第9章-吸光光度法分析

合集下载

第9章 紫外吸收光谱分析

第9章 紫外吸收光谱分析
即: E = Ee + Ev + Er ΔΕe >ΔΕv >ΔΕr
讨论:
(1) 转动能级间的能量差Δ Ε r:0.005~0.050eV,跃迁 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; (2) 振动能级的能量差Δ Ε v约为:0.05~1eV,跃迁产 生的吸收光谱位于红外区,红外光谱或分子振动光谱; (3) 电子能级的能量差Δ Ε e较大1~20eV,电子跃迁产生 的吸收光谱在紫外—可见光区,紫外—可见光谱或分子的电 子光谱;
p → p*跃迁:红移; ;e
pp np
max(正己烷)
230 329
max(氯仿)
238 315
max(甲醇)
237 309
max(水)
243 305
溶剂的影响

1
1:乙醚


2:水

2
极性溶剂使精细结构 消失;
250 300
非极性 → 极性 n → p*跃迁:兰移; ;e p → p*跃迁:红移; ;e
(2)共轭烯烃中的 p → p*
p*
p*₃
p*
p p*
165nm 217nm p₂
(HOMO LVMO) p
p₁
p

max
共轭烯烃(不多于四个双键)p p*跃迁吸收峰位置可由伍德
沃德——菲泽 规则估算。 max= 基+nii
基-----是由非环或六环共轭二烯母体决定的基准值; 无环、非稠环二烯母体: max=217 nm
红移与蓝移
有机化合物的吸收谱带 常常因引入取代基或改变溶 剂使最大吸收波长λmax和吸 收强度发生变化:
λmax向长波方向移动称为 红移,向短波方向移动称为 蓝移 (或紫移)。吸收强度即 摩尔吸光系数ε增大或减小的 现象分别称为增色效应或减 色效应,如图所示。

第九章 吸光光度法

第九章 吸光光度法

发生相互作用。 假定只有在稀溶液(c<10-2mol/L)时才基本符合。 当溶液浓度c >10 -2 mol/L 时,吸光质点间可能发 生缔合等相互作用,直接影响了对光的吸收。 故:朗伯—比耳定律只适用于稀溶液。 溶液中存在着离解、聚合、互变异构、配合物的 形成等化学平衡时。使吸光质点的浓度发生变化 ,影响吸光度。
度的乘积成正比。 朗伯——比耳定律不仅适用于有色溶液,也适 用于其它均匀、非散射的吸光物质(包括液体、气 体和固体),是各类吸光光度法的定量依据。
A bc
式中,A:吸光度,描述溶液对光的吸收程度; b:液层厚度(光程长度),通常以cm为单位; c:溶液的摩尔浓度,单位mol· -1; L
无线电波 11000m
光谱名称 波长范围 X射线 0.1—10nm 远紫外光 10—200nm
跃迁类型
辐射源
分ห้องสมุดไป่ตู้方法 X射线光谱法
真空紫外光 度法
K和L层电子 X射线管 中层电子 氢灯 氢灯 钨灯
碳化硅热棒
近紫外光 200—400nm 价电子 可见光 400—750nm 价电子
近红外光 0.75—2.5μ m 分子振动 中红外光 2.5— 分子振动 5.0μ m
A总 lg(I01 I02 ) /(I01 10
1bc
I02 10
2bc
)
讨论: A总 lg(I0 I0 ) /(I0 10
1 2 1
1bc
I02 10
2bc
)
(1) 1= 2 = 则: A总 =lg(Io/It)= bc
(2) 若 2≠ 1 ;A与C则不成直线关系。 2与 1
I0 A lg I t A Kbc

第九章 紫外吸收光谱分析

第九章 紫外吸收光谱分析

3.在下列化合物中,哪些适宜作为紫外 光谱测定中的溶剂? 甲醇、乙醚、苯、碘乙烷、乙醇、 正丁醚、环己烷 4. 下列化合物中哪一个的max最长? CH4; CH3I; CH2I2
在下列化合物中同时含有*、 n*、 *跃迁的化合物是 三氯甲烷、丙酮、丁二烯、二甲苯
在下列化合物中,那一个化合物能吸 收波长较长的辐射( ) 苯、二甲苯、对氯代甲苯、萘
1, 3-丁二烯:max=210nm, =20000L· mol-1· cm-1
1, 5己二烯:两个不共轭的双键,1-己烯:一个双键。 1, 5-己二烯与1, 3-丁二烯比较:两者都有两个双键, 摩尔吸光系数相近;区别: 1, 3-丁二烯中两个双键共
轭,吸收波长红移,最大吸收波长= 210nm 。因此,
光谱分析方法的分类
classification of spectroscopic analysis 紫外可见法
分子光谱 原子光谱
原子吸收法
红外法
光谱分析法
spectrometry
原子发射法
核磁法
荧光法
光学分析法概要(P201)
依据:物质吸收、发射电磁辐射(电磁波;光) 光学分析法:利用物质与电磁辐射的相互作用来进行 分析的方法。
⑶ * 跃迁(NV跃迁)
吸收波长处于远紫外区的近紫外端或近 紫外区,max一般在104以上, 强吸收。有机化 合物中含有 电子的化合物均可发生该类跃 迁。如不饱和烃 * 跃迁 ( 乙烯 * 跃 迁的max=165nm, max=104;乙炔*跃迁的 max=173nm 。 乙 醛 * 跃 迁 的 max 为 190nm,max:104。( <200nm ;生色团)
某化合物分子式为,

9紫外吸收光谱分析

9紫外吸收光谱分析

2.分子吸收光谱的分类:
分子内运动涉及三种跃迁能级,所需能量大
小顺序
E电 E振 E转
E电 1 ~ 20ev 0.06 ~ 1.25m 紫外 可见吸收光谱 E振 0.05 ~ 1ev 25 ~ 1.25m 红外吸收光谱 E转 0.005 ~ 0.05ev 250 ~ 25m 远红外吸收光谱
常用的是π→π*跃迁和n→π*,这两种跃迁都需要分子中 有不饱和基团提供π轨道。
n→π*跃迁与π→π*跃迁的比较如下:
吸收峰波长
吸收强度 极性溶剂
π→π*
n→π*
与组成双键的
有关
原子种类基本无关
强吸收 104~105
弱吸收 <102
向长波方向移动 向短波方向移动
二、生色团与助色团
生色团: 能吸收紫外-可见光的基团叫生色团。
E1=185nm E2=204 nm
强吸收 较强吸收
>104 >103
精细结构:
苯在λ=185nm和204nm处有两个 强吸收带,分别称为E1和E2吸收 带,是由苯环结构中三个乙烯的 环状共轭体系的跃迁产生的,是 芳香族化合物的特征吸收。
在230~270nm处有较弱的一系列 吸收带,称为精细结构吸收带, 亦称为B吸收带。B吸收带的精细 结构常用来辨认芳香族化合物。
能级差 E h h c
能பைடு நூலகம்:电子能级、振动能级、转动能级

跃迁:电子受激发,从低能级转移到高
能级的过程
不同物质结构不同或者说 其分子能级的能量(各种能级 能量总和)或能量间隔各异, 因此不同物质将选择性地吸收 不同波长或能量的外来辐射, 这是UV-Vis定性分析的基础。

吸光光度法

吸光光度法
(2)、质量吸光系数
A = lg(I0 / It) = a b c ; a = A / b c
式中, c:溶液的浓度 g ·L-1 a:吸光系数 L·g-1 ·cm-1
a与ε的关系为: a =ε/M (M为摩尔质量)
(3)、吸光系数的意义
a、单位浓度、单位光程的吸光物质,对某一波长的 入射光,所产生的吸光度。分质量吸光系数(a) 和摩尔吸光系数(ε )。(定义)
★ 光度分析法,根据吸光物质的不同,可分为:
原子吸收分光光度法、分子(或离子)吸光光度法。 本章主要讲授的吸光光度法,属于:分子(或离子)吸收。 吸光波长:可见和近紫外(主要在可见光区)。
二、吸收曲线
物质对光的选择性吸收,可用吸收曲线来表示!
★ 吸收曲线的讨论:
(1) 吸光度最大处对应 的波长称为最大吸 收波长λmax
吸光系数可反映出吸光化合物的吸光本性!
吸光系数定义:单位浓度、单位光程的吸光物质,对某一 波长的入射光,所产生的吸光度。
(1)、摩尔吸光系数
A = lg(I0 / It) = εb c
ε= A /bc
式中, b:液层厚度(光程长度) cm; c:溶液的摩尔浓度 mol ·L-1; ε:摩尔吸光系数 L·mol-1 ·cm-1;
① ε 是吸物光质在一定波长和溶剂条件下的特征常数;
② 不随浓度 c 和光程长度 b 的改变而改变。温度和波长等
条件一定时,ε 仅与吸收物质本身的性质有关,与待测
物浓度无关,可作为定性鉴定的参数;
③ 同一吸收物质在不同波长下的ε值是不同的。λmax处的 摩尔吸光系数最大,常以εmax 表示。εmax 表明了该
b、吸光系数是表示吸光物质 吸光能力的特征常数。吸光
系数越大,表示该物质吸光能力越强。其在吸收峰值 最大处对应的波长,叫最大吸收波长,此处吸光系数

第九章吸光光度法(简)

第九章吸光光度法(简)

解 已知T=0.501,则A=-lgT=0.300,b=2.0cm,
c

25.0 10 6 g 50.0 10 3 L

5.00 10 (4 g L1)
则根据朗伯—比尔定律 A=abc,
a

A bc

0.300 2.0cm 5.00 10 4 g
L1

3.00
10 2 L.g -1.cm1
III
III 0.0006mg/mL
0.3
0.2
II
I
0.1
0.0
400
500
600
/nm
1,10-邻二氮杂菲亚 铁溶液的吸收曲线
吸收光谱或吸收曲线
max
KMnO4溶液的吸收曲线
(cKMnO4:a<b<c<d)
KMnO4溶液
对波长525nm附近的绿 色光吸收最强,而对紫 色光吸收最弱。光吸收 程度最大处的波长叫做
实验确定 4.溶剂 5.干扰的消除
三 显色剂
1 无机显色剂:硫氰酸盐、钼酸铵等。 2 有机显色剂:种类繁多 (1)偶氮类显色剂:性质稳定、显色灵敏度高、选择 性好、对比度大,应用最广泛。偶氮胂III、PAR等。 (2)三苯甲烷类:铬天青S、二甲酚橙等
§9-4 吸光度测量条件的选择
一 选择适当的入射波长
2.由于溶液本身的原因所引起的偏离
朗伯—比尔定律是建立在 均匀、非散射的溶液这个基础 上的。如果介质不均匀,呈胶 体、乳浊、悬浮状态,则入射 光除了被吸收外,还会有反射 、散射的损失,因而实际测得 的吸光度增大,导致对朗伯— 比尔定律的偏离。
3. 溶质的离解、缔合、互变异构及化学变化
其中有色化合物的离解是偏离朗伯—比尔定律的主

第9章吸光光度法(2)。

第9章吸光光度法(2)。

60nm
二、 显色条件的选择
吸光光度法是测定待测物质的吸光度或显色 反应平衡后溶液的吸光度,因此为了得到准确的 结果,必须控制适当的条件,使显色反应完全和 稳定。
显色条件包括: 溶液酸度,显色剂用量,显 色时间,显色温度,有机络合物的稳定性及共存 离子的干扰等。
1、溶液酸度(pH值及缓冲溶液)
在相同条件下测的试液的吸光度, 从工作曲线上就可查到试液的浓 度, 该方法称为工作曲线法。 注意什么? a. 标准溶液浓度必须在线性范围内,即符合A= bc
b. 试液的吸光度必须在标准曲线范围内,即A1≤ Ax ≤An
五、光度分析法的误差(准确度)
对朗伯-比尔定律的偏离
在实际分析中,常会发现标准曲线发生弯曲,尤其当溶液
2.有机显色剂
有机显色剂分子中含有某些含不饱和键的基 团如偶氮基、对醌基和羰基等生色团( chromophoric group)和含孤对电子的基团如氨 基 、 羟 基 和 卤 代 基 等 助 色 团 ( auxochrome group)。
生色团:-N=N-,-N=O,
O
C=S,-N
(共轭双键)πe
为避免铁的干扰,可以选择波 长 520 nm进行测定,虽然而测镍的 灵敏度有所降低,但酒石酸铁不干 扰镍的测定。
二、参比溶液的选择
为什么要使用参比溶液? 目的:扣除非待测组分(吸收池和各种试剂)对光的吸收, 使测得的的吸光度真正反映待测物对光的吸收。
测定时,采用两个材质、厚度相同的比色皿进行测量,其中 一个作为参比池,装入参比溶液,调节仪器使透过参比池的吸光 度为零。则测得待测溶液的吸光度为:
显色剂的用量来消除干扰。 g. 采用预先分离的方法。
三、三元配合物在光度分析中的应用特性简介(自学)

分析化学(第四版_高职高专化学教材编写组) 第九章 吸光光度法

分析化学(第四版_高职高专化学教材编写组) 第九章 吸光光度法

第二节 吸光光度法的基本原理
一、物质对光的选择性吸收
(一)光的基本特性 1.电磁波谱:光是一种电磁波

10-2 nm 10 nm
射 线 x 射 线
102 nm 104 nm
紫 外 光 红 外 光
0.1 cm 10cm
微 波
103 cm
105 cm
无 线 电 波



2.可见光、单色光和互补色光

物质呈现不同的颜色其本质是对光的选择性吸收;

颜色深浅随浓度而变化是对光的吸收程度不同。

通过比较溶液颜色的深浅来测定物质的含量的方法,称为 目视比色法。

目前普遍采用分光光度计测量吸光度以代替比较颜色深浅, 应用分光光度计的分析方法称为分光光度法。 分光光度法根据物质对不同波长的单色光的吸收程度不同
进行定性和定量分析。按照研究的波谱区域不同,可分为:
分光光度法

紫外分光光度法——200-400nm
可见分光光度法—— 400-780nm 红外分光光度法——780-3.0×104nm
吸光光度法是基于物质对光的选择性吸收而建立起来的 分析方法。
吸光光度法

比色分析法 分光光度法
二、吸光光度法特点
理解分光光度计的基本结构和工作原理。
掌握定量分析方法和测量条件的选择。
能力目标 能绘制吸收曲线。 能正确选择显色条件和光度测量条件。 能应用吸光光度法对样品中的微量成分进行定量分析。
知识回顾
前面所学滴定分析和质量分析都属于化学分析法,适用于 含量高于1%常量组分的测定,测定结果的相对误差可控制在 0.2%以内。但不宜测定含量低于1%的微量成分。 实例:含Fe约0.05%的样品 称0.2 g试样, 则mFe≈0.1 mg

分析化学第九章吸光光度法

分析化学第九章吸光光度法

3. 分光光度计及其基本部件:
光源-单色器-比色皿(吸收池)-检测器-显
(1)光源 : 钨丝灯:可见、红外 400-1000nm氢灯或 氘灯:紫外 160-350nm (2)单色器: a.滤光片:有机玻璃片或薄膜,利用颜色互补原理。 b.棱镜:根据物质的折射率与光的波长有关。玻璃 棱镜:可见,石英棱镜:紫 外、可见。 c.光栅:在玻璃片或金属片上刻划均匀的线,1200 条/mm, 衍射、干涉原理。
吸收光谱有原子吸收光谱和分子吸收光谱 单色 单一波长的光 光 光 复合光 由不同波长的光组合而成的光
两种不同颜色的单色光按一定的强度比 光的互补 例混合得到白光,那么就称这两种单色 光为互补色光
光的互补示意图
KMnO4溶液的 吸收曲线 (cKMnO4:a<b<c <d)



分子、原子、离子具有不连续的量子化能级,仅 能吸收当照射光子的能量hv与被照射粒子的 E激 - E基 =(hv)n因为不同物质微粒的结构不同, 共有不同的量子化能级,其能量差也不相同,因此 对光的吸收具有选择性。若固定某一溶液的浓度 C 和液层厚度 b ,测量不同 λ下的 A ,以吸光 度 A 对吸收波长λ 作图,就得到-吸收曲线, 即吸收光谱。 初步定性分析:不同物质吸收曲线的形状与最大 吸收波长不同。 定量分析:不同 C 的同一物质在吸收峰附近的 A 随 C ↑而增大,吸收曲线是吸光光度法中选择测 定波长的主要依据。
3.温度:通过实验确定温度范围,通常在室温下 进行。 4.溶剂:一般螯合物在有机溶剂中溶解度大,提高 显色反应的灵敏度。如Cu(SCN)42-在水中大 部分离 解,几乎无色;在丙酮中呈蓝色。
5.显色时间:通过实验找出适宜的显色时间。
6.干扰组分:共存组分与显色剂生成有色络合物, 正干扰;生成无色络合物,负干扰。 干扰的消除:

第九章 吸光光度法

第九章 吸光光度法

A 0.19 -1 -1 a 190(L g cm ) 4 bc 2 5.0 10 4 -1 -1 Ma 55.85 190 1.1 10 (L mol cm )
在多组分体系中,若各种吸光物质之间
无相互作用,体系的总吸光度等于各组分吸
光度之和: A=A1 + A2 +
A
(a)这类反应生成的有
色络合物稳定,对显色剂
(a)
O a b CR
浓度控制要求不太严格。 (b)这类反应需严格控
A
(b)
制显色剂浓度。如硫氰酸 盐与钼的反应:
+SCN-
O
a‘
b'
CR
2 Mo(SCN) 3
+SCN- -SCN-
Mo(SCN) 5
(橙红)
-SCN-
Mo(SCN)
(浅红)
6
(浅红)
物质颜色
黄绿
透射光颜色
黄 橙 红
紫红
紫 蓝 绿蓝 蓝绿
绿
黄绿 黄 橙 红
500-560
560-580 580-600 600-650 650-780
由以上分析可见:
吸收光与透射光是一对互补色光,吸
收光与透射光可以组成白光。
在可见光区,不同波长光呈现不同颜 色,溶液颜色是由透射光波长决定的。
对于溶液浓度( C )一定,液层厚度( b ) 一定的有色溶液,在不同波长下,测定该有色溶液 对光的吸收程度,即可绘制吸收曲线。
0.400
吸 光 度
Ⅲ 0.300 Ⅱ 0.200 0.100 Ⅰ
400
500
600
700
nm
波长
图9-3 1,10邻二氮杂菲亚铁溶液的吸收曲线 Ⅰ:Fe2+含量为0.0002mg/ mL Ⅱ:Fe2+含量为0.0004mg/mL Ⅲ: Fe2+含量为0.0006mg/mL

第九章 吸光光度法

第九章 吸光光度法

2
§8-1 吸光光度法基本原理
比色法介绍
3
一、物质对光的选择性吸收
1.光的基本性质 光是一种电磁波,具有波粒二象性。光的波动性可用波 长、频率、光速c、波数(cm-1)等参数来描述: = c ; 波数 = 1/ = /c 光是由光子流组成,光子的能量: E=h=hc/ (Planck常数:h=6.626 × 10 -34 J .S ) 光的波长越短(频率越高),其能量越大。 白光(太阳光):由各种单色光组成的复合光,是连续光谱。 单色光:单波长的光(由具有相同能量的光子组成) 可见光区:400-750 nm 紫外光区:近紫外区200 - 400 nm 远紫外区10 - 200 nm (真空紫外区)
将Mn2+ 氧化成紫红色的MnO4- 后,在525 nm处进行测 定。
23
4.显色剂 无机显色剂:硫氰酸盐、钼酸铵、过氧化氢等几种。 有机显色剂:种类繁多 偶氮类显色剂:本身是有色物质,生成配合物后,颜色发 生明显变化;具有性质稳定、显色反应灵敏度高、选择性好、 对比度大等优点,应用最广泛。偶氮胂Ⅲ、PAR等。 三苯甲烷类:铬天青S、二甲酚橙等
21
§ 8-3 显色反应及显色条件的选择
一、显色反应的选择 1.选择显色反应时,应考虑的因素 灵敏度高(ε值104~105)、选择性好、生成物稳定、显色 剂在测定波长处无明显吸收,两种有色物最大吸收波长之 差:“对比度”,要求△ > 60nm。 2.配位显色反应 当金属离子与有机显色剂形成配合物时,通常会发生 电荷转移跃迁,产生很强的紫外—可见吸收光谱。 例如:Cu2+与双硫腙配位形成的双硫腙铜在 λ=533nm 处的ε=5×104
27
2. 选择合适的参比溶液
为什么需要使用参比溶液? 调节参比的A=0,使测得的的吸光度真正反映待测物的吸光强 度。扣除待测物的吸收之外的其他所有吸收。 参比溶液的选择一般遵循以下原则: ⑴ 若仅待测组分与显色剂反应产物在测定波长处有吸收,其 它所加试剂均无吸收,用纯溶剂(水) 作参比溶液; ⑵ 若显色剂或其它所加试剂在测定波长处略有吸收,而试液 其它组分无吸收,用“试剂空白”(不加试样溶液)作参比溶液;

第九章 紫外吸收光谱分析

第九章 紫外吸收光谱分析

分子吸收光谱分为: 分子吸收光谱分为:● 远红外光谱 ● 红外光谱 紫外-可见光谱 ● 紫外 可见光谱
第二节
一、跃迁类型
有机化合物紫外吸收光谱
有机化合物的价电子: 电子、 电子和n 有机化合物的价电子:σ电子、π电子和n电子 形成单键的电子称为σ电子。 σ电子 —— 形成单键的电子称为σ电子。 形成双键的电子称为π π电子 ——形成双键的电子称为π电子。 形成双键的电子称为 电子。
2、溶剂从非极性→极性时,谱图的精细结构全部消失。 溶剂从非极性→极性时,谱图的精细结构全部消失。
溶剂选择原则: 溶剂选择原则:
(1)溶剂应能很好地溶解被测试样,溶剂对溶质应该是 溶剂应能很好地溶解被测试样, 惰性的。 惰性的。 即溶液应具有良好的化学和光化学稳定性。 即溶液应具有良好的化学和光化学稳定性。
例如: σ→σ* 跃迁范围在125 125例如:CH4 的 σ→σ* 跃迁范围在125-135nm 远紫外区 H H C H 在分子中引入的一些基团, 红移 —— 在分子中引入的一些基团,吸收峰向长波方向 移动的现象,称为红移或深色移动。 移动的现象,称为红移或深色移动。 红移或深色移动 助色团——含有孤对电子,使吸收峰向长波方向移动的杂 含有孤对电子, 助色团 含有孤对电子 原子官能团称助色团。 原子官能团称助色团。如—NH2、—OH、—OR、—Cl等 、 、 等 ·· I σ→σ* 跃迁范围在150 150CH3I的σ→σ* 跃迁范围在150-210nm →σ* 跃迁范围在259nm n→σ* 跃迁范围在259nm [1]
230230-270nm εMAX = 200
2、单取代苯

[1]
如果苯环上有助色团如Cl等 由于n→π* 如果苯环上有助色团如-OH 或 -Cl等,由于n→π* 共 带向长波长方向移动。 轭,使 E2 带向长波长方向移动。 化合物

第9章-紫外可见吸收光谱法

第9章-紫外可见吸收光谱法

第九章紫外可见吸收光谱法§9-1 概述利用紫外可见分光光度计测量物质对紫外可见光的吸收程度〔吸光度〕和紫外可见吸收光谱来确定物质的组成、含量,推测物质结构的分析方法,称为紫外可见吸收光谱法或紫外可见分光光度法〔ultraviolet and visible spectrophotometry,UV-VIS〕。

它具有如下特点:〔1〕灵敏度高适于微量组分的测定,一般可测定10-6g级的物质,其摩尔吸收系数可以到达104~105数量级。

(2) 准确度较高其相对误差一般在1%~5%之。

(3) 方法简便操作容易、分析速度快。

(4) 应用广泛不仅用于无机化合物的分析,更重要的是用于有机化合物的鉴定与结构分析〔鉴定有机化合物中的官能团〕。

可对同分异构体进展鉴别。

此外,还可用于配合物的组成和稳定常数的测定。

紫外可见吸收光谱法也有一定的局限性,有些有机化合物在紫外可见光区没有吸收谱带,有的仅有较简单而宽阔的吸收光谱,更有个别的紫外可见吸收光谱大体相似。

例如,甲苯和乙苯的紫外吸收光谱根本一样。

因此,单根据紫外可见吸收光谱不能完全决定这些物质的分子结构,只有与红外吸收光谱、核磁共振波谱和质谱等方法配合起来,得出的结论才会更可靠。

§9-2 紫外可见吸收光谱法的根本原理当一束紫外可见光〔波长围200~760nm〕通过一透明的物质时,具有某种能量的光子被吸收,而另一些能量的光子那么不被吸收,光子是否被物质所吸收既决定于物质的部结构,也决定于光子的能量。

当光子的能量等于电子能级的能量差时〔即ΔE电 = h f〕,那么此能量的光子被吸收,并使电子由基态跃迁到激发态。

物质对光的吸收特征,可用吸收曲线来描述。

以波长λ为横坐标,吸光度A为纵坐标作图,得到的A-λ曲线即为紫外可见吸收光谱〔或紫外可见吸收曲线〕。

它能更清楚地描述物质对光的吸收情况〔图9-1〕。

从图9-1中可以看出:物质在某一波长处对光的吸收最强,称为最大吸收峰,对应的波长称为最大吸收波长〔λmax〕;低于高吸收峰的峰称为次峰;吸收峰旁边的一个小的曲折称为肩峰;曲线中的低谷称为波谷其所对应的波长称为最小吸〕;在吸收曲线波长最短的一端,吸收强度相当大,但不成峰形的收波长〔λmin局部,称为末端吸收。

吸光光度分析

吸光光度分析

吸光光度分析法基于物质对光选择性吸收而建立起来的分析方法,称为吸光光度分析法。

本章重点讨论可见光区的吸光光度分析。

第一节吸光光度分析概述吸光光度分析法(absorption spectrophotometry),包括比色分析法、可见分光光度法、紫外分光光度法和红外分光光度法等。

与经典的化学分析方法相比,吸光光度法具有以下几个特点:1.灵敏度高吸光光度法主要用于测定试样中微量或痕量组分的含量。

测定物质浓度下限一般可达10—5~10—6 mol·L—1,若被测组分预先加以富集,灵敏度还可以提高。

2.准确度高比色法测定的相对误差为5%~10%,分光光度法测定的相对误差为2%~5%,完全可以满足微量组分测定的准确度要求。

若采用精密分光光度计测量,相对误差可减小至1%~2%。

3.仪器简便,测定速度快吸光光度法虽然需要用到专门仪器,但与其它仪器分析法相比,比色分析法和分光光度法的仪器设备结构均不复杂,操作简便。

近年来由于新的高灵敏度、高选择性的显色剂和掩蔽剂的不断出现,常常可以不经分离而直接进行比色或分光光度测定,使测定显得更为方便和快捷。

4.应用广泛吸光光度法能测定许多无机离子和有机化合物,既可测定微量组分的含量,也可用于一些物质的反应机理及化学平衡研究,如测定配合物的组成和配合物的平衡常数,弱酸、弱碱的离解常数等。

第二节吸光光度分析的基本原理一、溶液的颜色和对光的选择性吸收1.光的基本性质光是一种电磁波。

电磁波范围很大,波长从10—1 nm~103 m,可依次分为X–射线、紫外光区、可见光区、红外光区、微波及无线电波,见表8—1。

表8-1电磁波谱区域λ/ nmX –射线10-1~10远紫外光区10~200近紫外光区200~400可见光区400~760近红外光区760~5×104远红外光区5×104~1×106微波1×106~1×109无线电波1×109~1×1012注:1 m = 109 nm人的眼睛能感觉到的光称为可见光(visible light)。

第 09 章 吸光光度法

第 09 章 吸光光度法

天津理工大学
白光除了可由所有波长的可见光复合得到外,还 可由适当的两种颜色的光按一定比例复合得到。 能组成白光的两种颜色的光叫补色光。
物质的颜色与吸收光的关系: 当白光照射到物质上时,如果物质对白光中某种 颜色的光产生了选择性的吸收,则物质就会显示 出一定的颜色。 物质所显示的颜色是吸收光的互补色。
吸收峰和最大吸收波长max • 吸收曲线上的各个峰叫吸收峰。峰越高,表 示物质对相应波长的光的吸收程度越大。其中最 高的那个峰叫最大吸收峰,它的最高点所对应的 波长叫最大吸收波长,用λmax表示。
天津理工大学
物质的吸收曲线和最 大吸收波长的特点: 1)不同的物质,吸 收曲线的形状不同, 最大吸收波长不同。 2)对同一物质,其 浓度不同时,吸收曲 线形状和最大吸收波 长不变,只是吸收程 度要发生变化,表现 在曲线上就是曲线的 高低发生变化。
价电 子
价电 子
分子 振动
分子 振动
分子 转动
天津理工大学
§9.1 吸光光度法基本原理
9.1.1物质对光的选择性吸收
1 可见光的颜色和互补色: 在可见光范围内,不同波长的光的颜色是不同的。 平常所见的白光(日光、白炽灯光等)是一种复 合光,它是由各种颜色的光按一定比例混合而得 的。利用棱镜等分光器可将它分解成红、橙、黄、 绿、青、蓝、紫等不同颜色的单色光。
κ值可以从实验中得到。
天津理工大学
摩尔吸收系数κ的讨论
(1)吸收物质在一定波长和溶剂条件下的特征常数; (2)不随浓度c和光程长度b的改变而改变。在温度和波 长等条件一定时, κ仅与吸收物质本身的性质有关,与 待测物浓度无关; (3)同一吸收物质在不同波长下的κ值是不同的。在最 大吸收波长λmax处的摩尔吸收系数κmax表明了该吸收物质 最大限度的吸光能力,也反映了光度法测定该物质可能 达到的最大灵敏度。

第九章 吸光光度法 (工)

第九章 吸光光度法 (工)
该图显示了物质对不同波长光的吸收能力。 最高吸收峰对应下的波长称之为最大吸收波长, 用λmax表示。 定性分析:据物质不同吸收曲线的形状和最大吸 收峰各不相同。 定量分析:同一物质,最大吸收峰位置不变,其 吸光度随浓度增大而增大。
12
Cr2O72-、MnO4-的吸收光谱
1.0 0.8 Absorbance 0.6
第九章 吸光光度法
9.1 9.2 9.3 9.4 9.5
吸光光度法的基本原理 光度计及其基本部件 显色反应及显色条件的选择 吸光度测量条件的选择 吸光光度法的应用
1
9.1 吸光光度法的基本原理
吸光光度法是基于被测物质的分子对光具 有选择性吸收的特性而建立起来的分析方法。
一、概述: 比色法:比较溶液颜色的深浅确定组分含量的一种 方法。
38
722型分光光度计结构方框图
光 源
分光 系统 吸收池 检测系统
39
分光光度计的主要部件
光源:发出所需波长范围内的连续光谱,有足够
的光强度,稳定。


可见光区:钨灯,碘钨灯(320~2500nm) 紫外区:氢灯,氘灯(180~375nm)
单色器:将光源发出的连续光谱分解为单色光的
装置。
棱镜:玻璃350~3200nm, 石英185~4000nm 半宽度 5~10nm 光栅:波长范围宽, 色散均匀,分辨性能好, 使
6
与物质作用
电场向量 Y
Z 磁场向量 传播方向
7
微粒性 光量子,具有能量。
E h
h-普朗克(Planck)常数 6.626×10-34J· s -频率 E-光量子具有的能量
单位:J(焦耳),eV(电子伏特)
8
波粒二象性
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

白光
KMnO4
紫色
2021/2/6
下一页 返回 1退3 出
表9-1 物质颜色和吸收颜色的关系
物质颜色
黄绿 黄 橙 红 紫红 紫 蓝 绿蓝
颜色 紫 蓝
绿蓝 蓝绿
绿 黄绿
黄 橙
吸收光 波长范围/nm
400~450 450~480 480~490 490~500 500~560 560~580 580~600 600~650
至50mL,用2cm比色池,在分光光度计 上测得吸光度A=0.190,计算摩尔吸光 系数?
解: A 0.190 1.1104(Lm ol-1cm 1)
bc 2 0.025 55.8550
2021/2/6
下一页 返回 2退3 出
4. 吸光度的加合性
多组分体系中
AA1A2.. . An
1b1c2b2c.. .nbn c
分析化学 第九章 吸光光度法 Spectrophotometry
2021/2/6
上一页 返回 退1出
基本内容和重点要求
掌握物质对光的选择性吸收、吸光度和透光 度、朗伯—比耳定律及摩尔吸光系数等知识;
了解比色分析和分光光度法的特点、基本原 理、仪器构造和各部件的作用;
学习显色反应和显色条件的选择; 理解分光光度法定量分析中的各种影响因素。
3. 吸光系数、摩尔吸光系数
4. 吸光度的加合性
2021/2/6
下一页 返回 1退8 出
1. 透光率T与吸光度A
Transmittance and Absorptivity
I0
Ia
Ir
透光率或 透射比
2021/2/6
吸光度
I0 Ia It Ir
It I 0 I a I t
T It I0
60 70 80 90
下一页 返回 2退0 出
2. 朗伯—比耳定律
Lambert-Beer’s Law
A-吸光度
K-比例常数,与吸光物质
AKbc 的性质、入射光波长、温 度等有关
b-液层厚度,cm
c-溶液的浓度,molL-1 或g L-1
2021/2/6
下一页 返回 2退1 出
3. 吸光系数、摩尔吸光系数
2021/2/6
下一页 返回 1退6 出
4. 分析依据
定性分析:最大吸收波长max 定量分析:吸光度大小
A
1
0.8
0.4
2
0.6
0.2
400 450 500 550 600 650 /nm
2021/2/6
下一页 返回 1退7 出
五、光的吸收基本定律 ——朗伯-比耳定律
1. 透光率与吸光度
2. 朗伯-比耳定律
二、方法特点
三、光的基本性质
四、物质对光的选择性吸收
五、光的吸收基本定律——朗伯-比耳定律
六、偏离比耳定律的原因
2021/2/6
下一页 返回 退4 出
一、方法依据及分类
基于物质对光的选择性吸收而建立起来的分 析方法,包括比色法、可见及紫外光度法及 红外光谱法等。
比色分析法
通过目视比较颜色的深浅来测定物质的浓度。
2021/2/6
下一页 返回 2退4 出
六、偏离比耳定律的原因
1. 标准曲线(校正曲线)
2. 非单色光引起的偏离
3. 化学因素引起的偏离
4. 介质不均匀引起的偏离
2021/2/6
下一页 返回 2退5 出
1. 标准曲线(校正曲线)
Standard curve,calibrated
如果把适当颜色的两种色光按一定强度比 例混合,可以组成白光,这两种色光称为
互补色光。
2021/2/6
下一页 返回 1退1 出
四、物质对光的选择性吸收
1. 物质颜色和吸收颜色的关系 2. 双原子分子能级示意图 3. 吸收光谱图 4. 分析依据
2021/2/6
下一页 返回 1退2 出
1. 物质颜色和吸收颜色的关系
下一页 返回 退7 出
1. 光的波动性和微粒性
c
----波长,在紫外以 - nm 可 为见 单区 位 ----频率H,z
c----光速,真3空 101中 0cms-1
Ehhc
E----光子的J能量, h----Pla常 nk 数 6.6, 215-034Js
2021/2/6
下一页 返回 退8 出
2. 电磁波谱图
2021/2/6
下一页 返回 退2 出
第九章 吸光光度法
§9.1 吸光光度法基本原理 §9.2 目视比色法及光度计的基本部件 §9.3 显色反应及显色条件的选择 §9.4 吸光度测量条件的选择 §9.5 吸光光度法的应用示例
2021/2/6
下一页 返回 退3 出
§9.1 吸光光度法基本原理
一、方法依据及分类
吸光光度法
使用光度计测定的方法。
2021/2/6
下一页 返回 退5 出
二、方法特点
灵敏度高、选择性好 准确度较高 应用广泛 仪器简单、操作简便、分析快速
2021/2/6
下一页 返回 退6 出
三、光的基本性质
1. 光的波动性和微粒性
2. 电磁波谱图
3. 单色光与复合光
4. 互补色光
2021/2/6
A lg I 0 lg T
It
下一页 返回 1退9 出
透光率T与吸光度A的关系
T It I0
A lg I 0 lg 1 lg T
It
T

T 10 A
1.0 0.7 0.6 0.5 0.4 0.3
0.2
0.1
0.05 0 A
0 10 20 30 40 50 100 T%
2021/2/6
AKbc
❖ 吸光系数a:
c-gL-1
Aabcb-cm
a=A/( b c), L·g-
❖ 摩尔吸光系数: 1·cm-1
c -mol L-1
Abc b-cm =A/(b c),L·mol-
❖ 关系: = M a
1·cm-1
2021/2/6
下一页 返回 2退2 出
例1
50mL比色管中,加入含有0.025mg的Fe2+ 溶液,加入邻二氮菲显色剂,用水稀释
2021/2/6
下一页 返回 退9 出
3. 单色光与复合光
单色光:具有同一波长的光 复合光:不同波长组成的光
可见光的波长大约在400~760nm之间, 由红、橙、黄、绿、青、蓝、紫等各 种色光按一定比例混合而成,各种光 具有一定的波长范围。
2021/2/6
下一页 返回 1退0 出
4. 互补色光
蓝绿

2021/2/6
650~750
下一页 返回 1退4 出
2. 双原子分子能级示意图
V'' 4 3 2
1
0
B
V'
4
3
2
1
J'
4
2 0
0
A
2021/2/6
下一页 返回 1退5 出15
3. 吸收光谱图
A
0.8
0.6
最大吸收波长max
0.4
0.2
400 450 500 550 600 650 /nm
相关文档
最新文档