浅谈解析几何中减少运算量的几种策略

合集下载

减少解析几何运算量的几种方法解读

减少解析几何运算量的几种方法解读

减少解析几何运算量的几种方法江苏省高淳高级中学 周宝金 211300解析几何是一门利用代数方法解决几何问题的学科,解决问题时代数运算策略尤其重要,如果方法不得当往往陷入繁琐的运算中,而合理的方法能起到事半功倍的作用,下面谈谈减少解析几何运算量的一些方法: 1.追根溯源,回归定义例1.给定A (-2,2),已知B 是椭圆2212516x y +=上的动点,F 是左焦点,当5||||3BA BF +取得最小值时,求B 点坐标。

解:由椭圆第二定义得:||5||||3BF BN BF e ==,于是5||||||||||||3BA BF AB BN AN AM +=+≥≥(|AM|长为定值),当且仅当B 点是线段AM 与椭圆的交点时等号成立,可解得B的坐标是2). 2.设而不求,整体代换 例2. (2005全国卷Ⅰ理)已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OA OB +与(3,1)a =-共线. (1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且(,)OM OA OB R λλλμ=+∈,证明22λμ+为定值.解:设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为y x c =-,代入 22221x y a b+=化简得02)(22222222=-+-+b a c a cx a x b a .令),,(),,(2211y x B y x A 则 .,22222222122221ba b a c a x x b a c a x x +-=+=+由1212(,)OA OB x x y y +=++ ,(3,1)a =-,OA OB +与a 共线,得 12123()()0.y y x x +++= 又 1122,y x c y x c=-=-∴12123(2)()0x x c x x +-++=∴1232c x x += 即 222232a c c a b =+,∴223a b =∴c ==故离心率为3c e a ==(II )证明:由(I )知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.设(,)OM x y =,由已知得1122(,)(,)(,)x y x y x y λμ=+∴1212x x x y y y λμλμ=+⎧⎨=+⎩),(y x M 在椭圆上,∴ 2221212()3()3.x x y y b λμλμ+++= 即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由(I )知 .21,23,23222221c b c a c x x ===+ ∴22222122238a c ab x xc a b -==+∴1212121233()()x x y y x x x c x c +=++--222212123943()330.22x x x x c c c c c =-++=-+=又222222212133,33b y x b y x =+=+,代入①得 .122=+μλ故22μλ+为定值,定值为13.活用三角换元例3.设,a b R ∈,2226a b +=,则a b +的最小值是 ( ) A.-B.3-C .-3D .72-解:由已知:22163a b +=,令a b θθ⎧=⎪⎨=⎪⎩∴3cos()a b θθθϕ+=+=- ∵R θ∈ ,∴33a b -≤+≤∴a b +的最小值为-3,故选C 4.利用图形的性质化繁为简例4.已知P 点在圆22(4)1x y +-=上移动,Q 点在椭圆2219x y +=移动,求|PQ|的最大值。

降低解析几何运算量的十种常用策略

降低解析几何运算量的十种常用策略

降低解析几何运算量的十种常用策略在解决有些解析几何问题时,如果方法选择不当,往往导致计算量过大,如果不具备较高的解几运算能力,就不易得到正确的运算结果。

那么如何正确地选择方法,减少解析几何题的计算量呢?下面介绍几种减少计算量的常用方法。

(1)设而不求【题1】已知直线l 交椭圆805422=+y x 于N M ,两点,椭圆与y 轴的正半轴交于B 点,若BMN ∆的重心恰好落在椭圆的右焦点上,则直线l 的方程是 。

【分析】如图,椭圆的右焦点既是△BMN 的重心,容易求出边MN 的中点坐标,那么求直线l 的方程,关键在求该直线的斜率。

若用常规方法,须设直线的点斜式方程,代入椭圆方程,而后利用韦达定理及线段的中点公式求之.显然这个计算量是不菲的。

更好的方法是: 【解析】由2222458012016x y x y +=⇒+=。

故椭圆上顶点B (0,4),右焦点F (2,0)为△BMN 的重心,故线段MN 的中点为C (3,-2)。

设直线l 的斜率为k.,点()()1122,,,M x y N x y 在椭圆上,∴2211222245804580x y x y ⎧+=⇒⎨+=⎩0))(())((421212121=+-++-y y y y x x x x 5646545421212121=-⋅-=++⋅-=--⇒y y x x x x y y所求直线方程为:02856)3(562=--⇒-=+y x x y 。

【评注】我们用参数设置了M,N 两点的坐标,但在解题过程中没有也不必要去求这些参数,而是根据它们应该满足的题设条件剖析出所需要的结果.这种的解题方法叫做设而不求.(2)使用特值【题2】已知在离心率为65的双曲线)0(12222>>=-b a by a x 中,F 为右焦点,过F 点倾斜角为60的直线与双曲线右支相交于B A ,两点,且点A 在第一象限,若满足→=→FB m AF 1则=m 。

减少解析几何运算量的若干方法

减少解析几何运算量的若干方法

减少解析几何运算量的若干方法在解决有些解析几何问题时,如果方法选择不当,往往导致计算量过大,如果不具备较高的解几运算能力,就不易得到正确的运算结果。

那么如何正确地选择方法,减少解析几何题的计算量呢?下面介绍几种减少计算量的常用方法。

一、回归定义,以简驭繁圆锥曲线的许多性质是由定义派生出来的。

解题时,应善于运用圆锥曲线的定义,以数形结合的思想为指导,把定量的分析有机结合起来,则可使解题计算量大为简化,使解题构筑在较高的水平上。

例1、在面积为1的ΔPMN 中,tg ∠PMN =21,tg ∠2-=MNP ,建立适当的坐标系,求以M 、N 为焦点且过点P 的椭圆方程(93年高考题)分析:在该题的题设条件中,其实是给出了ΔPMN 的两内角的大小及它的面积。

因此我们应考虑如何应用平几知识和椭圆定义将问题解决。

解:建立如图1所示的坐标系,设所求的椭圆方程为12222=+by a x ,则由椭圆定义有PN PM a +=2,MN c =2,过点P 向x 轴作垂线,垂足为A ,tg ∠2-=MNP ,tg ∴∠2=PNA 。

由平面几何知识有:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=-=⋅==.,121,2,21MN AN AM PA MN AN PA MA PA⎪⎪⎪⎩⎪⎪⎪⎨⎧====⇒.33,334,3,332AN AM MN PA ⎪⎪⎩⎪⎪⎨⎧==⇒.315,3152PN PM 152=+=∴PN PM a ,,215=a 4152=a ,32==MN c ,23=c , 3222=-=∴c a b 。

∴所求的椭圆方程为1315422=+y x 说明:在上述解题过程中,PM PN +是所求椭圆的长轴长,它是减轻本题运算量的关键。

例2、长度为a 的线段AB 的两端点在抛物线2x =2py(a ≥2p >0)上运动,以AB 的中点C 为圆心作圆和抛物线的准线相切,求圆的最小半径(85年湖北省六市高考预选题)。

分析:这里其实就是要求定长弦AB 的中点C 到准线的最小距离。

减少解析几何运算量的常用策略

减少解析几何运算量的常用策略

减少解析几何运算量的常用策略解析几何是在坐标系的基础上,用代数方法研究几何图形性质的一门数学学科,因此代数学运算就不可避免地出现在其中,如果解题时思维的起点与方法选择的不当,则不是繁琐就是出错,因此,运用解题的思维策略,选择恰当的思维起点与方法,以最大限度地减少解析几何的运算量1. 回到定义 定义、定理是对数学对象的本质属性的概括和内在规律的揭示,只有深刻地理解概念的本质和定理所揭示的内在规律,才能灵活运用它来简化解题过程.有的问题虽可以不依赖于定义,但如能回到定义,则常能使问题获得简捷的解法,波利亚就提倡“回到定义”.例1 一直线被两直线1l :032=++y x 和2l :0632=--y x 截得的线段的中点恰好是坐标的原点.求这条直线的方程.简析略解:此题的一般求解思路是:先求出l 分别与1l 、2l 的交点(用l k 表示),然后利用中点坐标公式求出l k ,进而得到l 的方程,这样运算量太大.如果我们对直线与方程的定义有深刻的理解,就会自觉地利用定义,并结合运用设而不求的技巧来寻求简捷解法. 设l 分别与1l 、2l 交于点M 、N ,又设M 的坐标为(11,y x ),则有03211=++y x ① 又因为M 、N 关于O 对称,所以点N 的坐标为(11,y x --),则有0632=-+-y x ② ①×2+②,得05211=+y x .可见M 11,(y x )在l :052=+y x 上,又此直线过原点,由两点确定一直线知所求直线的方程为052=+y x .例2 已知12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是该椭圆上的一动点,MN 是12F MF ∠的外角平分线,2F Q MN ⊥于Q ,求动点Q 的轨迹方程.略解:设(,)Q x y ,延长2F Q 和直线1F M 相 交于P ,则(2,2)P x c y -,且MPQ ∆≌2MF Q ∆.所以2MP MF =,2PQ F Q =,由椭圆的定义得:111F P MF MP MF =+=+所以 222(2)(2)(2)x c c y a -++=, 即222x y a +=所以,动点Q 的轨迹方程为222x y a +=.2.设而不求例3 已知ABC ∆的三个顶点都在椭圆224580x y +=上,若(4,0)A ,ABC ∆重心是椭圆的右焦点,求直线BC 的方程.简析略解:因(4,0)A 为椭圆的短轴的顶点,右焦点(2,0)F 为ABC ∆重心,所以F 的坐标与三顶点,,A B C 的坐标有关,故设1122(,),(,)B x y C x y ,则又因为,B C 在椭圆上,故由①、②、③、④求出B、C两点的坐标,再求直线BC 的方程.对思维监控评价:这里解题的方向是正确的,但通过四个方程来求出四个坐标的运算是比较麻烦的,能否有比较简单的途径呢?由③-④得:121212124()()5()()0x x x x y y yy +-++-=. 由题意知:120x x -≠,将①、②整体代入得121265y y x x -=-,这个正好是直线BC 的斜率 121265BC y y k x x -==-,而BC 的中点坐标1212(,)22x x y y M ++,即(3,2)M -, 所以直线BC 的方程为:62(3)5y x +=-.问题之所以得到简捷地解答,就是用了设而不求的策略. 3.用好对称数学中的对称是广义的,有几何图形的对称,数量关系式结构的对称,对偶等,用起来比较灵活,而解析几何中的对称还是比较直观的,要是能灵活运用,可化繁为简,化难为易.例4 如图2,在直线:90l x y -+=上任取一点M ,经过M 点且以椭圆221123x y +=的焦点为焦点作椭圆,问当M 在何处时,所作椭圆的长轴最短,并求出具有最短长轴的椭圆方程.简析略解: 椭圆两焦点为1(3,0)F -,2(3,0)F 作1F 关于直线l 的对称点'1F ,要使所作椭圆的长轴12023x x ++= 12003y y ++=126x x += ①124y y +=- ②⇒22114580x y += ③22224580x y += ④最短,即12MF MF +最短,也就是'12MF MF + 最短,故M 点应是直线'12F F 与已知直线l 的交点, 如图2.直线'11F F 的方程为:30x y ++=,由方程组得点(6,3)P -,由中点坐标公式得'1(9,6)F -,故直线'12F F 的方程为:230x y +-=.解方程组 得所求M 点的坐标为(-5,4).由于'122F F a ==,此时椭圆的方程为2214536x y +=. 注:怎样能使椭圆的长轴最短?当然想到椭圆的定义.最小――折线段的和最短――三点一直线――寻找对称点――对称变换.简明的解法找到了.对称,能提供一种清晰的想象力,这种想像力常能使我们看到并发现用别的方法也许较难发现的关系.4.活用平几由于解析几何就是用代数方法研究几何图形性质的一门数学学科,所以平面几何的许多知识就能使我们的思路来得直观明了.例5(2001年全国高考试题)设抛物线22(0)y px p =>的焦点为F ,经过F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且BC ∥x 轴,证明直线AC 经过原点O .简析略证:如图3,记 x 轴与准线l 交点E,过A作AD l ⊥,垂足为D,则AD ∥FE ∥BC .连结AC ,与EF 相交于点N ,则由平几知识得:EN CN BF AD AC AB ==,NF AFBC AB=, 根据抛物线的几何性质,AF AD =,BF BC =, 所以 AD BF AF BCEN NF AB AB∙∙===,即N 是EF 的中点,与抛物线的顶点O重合,所以直线AC 经过原点O .5.巧用向量向量是高中教材的新增内容,由于向量具有几何和代数的双重属性,以向量为工具,改变了传统的平面三角、解析几何、立体几何等内容的学习体系,使几何问题彻底代数化了,使数形结合思想体现的更深刻、更完善.30x y ++=90x y ++=30x y ++=90x y ++=E例6 (1999年全国高中数学联赛试题)已知点(1,2)A ,过点(5,2)D -的直线与抛物线24y x =交于B,C两点,试判断ABC ∆的形状.解:设211(,2)B t t ,222(,2)C t t ,12t t ≠,11t ≠,21t ≠,则有211(5,22)DB t t =-+,222(5,22)DC t t =-+.∵ B,C,D三点共线, ∴ DB ∥DC .所以 212(5)(22)t t -+-221(5)(22)t t -+=0⇒121250t t t t +++=⇒ 12(1)(1)4t t ++=-.又AB AC ∙=211(1,22)t t --∙222(1,22)t t --=21(1)t -22(1)t -+1(22)t -2(22)t -=1(1)t -2(1)t -[1(1)t +2(1)t ++4]=0,所以 AB AC ⊥,故ABC ∆为直角三角形.例7 已知圆22:4C x y +=和两个定点(1,0),(1,0)A B -,点P为圆C上的动点,过点P的圆C的切线为l ,点A关于l 的对称点为/A ,求/AB 的最大值.分析:本题的常规解法是:首先求出点/A 的轨迹方程,再利用两点间距离公式去求/AB 的表达式(要运用点/A 的轨迹方程将二元函数问题转化为一元函数最值),进而求出/AB 的最大值.这里所用的纯解析法虽然思路很直接,但求出点/A 的轨迹方程是一个难点,很难突破,并且运算量大,过程繁琐.而平面向量的几何计算灵活方便,运用平面向量的运算法则合理安排运算,使问题的解决变得简洁.解:如图1,设/AA 与直线l 交于点Q ,连接OP 由,O Q 分别为',AB AA 的中点, 得OQ ∥'A B ,且/2A B OQ =.又',AA l OP l ⊥⊥,故OP ∥'AA .设(0)AQ mOP m =>,2OP =,则OQ OA AQ OA mOP =+=+,(1)PQ OQ OP OA m OP =-=+-,由题意得OP PQ ⊥,则OP PQ ∙=0,即OP ∙[(1)]OA m OP +-=0, 即OP ∙2(1)OA m OP +-=0,得 OP ∙4(1)OA m =-.又 22OQ OA mOP =+=2222OA mOA OP m OP +∙+∙==1+224(1)4m m m ⨯-+=-224814(1)5m m m ++=--+,∵ 0m >, ∴ 当1m =时,2max5OQ =,∴ maxOQ=.所以 /maxA B=max2OQ=,此时 AQ OP =,点P 的坐标为(0,±2),切线方程为y =±2,点'A 的坐标为(-1,±4).6.利用极坐标例8 已知椭圆1162422=+y x ,直线l :1812=+yx . P是l 上一点,射线OP 交椭圆于R,又点Q在OP 上且满足 OQ 上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线.(1995年全国高考压轴题)解题的策略分析:本题是求动点Q),(y x 的轨迹方程,即找到关于y x ,的等式,可以用一般法来解,即设点Q),(y x ,Q),(Q Q y x ,R),(R R y x ,再布立方程组来解.但必须看到这里有y x ,,Q Q y x ,,R R y x ,六个末知量,这样,所立的方程组中不下五个方程,因此,即使可解,也该暂缓,看有否别的方法?从条件2OR OP OQ =⋅知,这是一个与长度与角度有关的问题,故可用参数法求解比较简单.但不要就此停步,再看是否还有别的方法?的确,用极坐标法来解将会显得更简捷.在分辩了方法间的优劣之后,策略层面的问题已经解决,但仍不要大意,要继续细心分辩,因为在选择极坐标法来解后,还有个极点选在原点还是在椭圆左焦点的问题,它关系到极坐标方程是用统一式还是用互化式的问题,这是一个学生用极坐标法来解时常常难以选择.这里考虑到OR OP OQ ,,都是从原点出发的线段长度,故选用以坐标原点为极点来解,即不用统一式而用互化式.这样,分辩清了,简捷的方法、合理的运算和要运用的知识也就自然择优而定了. 7.用好焦半径公式例9 如图已知梯形ABCD 中AB =2CD , 点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A ,B 为焦点,当32≤λ≤43时,求双曲线的离心率e 的取值范围.(2000年全国高考试题)解题的策略分析:一看到这个题,不要说当年一些普通考生望题兴叹,就是一些基础不错的考生也没了头绪,这不但是由于它是一个双参数范围问题,而且是在未知双曲线方程的情况下来求离心率e 的取值范围,再加上大家期望要用上的已知条件:32≤λ≤43中的λ,又是大家在日常解题中着实有点感到后怕的“点E 分有向线段AC 所成的比”.这时,一些有思维策略的学生就有了用武之地:他们首先从审题后看到题设中无系无方程,因此,用分而治之的策略,从建立坐标系,确立方程的形式入手:如图以AB 的垂直平分线为y 轴, 以AB 所在的直线为x 轴,建立 直角坐标系xoy ,则CD ⊥y 轴. 因为双曲线过C 、D ,且以A ,B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称,并设双曲线方程为22a x —22b y =1 (a >0,b>0), 则离心率e =a c. 在做好这一基础性工作的前题下,如何由λ的范围来求e 的范围就成了解决本题的思维核心,他们看到在本题这个双参数问题中,λ和e 既互相制约,又在一个矛盾中统一(统一在一个方程里),这是考查学生在解题某个阶段视哪一个为主元,哪一个辅元,而在解题另一个阶段,又需要主辅互换,反客为主,真是个考查辩证思维的绝妙押轴题.这虽难,但也正是考生一显身手,展示自己思维能力的好地方,也是与众考生一决高下的分水岭.因此,他们根据λ的范围已知这一条件,进而确立:先视λ为主元,再视e 为主元,找出两个参数之间的关系λ=)(e f ,将问题转化归为已知范围,再解不等式,由此求出参数e 的范围这样一个整体的思路和思维策略.于是,他们先视λ为主元,找λ的关系式: 依题意,记 A (c -,0 ) , C (2c ,h ),E (0x ,0y ),其中c =AB 21为双曲线的半焦距,h 是梯形的高.由定比分点公式得:0x =λλ++-12c =)1(2)2(λλ+-c , 0y =λλ+1h .但在如何再视e 为主元,找出两个参数之间的关系λ=)(e f 上,是又一次体现思维水平的层次性和思维策略的重要性.视角一:视点C 、E 为直线AC与双曲线的交点,这时,虽能把方程2()3hy x c c=+代入22a x —22by =1得:22222222222(94)8(49)0b c a h x a h cx a h a b ---+=.这一常规思路虽正确,解题方向也不错,但要用上这一方程不但难,而且繁,在应试的情况下当然应另辟蹊径.思路敏锐的学生在不代前就暂时放弃了.视角二:视点C 、E 在双曲线上,将C 、E 的坐标和e =ac代入双曲线的方程,得 42e —22b h =1 ① 42e ·2)12(λλ+-—2)1(λλ+22b h =1 ②由①得:22b h =42e — 1 ③将③式代入②式整理得: 42e (4λ4-)=1+2λ, 故得λ=1232+-e .由题设32≤λ≤43 , 得 32≤1232+-e ≤43 ,故得 7≤e ≤10.所以双曲线的离心率e 的取值范围是[7.10].视角三:视AC 、AE 为点C 、E 到焦点A的距离,由焦半径公式得:2c eaAC a ex a =+=+, (2)2(1)E e c AE a ex a λλ-=--=--+.而AC 、AE 同号,从而11AC AC AEAE λ==+. 所以 ()121(2)21ca ec a e λλλ++=---+ ⇒ 2213211e λλλ+==-+--. 由题设32≤λ≤43 , 得 32≤1232+-e ≤43 ,故得 7≤e ≤10.所以双曲线的离心率e的取值范围是[7.10].这里同是C、E二点,但由于解题思维策略的运用,从不同的视角出发,使解题的切入点和解题的方向各不相同,对同一问题解答所用的知识、方法和也不同.,其中视角二下的方法比较简单,而视角三下的方法,运用焦半径公式来解,在简捷中更显得灵活,真是:“横看成岭侧成峰,远近高低无一同”.简化解答虽不是突破性的进展和创造,却也是对已经取得成果的改造和推进. 对学生来说, 则是一种对所学知识的灵活运用和高超驾驭基础上的创新, 是一种精神的升华和对数学美的追求. 从中体现出思维的批判性、深刻性、广阔性、敏捷性和解题的艺术性. 因此, 培养学生的求简精神, 不仅是正确、迅速解题的需要和保证,而且是优化思维品质、领悟数学精神、提高创新能力的有效途径.。

概谈解析几何的减少计算量问题Word版(齐市一中董洁)2019.3.22

概谈解析几何的减少计算量问题Word版(齐市一中董洁)2019.3.22

概谈解析几何的减少计算量问题齐市一中 董洁一、会用定义法简化运算:1、 利用定义可以判断曲线形状,方便快捷的写出曲线方程。

(求动点轨迹)例1、Rt ABC ∆中,90,4,ABC AB BC ABD ∠===∆中,120ADB ∠=,求CD 的取值范围。

答案:[2,2](要点分析:点D 的轨迹在两个圆弧上)2、 利用定义可以实现线段间的转化(椭圆、双曲线、抛物线、圆的切线等问题中与定义有关的最值问题)例2、双曲线22221(0,0)x y a b a b-=>>的左焦点为(F ,点(0,2)A ,点P 为双曲线右支上的动点,且APF ∆周长的最小值为8,则双曲线的离心率为( D )A B C 、2 D(要点分析:将|AF |转化为点A 到另一个焦点的距离)二、善用几何法简化运算(在抛物线中应用较多)1、利用曲线的几何性质简化运算。

例3、(2018全国2)设抛物线2:4C y x =的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A 、B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程。

答案:(1)1y x =-(2)22(3)(2)16x y -+-=或22(11)(6)114x y -++=(要点分析:不可只用“以AB 为直径的圆与准线相切”得出一个圆的方程,而丢了另一个,因为过A 、B ,且与准线相切的圆不是一定以AB 为直径。

法一:可设圆心坐标,借助圆的几何性质列方程组求出。

法二:可知圆心在线段AB 的垂直平分线上且在以B 为焦点,直线1x =-为准线的抛物线上,联立即得圆心及半径。

)2、利用相似将线段长度比转化为横(纵)坐标之比或反之。

例4、(2018全国1)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于A 、B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程;(2)设O 为坐标原点,证明:OMA OMB ∠=∠.答案:(1)2y x =-2y x = (要点提示:第(2)问解法一:可证MA 与MB 斜率之和为零。

浅谈解析几何中简化运算的常用策略

浅谈解析几何中简化运算的常用策略

浅谈解析几何中简化运算的常用策略解析几何难在运算,要想突破这一难关,除了平时要注意培养良好的意志品质外,更主要的是要掌握一些有效减少运算量的方法,希望以下几种方法,对大家能有所帮助。

策略一追根溯源,回归定义圆锥曲线定义反映了圆锥曲线的本质特性,揭示了它们存在的条件及其所包含的性质,用定义解题,简捷明快,省时高效。

例1设是抛物线的焦点,直线过交抛物线于、两点,点满足条件;(1) 证明:以为直径的圆与抛物线的准线相切;(2) 若是抛物线上一点,且的最小值为5,求、的值。

分析:本题如果不用定义,就势必用点到直线的距离公式和两点间的距离公式,如(2)中,在求最小值时,遇到了两根式函数和的最值问题,相当复杂。

解:(1)设中点为,分别过、、点作准线的垂线,垂足分别为、、,由抛物线定义可知:所以,以直径的圆与准线相切。

(2)过作于,交抛物线于点,则为所求评注:利用圆锥曲线解题,应注意以下几种情形:①涉及椭圆、双曲线上的点与两个焦点构成的三角形问题,常用第一定义结合正、余弦定理来解决;涉及焦点、准线、离心率、圆锥曲线上的点等问题,常用第二定义。

②研究有关点间的距离的最值问题时,常用第一定义把曲线上的点到焦点的距离转化为到另一焦点的距离或利用第二定义把曲线上的点到焦点的距离转化为到其相应准线的距离,再结合图形利用几何意义去解决有关的最值问题。

策略二抓住本质,合理转化转化是解题的精髓,就是从未知向已知,从复杂向简单的化归转化过程,它具有很强的灵活性。

常要求我们抓住问题的本质,解放思想,克服思维定势。

好的转化方法不仅可以减小运算量,而且可以让人叹为观止,使人的心灵受到美的熏陶。

例2已知点A(3,0) , B(0,3)和抛物线。

若抛物线和线段AB恰有一个公共点,求m的取值范围。

分析:本题可以先把两曲线交点问题,转化为方程根的个数问题,进一步再利用数形结合求解。

本题若利用方程根的分布求m 的范围,运算量会比较大。

解:把线段AB的方程y =3-x ( )代入抛物线,得,于是原题化归为方在[0,3]内恰有一解。

人教版数学-备课资料 解析几何中减少运算量的十种思维策略

人教版数学-备课资料 解析几何中减少运算量的十种思维策略

解析几何中减少运算量的十种思维策略近几年的新课程高考数学试题,仍有运算量大的特点,解析几何部分显得尤为突出,这一点直接影响着考生的高考成绩。

事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”等思维策略,往往能够减少计算量。

下面举例说明。

一. 充分利用几何图形的几何性质解析几何本身的创建过程就是“数”与“形”之间互相转化的过程。

解析几何把数学的主要研究对象数量关系与几何图形联系起来,把代数与几何融合为一体。

又因为解析几何研究的就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,这往往能减少计算量。

例1. 已知点P (5,0)和圆O :x y 2216+=,过P 作直线l 与圆O 交于A 、B 两点,求弦AB 中点M 的轨迹方程。

解: 点M 是弦AB 中点,∴∠=︒∴OMP 90,点M 是在以OP 为直径的圆周上,此圆的圆心为(520,),半径为52,所以其方程为()()x y -+=5252222,即x y x 2250+-=。

同时,点M 又在圆x y 2216+=的内部,∴+<x y 2216,即0516522≤=+<x x y ,所以所求的轨迹方程为x y x x 22500165+-=≤<()评注:此题若不能挖掘利用几何条件∠=︒OMP 90,点M 是在以OP 为直径的圆周上,而利用参数方程等方法,计算量将很大,并且比较麻烦。

例2.设直线340x y m ++=与圆x y x y 2220++-=相交于P 、Q 两点,O 为坐标原点,若OP OQ ⊥,求m 的值。

解: 圆x y x y 2220++-=过原点,并且OP OQ ⊥, ∴PQ 是圆的直径,圆心的坐标为M ()-121, 又M ()-121,在直线340x y m ++=上, ∴⨯-+⨯+=∴=-31241052()m m ,即为所求。

例谈解析几何中减少运算量的几种策略

例谈解析几何中减少运算量的几种策略

例谈解析几何中减少运算量的几种策略江苏省姜堰中学 张圣官(225500)2004年上海高考数学第11题是:教材中“坐标平面上的直线”与“圆锥曲线”两章内容体现出解析几何的本质是__________________________。

这是一道不需“解”而需“理解”的问题,很有新意,要求学生能够从解析几何的内容中概括出“解析法”,即“用代数方法研究几何的图形性质”这一本质。

确实的,解析几何就是在建立坐标系的基础上,用坐标表示点,用方程表示曲线,通过代数运算处理几何问题的一门数学。

但是,一味强调解析几何中的代数运算有时会导致烦琐的过程,而如果在进行计算的同时综合考虑几何因素的话,设计合理的运算途径,选择适当的数学方法,往往能够简化运算过程获得优解。

下面介绍几种解析几何中减少运算量的策略,供同学们学习时参考。

一.追根溯源,回归定义定义是事物本质属性的概括和反映,圆锥曲线许多性质都是由定义派生出来的。

对某些圆锥曲线问题,若采用“回归定义”的策略,把定量的计算和定性的分析有机地结合起来,则往往能获得题目所固有的本质属性,达到准确判断、合理运算、灵活解题的目的。

因此,定义是解决问题的原生力量,不可忽视定义在解题中的作用。

例1.F 是椭圆 )0(12222>>=+b a b y a x 的左焦点,过F 且倾斜角为圆与A 、B 两点,若AF=2BF ,则椭圆的离心率e=___________。

常规思路分析:直接计算,若设出直线AB 方程,代入椭)0(122>>=+b a b y a x 进行消元,消去x 得到关于y 的一元二次方程。

用韦达定理,将条件AF=2BF 转化为212y y -=,求出有关a 、b 的关系式,从而得出椭圆的离心率e 优解:作出椭圆的左准线,过A 、B M 、N ,根据条件AF=2BF 设AF=2k,BF=k ,则k k BN AM ==,2,过作BQ ⊥AM 于Q ,则e k AQ =。

浅谈解析几何中减少计算量的常用方法

浅谈解析几何中减少计算量的常用方法

浅谈解析几何中减少计算量的常用方法圆锥曲线是解析几何中非常重要的一块内容,是提高学生的数形结合能力、运算求解能力、数据处理能力的重要载体之一。

同学们在学习圆锥曲线时都有这样的感觉:解题思路比较容易形成,但复杂的运算却让人望而生畏,如何采用合理的方法减少运算量成为能否顺利解题的关键。

事实上,如果我们能够充分利用图形的几何性质、曲线的定义和韦达定理等,就能减少计算量。

举例如下:一、巧用定义例1:P 是双曲线116922=-y x 右支上一点,M 、N 分别是圆()4522=++y x 和()1522=+-y x 上的点,则PN PM -最大值为 ( )A 6.B 7.C 8.D 9.解:双曲线的两个焦点分别是)0,5(),0,5(21--F F ,则这两点正好是两圆的圆心,当且仅当点P 与M 、F 1三点共线且P 与N 、F 2三点共线时所求的值最大,此时()()91221=--+=-PF PF PN PM .选D点评:本题存在三个动点P 、M 、N ,如果设出三点的坐标求解将非常困难,这里结合圆的性质,利用双曲线的定义轻松得出结论。

二、利用几何性质例2:已知点P (5,0)和圆1622=+y x ,过P 作直线l 与圆交于A,B 两点,求弦AB 中点M 的轨迹方程。

解:∵点M 是弦AB 的中点,∴︒=∠90CMP ,∴点M 是在以OP 为直径的圆周上,此圆的圆心为⎪⎭⎫ ⎝⎛0,25,半径为25,所以其方程为2222525⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-y x 。

同时,点M 在圆1622=+y x 的内部,∴1622<+y x ,即,5165022<+=≤y x x 所以所求的轨迹方程为⎪⎭⎫ ⎝⎛<≤⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-51602525222x y x 。

点评:此题挖掘利用几何条件︒=∠90CMP 即点M 是在以OP 为直径的圆周上,若利用参数方程等方法,计算量将很大,并且比较麻烦。

例谈解析几何减少计算量的几个技巧

例谈解析几何减少计算量的几个技巧

例谈解析几何减少计算量的几个技巧江西省南昌市南钢学校 李娅琴在高中数学学习中,学生普遍觉得解析几何问题的计算量较大。

事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程,以及运用“设而不求”的策略,往往能够减少计算量。

下面举例说明:一、充分利用几何图形解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,往往能减少计算量。

典型例题:设直线3x +4y +m =0与圆x 2+y 2+x -2y =0相交于P 、Q 两点,O 为坐标原点,若OP ⊥OQ ,求m 的值。

解:圆x 2+y 2+x -2y =0过原点,并且OP ⊥OQ ,OP ⊥OQ ,PQ 是圆的直径,圆心在直线3x +4y +m =0上,而是设P (x 1,y 1)、Q (x 2,y 2)再由OP ⊥OQ 和韦达定理求m ,将会增大运算量。

二、充分利用韦达定理及“设而不求”的策略我们经常设出弦的端点坐标而不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。

典型例题:已知中心在原点O ,焦点在y 轴上的椭圆与直线y =x +1相交于P 、Q 两点,且OP ⊥OQ ,求此椭圆方程。

解:设椭圆方程为ax 2+by 2=1(a >b >y =x +1与椭圆相交于P、Q (x 2,y 2)两点。

b )x 2+2bx +b -1=0或。

0,得,计算。

三、充分利用曲线系方程利用曲线系方程可以避免求曲线的交点,因此也可以减少计算。

典型例题:求经过两已知圆C 1:x 2+y 2-4x +2y =0和C 2:x 2+y 2-2y -4=0的交点,且圆心在直线:2x +4y -1=0上的圆的方程。

解:设所求圆的方程为:即,其圆心为C 在直线l 上,∴,x 2+y 2-3x +y -1=0为所求。

算。

做乘法分配律。

”即(a+b)×c=a×c+b×c。

减少解析几何运算量的常用策略

减少解析几何运算量的常用策略

并行计算和分布式计算的优势和局限性
优势
并行计算和分布式计算都可以显著提高计算速度,从 而减少解析几何运算的时间。此外,它们还可以充分 利用计算机资源,提高计算效率。
局限性
并行计算和分布式计算都需要对计算任务进行合理的分 解和分配,这需要一定的技术难度和经验。此外,它们 也需要相应的硬件和软件支持,例如高性能计算机、分 布式系统等。
分布式计算原理和实现方式
分布式计算原理
分布式计算是一种将一个大型的计算任务分解为多个 小任务,并将这些小任务分配给多个计算机节点进行 处理的方式。通过分布式计算,可以充分利用网络中 的计算机资源,提高计算效率。
实现方式
分布式计算可以通过网格计算、云计算等方式实现。 在解析几何运算中,可以将几何计算任务分解为多个 子任务,然后将这些子任务分配给多个计算机节点进 行处理,以加快计算速度。
掌握数学工具的优化技巧
避免不必要的重复计算
在计算过程中,尽量重用已经计算过的结果 ,避免重复计算。例如,使用缓存技术存储 已经计算过的值,以便后续使用。
选择合适的算法和数据结 构
根据问题的特点选择合适的算法和数据结构 ,可以更高效地完成解析几何运算。例如, 在处理大规模数据时,使用稀疏矩阵和压缩 感知技术可以显著减少内存占用和运算时间

03
算法优化
算法选择
选择适合的算法
根据问题的性质和特点,选择适合的解 析几何算法,如数值积分、最小二乘法 、线性代数等,以提高运算效率。
VS
避免重复计算
在算法执行过程中,尽量减少重复计算, 利用已知结果进行计算,以减少运算量。
算法改进
优化算法参数
通过调整算法参数,如迭代次数、步长等, 提高算法的收敛速度和精度,从而减少运算 量。

浅谈减少解析几何中运算量的几种方法

浅谈减少解析几何中运算量的几种方法

由椭 圆 的定义 知 ,点 P的轨迹 是 以 F(c 0 , F(,) 焦 点 , , - ,) 2c 0 为 长 轴长为 2 ( a 等于 尺)的椭 圆 . b =口 一 .椭 圆方程 为 : c, ・ .
口一


FO l


大 .基于这样的分析 ,笔者认为,在 高三复 习中有 必要 引导学 生探求优化解题过程 ,降低计算量的方 法与技巧 .这对培养学生的思维品质 ,提高数学解 题 能 力 很 有好 处 .那 么 如何 正 确地 选择 方法 ,减 少 解析几何题 的计算量呢? 下面介绍几种减少计算量的 常 用方法 . 1 巧建坐标系 曲线 的方程 依 赖于 坐 标 系 而存 在 ,坐 标 系选 择
l 值). Il = P =R ( TI 定
较低 .究其原 因,一是解析几何部分考题 的题序通
常 比较靠后 ,题 目本身难且计算量大 ,大多数学生 平时害怕, 不愿做 , 故练得少 , 考试得分 自 然低 . 二 是没有掌握一定 的计算方法 .在解决有些解析几何
问 题 时 ,如 果 方 法 选 择 不 当 ,往 往 导 致 计 算 量 过
-・ I
) :则 { l , , , , 由y+ ( ) 【 一 1

分析 利用 曲线定义 结合 平面几何容易找到动
点 Q要满 足 的条 件 ,避免 通过 解 析 法 ,减 少繁杂 的 计算 . 解 设 Qx, ) ( Y ,延 长 Q和直 线 M 相 交于 P,
() 当 ≠ ,且 Y ≠Y 时 ,不 妨设 X<X , 3 2 J 2 J 2
(i 若 > 2 类似于 由条件①可得 i) Y,

X 2 X
( )若 < i Y ,则 由 ( )中的证明知,要使 1

减少解析几何运算量的常用策略

减少解析几何运算量的常用策略
MATLAB的图形界面和可视化工具可以帮助用户更好地理解和分析几何问 题。
Python的NumPy库
01
NumPy是Python中用于数值计算的库,提供了高效 的数组操作和数学函数。
02
利用NumPy的向量化操作,可以显著提高解析几何 运算的速度。
03
NumPy还支持多维数组和矩阵运算,可以方便地处 理复杂的几何数据结构。
详细描述
在建立数学模型时,应尽量使用简单的几何形状和表达式, 避免使用过于复杂的公式和函数。例如,在计算平面图形的 面积时,可以使用矩形、三角形等简单形状来代替复杂的曲 线或曲面。
参数化模型
总结词
参数化模型是一种通过引入参数来描述几何形状的方法,这种方法可以减少计算量并提高模型的灵活 性。
详细描述
02
选择合适的算法
快速算法
快速算法适用于大规模数据集,通过减少不必 要的计算和优化算法步骤,显著提高运算效率 。
快速算法通常采用数学技巧和近似方法,以减 少计算复杂度和时间。
快速算法在解析几何中广泛应用于点、线、面 等几何元素的计算,如快速傅里叶变换(FFT) 等。
迭代算法
迭代算法适用于求解非线性方程和优化问题,通 过不断迭代逼近解,减少运算量。
参数化模型将几何形状表示为参数的函数,通过调整参数的值可以方便地改变形状。这种方法在处理 复杂的几何问题时非常有用,例如在计算机图形学中用于生成复杂的曲面或曲线。
近似模型
总结词
近似模型是一种通过近似计算来减少解析几何运算量的方法,这种方法可以在保证足够精度的前提下降低计算复 杂度。
详细描述
近似模型使用简单的数学公式或算法来近似描述复杂的几何形状或运动。例如,在计算圆的面积时,可以使用正 方形来近似代替,虽然存在一定的误差,但在大多数情况下这种误差是可以接受的。此外,近似模型还可以用于 解决动态问题,例如在物理模拟中,可以使用近似方法来模拟物体的运动轨迹。

减少解析几何题运算量的六种策略

减少解析几何题运算量的六种策略

减少解析几何题运算量的六种策略
<u>减少解析几何题运算量的六种策略</u>
针对解析几何中的运算量多的局面,渊博的学习者应该掌握几项策略,以降低复杂性,减少运算量。

下面主要介绍六种经济有效的策略。

第一种策略是使用对对称的简化技巧。

它试图结合反射、旋转和翻转等操作,以更有效地简化问题。

例如,若我们遇到三角形ABC,以点D在BC边上,要求
绘制M型图形,则可以使用这一技术,翻转ABC经由D为锚点,将ABC沿CD
轴翻转,从未的形象中出发,再绘制类似的ADC。

第二种策略是寻找必要性条件,以加快抓取重要信息的进程。

学习者需要学习推理技巧,弄清问题的本质,确定最关键的信息;另外,还需要利用图形法,快速构建更清晰的问题模型,以节省大量时间。

第三种策略是采用火柴人,也就是说以火柴拼接出图形,预测可能性和排除常见错误,从而练习绘制、计算解答的技能,这样可以使学习者拥有强大的几何思维。

第四种策略是运用共线判定。

这是一种快速而有效的几何判断技术,能够使学习者不断判断直线、圆弧等运算,从而缩减大量运算步骤。

第五种策略是使用数学的方法,主要是依靠高等代数,试图从运算量上求得优化解。

最后,使用几何软件也是得特别提及的一种策略。

这些软件大多具有精确、提示,能够快速有效地完成复杂的几何计算,从而使学习者有更多的精力在其他方面做更多的功课。

以上就是减少解析几何题运算量的六种策略。

它们均可以给学习者以有益的支撑,以降低复杂性,减少运算量。

只有掌握这些策略,才能更好地应对挑战,取得更加满意的成绩。

解析几何中减少运算量的几种方法

解析几何中减少运算量的几种方法
解析 : ( 1 ) 容易得到所求椭圆方程为
+1 , 故 经过 A、 P、 B、 Q 四点 的 曲线为
( 2 x +Y 一2 ) + ( 、 / 2 —Y ) ( √ 2 +_ y一1 )
2 l —
yl

1 ( 1 ) ( 2 )一 ( 1 )得 ( : 一 1 ( 2 )

( 当且仅 当线 段 A B过 双 曲线 的焦 点 F 时 4

取 到最小 值 ) . 2 数形 结合 。 直观 显示 例2 已知 , v∈ R, 且 满足 方程 2+
y 2
线 Y= 上移 动 ,

评注 : 将“ 数” 与“ 形” 两者结合起来 , 充
分发 挥 “ 数 ”的严 密性 和“ 形 ”的直 观性 , 以数
M Q Ⅳ
求线段 A B 的 中
点 P 到 轴 的最
小距离 .
图1
促形 , 用形 助 数 , 结合使用 , 能 使 复 杂 问题 简 单化 , 抽 象 问题 形 象化 . 熟 练 的使 用 它 , 常能 巧 妙地解 决许 多貌 似 困难 和麻 烦 的 问题 .



) ( 十


y = 3 ( ) , ≥ 0 ) , 又 m = 薯, 求 m 范 围 .



2一 1
Y1+ y2
设 P 1 P :的 中点 为
3 4 ・
2 0 1 4年 第 3期
河 北理科 教 学研 究
教 法探 讨
+2 y ;=4 ( 4 ) . ( I ) +( 2 ) ×2 并结合( 3 ) , ( 4 ) ( y 。 ) , 则 = 专= 2 x o , 3 1 . 得 4 x+2 y=4 , 即点 Q( , y ) 总 在 定 直线

减少解析几何解答题计算量的技巧

减少解析几何解答题计算量的技巧

技巧1:用好数形结合思想和“设而不求”法学生普遍觉得解析几何问题的计算量较大.事实上,如果我们能够充分利用几何图形、韦达定理、曲线系方程以及“设而不求”法,往往能够减少计算量.像直线与圆锥曲线的相交关系,高考一般进行重点考查.这种凡涉及圆锥曲线中的弦长问题,我们常用的技巧是将直线与圆锥曲线方程联立,用根与系数的关系、整体代入和“设而不求”法,除了运用代数方程外,还要注意充分挖掘几何条件,并结合平面几何知识(如三角形的面积问题),使问题简单、直观化,从而能够顺利解决.例1 已知抛物线C:y2=2px(p&gt;0)上有一点Q(2,y0)到焦点F的距离为 &nbsp; .(Ⅰ)求p及y0的值.(Ⅱ)如右图所示,设直线y=kx+b与抛物线交于A,B两点,且两点的纵坐标差的绝对值为2.过弦AB的中点M作垂直于y轴的直线,与抛物线交于点D,连接AD,BD.试判断△ABD 的面积是否为定值.若是,求出定值;若不是,请说明理由.难度系数 0.60分析本题考查抛物线的标准方程与几何性质,利用抛物线的定义就能解决.直线与抛物线的相交位置关系问题,一般方法是先联立方程,利用“设而不求”法解题,同时要注意判别式的限制作用.三角形的面积要用顶点的坐标来表示,这是解析几何中常用的技巧,一定要引起重视,熟练掌握.解(Ⅰ)由于点F的坐标为( &nbsp; ,0),所以2+ &nbsp; = &nbsp; ,解得p=1.于是可知抛物线的方程为y2=2x.又Q(2,y0)在抛物线上,所以y0 =±2.(Ⅱ)设点A的坐标为(x1,y1),点B的坐标为(x2,y2),则有|y1-y2|=2.由y=kx+b,y2=2x,得k2x2+2(kb-1)x+b2 =0.由Δ&gt;0,得1-2kb&gt;0.所以有x1+x2 = &nbsp; ,x1x2 = &nbsp; .由于|y1-y2|2 = k2|x1-x2|2 =k2[(x1+x2)2- 4x1x2]= &nbsp; = 4,所以1-2kb= k2.又M是AB的中点,所以 &nbsp; = &nbsp; , &nbsp; = &nbsp; = &nbsp; +b= &nbsp; .于是可知点M的坐标为( &nbsp; , &nbsp; ),点D的坐标为( &nbsp; , &nbsp; ),则有|MD|= | &nbsp; - &nbsp; |=| &nbsp; |.所以S△ABD= &nbsp; ?|MD|?|y1-y2|= &nbsp; ?| &nbsp; |?2= &nbsp; ,即△ABD的面积为定值.小结本题的第一问考查抛物线的定义及标准方程等基本知识,较容易解决.第二问考查直线与抛物线的位置关系,常常需要将直线方程与抛物线方程联立后消元,再利用判别式和根与系数的关系进行解答,也就是我们常说的“设而不求”法,这样就可以大大优化解题过程.上面由方程组实施消元,产生一元二次方程,其判别式、韦达定理模块思维易于想到,其中的难点在于应用参数k,b,重点在如何消去参数.而引入参数、应用参数、消去参数这三步,正是解析几何综合问题求解的一条有效途径.直线与圆锥曲线相交所得的三角形的面积问题,学生要注意用三角形顶点的坐标表示其面积,如上题中的S△ABD= &nbsp; ?|MD|?|y1-y2|,当然也可以用横坐标表示,这样就实现了坐标与面积的完美结合,使问题顺利解决.技巧2:用好曲线的定义和弦长公式在求过圆锥曲线焦点的弦的长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂的运算.另外,充分利用现有的结果(如弦长公式:|AB|= &nbsp; ? |x1-x2|= &nbsp; ? &nbsp; = &nbsp; ?|y1-y2|= &nbsp; ? &nbsp; ),学生就能减少运算过程.而直接应用结论,通常能减少配方、开方等繁杂的运算过程.例2 已知椭圆C:x2+2y2 = 4.(Ⅰ)求椭圆C的离心率.(Ⅱ)设O为原点,若点A在椭圆C上,点B在直线y=2上,且OA⊥OB,试判断直线AB 与圆x2+y2=2的位置关系,并证明你的结论.难度系数 0.50分析本题主要考查椭圆的标准方程和几何性质、直线的方程、圆的方程等基础知识,考查用代数方法研究圆锥曲线的性质、运算求解能力以及用方程思想解决问题的能力.解(Ⅰ)据题意可知椭圆C的标准方程为 &nbsp; + &nbsp; =1.于是有a2=4,b2=2,从而有c2=a2-b2=2,即a=2,c= &nbsp; .故椭圆C的离心率e= &nbsp; = &nbsp; .(Ⅱ)直线AB与圆x2+y2 = 2相切.证明如下:设点A和点B的坐标分别为(x0,y0),(t,2),其中x0≠0.由于OA⊥OB,所以 &nbsp; ? &nbsp; =0,即tx0+2y0=0,解得t=- &nbsp; .①当直线AB的斜率不存在时,有x0= t,则有y0= - &nbsp; ,所以点A的坐标为(t,- &nbsp; ).将点A的坐标代入椭圆C的方程,得t=± &nbsp; ,所以直线AB的方程为x=± &nbsp; ,圆心O到直线AB的距离d= &nbsp; .此时直线AB与圆x2+y2=2相切.②当直线AB的斜率存在时,有x0≠ t,此时直线AB的方程为y-2= &nbsp; (x-t),即(y0-2)x-(x0-t)y+2x0-ty0=0,所以圆心O到直线AB的距离d= &nbsp; .又x20+2y20= 4,t=- &nbsp; ,所以d= &nbsp; = &nbsp; = &nbsp; .此时直线AB与圆x2+y2 = 2相切.综上所述,直线AB与圆x2+y2 = 2相切.小结离心率是高考对圆锥曲线考查的重点.求离心率的取值范围问题也是解析几何中常见的问题.在求解时,学生可根据题意列出关于a、b、c的相应等式或不等式,并将式中的a、b、c转化为只含有a、c的齐次式,再转化为含e的等式或不等式,最后求出e或e的范围.这类问题较为基础、简单,一般在选择题、填空题或解答题的第一问中出现,是送分题.只要熟练掌握圆锥曲线的几何性质,学生一般就可以顺利解决.凡出现直线问题,若不能确认其位置,需要对直线的斜率是否存在进行讨论.如本题的第二问,这是解决问题的关键,从而体现了分类讨论思想的作用.另外,圆锥曲线弦的中点与斜率问题通常用“点差法”来解决,焦点三角形问题通常用正弦定理和余弦定理搭桥,曲线上两点关于直线的对称问题常考虑三步:求两点所在的直线,求这两条直线的交点,使交点在圆锥曲线内.若OA⊥OB,则常用 &nbsp; ? &nbsp; =0或将k1k2= &nbsp; =-1转化为x1x2+y1y2=0来落实.有关圆锥曲线的焦点弦问题,学生可结合图形和运用圆锥曲线的定义,来回避复杂的运算,同时利用韦达定理、“设而不求”法能有效减少计算量.。

减少解析几何运算的常见方法

减少解析几何运算的常见方法

减少解析几何运算的常见方法作者:丁兴春来源:《新高考·高一数学》2017年第08期解析几何是利用代数的方法研究几何问题,因此在解决解析几何问题时,不可避免地会进行一些代数运算.如果解决问题的起点和方法不当,往往会导致计算量过大,运算复杂,以致不能完全解决问题,因此我们有必要探究优化解题过程,了解一些减少运算量的方法和技巧.下面通过举例介绍一些解析几何中减少运算的常见方法.1.巧设待定的量解析几何中设待定的量方便解决问题是常用的一个手段,当然某一问题的解决可能有多种设法,例如常见的设点、设斜率等.在设之前要作预判,如能设得恰到好处,解决问题时便能减少运算,例1过点M(0,1)作一条直线,使它被两条直线l1:2x+y-8=0,l2:x-3y+10=O所截得的线段恰好被点M平分,求此直线的方程.分析与解已知该直线过点M(O,1),因此要求该直线方程很容易想到设直线的斜率为k,写出方程,分别求出该直线与l1及l2的交点坐标,再由M为中点,根据中点坐标公式列出关于k的方程,解出k即可,当然还要对斜率不存在的情况做一个简单的说明.思路是简單的,但按此下去,运算复杂,计算难度大,换个角度,除了确定斜率外也可以确定除M外的另一点来确定该直线.不妨设该直线与l1的交点坐标为:(a,8-2a),则该点关于M(O,1)的对称点(-a,2a-6)在直线l2:x-3y+lO=0上,于是得到关于a的方程为-a-3(2a6)+10=0,解得a-4,所以该直线与l1的交点坐标为:(4,0),义该直线过点M(O,1),所以该直线为x/4+y/1=1即x+4y-4=0.2.利用曲线系某些曲线相交问题可以借助于曲线系,避免求曲线的交点,从而减少计算,获得简洁的解决方法.例2 已知圆01:x2+y2-4x-6=0和圆O2:x2+y2-4y-6=0,圆C的圆心在直线x-y-4=0上,且过圆01与圆02的交点,求圆C的方程.分析与解该题通常的做法是:先求出圆01与圆O2的交点坐标,然后设出网C的方程(一般方程、标准方程均可)后,建立方程组求解.对于该题来说,求网O1与圆02:的交点坐标不算很复杂,但总的说来常规解法对运算要求还是比较高的.我们可以运用曲线系的方法避免求圆O1与圆02的交点坐标,从而获得简洁的做法.设圆C的方程为x2+y2-4x-6+λ(x2+y2-4y-6)=O(λ∈R),即(1+λ)x2+(1+λ)y2-4x-4λy6(1+λ)=0,圆心(2/(1+λ)),(2λ/(1+λ))在直线x-y-4=0上,于是2/(1+λ)-2λ/(1+λ)-4=0,解得λ=-1/3,因此圆C为x2+y2-6x+2y-6=0. 3.等价转换有些解析几何问题如果直接求解,需要分类讨论,且运算量大,容易出错,如果把问题做一个等价的转换,从另外一个角度解决问题,往往能化繁为简,例3不论k为何实数,直线kx-y+l-k=0与圆(x-a)2+(y-2a)2=10恒有公共点,求实数“的取值范围.4.利用几何性质解析几何问题的解决自然离不开数形结合,在解题时充分发掘和利用图形本身白有的一些平面几何的性质,可以得到简洁而优美的解答.例4 已知圆O:x2+y2=5上一点P(1,2),A,B为圆0上相异的两点,若直线PA,PB 的倾斜角互补,求证:直线AB的斜率为定值,分析与解本题的思路比较简单,首先根据直线PA,PB的倾斜角互补,可知直线PA,PB 的斜率互为相反数,我们可以设出PA的斜率为k,写出出直线PA的方程并与圆0的方程联立方程组,解出A的坐标,同理可以解出B的坐标,最后再求出直线AB的斜率.又由于圆有明显的几何性质,因此不妨可以考虑利用圆的几何性质来减少运算.考虑到PA,PB与x轴围成等腰三角形,作点P关于x轴的对称点Q,连结OQ,因为PQ 平分/APB,所以Q为弧AB的中点,从而OQ⊥AB,又Q(l,-2),所以k∞=-2,于是k AB=1/2为定值.减少解析几何运算的方法还有很多,不同的问题有不同的方法.我们不要停留在常规的计算上,应看清问题本质,寻找条件与题设之间的关系,这样才能有助于我们更好地更简洁地解决问题.当然平时练习时还要注意总结和积累,定能以简驭繁.。

全国文数第42课 解析几何中减少计算量的几种方法

全国文数第42课 解析几何中减少计算量的几种方法

第42课 解析几何中减少计算量的几种方法1.定义为王:巧用圆锥曲线的定义构建数量关系(1)(2015浙江,4分)椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点F (c ,0)关于直线y =bc x 的对称点Q在椭圆上,则椭圆的离心率是________.答案:22解析:(法一)设Q (x 0,y 0),则⎩⎨⎧y 0x 0-c ·bc=-1,y 02=b c ·x 0+c 2,解得⎩⎨⎧x 0=c (c 2-b 2)a 2,y 0=2bc 2a 2, 代入椭圆方程得⎣⎡⎦⎤c (c 2-b 2)a 22a 2+⎝⎛⎭⎫2bc 2a 22b 2=1,即a 4=c 2(c 2-b 2)2a 2+4c 4, 整理得(a 2-2c 2)(a 4+a 2c 2+2c 4)=0, ∴a 2=2c 2,e =22. (法二)记左焦点为F ′,∵直线y =bc x 垂直平分线段QF ,点O 为FF ′的中点,∴QF ′与直线y =b c x 平行,∴∠F ′QF =90°.根据tan ∠QF ′F =b c,可设|QF |=bk ,|QF ′|=ck (k >0),则2c =|F ′F |=(bk )2+(ck )2=ak ,2a =|QF |+|QF ′|=(b +c )k ,∴c a =a c +b ,即a 2=c 2+bc ,∴a 2-c 2=bc ,b 2=bc ,∴b =c ,∴e =22.(2)(经典题,5分)从双曲线4x 2-y 2=4的左焦点F 引圆x 2+y 2=1的切线l ,切点为T ,且l 交双曲线的右支于点P ,M 是线段FP 的中点,O 为坐标原点,则||OM -||TM =________.答案:1解析:双曲线方程即x 2-y 24=1,所以a =1,b =2.设F ′为右焦点,连接PF ′,OT ,OM , 则OM ∥PF ′,|OM |=12|PF ′|,OT ⊥PF .因为|OF |2=c 2=a 2+b 2=5,所以|TF |=|OF |2-|OT |2=5-12=2.又因为点P 在双曲线右支上,所以|PF |-|PF ′|=2a =2,所以|OM |-|TM |=12|PF ′|-⎝⎛⎭⎫12|PF |-|TF |=|TF |+|PF ′|-|PF |2=2-1=1.2.联立有法:巧用“1”的代换实现齐次化联立,直接构造关于斜率的方程(3)(经典题,5分)已知直线y =-x +1与椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A ,B 两点,且OA ⊥OB (O 为坐标原点),若椭圆的离心率e ∈⎣⎡⎦⎤12,22,则a 的最大值为________.答案:62解析:因为OA ⊥OB ,a >b >0,所以点A ,B 的横坐标均不为0,且b ≠1.联立⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,x +y =1,得x 2a 2+y 2b2=(x +y )2,整理得⎝⎛⎭⎫1b 2-1⎝⎛⎭⎫y x 2-2⎝⎛⎭⎫y x +⎝⎛⎭⎫1a 2-1=0, 由题知Δ=4-4⎝⎛⎭⎫1b 2-1⎝⎛⎭⎫1a 2-1>0, 化简得a 2+b 2>1,所以2a 2>1.① 设A (x 1,y 1),B (x 2,y 2),因为OA ⊥OB ,所以k OA k OB =y 1x 1·y 2x 2=1a 2-11b 2-1=-1,即b 2+a 2=2a 2b 2,即b 2=a 22a 2-1.又因为e ∈⎣⎡⎦⎤12,22,所以14≤c 2a 2≤12,即14≤1-b 2a 2≤12,所以12≤b 2a 2≤34,所以12≤12a 2-1≤34,解得76≤a 2≤32,即426≤a ≤62,满足①式,所以a的最大值为62.(4)(2017全国Ⅰ,12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝⎛⎭⎫-1,32,P 4⎝⎛⎭⎫1,32中恰有三点在椭圆C 上. (Ⅰ)求C 的方程;答案:x 24+y 2=1解:由于P 3,P 4两点关于y 轴对称,故由题设知C 经过P 3,P 4两点,所以C 不经过P 1,所以点P 2在C 上,因此⎩⎨⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,故C 的方程为x 24+y 2=1.(5分)(Ⅱ)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.答案:见证明过程证明:若直线l ⊥x 轴,依题设方程为x =t (0<|t |<2),可得A ,B 的坐标分别为⎝ ⎛⎭⎪⎫t ,4-t 22,(t ,-4-t 22),所以2AP k +2BP k =4-t 2-22t -4-t 2+22t =-2t =-1,解得t =2,不符合题设.(7分)因此直线l 斜率存在,设其方程为y =kx +m ,(m ≠1),A (x 1,y 1),B (x 2,y 2),由题知P 2A 与P 2B 的斜率均存在,则x 1≠0,x 2≠0,m ≠-1.(8分)依题意得y 1-1x 1+y 2-1x 2=-1,令y ′=y -1,则有y ′1x 1+y ′2x 2=-1.由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,得⎩⎪⎨⎪⎧x 24+(y ′+1)2=1,y ′+1=kx +m ,即⎩⎨⎧x 24+y ′2+2y ′·1=0,y ′-kxm -1=1,所以x 24+y ′2+2y ′·y ′-kx m -1=0,整理得m +1m -1⎝⎛⎭⎫y ′x 2-2k m -1⎝⎛⎭⎫y ′x +14=0,(10分)根据根与系数的关系,得y ′1x 1+y ′2x 2=2km +1=-1,(11分),所以m =-2k -1,所以直线AB 的方程为y =k (x -2)-1,过定点(2,-1),故原命题得证.(12分)3.化二为一:解决一条直线与两条已知直线相交的问题,可以考虑将两条直线的方程整合成二次方程的形式(5)(经典题,5分)如图42-2,F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M ,交PQ 于N ,若|MF 2|=|F 1F 2|,则C 的离心率为________.图42-2答案:62解析:由F 1(-c ,0),B (0,b )得直线PQ 的方程为y =b c (x +c ),双曲线x 2a 2-y 2b 2=1的两条渐近线分别为bx -ay =0,bx +ay =0,两式相乘得b 2x 2-a 2y 2=0,联立⎩⎪⎨⎪⎧y =b c (x +c ),b 2x 2-a 2y 2=0,得b 2x 2-2a 2cx -a 2c 2=0,设P (x 1,y 1),Q (x 2,y 2),由题知x 1,x 2为该方程的两个根,Δ>0,所以点N 的横坐标为x N =x 1+x 22=a 2c b 2,代入直线PQ 的方程得其坐标为N (a 2c b 2,c 2b).又由|MF 2|=|F 1F 2|得M (3c ,0),在直角△F 1NM 中,由射影定理,得⎝⎛⎭⎫c 2b 2=⎝⎛⎭⎫a 2c b 2+c ⎝⎛⎭⎫3c -a 2c b 2,所以a 2=2b 2,即a 2=2(c 2-a 2),即3a 2=2c 2,故e =62.4.公式择优而取:根据条件灵活选择面积和弦长的计算公式 a .面积公式的选取(6)(2019改编,5分)过点(2,0)引直线l 与曲线y =1-x 2相交于A ,B 两点,O 为坐标原点,当△ABO 的面积取得最大值时,直线l 的倾斜角为________.答案:150°解析:易知曲线y =1-x 2是一个半圆,其半径为1.如图所示,由直线l 与半圆有两个交点,易知l 的倾斜角范围为(135°,180°).△ABO 的面积S =12OA ·OB sin ∠AOB =12sin ∠AOB ≤12,当且仅当∠AOB =90°时,S 取得最大值,此时△ABO 是等腰直角三角形,斜边上的高为OH =22,在直角三角形OPH 中,sin ∠OPH =222=12,所以∠OPH =30°,所以直线l 的倾斜角为150°.(7)(2019改编,5分)已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是________.答案:3解析:由题意可知F ⎝⎛⎭⎫14,0.设A (x 1,y 1),B (x 2,y 2),则OA →·OB →=x 1x 2+y 1y 2=y 21y 22+y 1y 2=2,所以(y 1y 2+2)(y 1y 2-1)=0.又因为点A ,B 位于x 轴的两侧,所以y 1y 2<0,所以y 1y 2=-2 .如图所示,分别过点A ,B 作y 轴的垂线,垂足为M ,N ,则S △AOB =S梯形ABNM-S △AOM -S △BON =12(x 1+x 2)(|y 1|+|y 2|)-12x 1|y 1|-12x 2|y 2|=12(x 1|y 2|+x 2|y 1|),因为点A ,B 位于x 轴两侧,所以S △AOB =12|x 1y 2-x 2y 1|,所以△ABO 与△AFO 面积之和为S=12|x 1y 2-x 2y 1|+12·14|y 1|=12|y 1y 2(y 1-y 2)|+18|y 1|=⎪⎪⎪⎪2y 1+y 1 +18|y 1|=2|y 1|+98|y 1|≥22|y 1|·98|y 1|=3,当且仅当2|y 1|=98|y 1|,即|y 1|=43时取等号,故所求最小值为3.b .过圆锥曲线焦点的弦的弦长公式(8)(2019改编,5分)已知椭圆C :x 22+y 2=1,过点F (1,0)的直线l 交椭圆C 于A ,B 两点, 若||AF =2||BF ,则弦长||AB =________.答案:928解析:不妨设点A 在x 轴上方,点B 在x 轴下方. 设∠AFx =θ,则|AF |,|BF |依题意得|AF ||BF |==2,解得cos θ=-23,所以弦长|AB |=|AF |+|BF |=928.5.巧设点参:用点的坐标有时更容易表示题中条件和问题,此时以点的坐标作为变量比设直线方程更佳(9)(经典题,5分)在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)与直线y =kx (k >0)相交于A ,B 两点(从左至右).过点B 作x 轴的垂线,垂足为C ,直线AC 交椭圆于另一点D ,若以AD 为直径的圆恰好经过点B ,则椭圆的离心率为________.答案:22解析:依题可设A (-x 0,-y 0),B (x 0,y 0),C (x 0,0),所以k AB =y 0-(-y 0)x 0-(-x 0)=y 0x 0=k ,k BD =-1k ,k AC =0-(-y 0)x 0-(-x 0)=k 2(k >0).设点D 的坐标为D (x 1,y 1),由⎩⎨⎧x 20a 2+y 20b 2=1,x 21a 2+y 21b 2=1两式相减,得y 1-y 0x 1-x 0·y 1-(-y 0)x 1-(-x 0)=-b 2a 2,即k DB ·k DA =-b 2a 2,其中k DA =k CA =k 2,k DB =-1k,所以-b 2a 2=k 2·⎝⎛⎭⎫-1k =-12,所以b 2a 2=12. 所以离心率e =ca=1-b 2a 2=22.6.巧设线参:根据已知条件灵活选用直线方程的表示形式(10)(经典题,15分)如图42-5所示,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点(2,22),A ,B 分别为椭圆C 的右、下顶点,且OA =2OB .图42-5(Ⅰ)求椭圆C 的方程; 答案:x 236+y 29=1解:由题意得⎩⎪⎨⎪⎧a =2b ,4a 2+8b 2=1,解得a 2=36,b 2=9,所以椭圆C 的方程为x 236+y 29=1.(3分)(Ⅱ)设点P 在椭圆C 内,满足直线P A ,PB 的斜率乘积为-14,且直线P A ,PB 分别交椭圆于M ,N .(ⅰ) 若M ,N 关于y 轴对称,求直线P A 的斜率;答案:1-22解:(法一)因为直线P A ,PB 的斜率乘积为-14,所以直线P A ,PB 的斜率均存在且不为0且符号相反.设直线P A 的方程为x =my +6,则直线PB 的方程为y =-14mx -3,结合点P在椭圆内得k PB <-12或k PB >12,所以-14m <-12或-14m >12,解得m >2或m <-2.(4分)联立⎩⎪⎨⎪⎧x =my +6,x 236+y 29=1,得(m 2+4)y 2+12my =0,所以M ⎝ ⎛⎭⎪⎫-6(m 2-4)m 2+4,-12m m 2+4.(5分) 联立⎩⎨⎧y =-14mx -3,x 236+y29=1,得(m 2+4)x 2+24mx =0,所以N ⎝ ⎛⎭⎪⎫-24m m 2+4,3(m 2-4)m 2+4.(6分) 依题意得3(m 2-4)=-12m ,解得m =-2±2 2.因为m >2或m <-2,所以m =-2-22,直线P A 的斜率为k P A =1m =1-22.(8分)(法二)(ⅰ)依题意可设M (x 0,y 0),N (-x 0,y 0).由题意得⎩⎨⎧x 2036+y 209=1,y 0x 0-6·y 0-(-3)-x 0=-14,即⎩⎪⎨⎪⎧x 20+4y 20=36,(2y 0+x 0)(2y 0-x 0+6)=0, 所以⎩⎪⎨⎪⎧x 20+4y 20=36,2y 0-x 0+6=0或⎩⎪⎨⎪⎧x 20+4y 20=36,2y 0=-x 0.由⎩⎪⎨⎪⎧x 20+4y 20=36,2y 0-x 0+6=0解得⎩⎪⎨⎪⎧x 0=6,y 0=0或⎩⎪⎨⎪⎧x 0=0,y 0=-3, 此时M ,N 在椭圆顶点上,不符合题意;(5分)由⎩⎪⎨⎪⎧x 20+4y 20=36,2y 0=-x 0,解得⎩⎨⎧x 0=-62,y 0=32或⎩⎨⎧x 0=62,y 0=-32,当⎩⎨⎧x 0=62,y 0=-32时,点P 在椭圆外,不符合题意,所以⎩⎨⎧x 0=-62,y 0=32,此时kP A =32-62-6=1-22.(8分)(ⅱ)求证:△PMN 和△P AB 的面积相等.答案:见证明过程证明:(法一)结合(ⅰ)中所得,联立⎩⎪⎨⎪⎧x =my +6,y =-14mx -3, 得P (-12(m -2)m 2+4,-6(m +2)m 2+4),(9分)所以AP →=⎝ ⎛⎭⎪⎫-6m (m +2)m 2+4,-6(m +2)m 2+4, BP →=(-12(m -2)m 2+4,3m (m -2)m 2+4),(11分)PM →=⎝ ⎛⎭⎪⎫-6m (m -2)m 2+4,-6(m -2)m 2+4, PN →=(-12(m +2)m 2+4,3m (m +2)m 2+4),(13分)显然有PM →=m -2m +2 AP →,PN →=m +2m -2 BP →,所以|PM ||AP |=|BP ||PN |,即|PM |·|PN |=|AP |·|BP |,又因为∠MPN =∠APB ,所以12|PM |·|PN |sin ∠MPN =12|AP |·|BP |·sin ∠APB ,即△PMN 和△P AB 的面积相等.(15分)(法二)因为直线P A ,PB 的斜率乘积为-14,所以直线P A ,PB 的斜率均存在且不为0且符号相反.设直线P A 的方程为x =my +6,则直线PB 的方程为y =-14mx -3,结合点P在椭圆内得k PB <-12或k PB >12,所以-14m <-12或-14m >12,解得m >2或m <-2.(9分)联立⎩⎪⎨⎪⎧x =my +6,x 236+y 29=1,得(m 2+4)y 2+12my =0,所以M ⎝ ⎛⎭⎪⎫-6(m 2-4)m 2+4,-12m m 2+4.(10分)联立⎩⎨⎧y =-14mx -3,x 236+y29=1,得(m 2+4)x 2+24mx =0, 所以N ⎝ ⎛⎭⎪⎫-24m m 2+4,3(m 2-4)m 2+4.(11分)所以直线NA 的斜率k NA =3(m 2-4)m 2+4-24m m 2+4-6=m 2-4-8m -2(m 2+4)=m -2-2(m +2),(12分) 直线MB 的斜率k MB =-12mm 2+4+3-6(m 2-4)m 2+4=-4m +(m 2+4)-2(m 2-4)=m -2-2(m +2),(13分) 所以NA ∥MB ,所以S △AMB =S △NMB ,S △AMB -S △PMB =S △NMB -S △PMB ,即△PMN 和△P AB 的面积相等.(15分)7.横岭侧峰:以最合适的角度去审视已知条件和待求目标,避免简单直译,有时会有奇效(11)(经典题,5分)双曲线C :x 2a 2-y 2b 2=1()a >0,b >0的右焦点为F ,直线y =43x 与双曲线相交于A ,B 两点,若AF ⊥BF ,则双曲线C 的渐近线方程为________.答案:y =±2x解:(法一)(直译)由已知得b a >43.联立⎩⎨⎧x 2a 2-y 2b 2=1,y =43x ,设A 位于y 轴右侧,则B 位于y 轴左侧,则A (3ab 9b 2-16a 2,4ab9b 2-16a 2),B (-3ab 9b 2-16a 2,-4ab9b 2-16a 2). 根据AF ⊥BF 得AF →·BF →=⎝⎛⎭⎪⎫c -3ab 9b 2-16a 2,-4ab 9b 2-16a 2· (c +3ab 9b 2-16a 2,4ab 9b 2-16a 2)=c 2-25a 2b 29b 2-16a 2=0,即(a 2+b 2)(9b 2-16a 2)-25a 2b 2=0,整理得(b 2-4a 2)·(9b 2+4a 2)=0,所以b 2=4a 2,渐近线方程为y =±2x .(法二)(由直角联想到圆)由AF ⊥BF 知OA =OB =OF =c ,所以A ,B 在圆x 2+y 2=c 2上.依题意不妨设A (3t ,4t )(t >0),解得t =c5,将A ⎝⎛⎭⎫3c 5,4c 5代入双曲线方程得9c 225a 2-16c225b2=1, 代入c 2=a 2+b 2并整理得(b 2-4a 2)(9b 2+4a 2)=0,所以b 2=4a 2,故渐近线方程为y =±2x .(法三)(几何思考之解三角形)取该双曲线的左焦点F ′,不妨取在第一象限的交点为A ,连接AF ′,BF ′,如图所示,易知四边形AFBF ′是矩形.设∠AF ′O =θ,则∠AOF =2θ,则tan2θ=22tan 1tan θ-=43, 解得tan θ=12(其中tan θ=-2不符合题意,舍去),所以tan θ=|AF ||AF ′|=12.设|AF |=m (m >0),则|AF ′|=2m ,所以2a =|AF ′|-|AF |=m ,2c =|FF ′|=5m ,b 2=c 2-a 2=m 2,b =m ,所以渐近线方程为y =±bax =±2x .8.以动制静:有些与对称中心、中点、角度相关的问题,可以利用图形的旋转快速找到突破口,实现一招毙敌(12)(经典题,5分)过椭圆x 216+y 24=1内一点M (1,1)引一条弦AB ,使得M 恰为AB 的中点,则直线AB 的方程为________.答案:x +4y -5=0解析:如图所示,将椭圆C :x 216+y 24=1绕点M (1,1)旋转180°,得到椭圆C ′:(2-x )216+(2-y )24=1,则弦AB 是这两个椭圆的公共弦,两个椭圆方程相减得x +4y -5=0,此即直线AB 的方程.(13)(经典题,5分)已知圆O :x 2+y 2=4和点A (1,0),在圆O 上存在点P ,直线l :x +y +a =0上存在点Q ,使得P A ⊥AQ ,且P A =AQ ,则实数a 的取值范围是________. 答案:[-22-2,22]解析:(法一)点Q 可看作是圆上的点P 绕点A (1,0)旋转90°得到的,所以只需将圆O 绕点A 旋转90°之后与直线l 有公共点即可.圆心O 绕点A 顺时针和逆时针旋转90°分别得到点O ′(1,1)和O ″(1,-1),半径不变,所以|2+a |2≤2或|a |2≤2,结果取并集,得-22-2≤a ≤22,故实数a 的取值范围是[-22-2,22].(法二)如下图所示,根据圆的参数方程,可设点P (2cos θ,2sin θ),θ∈[0,2π].根据△P AM ≌△AQN 得Q (1+2sin θ,1-2cos θ),作点Q 关于A 对称的点Q ′(1-2sin θ,2cos θ-1),则依题意得直线l 经过点Q 或点Q ′,所以1+2sin θ+1-2cos θ+a =0或1-2sin θ+2cos θ-1+a =0,即a =-22sin(θ-π4)-2或a =22sin(θ-π4),所以-22-2≤a ≤22-2或-22≤a ≤22,故实数a 的取值范围是[-22-2,22].9.命题转化:巧妙转化命题,将陌生问题熟悉化(14)(经典题,10分)已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 交抛物线C 于A ,B 两点,过A ,B 两点作抛物线C 的切线,记这两条切线的交点为点P ,证明:点P 在定直线上.答案:见证明过程证明:为了便于用导数求切线,不妨将题图中所有元素沿着直线y =x 翻折,即先考虑下述问题:已知抛物线x 2=4y ,过其焦点的直线y =kx +1与该抛物线交于E ,D 两点,过E ,D 两点作抛物线x 2=4y 的切线,记这两条切线的交点为点Q ,证明:点Q 在定直线上.设切点坐标分别为E (x 1,y 1),D (x 2,y 2),对y =x 24求导得y ′=x 2,所以抛物线x 2=4y 在点E 处的切线方程为y =x 12(x -x 1)+y 1,即y =x 12x -y 1. (5分)同理,抛物线x 2=4y 在点D 处的切线方程为y =x 22x -y 2,(7分)联立⎩⎨⎧y =x 12x -y 1,y =x 22x -y 2,得x =y 1-y 212(x 1-x 2)=2k ,y =x 12·2k -y 1=kx 1-y 1=-1.所以点Q 的坐标为(2k ,-1),它在定直线y =-1上.(9分) 所以点P 在定直线x =-1上.(10分)变式思考:如果把“过焦点F 的直线”改为“过定点(2,0)的直线”,其他条件不变,结果如何?变式思考:答案:点P 在直线x =-2上. 解:略(解析过程参见例题).10.极限思考:突破题目所给条件,考虑更极端的情形,有时能直接得到答案(15)(经典题,5分)设直线y =x +m (m >0)与y 轴交于点A ,与双曲线x 2-y 24=1相交于B ,C 两点,且||AB <||AC ,则||AC ||AB 的取值范围是________. 答案:(1,3)解析:(法一)联立⎩⎪⎨⎪⎧y =x +m ,x 2-y 24=1,得3x 2-2mx -(m 2+4)=0,Δ>0,由根与系数的关系得⎩⎨⎧x B +x C =2m3,x B x C=-m 2+43.因为A ,B ,C 三点共线,所以|AC ||AB |=|x C -x A ||x A -x B |=-x Cx B.不妨设x C=tx B(t <0),则有⎩⎨⎧(1+t )x B =2m 3,tx 2B=-m 2+43,消去x B ,整理得到(1+t )2t =t +1t+2=4m 29-m 2+43=-4m 23(m 2+4)=-43+163(m 2+4)∈⎝⎛⎭⎫-43,0,解得-3<t <-1或-1<t <-13. 又因为|AB |<|AC |,所以|AC ||AB |=|t |>1,所以|AC ||AB |的取值范围是(1,3).(法二)(仅用于小题):当m →0时,|AC ||AB |→1;当m 充分大(趋于正无穷大)时,B ,C 可近似地视为直线y =x +m 与渐近线y =-2x ,y =2x 的交点,易得横坐标分别为-m3和m ,此时|AC ||AB |→3,此过程单调连续变化,故|AC ||AB |的取值范围是(1,3).(16)(经典题,5分)已知P ,Q 是直线x =2与抛物线y 2=2x 的两个交点(点P 在点Q 的上方),两条经过点P 且关于直线PQ 对称的直线l 1,l 2与抛物线的另一交点为M ,N ,则直线MN 的斜率为________.答案:-12解析:(法一)依题意得P (2,2),l 1,l 2经过点P ,斜率互为相反数且均不为0,所以设l 1:x =m (y -2)+2,l 2:x =-m (y -2)+2.设M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧y 2=2x ,x =m (y -2)+2,得y 2-2my +4m -4=0,则y 1+2=2m ,所以y 1=2m -2,同理可得y 2=-2m -2,所以y 1+y 2=-4, 所以直线MN 的斜率为k =y 2-y 1x 2-x 1=y 2-y 112(y 22-y 21)=2y 1+y2=-12.(法二)(仅用于小题)考虑极限情况,当l 1,l 2无限靠近直线x =2时,点M ,N 向点Q 无限靠近,当它们重合时,直线MN 就是抛物线在点Q (2,-2)处的切线.设斜率为k (k ≠0),则切线方程为y =k (x -2)-2,联立⎩⎪⎨⎪⎧y 2=2x ,y =k (x -2)-2,即⎩⎪⎨⎪⎧ky 2=2kx ,y +2k +2=kx ,得ky 2-2y -4(k +1)=0,令Δ=4+16k (k +1)=0,解得k =-12,因此直线MN 的斜率为-12.随堂普查练421.(经典题,5分)已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,过F 2与双曲线的一条渐近线平行的直线交双曲线于点P ,若||PF 1=3||PF 2,则双曲线的离心率为________.答案: 3解析:由已知条件及双曲线的定义得⎩⎪⎨⎪⎧|PF 1|=3|PF 2|,|PF 1|-|PF 2|=2a ,所以|PF 1|=3a ,|PF 2|=a . 因为PF 2与渐近线平行,由对称关系,不妨设该渐近线为y =b a x ,所以tan ∠F 1F 2P =b a ,所以cos ∠F 1F 2P =ac.在△PF 1F 2中,由余弦定理得|PF 1|2=|PF 2|2+|F 1F 2|2-2|PF 2||F 1F 2|cos ∠F 1F 2P , 即(3a )2=a 2+(2c )2-2a ·2c ⎝⎛⎭⎫a c ,整理得3a 2=c 2,所以离心率e =c a = 3.2.(经典题,5分)长为2的线段AB 的两个端点在抛物线y 2=x 上滑动,则线段AB 的中点M 到y 轴距离的最小值为________.答案:34解析:(法一)依题意不妨设A (s 2,s ),B (t 2,t )(s ≥t ),则|AB |=(s 2-t 2)2+(s -t )2=2,即(s 2+t 2)2+(s 2+t 2)=4+2st (1+2st )=4+4⎝⎛⎭⎫st +142-14≥154,解得s 2+t 2≥32,所以线段AB 的中点M 到y 轴距离x M=s 2+t 22≥34,当且仅当⎩⎨⎧st =-14,s 2+t 2=32,即⎩⎪⎨⎪⎧s =1+22,t =1-22时取得等号,故所求最小值为34.(法二)如图所示,分别过A ,M ,B 向准线x =-14引垂线,垂足分别为A ′,M ′,B ′.由中位线定理得|MM ′|=12(|AA ′|+|BB ′|)=12(|AF |+|BF |)≥12|AB |=1,所以AB 中点M 到y 轴距离为x M=|MM ′|-p 2≥1-14=34,当且仅当线段AB 经过点F 时取得等号.过焦点F 且垂直于x 轴的弦CD 的长为2p =1,|AB |=2>|CD |,所以AB 可以经过点F ,故34即为所求最小值.3.(2019改编,5分)过点P (4,0)引直线l 与曲线y =12-3x 2相交于A ,B 两点,O 为坐标原点,则△OAB 面积的最大值为________.答案:2 3解析:(法一)设直线l 的方程为x =my +4(m <0),联立⎩⎨⎧y =12-3x 2,x =my +4,得(3m 2+1)y 2+24my +36=0,Δ=144(m 2-1)>0, 所以m <-1.①设A (x 1,y 1),B (x 2,y 2),y 1>y 2,则由根与系数的关系得⎩⎪⎨⎪⎧y 1+y 2=-24m3m 2+1,y 1y 2=363m 2+1,所以△OAB 的面积S =S △AOP -S △BOP =12|OP |(y 1-y 2)=2(y 1+y 2)2-4y 1y 2=2⎝ ⎛⎭⎪⎫-24m 3m 2+12-4×363m 2+1 =24m 2-1(3m 2+1)2=2419(m 2-1)+16m 2-1+24≤24129(m 2-1)·16m 2-1+24=23,当且仅当9(m 2-1)=16m 2-1,即m =-213时取得等号,符合①式,所以△OAB 面积的最大值为2 3.(法二)将曲线方程y =12-3x 2整理为x 24+y 212=1(y ≥0).设A (2cos α,23sin α),B (2cos β,23sin β),其中0≤α<β≤π,则△OAB 的面积S =12|2cos α·23sin β-2cos β·23sin α|=23|sin(β-α)|≤23,当且仅当β-α=π2时取得等号.在直线l 绕P (4,0)旋转的过程中,当直线l 恰与曲线y=12-3x 2相切时,β-α=0;当直线l 旋转到与x 轴重合时,β-α=π,而这个变化是连续的,所以存在某个中间时刻,使得β-α=π2.故△OAB 面积的最大值为2 3.(法二了解,不需掌握)4.(经典题,5分)已知椭圆C :x 225+y 216=1,直线l 过点P (1,2)且交椭圆C 于A ,B 两点,则线段AB 中点M 的轨迹方程为________.答案:16x (x -1)+25y (y -2)=0解析:设M (x 0,y 0),将椭圆C :x 225+y 216=1绕点M (x 0,y 0)旋转180°,得到椭圆C ′:(2x 0-x )225+(2y 0-y )216=1,则弦AB 是这两个椭圆的公共弦.两个椭圆方程相减得4x 0(x -x 0)25+y 0(y -y 0)4=0,此即直线AB 的方程.因为点P (1,2)在直线AB 上,所以4x 0(1-x 0)25+y 0(2-y 0)4=0,所以M (x 0,y 0)的轨迹方程为4x (1-x )25+y (2-y )4=0,即16x (x -1)+25y (y -2)=0.5.(2019改编,5分)已知F 1,F 2分别为椭圆C :x 2a 2+y 2=1(a >1)的左、右焦点,P ,Q 是椭圆上两点,线段PQ 经过点F 1,且PQ ⊥PF 2,当||PQ ||PF 2∈⎝⎛⎭⎫34,43时,a 的取值范围是________. 答案:⎝⎛⎭⎫2,32 解析:(极限思考,仅适用于小题)当|PQ ||PF 2|=43时,如下图所示,不妨设|PF 2|=3k (k >0),则|PQ |=4k ,|QF 2|=5k .根据|PF 1|+|PF 2|=|QF 1|+|QF 2|=2a =12(3k +4k +5k )=6k 得|QF 1|=k ,|PF 1|=3k ,所以ca =2c 2a =|F 1F 2||PF 1|+|PF 2|=32k 3k +3k =22.根据a 2-b 2=c 2得a = 2. 当|PQ ||PF 2|=34时,如下图所示,不妨设|PF 2|=4k (k >0),则|PQ |=3k ,|QF 2|=5k .根据|PF 1|+|PF 2|=|QF 1|+|QF 2|=2a =12(3k +4k +5k )=6k 得|QF 1|=k ,|PF 1|=2k ,所以ca =|F 1F 2||PF 1|+|PF 2|=25k 2k +4k =53.根据a 2-b 2=c 2得a =32.在|PQ ||PF 2|从大变小的过程中,Rt △PF 1F 2的直角边之比|PF 1||PF 2|逐渐减小,则Rt △PF 1F 2的内角∠PF 1F 2逐渐增大,离心率的变化是单调的,所以a 的取值范围是⎝⎛⎭⎫2,32.6.(2015陕西,12分)如图42-10所示,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1),且离心率为22. 图42-10(Ⅰ)求椭圆E 的方程; 答案:x 22+y 2=1解:依题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2,解得a =2,b =1,c =1,所以椭圆E 的方程为x 22+y 2=1.(3分)(Ⅱ)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.答案:见证明过程证明:如图所示,将原坐标系向下平移一个单位,即以点A 为坐标原点,重新建立直角坐标系,此时椭圆的方程为x 22+(y -1)2=1,原来的点(1,1)变成了(1,2),所以直线PQ 的方程为y =k (x -1)+2,(5分)因为直线与椭圆交于两点P ,Q ,且P 与Q 都不与A 重合,所以k ≠2,k ≠0. 联立⎩⎪⎨⎪⎧x 22+(y -1)2=1,y =k (x -1)+2,即⎩⎨⎧x 22+y 2-2y ·1=0,kx -y k -2=1,得x 22+y 2-2y ·kx -y k -2=0,(7分) 整理可得k k -2⎝⎛⎭⎫y x 2-2k k -2⎝⎛⎭⎫y x +12=0.(9分)设P (x 1,y 1),Q (x 2,y 2),由根与系数的关系得直线AP 与AQ 的斜率之和为k AP +k AQ =y 1x 1+y 2x 2=2k k -2kk -2=2为定值,而平移坐标系不改变直线的斜率,故原命题得证.(12分)7.(经典题,15分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的长轴长是短轴长的2倍,且过点⎝⎛⎭⎫3,12.(Ⅰ)求椭圆C 的方程; 答案:x 24+y 2=1解:由题可知a =2b ,则椭圆方程为x 24b 2+y 2b 2=1,又因为椭圆过点⎝⎛⎭⎫3,12,所以34b 2+14b 2=1,解得a =2,b =1,所以椭圆方程为x 24+y 2=1.(5分)(Ⅱ)若在椭圆上有相异的两点A ,B (A ,O ,B 三点不共线),O 为坐标原点,且直线AB ,OA ,OB 的斜率满足k 2AB =k OA ·k OB (k AB >0). (ⅰ)求证:||OA 2+||OB 2为定值;答案:见证明过程证明:(法一)设直线AB 方程为y =kx +m (k >0),A (x 1,y 1),B (x 2,y 2). ∵k 2AB =k OA ·k OB (k AB >0), ∴k 2=y 1x 1·y 2x 2=(kx 1+m )(kx 2+m )x 1x 2,化简得km (x 1+x 2)+m 2=0.∵A ,O ,B 三点不共线,∴m ≠0,则k (x 1+x 2)+m =0.①由⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,可得(1+4k 2)x 2+8kmx +4(m 2-1)=0, 由根与系数的关系可得⎩⎪⎨⎪⎧x 1+x 2=-8km1+4k 2,②x 1x 2=4(m 2-1)1+4k 2,且Δ=16(1+4k 2-m 2)>0.③将②代入①式得k ⎝⎛⎭⎫-8km1+4k 2+m =0(k >0),解得k =12,则⎩⎪⎨⎪⎧x 1+x 2=-2m ,x 1x 2=2(m 2-1).④(9分) |OA |2+|OB |2=x 21+y 21+x 22+y 22=34x 21+34x 22+2=34[(x 1+x 2)2-2x 1x 2]+2, 将④代入得|OA |2+|OB |2=34×[4m 2-2×2(m 2-1)]+2=5.∴|OA |2+|OB |2为定值5.(12分)(法二)设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 214+y 21=1,x 224+y 22=1,两式相减得y 2-y 1x 2-x 1·y 2+y 1x 2+x 1=-14.(*)(6分)由k 2AB =k OA k OB 得y 1y 2x 1x 2=22121y y x x ⎛⎫- ⎪-⎝⎭, 由比例的性质可知222122121122121221211221()4()4y y y y y y y y y y x x x x x x x x x x ⎛⎫⎛⎫--++=== ⎪ ⎪--++⎝⎭⎝⎭,(7分) 所以2221212121y y y y x x x x ⎛⎫⎛⎫-+= ⎪ ⎪-+⎝⎭⎝⎭结合(*)及k AB >0,得y 2-y 1x 2-x 1=12,y 2+y 1x 2+x 1=-12.所以y 1y 2x 1x 2=14,即x 1x 2=4y 1y 2.(8分)再由y 2-y 1x 2-x 1=12两边都平方得4(y 21+y 22)=x 21+x 22.⎩⎨⎧x 214+y 21=1,x 224+y 22=1两式相加得14(x 21+x 22)+(y 21+y 22)=2,所以x 21+x 22=4,y 21+y 22=1,(10分) 故|OA |2+|OB |2=x 21+x 22+y 21+y 22=5为定值.(11分)(ⅱ)设△AOB 的面积为S ,当S 取得最大值时,求直线AB 的方程. 答案:y =12x ±1解:(法一)设O 到直线AB 的距离为d . S =12|AB |·d =121+k 2|x 1-x 2|·|m |1+k 2=12(x 1+x 2)2-4x 1x 2|m |=2-m 2|m |. 由③可得m ∈(-2,0)∪(0,2),⑤则S =2-m 2|m |=(2-m 2)m 2≤(2-m 2)+m 22=1,当且仅当m =±1时取等号,符合⑤式,此时S 取得最大值,直线方程为y =12x ±1.(15分)(法二) 设y =12x +m (m ≠0),联立⎩⎪⎨⎪⎧y =12x +m ,x 2+4y 2=4,可得x 2+2mx +2(m 2-1)=0,由根与系数的关系可得⎩⎪⎨⎪⎧x 1+x 2=-2m ,x 1x 2=2(m 2-1),且Δ=4(2-m 2)>0,所以m ∈(-2,0)∪(0,2).①(13分)设O 到直线AB 的距离为d .S =12|AB |·d =121+14|x 1-x 2|·|m |1+14=12(x 1+x 2)2-4x 1x 2|m |=(2-m 2)m 2 ≤(2-m 2)+m 22=1,当且仅当m =±1时取等号,符合①式,所以当S 取得最大值时,直线方程为y =12x ±1.(15分)课后提分练42 解析几何中减少计算量的几种方法A 组(巩固提升)1.(2017全国Ⅰ,5分)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10答案:A解析:设AB 倾斜角为θ,由已知条件及抛物线的对称性,设0<θ<π2,则|AB |=22sin p θ,又DE 与AB 垂直,即DE 的倾斜角为θ+π2,∴|DE |=2222πcos sin ()2p pθθ=+,而抛物线方程为y 2=4x ,即p =2,∴|AB |+|DE |=22224sin cos p p θθ+=⋅22222sin cos 16sin cos sin 2θθθθθ+=≥16,当且仅当θ=π4时取等号,即|AB |+|DE |的最小值为16,故选A.2.(2019改编,5分)已知抛物线C :y 2=8x 的焦点为F ,抛物线C 的外部有一定点 M (1,3),动点P 在抛物线C 上,则||PF -||PM 的取值范围是________.答案:[-10,3]解析:由题知F (2,0),由|MF |+|FP |≥|MP |得|FP |-|PM |≥-|MF |=-(2-1)2+(0-3)2=-10,当且仅当点P 在线段MF 的延长线上时取得等号,所以|PF |-|PM |的最小值是-10.如图所示,过点P 向准线x =-2作垂线,垂足为点H ,点M 在PH 上的投影为点N ,则|FP |-|PM |=|PH |-|PM |≤|PH |-|PN |=|NH |=1-(-2)=3,当且仅当直线PM 与准线垂直时取得等号.综上,|PF |-|PM |的取值范围是[-10,3].3.(经典题,10分)已知抛物线C :y 2=4x 和直线l :x =-1,过直线l 上任一点P 作抛物线的两条切线,切点记为A ,B ,求证:直线AB 过定点.答案:见证明过程证明:为了便于用导数求切线斜率,不妨将题中所有元素沿着直线y =x 翻折,即先考虑下述问题:已知抛物线x 2=4y 和直线y =-1,过直线y =-1上任一点Q 作抛物线的两条切线,切点记为E ,D ,求证:直线ED 过定点.设切点分别为E (x 1,y 1),D (x 2,y 2),点Q 的坐标为(m ,-1),对y =x 24求导得y ′=x2,(2分)所以抛物线x 2=4y 在点E 处的切线方程为y =x 12(x -x 1)+y 1,即y =x 12x -y 1,(4分)因为该切线过点Q (m ,-1),所以x 12m -y 1=-1,即mx 1-2y 1+2=0.(6分)同理,mx 2-2y 2+2=0,(7分)所以直线ED 的方程为mx -2y +2=0,即mx -2(y -1)=0,直线过定点(0,1).(8分) 故原命题也得证,直线AB 过(0,1)关于直线y =x 的对称点(1,0).(10分)4.(2018北京东城模拟,13分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,且过点A (2,0).(Ⅰ)求椭圆C 的方程;答案:x 24+y 2=1解析:由题意得⎩⎨⎧4a 2=1,c a =32,a 2-b 2=c 2,解得⎩⎪⎨⎪⎧a =2,b =1,c =3,所以椭圆C 的方程为x 24+y 2=1.(4分)(Ⅱ)设M ,N 是椭圆C 上不同于点A 的两点,且直线AM ,AN 的斜率之积等于-14.试问直线MN 是否过定点?若是,求出该点的坐标;若不是,请说明理由.答案:过定点(0,0)解:(法一)当直线MN 的斜率存在时,设直线MN 的方程为y =kx +m ,M (x 1,y 1), N (x 2,y 2)(x 1,x 2≠2),由题意得k AM ·k AN =y 1x 1-2·y 2x 2-2=-14,2k +m ≠0.令x ′=x -2,所以y 1x 1′·y 2x 2′=-14.(6分)联立椭圆C 和直线MN 的方程得⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m ,即⎩⎪⎨⎪⎧(x ′+2)24+y 2=1,y =k (x ′+2)+m ,变形为⎩⎨⎧x ′24+y 2+x ′·1=0,y -kx ′2k +m=1,所以x ′24+y 2+x ′·y -kx ′2k +m=0,(9分)整理得⎝⎛⎭⎫y x ′2+12k +m ⎝⎛⎭⎫y x ′+14-k2k +m =0,由根与系数的关系,得y 1x ′1·y 2x ′2=14-k 2k +m =-14,解得m =0.(11分)所以直线MN 的方程为y =kx ,过定点(0,0).若直线MN 的斜率不存在,则直线AM ,AN 的斜率互为相反数,即k AM ·k AN =k AM ·(-k AM )=-14.不妨取k AM =-12,k AN =12.易知直线AM :y =-12(x -2)与椭圆交于点M (0,1).由对称性可知N (0,-1),所以直线MN 也过点(0,0). 综上,直线MN 过定点(0,0).(13分)(法二)当直线MN 的斜率存在时,设直线MN 的方程为y =kx +n . 由⎩⎪⎨⎪⎧y =kx +n ,x 24+y 2=1,消去y ,得(1+4k 2)x 2+8knx +4n 2-4=0. 由Δ>0,得4k 2-n 2+1>0.设M (x 1,y 1),N (x 2,y 2)(x 1,x 2≠2), 则x 1+x 2=-8kn1+4k 2①,x 1x 2=4n 2-41+4k 2②.(7分)由k AM ·k AN =y 1x 1-2·y 2x 2-2=-14以及y 1=kx 1+n ,y 2=kx 2+n ,得(1+4k 2)x 1x 2+(4nk -2)(x 1+x 2)+(4+4n 2)=0.将①②代入上式,整理得n 2+2kn =0,解得n =0或n =-2k . 当n =0时,直线y =kx 过定点(0,0);当n =-2k 时,直线y =k (x -2)过定点(2,0),舍去.(10分) 当直线MN 的斜率不存在时,直线AM ,AN 的斜率互为相反数, 即k AM ·k AN =k AM ·(-k AM )=-14,不妨取k AM =-12,k AN =12,易知直线AM :y =-12(x -2)与椭圆交于点M (0,1).由对称性可知N (0,-1),所以直线MN 也过点(0,0). 综上,直线MN 过定点(0,0).(13分)5.(2018河南模拟,5分)已知双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右焦点为F ,坐标原点为O ,若存在直线l 过点F 且交双曲线C 的右支于A ,B 两点,使OA →·OB →=0,则双曲线离心率的取值范围是________.答案:⎣⎢⎡⎭⎪⎫5+12,3解析:(极限思考)设F (c ,0).①当直线l 与x 轴垂直时,由对称性可知,此时△AOB 为等腰直角三角形,易得A ⎝⎛⎭⎫c ,b2a ,则有b 2a =c ,所以b 2=ac =c 2-a 2,即e =e 2-1,解得e =1+52(负值舍去).②当直线l 与渐近线平行时,根据对称性,不妨设直线l 的方程为y =ba (x -c ).取l 与双曲线右支交点为A ,此时可近似视为OA ⊥l .联立⎩⎨⎧y =ba(x -c ),x 2a 2-y2b 2=1(a >b >0),可得A ⎝⎛⎭⎫a 2+c 22c ,-b 32ac , 所以k OA =-b 32ac ÷a 2+c 22c =-b 3a (a 2+c 2)=-ab , 整理得c 2=3a 2,所以e = 3.此时直线l 与双曲线仅有一个交点. 由于直线l 的斜率在,b a ⎛⎫+∞⎪⎝⎭逐渐增大的过程中都有满足题意的情况存在,且该过程单调连续变化,从而可知双曲线离心率的取值范围为⎣⎢⎡⎭⎪⎫5+12,3 .6.(经典题,14分)如图45-1所示,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左顶点为A (-2,0),离心率为12,过点A 的直线l 与椭圆E 交于另一点B ,点C 为y 轴上的一点.图42-1(Ⅰ)求椭圆E 的标准方程; 答案:x 24+y 23=1解:依题意得a =2,c a =12,所以c =1,b 2=a 2-c 2=3,故椭圆E 的标准方程为x 24+y 23=1.(3分)(Ⅱ)若△ABC 是以点C 为直角顶点的等腰直角三角形,求直线l 的方程.答案:3x -4y +6=0,y =0或3x +4y +6=0解:显然点C 不在坐标原点.如图1所示,假设点C 在y 轴负半轴,过点B 作BM ⊥y 轴于点M ,设C (0,-t ),t >0.易证Rt △AOC ≌Rt △CMB ,所以|OM |=|CM |-|OC |=|AO |-|OC |=2-t ,|BM |=|OC |=t ,所以点B 的坐标为(t ,2-t ),代入椭圆方程得t 24+(2-t )23=1,解得t =27或t =2,对应点B 的坐标为⎝⎛⎭⎫27,127或(2,0),对应直线l 的方程分别为3x -4y +6=0和y =0.(8分)假设点C 在y 轴正半轴,如图2所示.根据对称性,此时的直线l 与上一种情况的直线l 关于x 轴对称,故此时直线l 的方程分别为3x +4y +6=0或y =0.(13分)综上所述,符合题意的直线l 有三条,其方程分别为3x -4y +6=0,y =0,3x +4y +6=0.(14分)B 组(冲刺满分)7.(经典题,13分)已知双曲线C :x 2a 2-y 2b 2=1的右焦点F (c ,0)到渐近线的距离为12c ,过点F 的动直线l 与双曲线交于A ,B 两点,与C 的渐近线交于P ,Q 两点.(Ⅰ)求双曲线的离心率;答案:233解:(Ⅰ)该双曲线的渐近线方程为bx ±ay =0,依题意得bc b 2+a2=12c ,即b =12c , 即c 2-a 2=14c 2,所以a 2=34c 2,a =32c ,所以离心率e =c a =233.(5分)(Ⅱ)证明:在直线l 旋转的过程中,||AP =||BQ 始终成立. 答案:见证明过程证明:由(Ⅰ)得a 2=3b 2,所以双曲线方程可写作x 2-3y 2=3b 2,其渐近线方程可写作x 2-3y 2=0.(6分)设l 的方程为x =my +2b ,m ≠±3,联立⎩⎪⎨⎪⎧x 2-3y 2=3b 2,x =my +2b ,得(m 2-3)y 2+4mby +b 2=0,设A (x 1,y 1),B (x 2,y 2),则线段AB 的中点M 的纵坐标为y M =y 1+y 22=-2mbm 2-3.(9分)联立⎩⎪⎨⎪⎧x 2-3y 2=0,x =my +2b ,得(m 2-3)y 2+4mby +4b 2=0,设P (x 3,y 3),Q (x 4,y 4),则线段PQ 的中点N 的纵坐标为y N =y 3+y 42=-2mb m 2-3.(12分)所以y M =y N ,而M ,N 都在直线l 上,所以M ,N 重合,所以|AP |=|BQ |.(13分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析 i M( , ) 连 结D , M, A. E xy , CO M
曰. 在 圆上 , 求B 中点M的轨 迹 方 程. C 试 C
合 理 的 解 题 途 径 是 简 化 运 算 、 速 解 题 迅 的关 键 .下 面介 绍 几 种 解 析 几 何 中减 少 运算量的策略 . 大家学习 、 考. 供 参
3 = 5, 是 M 点 的 轨 迹 方 程 )+ 2 于
3一 = x 8 Q
X+ 2
定 义 来 解 :第 2 题 是 通 过 椭 圆 的 第 一 小
评注 : C 为圆 曰, 都
2 _ 的动 点 , 51 =
定义求解 的. 圆两种定 义在这道题 中 椭
都 得 到 了合 理 地 运 用 . 问 题 的解 决 得 使
解 析 ( ) 圆 的 离 心 率 为 e , 1椭 =

8 0 斜 率 分 别 为一 和 .所 以两 条 直 -的 2

平行 、 垂直 、 相交 、 点共线 等 ) 数量 三 和
右 准 线 为 f = , 过 M作 MN上门 则 : 4 x N,
线 互 相 垂 直 .三 角 形 为 直 角 三 角 形. 由
I Fl ( M I 4椭圆第一定义)I P+ f - ,M I l _ I P + 一 M I 4一 IFl M I. M I4 I FI : (M , P ) 一1 种 P 当M在 延长线上时,1 FII l M I 取 — 得 最大值 l PI 、 ,此 时 IFI — / = M I—
因为 为B 的 中点 . 以O _B 。 肘2 C 所 M L C0 + M o = 柱 AC A B C B M= M= M=



导 致操 作 太 烦 琐 !注 意 到 椭 圆 的 离 心 率 为e . 第1 题 就 可 运 用 椭 圆 的 第 二 : 小
lF 取最小值4 、了 . M I 一/
评 注 : 果 设 出M点 的 坐 标 , 如 无论 是
设 为 ( Y , 是 (c s , ,) 还 2 o O s O 都 会 i ) n
大增 加运 算量 .
倒3 已知A( ,) 3O 是圆∞ - 5 2 内的 竹

个 定点 . 以A为直角 顶 点作 R AA C 点 t B .
圆锥 曲线 是 高 考 的 必 考 内容 . 计 对
算能力 的高要求是其最突 出的特点.用
解 析 法 解 圆 锥 曲 线 问题 . 然 思 路 比较 虽 简 单 、 律 性 强 。 是 运 算 量 一 般 都 比 规 但 较 大 . 此 。 择 适 当 的 数 学 方 法 、 计 因 选 设
体现 “ ” 直观性 . 形 的 又具 有 “ ” 可 运 数 的
点.
() M l2M I 1求IP + I F 的最小值; () lP+ M l 2求 M ll F 的最小值.

算性 . 此 . 因 向量 是 数 形 转 换 的 桥 梁 .对
于解 析 几 何 中 图 形 的重 要 位 置 关 系 ( 如
到 了最优 化.
通 过 引进 角 参 数 . 出B。 设 C的坐 标 . 导 会 致 运 算繁 杂.“ 径 定理 ” 垂 的使 用 。 我 们 让
线问题 . 采用 “ 若 回归 定 义 ” 策 略 . 的 则
能 获 得 题 目所 固有 的 本 质 属 性 . 到 准 达
在 寻 找M的 坐标 的关 系 时 , 与v 跳过 了两
个 动 点8. 。 直达 一个 非 常 明 确 的 结 果 C
确判 断 、 活解 题 、 免大 量运 算 的 目 灵 避 的.因此 . 义 是 解 决 问 题 的 原 生 力 量 , 定
不容忽视.
活 用平 面几何 知识
解 析 几 何 首 先 是 几 何 问 题 . 果 在 如 用 代 数 方 法 研 究 曲线 关 系 的 同时 . 分 充 利用图形本身所具有 的平面几何 性质 .
Байду номын сангаас控 邮 sk v .3o 稿 箱:j i 6 r x@ p c 1 n
数学教学通讯( 教师版 ) … … …… 一 …一 u 试 研 懈 技 … … 题 究> 题 巧
霸匿
浅谈解析几何中减少运算量的几种策略
季锦成
江 苏泰 州民兴 实验 中学 2 5 0 2 30
~ ~ 一

例2 已知直线 +,6 0 2 + = 1 = ,一 y 8 一
0 x y 0 求 它 们 所 围成 的 三 角 形 的 外 及 -= . -
接 圆方 程 .
解 析 因为 直 线 + 一 =  ̄ 2 v 6 0- 一 什
程方 案中两个 重要的分支 . 数形结 合是
这 两 个 分 支 的共 同特 点 。由 于 向 量 既 能
可 得到 简捷 而 优 美 的 解答 .
O 十 MZO 2大 大减 少 了运 算 量. A = c.
巧用 向量
解 析 几 何 与 向 量 是 高 中 数 学 新 课
例1 知 筝+ 1 有一 已 椭圆 孚:内 点
叶 J
P 1 一 )肋 椭 圆 的 右 焦点 , 为 椭 圆 上 ( ,1 ,
关 系( 如距 离 、 等 ) 能通 过 向量的 角 , 都
坐标 运 算 来 进 行 刻 划 . 就 为将 向 量 应 这
用 于解 析 几 何 创 造 了条 件 .
l P + fF :jP +1 M I f f M f2M f I 』 — F = P + I —l

fy , 及fy , 求 = 0 -0 得直角 三

曰 所 以OM:A』 0 。 C, + I c2 即 + = +( 一

回归定 义
波 利 亚说 : 当 你 不 能 解 决 问 题 时 , “
不 妨 回 到 定 义 中去 !” 义 是 事 物 本 质 定 属性 的概括和反映 . 圆锥 曲 线 许 多 性 质 都 是 由定 义 派 生 出来 的.对 某 些 圆锥 曲
相关文档
最新文档