分数 除法 和 比的关系
比的基本性质是什么比除法与分数之间的区别
比的基本性质1.比的前项和后项同时乘或除以相同的数(0除外),比值不变。
2.最简比的前项和后项互质,且比的前项、后项都为整数。
3.比值通常整数表示,也可以用分数或小数表示。
4.比的后项不能为0 。
5.比的后项乘以比值等于比的前项。
6.比的前项除以后项等于比值。
比、除法与分数之间的区别1.意义不同:比表示两个数量之间的相除关系;除法是一种运算;分数是一个数;2.表示方法不同:除法是一种运算,只能用算式表示;比和分数都可以用分数的形式表示,但是分数并不一定表示两个数量的比。
3.结果不同:除法的计算结果是一个商,这个商可以是整数、小数或分数;比只有当要求比值的时候,才需要用除法计算,比值可以用整数、小数或分数表示;而分数就是一个数,不需要计算。
比的基本性质的知识扩展比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
比和比例比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种如:a:b;比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同如:a:b=c:d。
所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的.比和比例的区别:区别区别1:意义、项数、各部分名称不同。
比表示两个数相除;只有两个项:比的前项和后项。
如:a:b 这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。
a:b=3:4 这是比例。
区别2:比的基本性质和比例的基本性质意义不同、应用不同。
比的性质:比的前项和后项都乘以或除以一个不为零的数。
比值不变。
比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。
比例的性质用于解比例。
联系:比例是由两个相等的比组成。
表示两个比相等的式子叫做比例,是比的意义比例有4项,前项后项各2个. 在比例里,两个外项的即等於两个内项的积,这叫做比的基本性质.比表示两个数相除;只有两个项:比的前项和后项。
比与除法的关系
小组合作学习,讨论: 比与除法的关系:
根据比的意义:两个数的比表示两个数相除,比就 相当于除法。比的前项相当于除法中的被除数;比 的后项相当于除法中根据比的意义:两个数的比表 根据比的意义:两个数的比 示两个数相除,比就相当于除法。比的前项相当于 表示两个数相除,比就相当于 除法中的被除数;比的后项相当于除法中的除数; 比号相当于除号;比值相当于除法中的商。的除数; 除法。比的前项相当于除法中 比号相当于除号;比值相当于除法中的商。
比的前项相当于分数的分子和被除数; 比的后项相当于分数的分母和除数; 比号相当于除号和分数线; 比是两个量的关系,除法是运算,分数 只是一个数。
前项 :后项 = 前项(被除数)÷后项 (除数)=前项(分子)/后项(分母)
三、巩固练习 1、先把下面的比改写成除法的形式;再 改写成分数的形式。 72:46 3.4:51 21:18 123:234 2、把除法改写成比和分数和形式。 15÷45 24÷36 42÷24 15÷5
四、课堂总结
今天我学习了比与除法、分数的关 系,你有什么收获呢? 和同桌说一说。
的被除数;比的后项相当于除 法中的除数;比号相当于除号; 比值相当于除法中的商。
2、教学比与除法、分数的关系
先把下面的比改写成除法的形式;再改 写成分数的形式。 2:5= 9:6 = 54:48= 21:49=
思考:(1)怎样把比改写成除法? (2)怎样把除法改写成分数?
小组合作学习,讨论:比与除法、分数 的关系? 归纳小结:比与除法、分数的关系:
人教版小学六年级下册
小腮小学
敖思强
一、复习旧知
1、比的意义
2、分数与除法的关系
分子/分母=分子÷分母 被除数÷除数= 被除数/除数 a/b =a÷b (b≠0) a÷b= a/b (b≠0)
比除法分数三者的关系表
两个数的比
不同类量的比:
同类量的比:(相同单位---升:升;不同单位---升:毫升) 比中的前项和后项是有序的
比、除法、分数三者的关系
化简比
整数比
最简比(最简单的整数比):比的前项和后项只有公因数1
化简比时的三种最基本情况
1页
2页
正比例与反比例的相同点与不同点相同点不同点关系式正比例两种相关联的量,一种量随着另一种量的变化而变化相对应的两个量的比值(商)一定(一定)反比例两种相关联的量,一种量随着另一种量的变化而变化。
相对应的两个量的积一定xy=k (一定) 组成比例的四个数,叫做比例的项。
两端的两项叫做比例的外项,中间的两项叫做比例的内项。
在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。
3页。
比与分数、除法的关系
1 比与分数、除法的关系参考答案典题探究一. 基本知识点:二. 解题方法:例1. 9 ÷6=6: 4 =1.5= 150 %考点: 比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析: 根据“比的前项相当于除法里的被除数,相当于分数里的分子;比的后项相当于除法里的除数,相当于分数里的分母;比值相当于除法里的商,相当于分数里的分数值”进行解答即可.解答: 解:6×1.5=9,6÷1.5=4,1.5=150%;故答案为:9,4,150.点评: 解答此题用到的知识点:(1)比和分数、除法的关系;(2)小数、分数和百分数之间的互化.例2.= 12 :32=3÷8= 37.5 %.考点: 比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析: 解决此题关键在于3÷8,把3÷8的商化成小数是0.375,把小数点向右移动2位同时添上百分号是37.5%;把3÷8化成分数是,用分母8做比的后项,从8到32扩大4倍,分子3做比的前项也扩大4倍是12,变成12:32;分子3从3到24扩大8倍,分母8也扩大8倍是64,变成;分母从8到16扩大2倍,3也扩大2倍是6,变成;由此进行转化并填空.解答: 解:==12:32=3÷8=37.5%.故答案为:6、64、12、37.5.点评:此题考查小数、分数、百分数之间和比、除法之间的转化,根据它们之间的关系和性质进行转化即可.例3.=3÷4=3:4=75%=0.75(小数)考点:比与分数、除法的关系;分数的大小比较.分析:解决此题关键在于,的分子3做被除数,分母4做除数可转化成除法算式为3÷4;的分子3做比的前项,分母4做比的后项也可转化成比为3:4;用分子除以分母得小数商为0.75;0.75的小数点向右移动两位,同时添上百分号可化成75%;由此进行转化并填空.解答:解:=3÷4=3:4=75%=0.75;故答案为:3,4,3,4,75,0.75.点评:此题考查小数、分数、百分数、比和除法之间的转化,根据它们之间的关系和性质进行转化.例4.=(最后一空要求填小数)考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.专题:综合填空题.分析:解决此题关键在于4÷5,4÷5用被除数4做分子,除数5做分母可化成,的被除数和除数同时乘2可化成;的被除数和除数也可以同时乘8可化成;的被除数和除数还可以同时乘16可化成;4÷5得小数商为0.8;由此进行转化并填空.解答:解:4÷5====0.8;故答案为:10,32,80,0.8.点评:此题考查除法、分数和小数之间的转化,根据它们之间的关系和性质进行转化.演练方阵A档(巩固专练)1.甲、乙两数的比是7:5,甲数比乙数多()A.40% B.C.考点:比与分数、除法的关系.专题:运算顺序及法则.分析:在这里把甲看作是7,乙看作5,就是求甲比乙多的占乙的几分之几或百分之几,用甲、乙两数的差除以乙数,求出甲数比乙数多几分之几或百分之几,再选择.解答:解:(7﹣5)÷5=2÷5,=0.4,=40%;故选:A.点评:本题是考查百分数应用题,把乙数看作单位“1”,甲看作是7,乙看作5,就是求甲比乙多的占乙的几分之几或百分之几,用除法计算.2.甲数除以乙数,商是0.4,甲数与乙数的最简整数比是()A.5:2 B.4:1 C.2:5 D.4:10考点:比与分数、除法的关系;求比值和化简比.分析:甲数除以乙数,商是0.4,首先把0.4化成最简分数为,再改写成比2:5,即可作出选择.解答:解:甲数÷乙数=甲数:乙数=0.4==2:5;故选:C.点评:此题主要利用比与分数、除法的关系及小数化分数等知识解答.3.甲数除以乙数,商是0.4.甲数与乙数的最简整数比是()A.0.4:1 B.5:2 C.4:10 D.2:5考点:比与分数、除法的关系;求比值和化简比.分析:关键看商是0.4,把它化成分数可以看作甲2份,乙5份,甲乙的比为2:5.解答:解:甲数÷乙数=0.4=,甲数:乙数=2:5.故选:D.点评:此题考查比与除法的关系.4.在分数、除法和比中,分母、除数和比的后项都不能为()A.自然数B.整数C.零考点:比与分数、除法的关系.分析:在分数、除法和比中,分母、除数和比的后项都不能为0,因为它们为0无意义.比如:在除法算式里,除数为0,3÷0=任何数,因为0乘任何数都得0,研究这样的算式就无意义了.解答:解:在分数、除法和比中,分母、除数和比的后项都不能为0.故选:C.点评:此题考查分数、除法和比中,分母、除数和比的后项都不能为0.5.3÷5=():20=()%=()(填小数).A.12、60、6 B.12、60、0.6 C.12、6、0.6 D.12、60、0.6考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.专题:综合填空题.分析:解答此题的关键是3÷5,根据比与除法的关系,3÷5=3:5,再根据比的基本性质,比的前、后项都乘4就是12:20;3÷5=0.6;把0.6的小数点向右移动两位,添上百分号就是60%.由此进行转化并填空.解答:解:3÷5=12:20=60%=0.6;故选:B.点评:此题考查除式、小数、百分数、比之间的转化,利用它们之间的关系和性质进行转化即可.6.如果a÷b=0.75,那么a:b=()A.7:5 B.3:4 C.4:3 D.4:5考点:比与分数、除法的关系.专题:比和比例.分析:由a÷b=0.75可知b≠0,根据比与除法的关系,a÷b=a:b(b≠0),a:b=0.75==,可以看作3:4的另一种写法,因此,a:b=3:4.解答:解:如果a÷b=0.75,那么a:b=3:4;故选:B点评:本题主查是考查比与除式的关系,比的前项相当于除式中的被除数,比的后项相当于除式中的除数.注意,可以看作3:4的另一种写法.7.3:5的后项增加10,要使比值不变,比的前项应()A.加上10 B.乘2 C.加6 D.都不对考点:比与分数、除法的关系.专题:比和比例.分析:3:5的后项增加10,也就是后项变为5+10=15,15÷5=3,也就相当于比的后项乘3,根据比的基本性质,比的前项也要乘3,3×3=9,9﹣3=6,也就相当于比前项加6.解答:解:3:5的后项增加10,要使比值不变,比的前项应加6,即3:5=9:15.故选:C.点评:本题主要是考查比的基本性质,比的基本性质是比的前、后项都乘或除以同一个数(0除外),比值不变.此题是把比的前、后项都加一个数转化成都乘同一个数,再利用比的基本性质.8.男生人数是女生人数的,男生与女生人数的比是()A.2:3 B.3:2 C.2:5考点:比与分数、除法的关系.专题:比和比例.分析:在这里把女生人数看作单位“1”,则男生人数是,根据比的意义,用男生人数比上女生人数即可(结果化成最简整数比).解答:解:设女生人数为1,则男生人数是,:1=2:3.故选:A.点评:因为男生人数是女生人数的,也可把男生人数看作是2,则女生人数就是3,根据比的意义,男生与女生人数的比是2:3.9.桃树的棵数比李树多,桃树棵数和李树棵数的比是()A.1:5 B.5:6 C.6:5考点:比与分数、除法的关系.分析:根据桃树的棵数比李树多,把李树的棵数看做单位“1”,桃树的棵数就是单位“1”的(1+),进一步写比并化简比即可.解答:解:桃树棵数和李树棵数的比:(1+):1=:1=6:5.故选:C.点评:此题考查根据一个数比另一个数多几分之几,求两个数的比,关键是先求出两个数或两个数对应的分率.10.分数的分母与除法算式中的除数()A.可以是任何数B.不能是0考点:比与分数、除法的关系.专题:分数和百分数.分析:分母也相当于除法算式中的除数,零作除数无意义,因为零和任何数相乘都得零,所以没有一个固定的数值.解答:解:因为零作除数无意义,因为零和任何数相乘都得零,所以没有一个固定的数值,所以分数的分母与除法算式中的除数,都不能为0;故选:B.点评:此题主要考查零作除数无意义.B档(提升精练)1.某校男教师与女教师人数的比是5:3,以下说法不正确的是()A.女教师比男教师少40% B.女教师占全校教师人数的37.5%C.男教师比女教师少全校教师的40% D.男教师是女教师的考点:比与分数、除法的关系.专题:比和比例.分析:在这里把男教师的人数看作5,则女教师的为数就是3,全校教师就是5+3=8.A选项:就是求女教师比男教师少的人数占男教师的百分之几,用女教师比男教师少的人数除以男教师人数;B选项:女教师占全校教师人数的百分之几,用女教师人数除以全校教师人数;C选项:男教师比女教师少与已知条件矛盾,不正确;D选项:求男教师是女教师的几分之几,用男教师人数除以女教师人数.解答:解:A选项:(5﹣3)÷5=2÷5=40%;B选项:3÷(5+3+=3÷8=37.5%;C选项:男教师比女教师少与已知条件矛盾,不正确;D选项:5÷3=.故选:C.点评:在这里把男教师人数看作5,女教师人数看作3,分别求出四个选项,从而看出哪个选项错误.2.如果甲数是乙数的3倍,那么下面哪种说法是不正确的()A.乙数是甲数的B.甲数是甲、乙两数和的C.甲数与乙数的比是3:1 D.甲数与甲、乙两数和的比是1:4考点:比与分数、除法的关系.专题:运算顺序及法则.分析:在这里把乙数看作是1,则甲数是3.乙数是甲数的1÷3=,因此,A选项正确;甲、乙两数和是1+3=4,3÷4=,因此,B选项正确;根据比的意义,甲数:乙数=3:1,因此,C选项正确;3:(3+1)=3:4,即甲数与甲、乙两数和的比是3:4,因此,D选项不正确.解答:解:如果甲数是乙数的3倍,那么下面哪种说法是不正确的是:甲数与甲、乙两数和的比是1:4.故选:D.点评:关键把乙数看作是1,则甲数是3,根据分数的意义,比的意义等写出乙数是甲数的几分之几,甲数是甲、乙两数和的几分之几,甲数与乙数的比,甲数与甲、乙两数和的比是再进行选择.3.把5÷()=0.25==()%所填完全正确的是()A.1,20,25 B.1,2,5,20 C.20,25,1 D.20,1,25考点:比与分数、除法的关系.专题:综合填空题.分析:解答此题的关键是0.25,把0.25化成小数并化简是;根据分数与除法的关系,=1÷4,再根据商不变的性质,被除数、除数都乘5就是5÷20;把0.25的小数点向右移动两位,添上百分号就是25%.由此进行转化并填空.解答:解:5÷20=0.25==25%,即答案为:20,1,25;故选:D点评:此题主要是考查除式、小数、分数、百分数之间的关系及转化,利用它们之间的关系和性质进行转化即可.4.一本故事书已看的页数和未看页数的比是2:3,下面说法错误的是()A.已看的页数是未看页数的B.已看的页数比未看的页数少C.已看了全书页数的D.全书还有没有看考点:比与分数、除法的关系.专题:比和比例.分析:把这本书的总页数看作单位“1”,把它平均分成5份,已经看了2份,未看的3份.也可发看作已看了2页,未看的3页,已看的页数是未看的页数的;把未看的页数看作单位“1”,已看的比未看的少的页数占未年页数的,即已看的页数比未看的页数少;把全书的页数平均分成5份,已看了2份,已看的占全书页数的;已看了全书的,还不1﹣=没有看.解答:解:根据分析,已看的页数是未看页数、已看了全书页数的、全书还有没有看三种说法都正确;(3﹣2)÷3=,即已看的页数比未看的页数少,因此,已看的页数比未看的页数少说法不正确;故选:B.点评:本题考查的知识主要是分数的意义及分数的乘、除法的应用.B选项说法错误的原因是没弄清单位“1”.5.除法中,当商大于被除数时,除数的分子()A.大于分母B.小于分母C.等于分母D.无法确定其与分母的关系考点:比与分数、除法的关系.专题:分数和百分数.分析:除法中,当商大于被除数时,除数小于1,真分数小于1,真分数的分子小于分母,因此除数的分子小于分母.解答:解:除法中,当商大于被除数时,除数的分子小于分母.故选:B.点评:此题是考查分数或小数除法、真、假分数的意义等.在除法中当除数等于1时,商等于被除数,当除数大于1时,商小于被除数,当除数小于1时,商大于被除数.6.甲数是乙数的,甲乙两数的比是()A.B.C.5:6考点:比与分数、除法的关系.专题:比和比例.分析:甲数是乙数的,也就是甲数除以乙数的商是,在这里把甲数看作是5,则乙数是6,根据比与除法的关系,甲乙两数的比也是5:6.解答:解:甲数是乙数的,甲乙两数的比是5:6;故选:C点评:本题主要是考查比与除法的关系.除法中的被除数、除数、商相当比中的前项、后项、比值.7.下列等式中错误的是()A.B.C.D.考点:比与分数、除法的关系.专题:分数和百分数.分析:根据分数与除法的关系,分数中的分子相当于除法中的被除数、分数线相当于除号、分母相当于分母.解答:解:根据分数与除法的关系,9÷1=(即9).因此9÷1=不正确.故选:C.点评:本题主要是考查分数与除法的关系,属于基础知识,要记住.8.如果a除以b等于5除以3,那么a就是b的.×(判断对错)考点:比与分数、除法的关系.分析:把a除以b等于5除以3写成算式为:a÷b=5÷3,算式5÷3的被除数5做分子,3做分母可化成分数为,也就是a÷b=5÷3=;算式可以表示a就是b的.据此进行判断.解答:解:因为a÷b=5÷3=,所以表示a是b的;故答案为:错误.点评:解决此题关键是根据题意先写出除法算式,再计算出商,进而确定a和b的倍比关系即可.9.12÷15==1.2: 1.5=80%=0.8(小数)=八成.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.专题:综合填空题.分析:解答此题的关键是,根据分数与除法的关系,=4÷5,再根据商不变的性质,被除数、除数都乘3就是12÷15;4÷5=0.8;把0.8的小数点向右移动两位,添上百分号就是80%;根据成数的意义,80%就是八成;根据比与分数的关系,=4:5,再根据比的基本性质,比的前、后项都乘0.3就是1.2:1.5.解答:解:12÷15==1.2:1.5=80%=0.8=八成.故答案为:12,1.5,80,0.8,八.点评:本题主要是考查除式、小数、分数、百分数、比、成数之间的关系及转化,利用它们之间的关系和性质进行转化即可.10.25%=3÷12=6:24.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.专题:比和比例.分析:解答此题的关键是25%,把25化成分数并化简是,根据分数与除法的关系=1÷4,再根据商不变的性质被除数、除数都乘3就是3÷12;根据比与分数的关系=1:4,再根据比的基本性质比的前、后项都乘6就是6:24.解答:解:25%=3÷12=6:24.故答案为:12,6.点评:此题是考查百分数、除法、比之间的关系、商不变的性质、比的基本性质等.利用其关系及性质即可转化.C档(跨越导练)1.0.2=12:60=2÷10=20%考点:比与分数、除法的关系.专题:综合填空题.分析:解决此题关键在于0.2,0.2可化成分数,的分子和分母同时除以2可化成最简分数,用分子1做比的前项,分母5做比的后项转化成比1:5,1:5的前项和后项同时乘12可化成12:60;用分子1做被除数,分母5做除数可转化成除法算式1÷5,1÷5的被除数和除数同时乘2可化成6÷10;0.2的小数点向右移动两位,同时添上百分号可化成20%;3434也可由此进行转化并填空.解答:解:0.2=12:60=2÷10=20%;故答案为:60,2,20.点评:此题考查小数、分数、百分数、比和除法之间的转化,根据它们之间的关系和性质进行转化.2.6÷16====0.375=37.5%(填小数与百分数)考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于,的分子和分母同时乘3可化成,分子和分母同时乘5可化成,可化成3÷8,被除数和除数同时乘2可化成6÷16,用分子除以分母得小数商为0.375,0.375可化成37.5%;由此进行填空.解答:解:6÷16====0.375=37.5%;故答案为:6,24,15,0.375,37.5%.点评:此题考查比、分数、除法之间的转化,根据它们之间的关系和性质进行转化即可.3.62.5%==15:24.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于,用分子除以分母得小数商为0.625,0.625的小数点向右移动两位,同时添上百分号可化成62.5%;的分子5做比的前项,分母8做比的后项也可转化成比为5:8,5:8的前项和后项同时乘上3可化成15:24;由此进行转化并填空.解答:解:62.5%==15:24;故答案为:62.5,15.点评:此题考查分数、小数、百分数和比之间的转化,根据它们之间的关系和性质进行转化.4.8÷32=1:4=0.25==25%=二成五<成数>.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于0.25,0.25可改写成分数,(1)的分子1做被除数,分母4做除数可化成1÷4,被除数和除数同乘8可化成8÷32;(2)的分子1做比的前项,分母4做比的后项可化成1:4;(3)的分子1乘3,分母4也乘3可化成;(4)0.25的小数点向右移动两位,同时添上百分号可化成25%;(5)25%也就是二成五;据此进行转化并填空.解答:解:8÷32=1:4=0.25==25%=二成五.故答案为:32,1,12,25,二成五.点评:此题考查小数、分数、百分数以及比之间的转化,关键是从0.25入手,根据它们之间的关系和性质进行转化即可.5.8÷40=3:15=20%=二成.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于3:15,3:15用比的前项3做被除数,比的后项15做除数可化成3÷15,3÷15的被除数和除数同乘可化成8÷40;8÷40得小数商为0.2,0.2的小数点向右移动两位,同时添上百分号可化成20%;20%也就是二成;由此进行转化并填空.解答:解:8÷40=3:15=20%=二成;故答案为:40,20,二.点评:此题考查除法、比、百分数之间的转化,根据它们之间的关系和性质进行转化即可.6.3÷4==15:20=75%=七五折.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解答此题关键是0.75,把0.75化成分数并化简得到,根据分数的基本性质,分子、分母都乘3即可得到;根据分数与除法的关系,=3÷4;根据分数与比的关系,=3:4,再根据比的基本性质,比的前、后项都乘5得到15:20;把0.75的小数点向右移动两位,添上百分号是75%;根据折数的意义,75%就是七折五.由此进行转化并填空.解答:解:3÷4==0.75=15:20=75%=七五折;故答案为:3,12,15,75,七五.点评:此题考查除式、小数、分数、百分数、比和折数之间的转化,利用它们之间的关系和性质进行转化即可.7.0.375==6÷16=3:8=37.5%考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于0.375,0.375可改写成37.5%,也可改写成成,改写成,也可改写成3÷8,进一步改写成6÷16,也可改写成3:8.解答:解:0.375==6÷16=3:8=37.5%.故答案为:24,6,3,37.5.点评:此题考查比、分数、除法之间的转化,根据它们之间的关系和性质进行转化即可.8.0.6=3:5=9÷15=六成=60%考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:(1)(2)先把0.6化成分数,即0.6=,根据分数、比、除法的关系可知:0.6==3:5=3÷5,然后根据商不变规律解答,据此解答第1、2个空;(4)根据小数化成百分数的方法,把小数0.6的小数点向右移动两位,同时加上百分号化成百分数,位数不够的用0补足,据此解答第4个空;(3)根据百分数和折数的互化方法,百分之几十就是几成,把第4个空的百分数化成成数即可.解答:解:(1)(2)0.6==3:5=3÷5=(3×3)÷(5×3)=9:15;(3)(4)0.6=60%=六成;所以:0.6=3:5=9÷15=六成=60%;故答案为:5,9,六,60.点评:本题主要考查比与分数、除法的关系,以及百分数、小数、成数的互化.9.=36÷60=3:5=60%=0.6(小数).考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于,的分子9做被除数,分母15做除数可转化成除法算式为9÷15,9÷15的被除数和除数同乘上4可化成36÷60;根据分数的性质分子和分母同除以3可化成,的分子3做比的前项,分母5做比的后项也可转化成比为3:5;用分子除以分母得小数商为0.6;0.6的小数点向右移动两位,同时添上百分号可化成60%;由此进行转化并填空.解答:解:=36÷60=3:5=60%=0.6;故答案为:36,5,60,0.6.点评:此题考查小数、分数、百分数、比、除法之间的转化,根据它们之间的关系和性质进行转化即可.10.24÷64=6:16=0.375==37.5%.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:首先抓住已知数0.375,直接化成百分数37.5%;再把0.375化成最简分数,改写为3:8,前项和后项同乘2,改为6:16;把改写为3÷8,被除数和除数同乘8,改为24÷64,由此即可得出答案.解答:解:24:64=6:16=0.375==37.5%;故答案为:64,6,,37.5.点评:此题主要考查比与分数、除法的关系,分数的基本性质及小数与百分数的转化等知识.。
比与分数、除法的关系参考答案
比与分数、除法的关系参考答案典题探究一.基本知识点:二.解题方法:例1.9÷6=6:4=1.5=150%考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:根据“比的前项相当于除法里的被除数,相当于分数里的分子;比的后项相当于除法里的除数,相当于分数里的分母;比值相当于除法里的商,相当于分数里的分数值”进行解答即可.解答:解:6×1.5=9,6÷1.5=4,1.5=150%;故答案为:9,4,150.点评:解答此题用到的知识点:(1)比和分数、除法的关系;(2)小数、分数和百分数之间的互化.例2.=12:32=3÷8=37.5%.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于3÷8,把3÷8的商化成小数是0.375,把小数点向右移动2位同时添上百分号是37.5%;把3÷8化成分数是,用分母8做比的后项,从8到32扩大4倍,分子3做比的前项也扩大4倍是12,变成12:32;分子3从3到24扩大8倍,分母8也扩大8倍是64,变成;分母从8到16扩大2倍,3也扩大2倍是6,变成;由此进行转化并填空.解答:解:==12:32=3÷8=37.5%.故答案为:6、64、12、37.5.点评:此题考查小数、分数、百分数之间和比、除法之间的转化,根据它们之间的关系和性质进行转化即可.例3.=3÷4=3:4=75%=0.75(小数)考点:比与分数、除法的关系;分数的大小比较.分析:解决此题关键在于,的分子3做被除数,分母4做除数可转化成除法算式为3÷4;的分子3做比的前项,分母4做比的后项也可转化成比为3:4;用分子除以分母得小数商为0.75;0.75的小数点向右移动两位,同时添上百分号可化成75%;由此进行转化并填空.解答:解:=3÷4=3:4=75%=0.75;故答案为:3,4,3,4,75,0.75.点评:此题考查小数、分数、百分数、比和除法之间的转化,根据它们之间的关系和性质进行转化.例4.=(最后一空要求填小数)考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.专题:综合填空题.分析:解决此题关键在于4÷5,4÷5用被除数4做分子,除数5做分母可化成,的被除数和除数同时乘2可化成;的被除数和除数也可以同时乘8可化成;的被除数和除数还可以同时乘16可化成;4÷5得小数商为0.8;由此进行转化并填空.解答:解:4÷5====0.8;故答案为:10,32,80,0.8.点评:此题考查除法、分数和小数之间的转化,根据它们之间的关系和性质进行转化.演练方阵A档(巩固专练)1.甲、乙两数的比是7:5,甲数比乙数多()A.40% B.C.考点:比与分数、除法的关系.专题:运算顺序及法则.分析:在这里把甲看作是7,乙看作5,就是求甲比乙多的占乙的几分之几或百分之几,用甲、乙两数的差除以乙数,求出甲数比乙数多几分之几或百分之几,再选择.解答:解:(7﹣5)÷5=2÷5,=0.4,=40%;故选:A.点评:本题是考查百分数应用题,把乙数看作单位“1”,甲看作是7,乙看作5,就是求甲比乙多的占乙的几分之几或百分之几,用除法计算.2.甲数除以乙数,商是0.4,甲数与乙数的最简整数比是()考点:比与分数、除法的关系;求比值和化简比.分析:甲数除以乙数,商是0.4,首先把0.4化成最简分数为,再改写成比2:5,即可作出选择.解答:解:甲数÷乙数=甲数:乙数=0.4==2:5;故选:C.点评:此题主要利用比与分数、除法的关系及小数化分数等知识解答.3.甲数除以乙数,商是0.4.甲数与乙数的最简整数比是()A.0.4:1 B.5:2 C.4:10 D.2:5考点:比与分数、除法的关系;求比值和化简比.分析:关键看商是0.4,把它化成分数可以看作甲2份,乙5份,甲乙的比为2:5.解答:解:甲数÷乙数=0.4=,甲数:乙数=2:5.故选:D.点评:此题考查比与除法的关系.4.在分数、除法和比中,分母、除数和比的后项都不能为()A.自然数B.整数C.零考点:比与分数、除法的关系.分析:在分数、除法和比中,分母、除数和比的后项都不能为0,因为它们为0无意义.比如:在除法算式里,除数为0,3÷0=任何数,因为0乘任何数都得0,研究这样的算式就无意义了.解答:解:在分数、除法和比中,分母、除数和比的后项都不能为0.故选:C.点评:此题考查分数、除法和比中,分母、除数和比的后项都不能为0.5.3÷5=():20=()%=()(填小数).A.12、60、6 B.12、60、0.6 C.12、6、0.6 D.12、60、0.6考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.专题:综合填空题.分析:解答此题的关键是3÷5,根据比与除法的关系,3÷5=3:5,再根据比的基本性质,比的前、后项都乘4就是12:20;3÷5=0.6;把0.6的小数点向右移动两位,添上百分号就是60%.由此进行转化并填空.解答:解:3÷5=12:20=60%=0.6;故选:B.点评:此题考查除式、小数、百分数、比之间的转化,利用它们之间的关系和性质进行转化即可.6.如果a÷b=0.75,那么a:b=()考点:比与分数、除法的关系.专题:比和比例.分析:由a÷b=0.75可知b≠0,根据比与除法的关系,a÷b=a:b(b≠0),a:b=0.75==,可以看作3:4的另一种写法,因此,a:b=3:4.解答:解:如果a÷b=0.75,那么a:b=3:4;故选:B点评:本题主查是考查比与除式的关系,比的前项相当于除式中的被除数,比的后项相当于除式中的除数.注意,可以看作3:4的另一种写法.7.3:5的后项增加10,要使比值不变,比的前项应()A.加上10 B.乘2 C.加6 D.都不对考点:比与分数、除法的关系.专题:比和比例.分析:3:5的后项增加10,也就是后项变为5+10=15,15÷5=3,也就相当于比的后项乘3,根据比的基本性质,比的前项也要乘3,3×3=9,9﹣3=6,也就相当于比前项加6.解答:解:3:5的后项增加10,要使比值不变,比的前项应加6,即3:5=9:15.故选:C.点评:本题主要是考查比的基本性质,比的基本性质是比的前、后项都乘或除以同一个数(0除外),比值不变.此题是把比的前、后项都加一个数转化成都乘同一个数,再利用比的基本性质.8.男生人数是女生人数的,男生与女生人数的比是()A.2:3 B.3:2 C.2:5考点:比与分数、除法的关系.专题:比和比例.分析:在这里把女生人数看作单位“1”,则男生人数是,根据比的意义,用男生人数比上女生人数即可(结果化成最简整数比).解答:解:设女生人数为1,则男生人数是,:1=2:3.故选:A.点评:因为男生人数是女生人数的,也可把男生人数看作是2,则女生人数就是3,根据比的意义,男生与女生人数的比是2:3.9.桃树的棵数比李树多,桃树棵数和李树棵数的比是()A.1:5 B.5:6 C.6:5考点:比与分数、除法的关系.分析:根据桃树的棵数比李树多,把李树的棵数看做单位“1”,桃树的棵数就是单位“1”的(1+),进一步写比并化简比即可.解答:解:桃树棵数和李树棵数的比:(1+):1=:1=6:5.故选:C.点评:此题考查根据一个数比另一个数多几分之几,求两个数的比,关键是先求出两个数或两个数对应的分率.10.分数的分母与除法算式中的除数()A.可以是任何数B.不能是0考点:比与分数、除法的关系.专题:分数和百分数.分析:分母也相当于除法算式中的除数,零作除数无意义,因为零和任何数相乘都得零,所以没有一个固定的数值.解答:解:因为零作除数无意义,因为零和任何数相乘都得零,所以没有一个固定的数值,所以分数的分母与除法算式中的除数,都不能为0;故选:B.点评:此题主要考查零作除数无意义.B档(提升精练)1.某校男教师与女教师人数的比是5:3,以下说法不正确的是()A.女教师比男教师少40% B.女教师占全校教师人数的37.5%C.男教师比女教师少全校教师的40% D.男教师是女教师的考点:比与分数、除法的关系.专题:比和比例.分析:在这里把男教师的人数看作5,则女教师的为数就是3,全校教师就是5+3=8.A选项:就是求女教师比男教师少的人数占男教师的百分之几,用女教师比男教师少的人数除以男教师人数;B选项:女教师占全校教师人数的百分之几,用女教师人数除以全校教师人数;C选项:男教师比女教师少与已知条件矛盾,不正确;D选项:求男教师是女教师的几分之几,用男教师人数除以女教师人数.解答:解:A选项:(5﹣3)÷5=2÷5=40%;B选项:3÷(5+3+=3÷8=37.5%;C选项:男教师比女教师少与已知条件矛盾,不正确;D选项:5÷3=.故选:C.点评:在这里把男教师人数看作5,女教师人数看作3,分别求出四个选项,从而看出哪个选项错误.2.如果甲数是乙数的3倍,那么下面哪种说法是不正确的()A.乙数是甲数的B.甲数是甲、乙两数和的C.甲数与乙数的比是3:1 D.甲数与甲、乙两数和的比是1:4考点:比与分数、除法的关系.专题:运算顺序及法则.分析:在这里把乙数看作是1,则甲数是3.乙数是甲数的1÷3=,因此,A选项正确;甲、乙两数和是1+3=4,3÷4=,因此,B选项正确;根据比的意义,甲数:乙数=3:1,因此,C选项正确;3:(3+1)=3:4,即甲数与甲、乙两数和的比是3:4,因此,D选项不正确.解答:解:如果甲数是乙数的3倍,那么下面哪种说法是不正确的是:甲数与甲、乙两数和的比是1:4.故选:D.点评:关键把乙数看作是1,则甲数是3,根据分数的意义,比的意义等写出乙数是甲数的几分之几,甲数是甲、乙两数和的几分之几,甲数与乙数的比,甲数与甲、乙两数和的比是再进行选择.3.把5÷()=0.25==()%所填完全正确的是()A.1,20,25 B.1,2,5,20 C.20,25,1 D.20,1,25考点:比与分数、除法的关系.专题:综合填空题.分析:解答此题的关键是0.25,把0.25化成小数并化简是;根据分数与除法的关系,=1÷4,再根据商不变的性质,被除数、除数都乘5就是5÷20;把0.25的小数点向右移动两位,添上百分号就是25%.由此进行转化并填空.解答:解:5÷20=0.25==25%,即答案为:20,1,25;故选:D点评:此题主要是考查除式、小数、分数、百分数之间的关系及转化,利用它们之间的关系和性质进行转化即可.4.一本故事书已看的页数和未看页数的比是2:3,下面说法错误的是()A.已看的页数是未看页数的B.已看的页数比未看的页数少C.已看了全书页数的D.全书还有没有看考点:比与分数、除法的关系.专题:比和比例.分析:把这本书的总页数看作单位“1”,把它平均分成5份,已经看了2份,未看的3份.也可发看作已看了2页,未看的3页,已看的页数是未看的页数的;把未看的页数看作单位“1”,已看的比未看的少的页数占未年页数的,即已看的页数比未看的页数少;把全书的页数平均分成5份,已看了2份,已看的占全书页数的;已看了全书的,还不1﹣=没有看.解答:解:根据分析,已看的页数是未看页数、已看了全书页数的、全书还有没有看三种说法都正确;(3﹣2)÷3=,即已看的页数比未看的页数少,因此,已看的页数比未看的页数少说法不正确;故选:B.点评:本题考查的知识主要是分数的意义及分数的乘、除法的应用.B选项说法错误的原因是没弄清单位“1”.5.除法中,当商大于被除数时,除数的分子()A.大于分母B.小于分母C.等于分母D.无法确定其与分母的关系考点:比与分数、除法的关系.专题:分数和百分数.分析:除法中,当商大于被除数时,除数小于1,真分数小于1,真分数的分子小于分母,因此除数的分子小于分母.解答:解:除法中,当商大于被除数时,除数的分子小于分母.故选:B.点评:此题是考查分数或小数除法、真、假分数的意义等.在除法中当除数等于1时,商等于被除数,当除数大于1时,商小于被除数,当除数小于1时,商大于被除数.6.甲数是乙数的,甲乙两数的比是()A.B.C.5:6考点:比与分数、除法的关系.专题:比和比例.分析:甲数是乙数的,也就是甲数除以乙数的商是,在这里把甲数看作是5,则乙数是6,根据比与除法的关系,甲乙两数的比也是5:6.解答:解:甲数是乙数的,甲乙两数的比是5:6;故选:C点评:本题主要是考查比与除法的关系.除法中的被除数、除数、商相当比中的前项、后项、比值.7.下列等式中错误的是()A.B.C.D.考点:比与分数、除法的关系.专题:分数和百分数.分析:根据分数与除法的关系,分数中的分子相当于除法中的被除数、分数线相当于除号、分母相当于分母.解答:解:根据分数与除法的关系,9÷1=(即9).因此9÷1=不正确.故选:C.点评:本题主要是考查分数与除法的关系,属于基础知识,要记住.8.如果a除以b等于5除以3,那么a就是b的.×(判断对错)考点:比与分数、除法的关系.分析:把a除以b等于5除以3写成算式为:a÷b=5÷3,算式5÷3的被除数5做分子,3做分母可化成分数为,也就是a÷b=5÷3=;算式可以表示a就是b的.据此进行判断.解答:解:因为a÷b=5÷3=,所以表示a是b的;故答案为:错误.点评:解决此题关键是根据题意先写出除法算式,再计算出商,进而确定a和b的倍比关系即可.9.12÷15==1.2: 1.5=80%=0.8(小数)=八成.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.专题:综合填空题.分析:解答此题的关键是,根据分数与除法的关系,=4÷5,再根据商不变的性质,被除数、除数都乘3就是12÷15;4÷5=0.8;把0.8的小数点向右移动两位,添上百分号就是80%;根据成数的意义,80%就是八成;根据比与分数的关系,=4:5,再根据比的基本性质,比的前、后项都乘0.3就是1.2:1.5.解答:解:12÷15==1.2:1.5=80%=0.8=八成.故答案为:12,1.5,80,0.8,八.点评:本题主要是考查除式、小数、分数、百分数、比、成数之间的关系及转化,利用它们之间的关系和性质进行转化即可.10.25%=3÷12=6:24.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.专题:比和比例.分析:解答此题的关键是25%,把25化成分数并化简是,根据分数与除法的关系=1÷4,再根据商不变的性质被除数、除数都乘3就是3÷12;根据比与分数的关系=1:4,再根据比的基本性质比的前、后项都乘6就是6:24.解答:解:25%=3÷12=6:24.故答案为:12,6.点评:此题是考查百分数、除法、比之间的关系、商不变的性质、比的基本性质等.利用其关系及性质即可转化.C档(跨越导练)1.0.2=12:60=2÷10=20%考点:比与分数、除法的关系.专题:综合填空题.分析:解决此题关键在于0.2,0.2可化成分数,的分子和分母同时除以2可化成最简分数,用分子1做比的前项,分母5做比的后项转化成比1:5,1:5的前项和后项同时乘12可化成12:60;用分子1做被除数,分母5做除数可转化成除法算式1÷5,1÷5的被除数和除数同时乘2可化成6÷10;0.2的小数点向右移动两位,同时添上百分号可化成20%;3434也可由此进行转化并填空.解答:解:0.2=12:60=2÷10=20%;故答案为:60,2,20.点评:此题考查小数、分数、百分数、比和除法之间的转化,根据它们之间的关系和性质进行转化.2.6÷16====0.375=37.5%(填小数与百分数)考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于,的分子和分母同时乘3可化成,分子和分母同时乘5可化成,可化成3÷8,被除数和除数同时乘2可化成6÷16,用分子除以分母得小数商为0.375,0.375可化成37.5%;由此进行填空.解答:解:6÷16====0.375=37.5%;故答案为:6,24,15,0.375,37.5%.点评:此题考查比、分数、除法之间的转化,根据它们之间的关系和性质进行转化即可.3.62.5%==15:24.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于,用分子除以分母得小数商为0.625,0.625的小数点向右移动两位,同时添上百分号可化成62.5%;的分子5做比的前项,分母8做比的后项也可转化成比为5:8,5:8的前项和后项同时乘上3可化成15:24;由此进行转化并填空.解答:解:62.5%==15:24;故答案为:62.5,15.点评:此题考查分数、小数、百分数和比之间的转化,根据它们之间的关系和性质进行转化.4.8÷32=1:4=0.25==25%=二成五<成数>.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于0.25,0.25可改写成分数,(1)的分子1做被除数,分母4做除数可化成1÷4,被除数和除数同乘8可化成8÷32;(2)的分子1做比的前项,分母4做比的后项可化成1:4;(3)的分子1乘3,分母4也乘3可化成;(4)0.25的小数点向右移动两位,同时添上百分号可化成25%;(5)25%也就是二成五;据此进行转化并填空.解答:解:8÷32=1:4=0.25==25%=二成五.故答案为:32,1,12,25,二成五.点评:此题考查小数、分数、百分数以及比之间的转化,关键是从0.25入手,根据它们之间的关系和性质进行转化即可.5.8÷40=3:15=20%=二成.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于3:15,3:15用比的前项3做被除数,比的后项15做除数可化成3÷15,3÷15的被除数和除数同乘可化成8÷40;8÷40得小数商为0.2,0.2的小数点向右移动两位,同时添上百分号可化成20%;20%也就是二成;由此进行转化并填空.解答:解:8÷40=3:15=20%=二成;故答案为:40,20,二.点评:此题考查除法、比、百分数之间的转化,根据它们之间的关系和性质进行转化即可.6.3÷4==15:20=75%=七五折.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解答此题关键是0.75,把0.75化成分数并化简得到,根据分数的基本性质,分子、分母都乘3即可得到;根据分数与除法的关系,=3÷4;根据分数与比的关系,=3:4,再根据比的基本性质,比的前、后项都乘5得到15:20;把0.75的小数点向右移动两位,添上百分号是75%;根据折数的意义,75%就是七折五.由此进行转化并填空.解答:解:3÷4==0.75=15:20=75%=七五折;故答案为:3,12,15,75,七五.点评:此题考查除式、小数、分数、百分数、比和折数之间的转化,利用它们之间的关系和性质进行转化即可.7.0.375==6÷16=3:8=37.5%考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于0.375,0.375可改写成37.5%,也可改写成成,改写成,也可改写成3÷8,进一步改写成6÷16,也可改写成3:8.解答:解:0.375==6÷16=3:8=37.5%.故答案为:24,6,3,37.5.点评:此题考查比、分数、除法之间的转化,根据它们之间的关系和性质进行转化即可.8.0.6=3:5=9÷15=六成=60%考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:(1)(2)先把0.6化成分数,即0.6=,根据分数、比、除法的关系可知:0.6==3:5=3÷5,然后根据商不变规律解答,据此解答第1、2个空;(4)根据小数化成百分数的方法,把小数0.6的小数点向右移动两位,同时加上百分号化成百分数,位数不够的用0补足,据此解答第4个空;(3)根据百分数和折数的互化方法,百分之几十就是几成,把第4个空的百分数化成成数即可.解答:解:(1)(2)0.6==3:5=3÷5=(3×3)÷(5×3)=9:15;(3)(4)0.6=60%=六成;所以:0.6=3:5=9÷15=六成=60%;故答案为:5,9,六,60.点评:本题主要考查比与分数、除法的关系,以及百分数、小数、成数的互化.9.=36÷60=3:5=60%=0.6(小数).考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:解决此题关键在于,的分子9做被除数,分母15做除数可转化成除法算式为9÷15,9÷15的被除数和除数同乘上4可化成36÷60;根据分数的性质分子和分母同除以3可化成,的分子3做比的前项,分母5做比的后项也可转化成比为3:5;用分子除以分母得小数商为0.6;0.6的小数点向右移动两位,同时添上百分号可化成60%;由此进行转化并填空.解答:解:=36÷60=3:5=60%=0.6;故答案为:36,5,60,0.6.点评:此题考查小数、分数、百分数、比、除法之间的转化,根据它们之间的关系和性质进行转化即可.10.24÷64=6:16=0.375==37.5%.考点:比与分数、除法的关系;小数、分数和百分数之间的关系及其转化.分析:首先抓住已知数0.375,直接化成百分数37.5%;再把0.375化成最简分数,改写为3:8,前项和后项同乘2,改为6:16;把改写为3÷8,被除数和除数同乘8,改为24÷64,由此即可得出答案.解答:解:24:64=6:16=0.375==37.5%;故答案为:64,6,,37.5.点评:此题主要考查比与分数、除法的关系,分数的基本性质及小数与百分数的转化等知识.。
苏教版六年级 第三章分数除法 比的基本性质
1 4 (2) : 3 5
1 4 ( 15) : ( 15) 3 5 5 : 12
3 5 : 7 21
3 5 ( 21) : ( 21) 7 21 9:5
4 4 75) : ( 75) 15 25 20 :12 (20 4) : (12 4) 5 : 3 (
小象小复习
1.比的意义:两个数相除又可以叫作两个数的比。 2.比值:比的前项除以后项所得的商叫作比值。 3.比、除法、分数之间的关系: 除 法 分 数 比 联系 除数(不能 为0) 分母(不能 为0) 后项(不能 为0) 区别 一种运 算
被除数
分子 前项
除号
分数 线 比号
商
分数 一类数 值 一种关 比值 系
小象新知识
求出下面每个比的比值,并把比值相等的比填入等式。 4:5 16:20 50:40 40:50
( 4):( 5 )= ( 16):(20 )=(40 ):(50 )
观察上面的等式,联系分数的基 本性质想一想,比会有什么性质?
比的前项和后项同时乘或除以相同的数(0 除外),比值不变。这就是比的基本性质。
4 4 : 15 25
小象随堂练
(3) 0.32 : 0.8
(0.32 100) ∶ (0.8 100) 32 ∶ 80 = 32 16 ∶ 80 16 =2 ∶ 5
1 : 0.25
(1 100) ∶ (0.25 100) =100 ∶25 = 100 25 ∶ 25 25 =4 ∶ 1
6:9 2 : 0.8 15 36 18 12
5 2
3:2
2 3
5 : 12
小象随堂练
6.化简下面的各比。
分数除法的知识点总结
分数除法的知识点总结分数除法是数学中的一种运算方法,用于计算两个分数相除的结果。
它是基于分数的性质和运算规则进行推导和计算的。
下面将对分数除法的知识点进行总结。
1. 分数的定义分数由分子和分母组成,表示分子与分母的比值关系。
分数的分子表示被分割的部分,分母表示整体被分割成的份数。
2. 分数除法的意义分数除法是指将一个分数除以另一个分数,表示一个数被另一个数“分成几份”的操作。
它可以用于实际问题中的比较和计算,如分配物品、计算比例等。
3. 分数除法的计算步骤(1)将除法转化为乘法:将除法转化为被除数乘以倒数的形式,即a ÷ b = a × (1/b)。
(2)约分:将分数化简为最简形式,即将分子和分母同时除以它们的最大公约数。
(3)乘法计算:将分子和分母分别相乘,得到结果的分子和分母。
(4)结果化简:将计算得到的结果再次约分,得到最简形式的结果。
4. 分数除法的性质(1)除以1不变性:任何数除以1等于本身,即a ÷ 1 = a。
(2)零除法的特殊性:任何数除以0是无意义的,即a ÷ 0 不存在。
(3)分数相除的乘法倒数:a ÷ b = a × (1/b)。
(4)分数相除的倒数交换律:a ÷ b = (1/b) × a。
5. 分数除法的特殊情况(1)整数除法:将整数视为分母为1的分数进行计算。
(2)真分数除以假分数:将假分数转化为带分数或整数后再进行计算。
(3)带分数除以分数:将带分数转化为假分数后再进行计算。
6. 分数除法的应用(1)比例计算:可以利用分数除法计算两个比例之间的关系。
(2)物品分配:可以利用分数除法将一定数量的物品按比例分配给多个人。
(3)工作时间计算:可以利用分数除法计算多个人合作完成一项工作所需的时间。
7. 分数除法与其它运算的关系(1)加法与减法:可以利用分数除法将加法和减法转化为乘法运算进行计算。
比例和除法的关系
比例和除法的关系
比例和除法之间有密切的关系,因为比例通常涉及到对量的比较和划分,而除法则是一种用来计算两个数之间的商的数学运算。
1.比例的定义:比例是指两个或多个量之间的关系,通常用两个数之间的比来表示。
例如,如果有两个量 A 和B,它们之间的比例可以表示为A:B 或者A/B。
比例可以用来表示相似、等比例放大或缩小等关系。
2.比例的计算:比例的计算通常涉及到将一个量分成若干个部分,然后将其与另一个量进行比较。
例如,如果有两个量 A 和B,它们之间的比例是3:5,那么意味着A 被分成了 3 个部分,而 B 被分成了 5 个部分。
3.除法与比例的关系:在比例中,通常会涉及到将一个量除以另一个量来得到比例的比值。
例如,在上面的例子中,如果要计算 A 和 B 之间的比例,可以将A 除以B,得到3/5。
这里的除法就是用来计算比例的比值。
4.使用除法解决比例问题:在解决比例问题时,除法是一种常用的计算方法。
通过将一个量除以另一个量,可以得到比例的比值,从而帮助理解问题并进行进一步的计算。
总之,比例和除法之间的关系体现在比例的计算过程中,除法常常用来计算比例的比值,帮助我们理解和解决各种与比例相关的问题。
比和除法的关系
比和除法的关系
比和除法是数学里最基础的运算,它们之间有密切的关系。
本文将介绍比和除法的关系,并解释它们之间的联系。
首先,比和除法都可以用来比较两个数的大小。
如果要比较它们的大小,就需要用比法,其中两数相比较,结果告诉我们哪个数大,哪个数小。
而除法也可以用来比较两个数的大小,只要把它们除以同一个数,结果中较大的那个数即为较大的那个数。
其次,比和除法都可以用来确定两个数之间的比例关系。
在实际生活中,很多时候我们要知道两个数之间的比例关系,就要使用比法,即两个数相比较,结果告诉我们它们之间的比例关系。
此外,除法也可以用来确定两个数之间的比例关系,只要把它们除以同一个数,结果中较大的那个数即为较大的那个数,也就知道了两个数之间的比例关系。
再者,比和除法都可用来计算一个给定数字的百分比。
使用比法计算百分比就是把给定数字与总和作比较,从而得出给定数字所占的百分比。
而除法计算百分比则是将给定数字除以总和,从而得出给定数字所占的百分比。
最后,比和除法也可以用来计算一个已知百分比的数字。
当我们知道一个数字的百分比时,我们可以使用比法来计算它的实际值,即把百分比和总和作比较,从而得出给定百分比的实际值。
而除法计算百分比的实际值则是把百分比除以总和,从而得出给定百分比的实际值。
总之,比和除法之间有着密不可分的关系,它们都可用来比较两个数的大小、确定两个数之间的比例关系、计算一个给定数字的百分比以及计算一个已知百分比的数字等。
由此可见,比和除法都是非常重要的数学运算,有助于我们理解数学的相关知识。
分数与比例的关系
分数与比例的关系分数和比例是数学中常见的概念,它们之间存在着紧密的联系和相互转化的关系。
本文将详细探讨分数与比例之间的关系,以及它们在实际问题中的应用。
一、分数的定义和性质分数是数学中常见的数的形式,由一个整数分子和一个非零的正整数分母组成,用分子除以分母表示。
比如1/2、3/4等就是分数的例子。
对于分数,有一些重要的性质:1. 分数可以表示一部分或一部分之一的数,如1/2表示一半,3/4表示四分之三。
2. 分数可以相互比较大小,如1/2<3/4。
3. 分数可以转化为小数,如1/4=0.25。
4. 分数可以约分,即分子和分母同时除以一个相同的数,例如2/4可以约分为1/2。
5. 分数的分子和分母都可以是正整数、负整数或0。
二、比例的定义和性质比例是一种比较两个或多个有关的量的关系,它表示两个量之间的相对大小。
比例通常用冒号(:)或分数的形式表示,如2:3、2/3等。
对于比例,有一些重要的性质:1. 比例包含两个或多个成比例的量,即这些量之间存在着等比关系。
2. 比例中的各个量通常表示同一种单位或相似的单位。
3. 比例可以相互转化,即可以从比例关系得到等价的比例。
三、分数与比例的关系在数学中,分数和比例之间存在着密切的联系。
分数可以看作特殊的比例,即分母为1的比例。
比如1/2可以看作1:2的比例。
同样地,比例也可以通过除法的形式表示为分数。
如2:3可以表示为2/3的分数。
通过分数和比例之间的转化,我们可以解决一些实际问题。
比如,如果某个班级男生和女生的人数比是3:5,而男生的人数是15人,那么我们可以通过比例的转化计算出女生的人数:15*(5/3)=25。
同样地,如果我们知道男生和女生的人数分别是15和25,我们也可以通过比例的转化计算出男生和女生的比例:15:25=3:5。
四、分数与比例的应用分数和比例在实际问题中有着广泛的应用。
以下是一些常见的应用场景:1. 菜谱中的配方:在菜谱中,食材和配料的比例是制作美味菜肴的关键。
比分数除法之间的关系和区别
2、比值是一个数,是比的前项除以后项所得的商。 它通常用分数表示。而比必须是表示所比较的两 个数,如24比12,也可以写成分数形式但不是分 数。不能把它化成带分数或整数,读法不能按分 数读法读。
3、比的后项不能为零。比值后面不带单位。
被除数相当于分数的分子,除数相当于分数的分母。
被除数÷除数=
被除数 除数
a
a÷b=
(b≠ 0)
b
15÷10 = 3 2
15 : 10 = 3 2
15 = 3 10 2
比较左边的三个等式, 你有什么发现?
15÷10 = 15 : 10 = 15 10
比和除法、分数之间有什么联系和区别?
比和除法、分数的联系和区别
联系
区别
除法 被除数 除号 除数 商 (不能为0)
一种运算
分数
分子 分数线 分母 分数值 (不能为0)
一种数
比 前项 比号 后项 比值 (不能为0)
一种关系
比值=前项÷后项
2. 3 :( 1 )= 24
8
(4 ): 8 = 0.5
后项=前项÷比值 前项=后项×比值
辨一辨:
中国 :日本
4 :0
各类比赛中的比不是我 们这节课学习的比,它 只是一种计分形式,是 比较大小的,是相差关 系,不是相除关系。
1510101015区别除法分数比值一种关系被除数除号除数分子分数线分母分数值一种运算一种数比和除法分数的联系和区别前项比值前项比值比值前项后项各类比赛中的比不是我只是一种计分形式是比较大小的是相差关系不是相除关系
比的意义 读写法以及与分数 除法的关系 知识归纳 典例精析 拔高训练
小学六年级小升初数学专题复习(7)——比的意义、读写法以及与分数、除法的关系¤¤知知识识归归纳纳总总结结一、比的意义知识归纳两个数相除,也叫两个数的比.常考题型例1:男生人数比女生人数多,男生人数与女生人数的比是()A、1:4B、5:7C、5:4D、4:5分析:男生人数比女生人数多,把女生人数看作单位“1”,则男生人数是女生人数的(1+ ),由此即可求出男生与女生的人数的比,据此选择即可.解:(1+ ):1,= :1,=5:4;故选:C.点评:解答本题关键是:判断出单位“1”,求出男生人数是女生人数的几分之几,进而根据比的意义解答即可.例2:甲数是乙数的,乙数是丙数的,甲、乙、丙三数的比是()A、4:5:8B、4:5:6C、8:12:15D、12:8:15分析:根据题干分析可得,设甲数是2x,乙数是3x,则丙数就是3x÷=x,由此即可写出甲乙丙三个数的比是2x:3x:x,根据比的性质,即可得出最简比.解:设甲数是2x,乙数是3x,则丙数就是3x÷=x,所以甲乙丙三个数的比是2x:3x:x=8:12:15,故选:C.点评:此题考查比的意义,关键是根据甲乙丙的关系,分别用含有x的式子表示出这三个数,再利用比的性质化简比.二、比的读法、写法及各部分的名称知识归纳1.读法:几比几,如15:10读作15比10.2.写法:把“比”字用比号代替.如15比10 记作15:10或.3.各部分名称:比的前项:在两个数的比中,比号前面的数叫做比的前项.比的后项:在两个数的比中,比号后面的数叫做比的后项.比值:比的前项除以后项所得的商.常考题型例:比号前面的数叫做比的,比号后面的数叫做比的.分析:在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,据此解答.解:比号前面的数叫做比的前项,比号后面的数叫做比的后项;故答案为:前项,后项.点评:明确比各部分的名称,是解答此题的关键.三、比与分数、除法的关系知识归纳1.联系:比的前项相当于分数的分子、除法中的被除数;比号相当于分数的分数线、除法中的除号;比的后项相当于分数的分母、除法中的除数;比值相当于分数的分数值、除法中的商.2.区别:比是一种关系,分数是一种数,除法是一种运算.常考题型例:=16÷= :10= %= 成.分析:根据比与分数、除法之间的关系,并利用商不变的规律、比的基本性质等知识即可得答案.解:=4÷5=16÷20,=4:5=8:10,=0.8=80%=八成,故答案为:=16÷20=8:10=80%=八成点评:此题主要考查商不变的规律、比的基本性质等知识.¤¤拔拔高高训训练练备备考考一.选择题(共6小题)1.下面哪句关系描述,表示的不是比?()A.和面时,面粉和水的质量比是2:1B.—场足球赛的比分是3:0C.六(1)班女生和男生人数的比是4:52.六(一)班有45人,男生人数和女生人数的比可能是()A.3:1 B.3:2 C.2:5 D.3:4 3.男生人数是女生人数的,男生与女生人数的比是()A.2:3 B.3:2 C.2:54.是()A.一个分数,但不是一个比B.是一个分数,也是一个比C.一个比值5.在a÷b=a:b=中,()不能是0.A.a B.b C.a和b 6.10克盐溶于40克水中,盐与水的比是()A.5:1 B.4:1 C.1:5 D.1:4 二.填空题(共6小题)7.=20:=:20=%.8.:=24÷==(填小数)。
比的计算方法
比的计算方法比的计算方法是一种数学中常见的基本运算方式。
它可以用于比较两个量的大小以及确定它们之间的比率。
比的计算方法通常使用分数表示,其中分子代表第一个数,分母代表第二个数。
接下来,我们将介绍比的计算方法及其应用。
一、比的计算方法比的计算方法是比较两个量大小的方法。
在比的计算中,我们需要找到两个量并将它们表示为分数形式。
比如,如果要比较两个数a和b,我们可以用以下的方法来计算它们的比值:a:b = a÷b其中“:”表示比,“÷”表示除法。
例如,如果a=4,b=2,则a:b=4÷2=2:1。
在比的计算中,我们还需要注意一些特殊情况:1.如果两个量相等,则它们的比是1:1。
2.如果两个量都是0,则它们的比是0:0,这时称为无限比。
3.如果一个量是0,另一个量不是0,则它们的比是0:1。
4.如果两个量都是负数,则它们的比的绝对值与正数相同。
二、比的简化与扩大在比的运算中,我们经常需要将比进行简化或扩大。
简化与扩大的方法如下:1.如果一个比的分子和分母都可以被同一个数整除,则可以将分子和分母都除以这个数,得到一个简化的比。
2.如果一个比的分子和分母之间有一个公共因数,则可以将分子和分母都除以这个公共因数,得到一个简化的比。
3.如果一个比的分子和分母都乘以同一个非0整数,则得到一个扩大的比。
例如,将2:4化简成1:2,将6:9化简成2:3,将2:3扩大成4:6。
三、比的应用比的计算方法在实际应用中有很多用途。
1.比的关系可以用来比较两个量的大小,例如比较两个人收入的大小,或者比较两个商品的价格。
2.比还可以用来计算比例,例如在制作蛋糕时,需要按比例加入面粉,糖和牛奶。
3.比还可以用来表示概率,例如摇骰子时每个数字出现的概率是多大。
4.比还可以用来表示百分比,例如收入增长了20%,或者考试得了80分。
综上所述,比的计算方法是一种数学基本运算,它可以用于比较两个量的大小以及确定它们之间的比率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
除法分数和比的关系
1.除法中商不变的规律 在除法中,被除数与除数同时乘或除以相同的数(0除外),商不变.这就叫做商不变的规律。
250÷50=5 (250×□)÷(50× 4)=5 (250÷50)÷(50○□)=5
2.分数的基本性质
分数的分子和分母同时乘或者除以相同的数(0除外),分数的大小不变。
这叫做分数的基本性质 3.比的基本性质
比的前项和后项同时乘或除以(0除外)相同的数,比值不变,这叫做比的基本性质. 6∶8=(6×1.5)∶(8×1.5)=9∶12 6∶8=(6÷2)∶(8÷2)=3∶4
4.
练习题
一、 填空题:
1、甲与乙的比是2:5,甲数是10,乙数是( )。
2、( )÷4 =( ):( )=(—) = 0.75
3、1吨:250千克化成最简整数比是( ):( ),它的比值是( )。
4、甲乙两数的比是3:4,乙数减甲数得10,乙数是( )。
5、因为a ×=b,根据除法的意义,把它改写成两个除法算式是:( )÷( )=( ), ( )÷( )=( ),根据比的意义,可以得到:( ):( )= ,( ):=( )。
6、小明从家到学校用了8分钟,小红用了12分钟,小明和小红的速度比是( ):( )。
7、有一项工程,甲单独做16天完成,乙单独做12天完成,甲乙的工作效率之比是( ):( ),甲的工作效率是乙的工作效率的(—)。
8 .10分米: 2米的比值是(),化成最简整数比是()。
9.六(1)班有45名同学,共买了225本练习本。
练习本的总数与人数的比是(),化成
最简整数比是()。
10.甲、乙两个数的比值是,如果乙数除以3,要使比值不变,那么甲数()。
11.甲、乙两个数的比值是0.36,如果甲数乘以5,要使比值不变,那么乙数()。
12.甲、乙两个数的比值是,如果甲、乙两数都乘4,那么比值是()。
13..甲、乙两个数的比值是6,如果甲、乙两数都除以6,那么比值是()。
52
5252
二、根据下面的线段图,写出下面的比。
由上图可知:
1、甲占( )份,乙占( )份。
2、甲数与乙数的比是( ),表示甲数是乙数的(—),也表示甲数是乙数的( )倍。
3、乙数与甲数的比是( ),表示乙数是甲数的(—),也表示乙数是甲数的( )倍。
4、甲数与甲乙两数之和的比是( ):( ),表示( )。
5、乙数与甲乙两数之和的比是( ):( ),表示( )。
6、甲数比乙数多的与乙数的比是( ):( )表示( )比( )多(—)。
7、乙数比甲数少的与甲数的比是( ):( )表示( )比( )少(—)。
8、若甲为80,则乙为( ),若乙为80,则甲为( )。
9、若甲乙之和为14,则甲为( ),乙为( )。
10、若甲比乙多8,则甲为( ),乙为( )。
11.(
)÷32=24∶( )=()% =83
()÷4=
20
()
=0.25=5÷( )=( )% ( )∶( )==()÷10=( )%
( ):16 =75%=12()
=()÷40=()折
()
30=12:()=1.2=()÷20=()%
8÷( )=():4=0.25=3() =()%=成数()
9:15 =()÷45=3:()=()%=小数() =折扣()
三、根据下面的条件,用线段图表示:
1、甲是乙的。
2、男生比女生多。
3、杏树与桃树的比是3:4。
4、鸡比鸭少。
32
31
41。