性;(Ⅱ)设,解关于的不等式.【答案】(Ⅰ)上单调递增;(Ⅱ).【解析】解:(Ⅰ)的定义域为,由是奇函数;任取,则,上单调递增;又由(Ⅰ)知,上的奇函数,上单调递增;上单调递增.(Ⅱ),由是奇函数;又由(Ⅰ)知上单调递增,上单调递增,等价于,可得:,解得:不等式的解集是.。
高考数学一轮复习课时跟踪检测五函数的单调性与最值理含解析
课时跟踪检测(五) 函数的单调性与最值一抓基础,多练小题做到眼疾手快1.(·如皋中学月考)函数f (x )=|x 2-2x +2|的增区间是________. 解析:因为函数f (x )=|x 2-2x +2|=|(x -1)2+1|=(x -1)2+1, 所以函数f (x )=|x 2-2x +2|的增区间是[1,+∞). 答案:[1,+∞)2.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14.答案:143.(·徐州质检)函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +2)在区间[-1,1]上的最大值为________.解析:因为y =⎝ ⎛⎭⎪⎫13 x 和y =-log 2(x +2)都是[-1,1]上的减函数,所以y =⎝ ⎛⎭⎪⎫13 x -log 2(x +2)是在区间[-1,1]上的减函数,所以最大值为f (-1)=3.答案:34.已知偶函数f (x )在区间[0,+∞)上单调递减,则满足f (2x -1)<f (5)的x 的取值范围是________.解析:因为偶函数f (x )在区间[0,+∞)上单调递减,且f (2x -1)<f (5),所以|2x -1|>5,即x <-2或x >3.答案:(-∞,-2)∪(3,+∞)5.若函数f (x )=-x 2+2ax 与g (x )=(a +1)1-x在区间[1,2]上都是减函数,则a 的取值范围是________.解析:因为f (x )=-x 2+2ax =-(x -a )2+a 2在[1,2]上是减函数,所以a ≤1. 又g (x )=(a +1)1-x在[1,2]上是减函数.所以a +1>1,所以a >0.综上可知0<a ≤1. 答案:(0,1]6.(·海门中学高三检测)已知函数f (x )=⎩⎪⎨⎪⎧2-a x +1,x <1,a x,x ≥1,满足对任意x 1<x 2,都有f (x 1)<f (x 2)成立,那么实数a 的取值范围是________.解析:∵函数f (x )满足对任意x 1<x 2,都有f (x 1)<f (x 2)成立, ∴函数f (x )在定义域上是增函数,则满足⎩⎪⎨⎪⎧2-a >0,a >1,2-a +1≤a ,即⎩⎪⎨⎪⎧a <2,a >1,a ≥32,解得32≤a <2.答案:⎣⎢⎡⎭⎪⎫32,2 二保高考,全练题型做到高考达标 1.设函数f (x )=ax +1x +2a在区间(-2,+∞)上是增函数,则a 的取值范围是________. 解析:f (x )=ax +2a 2-2a 2+1x +2a =a -2a 2-1x +2a,因为函数f (x )在区间(-2,+∞)上是增函数.所以⎩⎪⎨⎪⎧2a 2-1>0,-2a ≤-2,解得a ≥1.答案:[1,+∞)2.(·江阴高三检测)设a >0且a ≠1,函数f (x )=log a |ax 2-x |在[3,5]上是单调增函数,则实数a 的取值范围为______________.解析:∵a >0且a ≠1,函数f (x )=log a |ax 2-x |=log a |x ·(ax -1)|在[3,5]上是单调增函数,∴当a >1时,y =x ·(ax -1)在[3,5]上是单调增函数,且y >0,满足f (x )是增函数;当0<a <1时,要使f (x )在[3,5]上是单调增函数,只需⎩⎪⎨⎪⎧0<a <1,3≥12a ,5<1a ,解得16≤a<15. 综上可得,a >1或16≤a <15.答案:⎣⎢⎡⎭⎪⎫16,15∪(1,+∞) 3.对于任意实数a ,b ,定义min{a ,b }=⎩⎪⎨⎪⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是________.解析:依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 是增函数,当x >2时,h (x )=-x +3是减函数,所以h (x )在x =2时,取得最大值h (2)=1.答案:14.(·徐州一模)已知函数y =f (x )和y =g (x )的图象关于y 轴对称,当函数y =f (x )和y =g (x )在区间[a ,b ]上同时递增或者同时递减时,把区间[a ,b ]叫做函数y =f (x )的“不动区间”,若区间[1,2]为函数f (x )=|2x-t |的“不动区间”,则实数t 的取值范围是________.解析:因为函数y =f (x )与y =g (x )的图象关于y 轴对称,所以g (x )=f (-x )=|2-x-t |.因为区间[1,2]为函数f (x )=|2x-t |的“不动区间”,所以函数f (x )=|2x -t |和函数g (x )=|2-x-t |在[1,2]上单调性相同, 因为y =2x -t 和函数y =2-x-t 的单调性相反, 所以(2x-t )(2-x-t )≤0在[1,2]上恒成立, 即2-x ≤t ≤2x在[1,2]上恒成立,解得12≤t ≤2.答案:⎣⎢⎡⎦⎥⎤12,2 5.(·金陵中学月考)定义在[-2,2]上的函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,且f (a 2-a )>f (2a -2),则实数a 的取值范围为________.解析:函数f (x )满足(x 1-x 2)[f (x 1)-f (x 2)]>0,x 1≠x 2,所以函数在[-2,2]上单调递增,所以⎩⎪⎨⎪⎧ -2≤a 2-a ≤2,-2≤2a -2≤2,2a -2<a 2-a .所以⎩⎪⎨⎪⎧-1≤a ≤2,0≤a ≤2,a <1或a >2,所以0≤a <1.答案:[0,1)6.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系为____________(用“<”表示).解析:因为f (x )是偶函数, 所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数,所以f (π)>f (3)>f (2),所以f (-2)<f (-3)<f (π). 答案:f (-2)<f (-3)<f (π)7.(·苏州高三暑假测试)已知函数f (x )=x +a x(a >0),当x ∈[1,3]时,函数f (x )的值域为A ,若A ⊆[8,16],则a 的值等于________.解析:因为A ⊆[8,16],所以8≤f (x )≤16对任意的x ∈[1,3]恒成立,所以⎩⎪⎨⎪⎧a ≤16x -x 2,a ≥8x -x2对任意的x ∈[1,3]恒成立,当x ∈[1,3]时,函数y =16x -x 2在[1,3]上单调递增,所以16x -x 2∈[15,39],函数y =8x -x 2在[1,3]上也单调递增,所以8x -x 2∈[7,15],所以⎩⎪⎨⎪⎧a ≤15,a ≥15,即a 的值等于15.答案:158.若函数f (x )=a x(a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.解析:函数g (x )在[0,+∞)上为增函数,则1-4m >0,即m <14.若a >1,则函数f (x )在[-1,2]上的最小值为1a =m ,最大值为a 2=4,解得a =2,12=m ,与m <14矛盾;当0<a <1时,函数f (x )在[-1,2]上的最小值为a 2=m ,最大值为a -1=4,解得a =14,m =116.所以a =14.答案:149.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. 解:(1)证明:当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0,f (x 2)-f (x 1)=⎝ ⎛⎭⎪⎫a -1x 2-⎝ ⎛⎭⎪⎫a -1x 1=1x 1-1x 2=x 2-x 1x 1x 2>0,所以f (x )在(0,+∞)上是增函数. (2)由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立. 任取x 1,x 2∈(1,+∞)且x 1<x 2,h (x 1)-h (x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫2-1x 1x 2.因为1<x 1<x 2,所以x 1-x 2<0,x 1x 2>1,所以2-1x 1x 2>0,所以h (x 1)<h (x 2),所以h (x )在(1,+∞)上单调递增. 故a ≤h (1),即a ≤3,所以实数a 的取值范围是(-∞,3]. 10.(·江阴期中)设函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫13=310.(1)求函数f (x )的解析式;(2)用单调性定义证明f (x )在(-1,1)上是增函数; (3)解不等式f (|t |-1)+f (t 2)<f (0). 解:(1)因为f (x )=ax +b1+x2是定义在(-1,1)上的奇函数, 所以f (0)=b =0,所以f (x )=ax1+x 2,而f ⎝ ⎛⎭⎪⎫13=13a 1+19=310, 解得a =1,所以f (x )=x1+x 2,x ∈(-1,1).(2)证明:任取x 1,x 2∈(-1,1)且x 1<x 2, 则f (x 1)-f (x 2)=x 11+x 21-x 21+x 22=x 1-x 21-x 1x 21+x 211+x 22. 因为x 1<x 2,所以x 1-x 2<0,又因为x 1,x 2∈(-1,1),所以1-x 1x 2>0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在(-1,1)上是增函数.(3)由题意,不等式f (|t |-1)+f (t 2)<f (0)可化为f (|t |-1)+f (t 2)<0,即f (t 2)<-f (|t |-1),因为f (x )是定义在(-1,1)上的奇函数, 所以f (t 2)<f (1-|t |),所以⎩⎪⎨⎪⎧-1<t 2<1,-1<1-|t |<1,t 2<1-|t |,解得1-52<t <5-12且t ≠0,所以该不等式的解集为⎝⎛⎭⎪⎫1-52,0∪⎝⎛⎭⎪⎫0,5-12.三上台阶,自主选做志在冲刺名校1.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是____________.解析:因为f (9)=f (3)+f (3)=2,所以由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x x -8≤9,解得8<x ≤9.答案:(8,9]2.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)证明:f (x )为单调递减函数;(2)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (2)因为f (x )在(0,+∞)上是单调递减函数, 所以f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.所以f (x )在[2,9]上的最小值为-2.。
专题练习:函数的单调性与最值 (含参考答案)
13.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,则函数f (x )=min{4x +1,x +4,-x +8}的最大值是________.解析:在同一坐标系中分别作出函数y =4x +1,y =x +4,y =-x +8的图象后,取位于下方的部分得函数f (x )=min{4x +1,x +4,-x +8}的图象,如图所示,由图象可知,函数f (x )在x =2时取得最大值6.答案:614.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log ax ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为________. 解析:要使函数f (x )在R 上单调递增,则有⎩⎪⎨⎪⎧ a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧ a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3].答案:(2,3][能力挑战]15.(2018·长沙模拟)已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x2∈(2,+∞),则()A.f(x1)<0,f(x2)<0 B.f(x1)<0,f(x2)>0 C.f(x1)>0,f(x2)<0 D.f(x1)>0,f(x2)>0解析:选B.因为函数y=log2x与函数y=11-x =-1x-1的单调性在(1,+∞)上均为增函数,所以函数f(x)=log2x+11-x在(1,+∞)上为增函数,且f(2)=0,所以当x1∈(1,2)时,f(x1)<f(2)=0;当x2∈(2,+∞)时,f(x2)>f(2)=0,即f(x1)<0,f(x2)>0.16.(2018·株洲二模)定义新运算⊕:当a≥b时,a⊕b=a;当a <b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于()A.-1 B.1C.6 D.12解析:选C.由已知得当-2≤x≤1时,f(x)=x-2;当1<x≤2时,f(x)=x3-2.∵f(x)=x-2,f(x)=x3-2在定义域内都为增函数.∴f(x)的最大值为f(2)=23-2=6.17.已知函数f(x)=ln x+ln(2-x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称解析:解法一:选C.f (x )的定义域为(0,2).由于f (x )=ln x +ln(2-x )=ln(2x -x 2),从而对f (x )的研究可转化为对二次函数g (x )=2x -x 2(x ∈(0,2))的研究.因为g (x )=2x -x 2=-(x -1)2+1,所以g (x )在(0,1)上单调递增,在(1,2)上单调递减,直线x =1是y =g (x )的图象的对称轴.从而排除A ,B ,D ,故选C.解法二:由于f (2-x )=ln(2-x )+ln x ,即f (x )=f (2-x ),故可得y =f (x )的图象关于直线x =1对称,故选C.18.(2018·潍坊二模)已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( )A .(-∞,-2)B .(-∞,0)C .(0,2)D .(-2,0)解析:选A.作出函数f (x )的图象如图所示,易知函数f (x )在R 上为单调递减函数,所以不等式f (x +a )>f (2a-x )在[a ,a +1]上恒成立等价于x +a <2a -x ,即x <a 2在[a ,a +1]上恒成立,所以只需a +1<a 2,即a <-2.故选A. 19.(2018·唐山模拟)如果对定义在R 上的函数f (x ),对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =e x +x ;②y =x 2;③y =3x -sin x ;④f (x )=⎩⎪⎨⎪⎧ln |x |,x ≠0,0,x =0.以上函数是“H 函数”的所有序号为________.解析:因为对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1)恒成立,所以不等式等价为(x 1-x 2)[f (x 1)-f (x 2)]>0恒成立,即函数f (x )是定义在R 上的增函数.①函数y =e x +x 在定义域上为增函数,满足条件.②函数y =x 2在定义域上不单调,不满足条件.③y =3x -sin x ,y ′=3-cos x >0,函数单调递增,满足条件.④f (x )=⎩⎨⎧ln |x |,x ≠0,0,x =0,当x >0时,函数单调递增,当x <0时,函数单调递减,不满足条件.综上,满足“H 函数”的函数为①③.答案:①③。
江苏专版020版高考数学一轮复习课时跟踪检测五函数的单调性与最值理含解析
ax+2a2-2a2+1
2a2-1
解析:f(x)=
=a-
,
x+2a
x+2a
因为函数 f(x)在区间(-2,+∞)上是增函数.
所以Error!解得 a≥1.
答案:[1,+∞)
2.(2019·江阴高三检测)设 a>0 且 a≠1,函数 f(x)=loga|ax2-x|在[3,5]上是单调
增函数,则实数 a 的取值范围为______________.
答案:1
4.(2018·徐州一模)已知函数 y=f(x)和 y=g(x)的图象关于 y 轴对称,当函数 y=f(x)
和 y=g(x)在区间[a,b]上同时递增或者同时递减时,把区间[a,b]叫做函数 y=f(x)的
“不动区间”,若区间[1,2]为函数 f(x)=|2x-t|的“不动区间”,则实数 t 的取值范围是
a- x2
- a- x1
=-= x1 x2
x1x2
>0,
所以 f(x)在(0,+∞)上是增函数.
1 (2)由题意 a- <2x 在(1,+∞)上恒成立,
x 1 设 h(x)=2x+ , x
则 a<h(x)在(1,+∞)上恒成立.
任取 x1,x2∈(1,+∞)且 x1<x2,
( )1
h(x1)-h(x2)=(x1-x2)
x-
log2(x+
2)在
区
间
[-
1,1]上
的
最
大
值
为
________.
( ) ( ) 1
解析:因为 y= 3
x
和
y=-log2(x+2)都是[-1,1]上的减函数,所以
y=
1 3
x-
log2(x+2)是在区间[-1,1]上的减函数,所以最大值为 f(-1)=3. 答案:3
高三数学(理)一轮复习课时作业(五) 函数的单调性与最值 Word版含解析
则g(x1)-g(x2)= - = ,
因为1<x1<x2,
所以x1-x2<0,(x1-1)(x2-1)>0,
因此g(x1)-g(x2)<0,即g(x1)<g(x2).
故g(x)在(1,+∞)上是增函数.
方法二:导数法
∵g′(x)= = >0,
∴g(x)在(1,+∞)上是增函数.
A.[1,+∞) B.[0, ]
C.[0,1] D.[1, ]
解析:因为函数f(x)= x2-x+ 的对称轴为x=1,
所以函数y=f(x)在区间[1,+∞)上是增函数,又当x≥1时, = x-1+ ,令g(x)= x-1+ (x≥1),则g′(x)= - = ,由g′(x)≤0得1≤x≤ ,即函数 = x-1+ 在区间[1, ]上单调递减,故“缓增区间”I为[1, ].
解析:由y=log3(x-2)的定义域为(2,+∞),
且为增函数,故在(3,+∞)上是增函数.
又函数y= = =2+ ,
使其在(3,+∞)上是增函数,
故4+k<0,得k<-4.
即实数k的取值范围是(-∞,-4).
答案:(-∞,-4)
三、解答题
10.判断函数g(x)= 在(1,+∞)上的单调性.
解析:方法一:定义法
= - = >0,
∴f(x)在(0,+∞)上是增函数.
(2)由题意a- <2x在(1,+∞)上恒成立,
设h(x)=2x+ ,
则a<h(x)在(1,+∞)上恒成立.
任取x1,x2∈(1,+∞)且x1<x2,
h(x1)-h(x2)=(x1-x2)(2- ).
2025年高考数学一轮复习课时作业-函数的单调性与最值【含解析】
2025年高考数学一轮复习课时作业-函数的单调性与最值【原卷版】(时间:45分钟分值:85分)【基础落实练】1.(5分)(多选题)下列函数中,在区间(0,1)上是增函数的是()A.y=|x|B.y=x+3C.y=1D.y=-x2+42.(5分)函数f(x)=lg(x2-4)的单调递增区间为()A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)3.(5分)函数f(x)=1 2+1在区间[1,2]上的最大值与最小值分别是()A.12,15B.5,2C.2,1D.1,124.(5分)函数f(x)=2- +1,x∈(m,n]的最小值为0,则m的取值范围是()A.(1,2)B.(-1,2)C.[1,2)D.[-1,2)5.(5分)已知定义在R上的函数f(x),对任意x∈(0,π),有f(x)-f(-x)=0,且x1,x2>0时,有 ( 1)- ( 2)1- 2>0,设a=f(2),b=f(-2),c=f(3),则()A.a<b<cB.b<c<aC.a<c<bD.c<b<a6.(5分)(多选题)关于函数y=4-( +1)2,下列说法正确的是()A.在区间[-1,0]上单调递减B.单调递增区间为[-3,-1]C.最大值为2D.没有最小值7.(5分)函数y=-x2+2|x|+1的单调递增区间为,单调递减区间为.8.(5分)函数f(x)=-x+1 在[-2,-13]上的最大值是.9.(5分)函数y=2x+ -1的最小值为.10.(10分)已知函数f(x)= +2 .(1)写出函数f(x)的定义域和值域;(2)证明:函数f(x)在(0,+∞)上单调递减,并求f(x)在x∈[2,8]上的最大值11.(10分)已知f(x)= 2+2 + ,x∈[1,+∞).(1)当a=12时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.【能力提升练】12.(5分)(多选题)下列函数有最小值的是()A.f(x)=x2+1 2B.f(x)=2x+2C.f(x)= -1 +1D.f(x)=lg( +1)13.(5分)已知函数y=f(x)的定义域为R,对任意x1,x2且x1≠x2,都有 ( 1)- ( 2)1- 2>-1,则下列说法正确的是()A.y=f(x)+x是增函数B.y=f(x)+x是减函数C.y=f(x)是增函数D.y=f(x)是减函数14.(10分)设函数f(x)=ax2+bx+1(a,b∈R),F(x)= ( ), ≥0,- ( ), <0.(1)若f(-1)=0,且对任意实数x均有f(x)≥0成立,求F(x)的解析式;(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.2025年高考数学一轮复习课时作业-函数的单调性与最值【解析版】(时间:45分钟分值:85分)【基础落实练】1.(5分)(多选题)下列函数中,在区间(0,1)上是增函数的是()A.y=|x|B.y=x+3C.y=1D.y=-x2+4【解析】选AB.函数y=1 与y=-x2+4在(0,1)上都是减函数.2.(5分)函数f(x)=lg(x2-4)的单调递增区间为()A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)【解析】选C.由复合函数的单调性知,要使f(x)单调递增,需 2-4>0,>0,解得x>2.3.(5分)函数f(x)=1 2+1在区间[1,2]上的最大值与最小值分别是()A.12,15B.5,2C.2,1D.1,12【解析】选A.因为y=x2+1在(0,+∞)上单调递增,且y>1,所以f(x)=1 2+1在区间[1,2]上单调递减,所以函数f(x)=1 2+1在区间[1,2]上的最大值与最小值分别是f(1)=112+1=12,f(2)=122+1=15.4.(5分)函数f(x)=2- +1,x∈(m,n]的最小值为0,则m的取值范围是()A.(1,2)B.(-1,2)C.[1,2)D.[-1,2)【解析】选D.因为f(x)=2- +1=-1+3 +1在(-∞,-1)上单调递减,在(-1,+∞)上单调递减,且当x∈(m,n]时最小值为0,即f(n)=0,n=2,所以m<n=2.又函数f(x)的定义域分为两段,x=2在(-1,+∞)上,故m≥-1,综上,-1≤m<2.5.(5分)已知定义在R上的函数f(x),对任意x∈(0,π),有f(x)-f(-x)=0,且x1,x2>0时,有 ( 1)- ( 2)1- 2>0,设a=f(2),b=f(-2),c=f(3),则()A.a<b<cB.b<c<aC.a<c<bD.c<b<a【解析】选A.因为对任意x∈(0,π),f(x)-f(-x)=0,所以f(-2)=f(2),因为x1,x2>0时,有 ( 1)- ( 2)1- 2>0,所以函数f(x)在区间(0,π)上单调递增,因为2<2<3,所以f(2)<f(2)<f(3),即f(2)<f(-2)<f(3),所以a<b<c.6.(5分)(多选题)关于函数y=4-( +1)2,下列说法正确的是()A.在区间[-1,0]上单调递减B.单调递增区间为[-3,-1]C.最大值为2D.没有最小值【解题指南】先求出函数定义域,令t=4-(x+1)2,根据二次函数的性质,由已知解析式,逐项判断,即可得出结果.【解析】选ABC.由4-(x+1)2≥0得-3≤x≤1,即函数y=4-( +1)2的定义域为[-3,1].令t=4-(x+1)2,则t=4-(x+1)2的图象是开口向下、对称轴为x=-1的抛物线,所以函数t=4-(x+1)2在[-3,-1]上单调递增,在[-1,1]上单调递减.又y= 单调递增,所以y=4-( +1)2在[-3,-1]上单调递增,在[-1,1]上单调递减,故A,B正确;y max=4-(-1+1)2=2,当x=-3时,y=4-(-3+1)2=0,当x=1时,y=4-(1+1)2=0,则y min=0,故C正确,D错误.7.(5分)函数y=-x2+2|x|+1的单调递增区间为,单调递减区间为.【解析】y=- 2+2 +1, ≥0,- 2-2 +1, <0,即y=-( -1)2+2, ≥0,-( +1)2+2, <0.画出函数图象如图所示,则其单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).答案:(-∞,-1]和[0,1][-1,0]和[1,+∞)8.(5分)函数f(x)=-x+1 在[-2,-13]上的最大值是.【解析】易知f(x)在[-2,-13]上单调递减,即f(-2)为最大值,为2-12=32.答案:329.(5分)函数y=2x+ -1的最小值为.【解析】方法1(单调性法):函数y=2x+ -1的定义域为[1,+∞),因为函数y=2x与y= -1在定义域[1,+∞)上均单调递增,故y=2x+ -1在[1,+∞)上单调递增,所以当x=1时,y min=2+1-1=2,即函数y=2x+ -1的最小值为2.方法2(换元法):令 -1=t,则t≥0,x=t2+1,所以原函数转化为f(t)=2t2+t+2=2(t+14)2+158,易知在t∈[0,+∞)时,函数f(t)单调递增,所以当t=0时,f(t)min=2,故函数y=2x+ -1的最小值为2.答案:210.(10分)已知函数f(x)= +2 .(1)写出函数f(x)的定义域和值域;【解析】(1)函数f(x)的定义域为{x|x≠0}.又f(x)=1+2 ,所以函数f(x)的值域为{y|y≠1}.(2)证明:函数f(x)在(0,+∞)上单调递减,并求f(x)在x∈[2,8]上的最大值和最小值.【解析】(2)由题意可设0<x1<x2,则f(x1)-f(x2)=(1+2 1)-(1+2 2)=2 1-2 2=2( 2- 1) 1 2.又0<x1<x2,所以x1x2>0,x2-x1>0,所以f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)在(0,+∞)上单调递减.在x∈[2,8]上,f(x)的最大值为f(2)=2,最小值为f(8)=54.11.(10分)已知f(x)= 2+2 + ,x∈[1,+∞).(1)当a=12时,求函数f(x)的最小值;【解析】(1)当a=12时,f(x)=x+12 +2,任取1≤x1<x2,则f(x1)-f(x2)=(x1-x2)+(12 1-12 2)=( 1- 2)(2 1 2-1)2 1 2.因为1≤x1<x2,所以x1x2>1,所以2x1x2-1>0.又x1-x2<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以f(x)在[1,+∞)上单调递增.所以f(x)在[1,+∞)上的最小值为f(1)=72.(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.【解析】(2)在区间[1,+∞)上,f(x)= 2+2 + >0恒成立⇔x2+2x+a>0恒成立.设g(x)=x2+2x+a(x≥1),则g(x)min>0.又g(x)=(x+1)2+a-1,其图象的对称轴为x=-1,且开口向上,所以g(x)在[1,+∞)上单调递增,所以g(x)在[1,+∞)上的最小值为g(1)=3+a.由3+a>0,得a>-3,所以a的取值范围是(-3,+∞).【能力提升练】12.(5分)(多选题)下列函数有最小值的是()A.f(x)=x2+1 2B.f(x)=2x+2C.f(x)= -1 +1D.f(x)=lg( +1)【解析】选AD.对于A,f(x)=x2+1 2≥2,当且仅当x2=1 2,即x=±1时等号成立,故f(x)min=2,A正确.对于B,当x>0时,f(x)=2x+2 ≥2当且仅当2x=2 ,即x=1时等号成立;当x<0时,-f(x)=2(-x)+2- 当且仅当2(-x)=2- ,即x=-1时等号成立,故f(x)≤-4.所以f(x)=2x+2 的值域为(-∞,-4]∪[4,+∞),无最小值,B错误.对于C,f(x)= -1 +1=1-2 +1的值域为{y|y≠1},无最小值,C错误.对于D,由题意可得 ≥0 +1>0,解得x≥0,故f(x)=lg( +1)的定义域为[0,+∞).因为y=lg u在定义域内单调递增,u= +1在定义域[0,+∞)上单调递增,所以f(x)=lg( +1)在定义域[0,+∞)上单调递增,则f(x)=lg( +1)≥f(0)=0,故f(x)=lg( +1)有最小值0,D正确.13.(5分)已知函数y=f(x)的定义域为R,对任意x1,x2且x1≠x2,都有 ( 1)- ( 2)1- 2>-1,则下列说法正确的是()A.y=f(x)+x是增函数B.y=f(x)+x是减函数C.y=f(x)是增函数D.y=f(x)是减函数【解析】选A.不妨令x1<x2,所以x1-x2<0,因为 ( 1)- ( 2)1- 2>-1⇔f(x1)-f(x2)<-(x1-x2)⇔f(x1)+x1<f(x2)+x2,令g(x)=f(x)+x,所以g(x1)<g(x2),又x1<x2,所以g(x)=f(x)+x是增函数.14.(10分)设函数f(x)=ax2+bx+1(a,b∈R),F(x)= ( ), ≥0,- ( ), <0.(1)若f(-1)=0,且对任意实数x均有f(x)≥0成立,求F(x)的解析式;【解析】(1)因为f(-1)=0,所以b=a+1.由f(x)≥0恒成立,知a>0且在方程ax2+bx+1=0中,Δ=b2-4a=(a+1)2-4a=(a-1)2≤0,所以a=1,b=2,从而f(x)=x2+2x+1.所以F(x)=( +1)2, ≥0,-( +1)2, <0.(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.【解析】(2)由(1)可知f(x)=x2+2x+1,所以g(x)=f(x)-kx=x2+(2-k)x+1,由g(x)在[-2,2]上是单调函数,知-2- 2≤-2或-2- 2≥2,得k≤-2或k≥6.即实数k的取值范围为(-∞,-2]∪[6,+∞).。
高考新课标数学(理)大一轮复习课时作业5函数的单调性与最值 Word版含解析
课时作业函数的单调性与最值一、选择题.下列函数中,在区间(-∞,)上是减函数的是( ).=-.=+.=-.=解析:选项中,==+.易知其为减函数.答案:.下列函数中,满足“(+)=()()”的单调递增函数是( ).()=.()=.()=.()=解析:根据各选项知,选项,中的指数函数满足(+)=()·().又()=是增函数,所以正确.答案:.函数=++(∈[,+∞))是单调函数的充要条件是( ).≥.≤.< .>解析:函数=++在[,+∞)上是单调函数的充要条件是-≤得≥.答案:.已知函数=()在上是减函数,则=(-)的单调递减区间是( ) .(-∞,+∞).[,+∞).[-,+∞).(-∞,]解析:因为函数=(-)是由=(μ),μ=-复合而成的,而函数=()在上是减函数,=(-)的单调递减区间,即μ=-的单调递增区间,结合函数μ=-的图象可得,应有-≥,解得≥,所以函数=(-)的单调递减区间是[,+∞),故选.答案:.已知函数()=则“=-”是“函数()在上递增”的( ).充分不必要条件.必要不充分条件.充要条件.既不充分也不必要条件解析:若函数()在上递增,则需≥+,即≤-.由于=-⇒≤-,但≤-⇒=-,所以“=-”是“()在上递增”的充分不必要条件.故选.答案:.(·河南洛阳一模)设函数()=-,若∀,∈[,+∞),≠,不等式>恒成立,则实数的取值范围是( ).(-∞,-] .[-,).(-∞,] .(,]解析:由题意分析可知条件等价于()在[,+∞)上单调递增,又()=-,∴当≤时,结论显然成立,当>时,()=∴()在上单调递增,在上单调递减,在(,+∞)上单调递增,∴<≤.综上,实数的取值范围是(-∞,].答案:二、填空题.()在(,+∞)上为减函数,则=(-+),=的大小关系为.解析:因为-+=+≥,。
2021年高考数学大一轮复习 函数的单调性与最值课时跟踪检测(五)理(含解析)
(含解析)一、选择题1.(xx·北京高考)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2 C .y =2-xD .y =log 0.5(x +1)2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)3.(xx·黑龙江牡丹江月考)设函数f (x )定义在实数集上,它的图象关于直线x =1对称,且当x ≥1时,f (x )=3x -1,则( )A .f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23B .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫13<f ⎝ ⎛⎭⎪⎫32D .f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫23<f ⎝ ⎛⎭⎪⎫134.创新题定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .125.已知函数f (x )=⎩⎨⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.(xx·长春调研)已知定义在R 上的函数f (x )满足f (x )+f (-x )=0,且在(-∞,0)上单调递增,如果x 1+x 2<0且x 1x 2<0,则f (x 1)+f (x 2)的值( )A .可能为0B .恒大于0C .恒小于0D .可正可负二、填空题7.已知函数f (x )为R 上的减函数,若f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1),则实数x 的取值范围是________.8.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.9.设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.10.使函数y=2x+kx-2与y=log3(x-2)在(3,+∞)上具有相同的单调性,则实数k的取值范围是____________________________________________________________________.三、解答题11.已知f(x)=xx-a(x≠a).(1)若a=-2,试证明f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.12.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.答案1.选A 显然y =x +1是(0,+∞)上的增函数;y =(x -1)2在(0,1)上是减函数,在(1,+∞)上是增函数;y =2-x =⎝ ⎛⎭⎪⎫12x 在x ∈R 上是减函数;y =log 0.5(x+1)在(-1,+∞)上是减函数,故选A.2.选A 由于f (x )=|x -2|x =⎩⎨⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.选B 由题设知,当x <1时,f (x )单调递减,当x ≥1时,f (x )单调递增,而x =1为对称轴,∴f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫1+12=f ⎝ ⎛⎭⎪⎫1-12=f ⎝ ⎛⎭⎪⎫12,又13<12<23<1,∴f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭⎪⎫12>f ⎝ ⎛⎭⎪⎫23,即f ⎝ ⎛⎭⎪⎫13>f ⎝ ⎛⎭⎪⎫32>f ⎝ ⎛⎭⎪⎫23.4.选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.5.选A 若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/ c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.故选A.6.选C 由x 1x 2<0不妨设x 1<0,x 2>0. ∵x 1+x 2<0,∴x 1<-x 2<0.由f (x )+f (-x )=0知f (x )为奇函数.又由f (x )在(-∞,0)上单调递增得,f (x 1)<f (-x 2)=-f (x 2),所以f (x 1)+f (x 2)<0.故选C.7.解析:由题意知f (x )为R 上的减函数且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1);则⎪⎪⎪⎪⎪⎪1x >1,即|x |<1,且x ≠0.故-1<x <1且x ≠0. 答案:(-1,0)∪(0,1)8.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)9.解析:由题意知g (x )=⎩⎨⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)10.解析:由y =log 3(x -2)的定义域为(2,+∞),且为增函数,故在(3,+∞)上是增函数.又函数y =2x +k x -2=2x -2+4+k x -2=2+4+kx -2,使其在(3,+∞)上是增函数,故4+k<0,得k<-4.答案:(-∞,-4)11.解:(1)证明:任设x1<x2<-2,则f(x1)-f(x2)=x1x1+2-x2x2+2=2x1-x2x1+2x2+2.∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)<f(x2),∴f(x)在(-∞,-2)上单调递增.(2)任设1<x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=a x2-x1x1-a x2-a.∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,∴a≤1.综上所述知a的取值范围是(0,1].12.解:(1)令x1=x2>0,代入得f(1)=f(x1)-f(x1)=0,故f(1)=0.(2)证明:任取x1,x2∈(0,+∞),且x1>x2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9). 由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.32870 8066 聦D)31616 7B80 简34210 85A2 薢20006 4E26 並23132 5A5C 婜30361 7699 皙%W36165 8D45 赅34656 8760 蝠+w。
人教版2020届高考一轮数学(理)复习:课时作业5 函数的单调性与最值(含答案)
课时作业5 函数的单调性与最值1.下列函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( A )A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e x D .f (x )=ln(x +1)解析:依题意可得函数在(0,+∞)上单调递减,故由选项可得A正确.2.(2019·阜阳模拟)给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( B )A .①②B .②③C .③④D .①④ 解析:①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1, 故y =log 12(x +1)在(0,1)上递减; ③结合图象可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x +1在(0,1)上递增. 故在区间(0,1)上单调递减的函数序号是②③.3.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,则a 的取值范围是( C )A .(0,1)B.⎝ ⎛⎭⎪⎫0,13 C.⎣⎢⎡⎭⎪⎫17,13 D.⎣⎢⎡⎭⎪⎫17,1解析:由f (x )是减函数,得⎩⎪⎨⎪⎧3a -1<0,0<a <1,(3a -1)×1+4a ≥log a 1,∴17≤a <13,∴a 的取值范围是⎣⎢⎡⎭⎪⎫17,13.4.(2019·山西晋城一模)已知函数f (x )=log a (-x 2-2x +3)(a >0且a ≠1),若f (0)<0,则此函数的单调递增区间是( C )A .(-∞,-1]B .[-1,+∞)C .[-1,1)D .(-3,-1]解析:令g (x )=-x 2-2x +3, 由题意知g (x )>0,可得-3<x <1, 故函数的定义域为{x |-3<x <1}. 根据f (0)=log a 3<0,可得0<a <1, 则本题即求函数g (x )在(-3,1)内的减区间.利用二次函数的性质可求得函数g (x )在(-3,1)内的减区间为[-1,1),故选C.5.(2019·河南郑州一模)若函数y =⎪⎪⎪⎪⎪⎪|x |-1x 2在{x |1≤|x |≤4,x ∈R }上的最大值为M ,最小值为m ,则M -m =( A )A.3116 B .2 C.94D.114解析:可令|x |=t ,则1≤t ≤4,y =t -1t 2, 易知y =t -1t 2在[1,4]上递增, ∴其最小值为1-1=0;最大值为2-116=3116,则m =0,M =3116, 则M -m =3116,故选A.6.(2019·山东济宁模拟)已知函数y =f (x )是R 上的偶函数,对任意x 1,x 2∈(0,+∞),都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(lnπ)2,c =ln π,则( C )A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )解析:由题意易知f (x )在(0,+∞)上是减函数, 又∵|a |=l nπ>1,b =(lnπ)2>|a |,0<c =lnπ2<|a |,∴f (c )>f (|a |)>f (b ).又由题意知f (a )=f (|a |),∴f (c )>f (a )>f (b ).故选C.7.(2019·河南安阳一模)已知函数f (x )满足:①对任意x 1,x 2∈(0,+∞)且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0;②对定义域内的任意x ,都有f (x )=f (-x ),则符合上述条件的函数是( A )A .f (x )=x 2+|x |+1 B .f (x )=1x -x C .f (x )=ln|x +1|D .f (x )=cos x解析:由题意得:f (x )是偶函数,在(0,+∞)上递增. 对于A ,f (-x )=f (x ),是偶函数,且x >0时,f (x )=x 2+x +1,f ′(x )=2x +1>0, 故f (x )在(0,+∞)上递增,符合题意; 对于B ,函数f (x )是奇函数,不符合题意;对于C ,由x +1≠0,解得x ≠-1,定义域不关于原点对称,故函数f (x )不是偶函数,不符合题意;对于D ,函数f (x )在(0,+∞)上不单调递增,不符合题意,故选A.8.已知f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( A )A .(-∞,-2)B .(-∞,0)C.(0,2) D .(-2,0)解析:二次函数y =x 2-4x +3图象的对称轴是直线x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y =-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2),故选A.9.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是[0,1)__.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1,该函数图象如图所示,其单调递减区间是[0,1).10.(2019·珠海模拟)定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝ ⎛⎭⎪⎫12=0,则不等式f (log 19x )>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <13或1<x <3 .解析:由题意知,f ⎝⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=0,f (x )在(-∞,0)上也单调递增.∴f (log 19x )>f ⎝ ⎛⎭⎪⎫12或f (0)>f (log 19x )>f ⎝ ⎛⎭⎪⎫-12,∴log 19x >12或-12<log 19x <0, 解得0<x <13或1<x <3.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x <13或1<x <3.11.(2019·西安模拟)已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )>-1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数. (2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4. 解:(1)令x =y =0得f (0)=-1. 证明:在R 上任取x 1>x 2, 则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f ((x 1-x 2)+x 2)=f (x 1-x 2)+f (x 2)+1>f (x 2), 所以,函数f (x )在R 上是单调增函数. (2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3), 又函数f (x )在R 上是增函数,故x 2+x +1>3,解得x <-2或x >1, 故原不等式的解集为{x |x <-2或x >1}.12.已知函数f (x )=lg ⎝⎛⎭⎪⎫x +a x -2,其中a 是大于0的常数.(1)求函数f (x )的定义域;(2)当a ∈(1,4)时,求函数f (x )在[2,+∞)上的最小值; (3)若对任意x ∈[2,+∞)恒有f (x )>0,试确定a 的取值范围. 解:(1)由x +ax -2>0,得x 2-2x +a x>0, 当a >1时,x 2-2x +a >0恒成立,定义域为(0,+∞), 当a =1时,定义域为{x |x >0且x ≠1},当0<a <1时,定义域为{x |0<x <1-1-a 或x >1+1-a }. (2)设g (x )=x +ax -2,当a ∈(1,4),x ∈[2,+∞)时, ∴g ′(x )=1-a x 2=x 2-ax 2>0. 因此g (x )在[2,+∞)上是增函数, ∴f (x )在[2,+∞)上是增函数. 则f (x )min =f (2)=lg a2.(3)对任意x ∈[2,+∞)恒有f (x )>0. 即x +ax -2>1对x ∈[2,+∞)恒成立. ∴a >3x -x 2.令h (x )=3x -x 2,x ∈[2,+∞). 由于h (x )=-⎝ ⎛⎭⎪⎫x -322+94在[2,+∞)上是减函数, ∴h (x )max =h (2)=2.故a >2时,恒有f (x )>0. 因此实数a 的取值范围为(2,+∞).13.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( D )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x +32x -1,令g (x )=12x +32x -1(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0,得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].14.(2019·海南阶段性测试)已知函数f (x )=2 017x +log 2 017(x 2+1+x )-2 017-x +3,则关于x 的不等式f (1-2x )+f (x )>6的解集为( A )A .(-∞,1)B .(1,+∞)C .(-∞,2)D .(2,+∞)解析:因为函数y 1=2 017x -2 017-x 是奇函数,函数y 2=log 2 017(1+x 2+x )为奇函数,所以函数g (x )=2 017x -2 017-x +log 2 017(x 2+1+x )为奇函数且在(-∞,+∞)上单调递增,∴f (1-2x )+f (x )>6即g (1-2x )+3+g (x )+3>6,即g (x )>g (2x -1),∴x >2x -1,∴x <1,∴不等式f (1-2x )+f (x )>6的解集为(-∞,1).故选A. 15.设函数f (x )=2 017x +1+2 0162 017x +1+2 016sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,π2的最大值为M ,最小值为N ,那么M +N =4_033__.解析:f (x )=2 017x +1+2 0162 017x +1+2 016sin x=2 017x +1+2 017-12 017x +1+2 016sin x=2 017-12 017x +1+2 016sin x .显然该函数在区间⎣⎢⎡⎦⎥⎤-π2,π2上单调递增,故最大值为f ⎝ ⎛⎭⎪⎫π2,最小值为f ⎝⎛⎭⎪⎫-π2,所以M +N =f ⎝ ⎛⎭⎪⎫π2+f ⎝ ⎛⎭⎪⎫-π2= ⎝ ⎛⎭⎪⎫2 017-12 017π2+1+2 016+⎝ ⎛⎭⎪⎫2 017-12 017-π2+1-2 016=4 034-12 017π2+1- 2 017π21+2 017π2=4 034-1=4 033.16.(2019·中山模拟)已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )>0,f (3)=1. (1)判断f (x )的单调性;(2)解关于x 的不等式f (3x +6)+f ⎝ ⎛⎭⎪⎫1x >2;(3)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解:(1)设x 1>x 2>0,则x 1x 2>1,∵当x >1时,f (x )>0,∴f (x 1)-f (x 2)=f ⎝ ⎛⎭⎪⎫x 1x 2>0,∴f (x 1)>f (x 2),∴函数f (x )在(0,+∞)上为增函数.(2)在f (x 1)-f (x 2)=f ⎝ ⎛⎭⎪⎫x 1x 2中,令x 1=9,x 2=3,∴f (9)-f (3)=f (3).又f (3)=1,∴f (9)=2.∴不等式f (3x +6)+f ⎝ ⎛⎭⎪⎫1x >2,可转化为f (3x +6)+f ⎝ ⎛⎭⎪⎫1x >f (9),∴f (3x +6)>f (9)-f ⎝ ⎛⎭⎪⎫1x =f (9x ),由函数f (x )为(0,+∞)上的增函数, 可得3x +6>9x >0,∴0<x <1, ∴原不等式的解集为(0,1). (3)∵函数f (x )在(0,3]上是增函数, ∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立.设g (a )=-2ma +m 2,∴需满足⎩⎪⎨⎪⎧ g (-1)≥0,g (1)≥0,即⎩⎪⎨⎪⎧2m +m 2≥0,-2m +m 2≥0, 解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。
函数的单调性与最值(含答案)
高2011级数学定时训练之函数的单调性与最值1.已知函数y =f (x )是定义在R 上的增函数,则f (x )=0的根 ( )A .有且只有一个B .有2个C .至多有一个D .以上均不对答案 C2.(2008·保定联考)已知f (x )是R 上的增函数,若令F (x )=f (1-x )-f (1+x ),则F (x )是R 上的 ( )A .增函数B .减函数C .先减后增的函数D .先增后减的函数答案 B3.若函数f (x )=x 2+(a 2-4a +1)x +2在区间(-∞,1]上是减函数,则a 的取值范围是 ( )A .[-3,-1]B .(-∞,-3]∪[-1,+∞)C .[1,3]D .(-∞,1]∪[3,+∞)答案 C4.函数f (x )=x 3+ax 2+bx +c ,其中a 、b 、c ∈R ,则a 2-3b <0时,f (x )是 ( )A .增函数B .减函数C .常数函数D .单调性不确定的函数答案 A5.(2009·成都检测)已知函数f (x )=x 2-2x +3在闭区间[0,m ]上最大值为3,最小值为2,则m 的取值范围 ( ) A .[1,+∞) B .[0,2] C .(-∞,-2] D .[1,2]答案 D6.已知函数f (x )在区间[a ,b ]上单调,且f (a )·f (b )<0,则方程f (x )=0在区间[a ,b ]上 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有惟一的实根答案 D 7.函数y =lg(x 2+2x +m )的值域是R ,则m 的取值范围是 ( ) A .m >1 B .m ≥1 C .m ≤1 D .m ∈R 答案 C8.函数f (x )(x ∈R )的图象如下图所示,则函数g (x )=f (log a x ) (0<a <1)的单调减区间是 ( )A .[0,21]B .(-∞,0)∪[21,+∞) C .[a ,1] D .[a ,1 a ]答案 C9.函数f (x )=ln(4+3x -x 2)的单调递减区间是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时限时检测(五) 函数的单调性与最值
(时间:60分钟 满分:80分)
一、选择题(每小题5分,共30分)
1.若函数y =ax 与y =-b x 在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是
( )
A .增函数
B .减函数
C .先增后减
D .先减后增 【答案】 B
2.下列函数中,满足x 1,x 2∈(0,+∞),当x 1<x 2时都有f (x 1)>f (x 2)的是( )
A .f (x )=1x
B .f (x )=(x -1)2
C .f (x )=e x
D .f (x )=ln(x +1) 【答案】 A 3.若函数f (x )的定义域为R ,且在(0,+∞)上是减函数,则下列不等式成立的是( ) A .f ⎝ ⎛⎭
⎪⎫34>f (a 2-a +1) B .f ⎝ ⎛⎭⎪⎫34≥f (a 2-a +1) C .f ⎝ ⎛⎭
⎪⎫34<f (a 2-a +1) D .f ⎝ ⎛⎭
⎪⎫34≤f (a 2-a +1) 【答案】 B 4.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭
⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ) A .(-1,1)
B .(0,1)
C .(-1,0)∪(0,1)
D .(-∞,-1)∪(1,+∞) 【答案】 C
5.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值,设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )最大值为( )
A .4
B .5
C .6
D .7
【答案】 C
6.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2+ax ,x ≤1,ax -1,x >1,若∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成
立,则实数a 的取值范围是( )
A .a <2
B .a >2
C .-2<a <2
D .a >2或a <-2
【答案】 A
二、填空题(每小题5分,共15分)
7.若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.
【答案】 -6
8.设函数f (x )=⎩⎪⎨⎪⎧ -x +a ,x <1,2x ,x ≥1的最小值为2,则实数a 的取值范围是________.
【答案】 [3,+∞)
9.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R )是单函数,下列命题:
①函数f (x )=x 2(x ∈R )是单函数;
②指数函数f (x )=2x
(x ∈R )是单函数;
③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2);
④在定义域上具有单调性的函数一定是单函数.
其中的真命题是________.(写出所有真命题的编号)
【答案】 ②③④
三、解答题(本大题共3小题,共35分)
10.(10分)设二次函数f (x )=ax 2+bx +c 在区间[-2,2]上的最大值、最小值分别是M 、m ,集合A ={x |f (x )=x }.
(1)若A ={1,2},且f (0)=2,求M 和m 的值;
(2)若A ={1},且a ≥1,记g (a )=M +m ,求g (a )的最小值.
【解】 (1)由f (0)=2可知c =2,
又A ={1,2},故1,2是方程ax 2+(b -1)x +c =0的两实根.
∴⎩⎪⎨⎪⎧
1+2=1-b a ,2=c a ,
解得a =1,b =-2, ∴f (x )=x 2-2x +2=(x -1)2+1,x ∈[-2,2]. 当x =1时,f (x )min =f (1)=1,即m =1, 当x =-2时,f (x )max =f (-2)=10,即M =10. (2)由题意知,方程ax 2+(b -1)x +c =0有两相等实根x =1,
∴⎩⎪⎨⎪⎧ 1+1=1-b a ,1=c a ,即⎩⎪⎨⎪⎧ b =1-2a ,c =a .
∴f (x )=ax 2+(1-2a )x +a ,x ∈[-2,2],其对称轴方程为x =2a -12a =1-12a
.
又a ≥1,故1-12a ∈⎣⎢⎡⎭
⎪⎫12,1, ∴M =f (-2)=9a -2,
m =f ⎝ ⎛⎭
⎪⎫2a -12a =1-14a , g (a )=M +m =9a -14a
-1. 又g (a )在区间[1,+∞)上为单调递增的,∴当a =1时,g (a )min =314
. 11.(12分)函数f (x )的定义域为(0,+∞),且对一切x >0,y >0都有f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),当x >1时,有f (x )>0.
(1)求f (1)的值;
(2)判断f (x )的单调性并加以证明.
(3)若f (4)=2,求f (x )在[1,16]上的值域.
【解】 (1)∵当x >0,y >0时,f ⎝ ⎛⎭⎪⎫x y =f (x )-f (y ),
∴令x =y >0,则f (1)=f (x )-f (x )=0.
(2)设x 1,x 2∈(0,+∞),且x 1<x 2,
则f (x 2)-f (x 1)=f ⎝ ⎛⎭⎪⎫x 2x 1.
∵x 2>x 1>0,∴x 2x 1>1,∴f ⎝ ⎛⎭⎪⎫x 2x 1>0. ∴f (x 2)>f (x 1),即f (x )在(0,+∞)上是增函数.
(3)由(2)知f (x )在[1,16]上是增函数.
∴f (x )min =f (1)=0,f (x )max =f (16),
∵f (4)=2,由f ⎝ ⎛⎭
⎪⎫x y =f (x )-f (y ), 知f ⎝ ⎛⎭
⎪⎫164=f (16)-f (4), ∴f (16)=2f (4)=4,
∴f (x )在[1,16]上的值域为[0,4].
12.(13分)已知f (x )=x
x -a (x ≠a ).
(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;
(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.
【解】 (1)证明 任设x 1<x 2<-2,
则f (x 1)-f (x 2)=x 1x 1+2-x 2
x 2+2
=x 1-x 2
x 1+x 2+
.
∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增.
(2)任设1<x 1<x 2,则
f (x 1)-f (x 2)=x 1x 1-a -x 2
x 2-a
=a x 2-x 1
x 1-a x 2-a
.
∵a >0,x 2-x 1>0,
∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立, ∴a ≤1.
综上所知a 的取值范围为{a |0<a ≤1}.。