北航自控原理课件7.ppt

合集下载

自动控制原理第7章离散控制系统

自动控制原理第7章离散控制系统
差分方程描述了系统在离散时间点的行为,通过求解差分方程可 以预测系统未来的输出。
Z变换
01
Z变换是分析离散时间信号和系统 的有力工具,它将离散时间信号 或系统转化为复平面上的函数或 传递函数。
02
Z变换的基本思想是通过将离散时 间信号或系统进行无限次加权和 ,将其转化为一个复数域上的函 数或传递函数。
离散状态方程
离散状态方程是描述离散控制系统动 态行为的数学模型,它的一般形式为 $mathbf{dot{x}}(k) = Amathbf{x}(k) + Bu(k)$,其中 $mathbf{x}(k)$表示在时刻$k$的系 统状态向量,$u(k)$表示在时刻$k$ 的输入向量,$A$和$B$是系统的系 数矩阵。
稳态误差主要来源于系统本身的结构 和参数,以及外部干扰和测量噪声。
离散控制系统的动态响应分析
动态响应定义
动态响应是指系统在输入信号作 用下,系统输出信号随时间变化 的特性。
动态响应的描述方

动态响应可以通过系统的传递函 数、频率特性、根轨迹图等方式 进行描述。
优化动态响应的方

通过调整系统参数、改变系统结 构、引入反馈控制等方法,可以 优化系统的动态响应。
离散控制系统的仿真工具与实例
仿真工具介绍
离散控制系统的仿真工具用于模拟和测试系统的性能和稳定性。常见的仿真工具包括MATLAB/Simulink、 LabVIEW等。这些工具提供了丰富的数学函数库和图形化界面,方便用户进行系统建模和仿真。
仿真实例分析
通过具体的仿真实例,可以深入了解离散控制系统的性能和特点。例如,可以设计一个温度控制系统,通过调整 系统参数和控制算法,观察系统在不同工况下的响应特性和稳定性。通过对比不同方案,可以评估各种参数和控 制策略对系统性能的影响,为实际应用提供参考和依据。

北航自动控制原理-课件(全网八章最完整版)

北航自动控制原理-课件(全网八章最完整版)

返回子目录
下面通过具体例子来说明自动控制和自动控制系统 的概念
控制器 气动阀门 流入 Q1 浮子 水箱 H 流出 Q2
水位自动控制系统
•控制任务:
维持水箱内水位恒定;
控制器 气动阀门
•控制装置:
流入 Q1
浮子 水箱
气动阀门、控制器;
•受控对象: 水箱、供水系统; •被控量: 水箱内水位的高度;
H 流出 Q2
北京航空航天大学
返回子目录
于是,建立的动态方程就是非线性微分方程,对其 求解有诸多困难,因此,对非线性问题做线性化处 理确有必要。
对弱非线性的线性化
如上图(a),当输入信号很小时,忽略非线性影 响,近似为放大特性。对(b)和(c),当死区或 间隙很小时(相对于输入信号)同样忽略其影响, 也近似为放大特性,如图中虚线所示。
第一章 自动控制的一般概念
1-1 自动控制的任务 1-2自动控制的基本方式 1-3对控制系统的性能要求
返回主目录
1-1 自动控制的任务

通常,在自动控制技术中,把工作的机器设备 称为被控对象,把表征这些机器设备工作状态 的物理参量称为被控量,而对这些物理参量的 要求值称为给定值或希望值(或参考输入)。 则控制的任务可概括为:使被控对象的被控量 等于给定值。
2 d y (t ) dy(t ) 2 T 2 T y (t ) kF (t ) 2 dt dt
T称为时间常数, 为阻尼比。显然,
上式描述了m-K-f系统的动态关系,它是一个二阶 线性定常微分方程。
北京航空航天大学
2-2 非线性微分方程的线性化

在实际工程中,构成系统的元件都具有不同程 度的非线性,如下图所示。
平衡位置附近的小偏差线性化

自动控制原理第7章 离散控制系统

自动控制原理第7章 离散控制系统

b(t )
H (s)
图7.5 数字控制系统的简化框图
2019/2/19
7
数字控制系统较之一般的连续控制系统具有如下一 些优点: 能够保证足够的计算精度; 在数字控制系统中可以采用高精度检测元件和执 行元件,从而提高整个系统的精度; 数字信号或脉冲信号的抗干扰性能好,可以提高 系统的抗干扰能力; 可以采用分时控制方式,提高设备的利用率,并 且可以采用不同的控制规律进行控制; 可以实现一些模拟控制器难以实现的控制律,特 别对复杂的控制过程,如自适应控制、最优控制、 智能控制等,只有数字计算机才能完成。
2019/2/19
9
7.2.1 采样过程及其数学描述
将连续信号通过采样开关(或采样器)变换成离 散信号的过程称为采样过程。相邻两次采样的时间 间隔称为采样周期T。 采样频率:f s 1/ T 采样角频率: s 2 /T 采样可分为:
等速采样:采样开关以相同的采样周期T动作,又 称为周期采样 多速采样:系统中有n个采样开关分别按不同周期 动作 随机采样:采样开关动作是随机的 本章仅限于讨论等速同步采样过程。
j t xj ( ) xt () e d t
1 X( s ) Xs ( j k s) T k
*
2019/2/19
(7-7)
15
X ( j )
max
2max
(a)
o
max
图7.7 连续信号及离散信号的频谱
式中ω s=2π/T为采样频率,X(s)为x(t)的拉氏变 换。若X*(s)的极点全都位于s左平面,可令s=jω , 求得x*(t)的傅氏变换为
离散控制系统最常见形式是数字控制系统。图 7.4是数字控制系统的结构图。图中用于控制的计算 机D工作在离散状态,被控对象G(s)工作在模拟状态。

自动控制原理第七章非线性系统ppt课件

自动控制原理第七章非线性系统ppt课件

7.1.3 非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无 法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
4M
sin t
故理想继电器特性的描述函数为
N ( A)
Y1 A
1
4M
A
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
2.饱和特性
当输入为x(t)=Asinωt,且A大于线性区宽度a 时,
饱和特性的输出波形如图7-10所示。
y
x
N
M
k 0a
x
yy
0 ψ1
π

ωt
0 x
ψ1
π
A sin 1
x(t) Asint
则其输出一般为周期性的非正弦信号,可以展成傅氏级 数:
y(t ) A0 ( An cos nt Bn sin nt ) n1
若系统满足上述第二个条件,则有A0=0
An
1
2 y(t ) cos ntd t
0
Bn
1
2 y(t ) sin ntd t
0
由于在傅氏级数中n越大,谐波分量的频率越高,An,Bn

《自动控制原理》课件

《自动控制原理》课件

集成化:智能控制技术将更加集 成化,能够实现多种控制技术的 融合和应用。
添加标题
添加标题
添加标题
添加标题
网络化:智能控制技术将更加网 络化,能够实现远程控制和信息 共享。
绿色化:智能控制技术将更加绿 色化,能够实现节能减排和环保 要求。
控制系统的网络化与信息化融合
网络化控制:通过互联网实现远程控制和监控
现代控制理论设计方法
状态空间法:通过建立状态空间模型,进行系统分析和设计 频率响应法:通过分析系统的频率响应特性,进行系统分析和设计 极点配置法:通过配置系统的极点,进行系统分析和设计 线性矩阵不等式法:通过求解线性矩阵不等式,进行系统分析和设计
最优控制理论设计方法
基本概念:最优控制、状态方程、控制方程等 设计步骤:建立模型、求解最优控制问题、设计控制器等 控制策略:线性二次型最优控制、非线性最优控制等 应用领域:航空航天、机器人、汽车电子等
动态性能指标
稳定性:系统在受到扰动后能否恢复到平衡状态 快速性:系统在受到扰动后恢复到平衡状态的速度 准确性:系统在受到扰动后恢复到平衡状态的精度 稳定性:系统在受到扰动后能否保持稳定状态
抗干扰性能指标
稳定性:系统在受到干扰后能够 恢复到原来的状态
准确性:系统在受到干扰后能够 保持原有的精度和准确性
信息化控制:利用大数据、云计算等技术实现智能化控制
融合趋势:网络化与信息化的融合将成为未来控制系统的发展方向 应用领域:工业自动化、智能家居、智能交通等领域都将受益于网络化与 信息化的融合
控制系统的模块化与集成化发展
模块化:将复杂的控制系统分解为多个模块,每个模块负责特定的功能,便于设计和维护 集成化:将多个模块集成为一个整体,提高系统的性能和可靠性 发展趋势:模块化和集成化是未来控制系统发展的重要方向 应用领域:广泛应用于工业自动化、智能家居、智能交通等领域

自控原理课件ppt

自控原理课件ppt
自控原理课件
目录
• 自控原理概述 • 自动控制系统类型 • 自动控制系统的性能指标 • 自动控制系统设计 • 自动控制系统实例
01
自控原理概述
定义与特点
定义
自控原理是研究如何通过自动控制系统实现特定目标的一门学科。它涉及控制 系统的设计、分析和优化,以实现系统的稳定、准确和高效运行。
特点
自控原理具有广泛的应用领域,包括工业自动化、航空航天、交通运输、能源 管理等领域。它强调系统的闭环控制,通过反馈机制来不断调整系统状态,以 达到预期的控制效果。
作。
系统优化
03
根据实际运行情况,对系统进行优化,提高系统性能和稳定性

05
自动控制系统实例
温度控制系统
总结词
通过温度传感器检测温度,控制器根据设定值与实际值的偏 差来调节加热或制冷装置,以控制温度维持在设定范围内。
详细描述
温度控制系统广泛应用于工业、家庭和科学实验等领域,如 恒温箱、空调系统等。通过合理选择传感器、控制器和执行 器,能够实现对温度的精确控制,提高生产效率和保证产品 质量。
自控原理的应用领域
工业自动化
航空航天
在制造业中,自控原理被广泛应用于生产 线的控制、机器人的运动控制等,以提高 生产效率和产品质量。
在飞行器控制中,自控原理用于实现飞行 姿态的稳定、导航控制等,以确保飞行的 安全和准确。
交通运输
能源管理
在智能交通系统中,自控原理用于实现车 辆的自动驾驶、交通信号灯的控制等,以 提高交通效率和安全性。
02
自动控制系统类型
开环控制系统
开环控制系统是指系统中各个环 节之间没有反馈,系统的输入直
接决定了输出。
开环控制系统的结构相对简单, 控制精度一般较低,抗干扰能力

自动控制原理 ppt课件

自动控制原理  ppt课件


现代控制理论
研究的主要对象是多输入、多输出——多变量系统。如,汽车看成是一个具有两个输 入(驾驶盘和加速踏板)和两个输出(方向和速度)的控制系统。计算机科学地发展, 极大地促进了控制科学地发展。
ppt课件
5
5
经典控制理论 研究对象 线性定常系统 (单输入、单输出) 传递函数 (输入、输出描述) 根轨迹法和频率法
ppt课件
14
14

非线性系统
特点:在构成系统的环节中有一个或一个以上的非线性环节。
非线性的理论研究远不如线性系统那么完整,目前尚无通用的方法可以解决各类非线 性系统。 近似处理。
ppt课件
15
15
自动控制系统的分类

其他分类方式
按系统数学模型参数特性分:定常系统和时变系统 按功能分:温度控制系统、速度控制系统、位置控制系统等。 按元件组成分:机电系统、液压系统、生物系统等。
ppt课件 18
18




控制系统性能的基本要求

稳定性(稳)
能工作(即达到稳态),并在有一定的环境和参数变化时,还能有稳定“裕量”

稳态精度(准)
系统进入稳态时,稳态值与预期的差别越小越好

动态过程(好/快)
在输入信号到到达稳态的变化全过程,包括离预期值的振荡和过渡时间。反例:高射 炮射角随动系统,虽然炮身最终能跟踪目标,但如果目标变动迅速,而炮身行动迟缓, 仍然抓不住目标
ppt课件
19
19
课程主要任务

分析和设计反馈自动控制系统
建立系统的数学模型
• 传递函数,方框图,信号流图
根据模型分析系统特性
• 主要针对线性定常系统,采用经典控制理论 • 时域响应,稳定性分析,根轨迹法

北航自动控制原理-详解

北航自动控制原理-详解

给定值 计算
执行
干扰
受控对象 被控量
按给定值操纵的开环控制系统原理方框图
炉温控制系统
给定炉温T0 定时开关
电阻丝
实际炉温T
炉子
炉温控制系统原理方框图
按给定值操纵的开环控制
特点:控制装置只按给定值来控制受控对象
优点:控制系统结构简单,相对来说成本低。
缺点:对可能出现的被控量偏离给定值的偏差没有 任何修正能力,抗干扰能力差,控制精度不高。
返回子目录
下面通过具体例子来说明自动控制和自动控制系统 的概念
流入 Q1
气动阀门 H
控制器
浮子 水箱
流出 Q2
水位自动控制系统
•控制任务: 维持水箱内水位恒定;
•控制装置: 气动阀门、控制器;
•受控对象: 水箱、供水系统;
•被控量: 水箱内水位的高度;
控制器
气动阀门
流入
Q1
浮子
水箱 H
水位自动控制系统
控制系统动态过程曲线
如上图所示,系统在外力作用下,输出逐渐与期望值一致,则 系统是稳定的,如曲线①所示;反之,输出如曲线②所示,则 系统是不稳定的。
快: 指动态过程的快速性
快速性即动态过程进行的时间的长短。过程时间越短,说明系 统快速性越好,反之说明系统响应迟钝,如曲线①所示。 稳和快反映了系统动态过程性能的好坏。既快又稳,表明系统 的动态精度高。
二、按干扰补偿的开环控制
定义:利用干扰信号产生控制作用,以及时 补偿干扰对被控量的直接影响。
计算
测量 执行
干扰 被控量
受控对象
特点:只能对可测干扰进行补偿,对不可测干扰以及受控对 象、各功能部件内部参数变化对被控量的影响,系统自身无 法控制。

自控原理ppt课件

自控原理ppt课件
非线性的理论研究远不如线性系统完整,一般只能近似 的定性描述和数值计算。
编辑课件
29
1.2.5 其它分类方法
(1)按系统的输入/输出信号数量分:单入/单出系统(SISO) 和多入/多出系统(MIMO)
(2)按控制系统的功能分:温度控制系统、速度控制系统、位 置控制系统等。
(3)按系统元件组成来分:机电系统、液压系统、生物系统。
综上所述,对于一个自动控制的性能要求可以概括为三方 面:稳定性,快速性和准确性。
编辑课件
35
(1)稳定性。自动控制系统的最基本的要求是系统必须是 稳定的,不稳定的控制系统是不能工作的。
(2)快速性。在系统稳定的前提下,希望控制过程(过渡 过程)进行得越快越好,但如果要求过渡过程时间很 短,可能使动态误差(偏差)过大。合理的设计应该 兼顾这两方面的要求。
编辑课件
33
(c)等幅振荡过程: 被控量y(t)的动态过程是一个持
续等幅振荡过程,始终不能到达新的稳态值,如图17(c)。这种过程如果振荡的幅度较大,生产过程不 允许,则认为是一种不稳定的系统,如果振荡的幅度 较小,生产过程可以允许,则认为是一种稳定的系统。
(d)发散振荡过程: 被控量y(t)的动态过程不但是一
编辑课件
13
+U
电+ 位 器
功率 放大器
电动机


速 发


图1-1 直流电动机速度自动控制的原理结构图
编辑课件
14
1.1.2 控制系统方框图
自动控制系统一般包括测量变送元件、控制器等组成 的自动控制装置和被控对象,其组成方框图如图1-2所 示。
图1-2 自动控制系统的组成框图
编辑课件
15

自动飞行控制系统PPT课件

自动飞行控制系统PPT课件

远前方的大。若迎面气流速度逐渐增大,则翼面上流速的最大值也会增大,该处的温度则要降低,因而音
速也降低。当迎面气流的速度达到某一值时,翼面上最大速度处的流速等于当地音速,此时我们把远前方的
迎面气流速度 与远前方的空气音速
M

cr
比 ,定义为该机的临界马赫数

a
18
V
第18页/共92页
Mcr
第二节 空气动力学的基本知识
路;其作用是稳定与控制飞机姿态。 • 控制(制导)回路:由稳定回路加上飞机轨迹反馈元件、放大计算装置组成飞机轨迹自动驾驶仪,并与飞
机形成的回路;其作用是稳定与控制飞机轨迹。
8
第8页/共92页
第一章 飞行原理
• 飞机控制系统的核心问题是研究由控制系统和飞行器组成的闭合回路的静、动态性能,为此必须建立控制 系统和飞行器的数学模型,其形式可以是微分方程、传递函数或状态空间表达式等。
4
第4页/共92页
第一节 飞行器的自动飞行
二、控制面 1、控制飞行器的目的是改变飞行器的姿态或空间位置,并在受干扰情况下保持飞行器的
姿态或位置。因而必须对飞行器施加力和(或)力矩,飞行器则按牛顿力学定律产生运动。 2、作用于飞行器而与控制有关的力和力矩主要是偏转控制面(即操纵面)产生的空气动
力和力矩。一般飞机有三个控制面:升降舵、方向舵和副翼。 3、由于航空技术的发展,仅靠改善飞机的气动布局和发动机的性能难以达到对飞机性能
V a
19
Vmax a
第19页/共92页
第二节 空气动力学的基本知识
• 飞机飞行速度的范围划分如下:
• 飞行马赫数 为飞行速度与远前方空气音速之比,
时为低速飞行;
为亚音速飞行;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档