初中数学北师大版九年级上学期 第一章 1.1 菱形的性质与判定I卷

合集下载

第2课时 菱形的判定

第2课时 菱形的判定

1初中数学·北师大版·九年级上册——第一章 特殊平行四边形1 菱形的性质与判定第2课时 菱形的判定测试时间:25分钟一、选择题1.如图,若要使平行四边形ABCD 为菱形,则需要添加的条件是( )A.AB=CDB.AD=BCC.AB=BCD.AC=BD答案 C 因为一组邻边相等的平行四边形是菱形,所以可添加的条件是AB=BC.故选C.2.如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以点A 和B 为圆心,大于12AB 的长为半径画弧,两弧相交于点C,D,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是( )A.矩形B.菱形C.正方形D.等腰梯形答案 B 根据作图方法可得AC=AD=BD=BC,因此四边形ADBC 一定是菱形.故选B.二、填空题3.菱形的判定方法:(1)有一组邻边 的平行四边形是菱形;(2)对角线 的平行四边形是菱形;(3) 的四边形是菱形;(4)每条对角线 一组对角的四边形是菱形.答案 相等;互相垂直;四边相等;平分4.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于D,交AB于E,且CF=BE.则四边形BECF是形.答案菱解析解法一:因为EF垂直平分BC,所以BE=CE,BF=CF,因为CF=BE,所以BE=EC=CF=BF,所以四边形BECF是菱形.解法二:因为EF垂直平分BC,所以BD=DC,EF⊥BC,因为BE=CF,所以Rt△BED≌Rt△CFD,所以DE=DF,所以四边形BECF是菱形.三、解答题5.如图,△ABC中,E,F,D分别是AB,AC,BC边上的点,且DE∥AC,DE=AF,在不改变图形的前提下,请你添加一个条件: ,使四边形AEDF是菱形,并写出证明过程.解析添加条件:AE=AF(或AD平分∠BAC等).以AE=AF为例证明.∵DE∥AC,DE=AF,∴四边形AEDF是平行四边形,又∵AE=AF,∴四边形AEDF是菱形.6.如图,在平行四边形ABCD中,O是对角线AC的中点,过点O作AC的垂线与边AD、BC分别交于E、F.连接AF,CE.求证:四边形AFCE是菱形.证明证法一:∵AE∥BC,2∴∠EAC=∠FCA.又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF.∴EA=FC,EO=FO.又EF⊥AC,∴AC垂直平分EF.∴AF=AE,CF=CE,又∵EA=FC,∴AF=AE=CE=CF.∴四边形AFCE是菱形.证法二:同证法一,证得△AOE≌△COF.∴AE=CF.∵AE∥CF,∴四边形AFCE是平行四边形.又∵EF垂直平分AC,∴EA=EC,∴四边形AFCE是菱形.证法三:同证法二,证得四边形AFCE是平行四边形.又EF⊥AC,∴四边形AFCE是菱形.3。

2019秋北师大版九年级数学上册拓展训练:1.1菱形的性质与判定含答案

2019秋北师大版九年级数学上册拓展训练:1.1菱形的性质与判定含答案

1 菱形的性质与判定基础闯关全练拓展训练1.(2017湖南益阳中考)下列性质中菱形不一定具有的性质是( )A.对角线互相平分B.对角线互相垂直C.对角线相等D.既是轴对称图形又是中心对称图形答案 C A.菱形的对角线互相平分,此选项不符合题意;B.菱形的对角线互相垂直,此选项不符合题意;C.菱形的对角线不一定相等,此选项符合题意;D.菱形既是轴对称图形又是中心对称图形,此选项不符合题意.故选C.2.(2017山东聊城中考)如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是( )A.AB=ACB.AD=BDC.BE⊥ACD.BE平分∠ABC答案D∵DE∥BC,EF∥AB,∴四边形DBFE是平行四边形,∵BE平分∠ABC,∴∠ABE=∠CBE,又DE∥BC,∴∠CBE=∠DEB,∴∠ABE=∠DEB,∴BD=DE,∴▱DBFE是菱形.3.(2014黑龙江牡丹江(农垦)中考)如图,在菱形ABCD中,E是AB边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF;②△DEF 是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF,其中正确结论的个数是( )A.3B.4C.1D.2答案 A 连接BD,∵四边形ABCD是菱形,∴∠A+∠ADC=∠A+∠ABC=180°,AB=AD,又∠A=60°,∴∠ADC=∠ABC=120°,△ABD是等边三角形,∴AD=BD,∠ADB=∠ABD=∠A=60°,∴∠DBF=60°,∴∠A=∠DBF,∵∠ADE+∠EDB=∠EDB+∠BDF=60°,∴∠ADE=∠BDF ,∴△ADE≌△BDF(ASA).∴AE=BF,ED=FD,又∠EDF=60°,∴△DEF为等边三角形.∴∠DEF=60°,∴∠AED+∠BEF=120°,∵∠AED+∠ADE=180°-∠A=120°,∴∠ADE=∠BEF,由题意知BE不一定等于BF.综上可知①②④正确,③不正确,故选A.4.(2016青海中考)如图,在菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高DH= .答案解析∵四边形ABCD为菱形,∴AC⊥BD,OA=AC=4,OB=BD=3.在Rt△AOB中,AB==5.∵S菱形ABCD=AC·BD=×8×6=24,S菱形ABCD=AB·DH=5DH,∴5DH=24,解得DH=.5.(2016江苏淮安中考)已知,如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE、CF,求证:△ADE≌△CDF.证明∵四边形ABCD是菱形,∴AD=CD,∵E、F分别是CD、AD的中点,∴DE=DC,DF=AD,∴DE=DF,在△ADE和△CDF中,∴△ADE≌△CDF(SAS).能力提升全练拓展训练1.3个全等的菱形按如图所示的方式拼合在一起,恰好得到一个边长相等的六边形,则菱形较长的对角线与较短的对角线长度的比值是( )A. B. C.2 D.答案 A 如图,设第一个菱形的另一个顶点为M,连接AC,BM,交于点O.由题意得AB=AF=2BM,∵四边形ABCM是菱形,∴AC⊥BM,OB=BM,OA=AC,∴AB=4OB,∴OA==OB,∴AC=2OA=2OB,又BM=2OB,∴AC∶BM=∶1.即菱形较长的对角线与较短的对角线长度的比值是.2.如图,O是菱形ABCD的对角线AC、BD的交点,E、F分别是OA、OC的中点.下列结论:①S△ADE=S△EOD;②四边形BFDE是菱形;③菱形ABCD的面积为EF·BD;④∠ADE=∠EDO;⑤△DEF是轴对称图形.其中正确的结论有( )A.5个B.4个C.3个D.2个答案 B ∵四边形ABCD是菱形,∴BD⊥AC,OA=OC,OB=OD.∵E为OA的中点,∴AE=OE,∵S△ADE=AE·OD,S△EOD=OE·OD,∴S△ADE=S△EOD,故①正确.∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∵OA=OC,∴OE=OF,又OB=OD,EF⊥BD,∴四边形BFDE是菱形,故②正确.S菱形ABCD=AC·BD,易知EF=AC,∴S菱形ABCD=EF·BD,故③正确.由已知条件推不出∠ADE=∠EDO.∵四边形BFDE是菱形,∴DE=DF,∴△DEF为等腰三角形,∴△DEF是轴对称图形,故⑤正确.3.(2017山东滨州中考节选)如图,在▱ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.根据以上尺规作图的过程,求证:四边形ABEF是菱形.证明由作图过程可得AE平分∠BAF,∴∠EAB=∠EAF,∵AD∥BC,∴∠EAF=∠AEB,∴∠AEB=∠EAB,∴BE=AB,∵AB=AF,∴BE=AF.∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=BE,∴四边形ABEF是菱形.4.(2015甘肃兰州中考)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点.求证:线段EF与线段GH互相垂直平分.证明(1)过点B作BM∥AC交DC的延长线于点M,∵AB∥CD,∴四边形ABMC为平行四边形.∴AC=BM=BD,∴∠BDC=∠M=∠ACD.在△ACD和△BDC中,∴△ACD≌△BDC,∴AD=BC.(2)连接EH,HF,FG,GE,∵E,F,G,H分别是AB,CD,AC,BD的中点,∴HE∥AD,且HE=AD,FG∥AD,且FG=AD,EG=BC,∴HE∥FG,且HE=FG,∴四边形HFGE为平行四边形.由(1)知,AD=BC,∴HE=EG,∴▱HFGE为菱形,∴线段EF与线段GH互相垂直平分.三年模拟全练拓展训练1.(2018山西太原期中,4,★☆☆)菱形具有而平行四边形不一定具有的性质是( )A.对边平行B.对角相等C.对角线互相平分D.对角线互相垂直答案 D 菱形的对角线互相垂直,而平行四边形的对角线不一定互相垂直,故选D.2.(2017河南郑州经纬中学第一次月考,4,★★☆)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边的中点,连接EF,若EF=,BD=4,则菱形ABCD的周长为( )A.4B.4C.4D.28答案 C ∵E、F分别是AB、BC边的中点,EF=,∴AC=2EF=2.∵四边形ABCD是菱形,∴AC⊥BD且OA=OC,OB=OD,∴OA=,OB=2,∴AB===,∴菱形ABCD的周长=4AB=4.故选C.3.(2016江苏泰州泰兴黄桥东期中,5,★★☆)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的一半长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN,分别交AB、AC于点E、F;第三步,连接DE、DF,则可以得到四边形AEDF的形状( )A.仅仅是平行四边形B.是矩形C.是菱形D.无法判断答案 C 根据作法可知:直线MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理,DF∥AE,∴四边形AEDF是平行四边形,∵EA=ED,∴四边形AEDF为菱形.4.(2017山西百校联考一模,10,★☆☆)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E,F同时由A,C两点出发,分别沿AB,CB 方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为( )A.1B.C.D.答案 D 连接BD,∵四边形ABCD是菱形,∴AB=AD,∠ADB=∠DBC=∠ADC=60°,∴△ABD是等边三角形,∴AD=BD,又∵△DEF是等边三角形,∴∠EDF=∠DEF=60°,又∵∠ADB=60°,∴∠ADE=∠BDF,在△ADE和△BDF中,∴△ADE≌△BDF,∴AE=BF,∵AE=t cm,CF=2t cm,∴BF=BC-CF=(4-2t)cm,∴t=4-2t,∴t=.故选D.5.(2018河南郑州二中期中,13,★★☆)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE= .答案解析∵四边形ABCD是菱形,∴OB=BD=3,OC=AC=4,AC⊥BD,∴在Rt△BOC中,BC==5,∵OE⊥BC,∴OE===.6.(2017河南平顶山期末,14,★★☆)如图,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=4 cm,∠ABC=30°,则长方形纸条的宽度是cm.答案2解析∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,分别作BC,CD边上的高AE,AF,如图所示.∵两纸条相同,∴纸条宽度相同,即AE=AF.∵AE·BC=CD·AF,∴CD=BC.∴平行四边形ABCD为菱形,∴AB=AD=4cm,∵∠ABC=30°,∴AE=AB=2cm.7.(2017江苏扬州邗江一模,24,★☆☆)如图,在△ABC中,D,E分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(8分)(1)求证:四边形BCFE是菱形;(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.解析(1)证明:∵D,E分别是AB,AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,又EF∥BC,∴四边形BCFE是平行四边形,又∵BE=EF,∴四边形BCFE是菱形.(2)∵∠BEF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴BE=BC=CE=6.过点E作EG⊥BC于点G,∴∠BEG=30°,∴BG=BE=3,由勾股定理得EG==3,∴菱形BCFE的面积为BC·EG=6×3=18.五年中考全练拓展训练1.(2016四川雅安中考,9,★★☆)如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为( )A.52cmB.40cmC.39cmD.26cm答案 A 连接BD.∵四边形ABCD的四边相等,∴四边形ABCD为菱形,∵四边形ABCD的面积为120cm2,对角线AC=24 cm,∴120=×24BD,∴BD=10cm,∴AB==13cm,∴四边形ABCD的周长为4×13=52cm.故选A.2.(2016河南中考,8,★★☆)如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D'的坐标为( )A.(1,-1)B.(-1,-1)C.(,0)D.(0,-)答案 B 由题意知菱形每8秒旋转一周,60秒旋转7周余4秒,4秒旋转180°,即旋转60秒后得到的图形与原图形关于原点中心对称,因为B(2,2),所以D(1,1),D关于原点对称的点D'的坐标为(-1,-1).故选B.3.(2016山东青岛中考,21,★★☆)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G、H,交BD于点O.(8分)(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.解析(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAD=∠DCB.又∵AE=CF,∴△ABE≌△CDF.(2)四边形BEDF是菱形.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD-AE=BC-CF,即ED=BF,∴四边形BEDF是平行四边形,∴OB=OD.又∵DG=BG,∴OG⊥BD.∴▱BEDF是菱形.核心素养全练拓展训练1.如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.解析(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t,又∵AE=t,∴AE=DF.(2)能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又∵AE=DF,∴四边形AEFD为平行四边形.在Rt△ABC中,设AB=x,则由∠C=30°,得AC=2x,由勾股定理,得AB2+BC2=AC2,即x2+(5)2=4x2,解得x=5(负根舍去),∴AB=5.∴AC=2AB=10.∴AD=AC-DC=10-2t.由已知得点D从点C运动到点A的时间为10÷2=5(s),点E从点A运动到点B的时间为5÷1=5(s).若使▱AEFD为菱形,则需AE=AD,即t=10-2t,解得t=.符合题意.故当t=s时,四边形AEFD为菱形.(3)①当∠EDF=90°时,ED∥BF,∵∠B=90°,∴∠AED=90°,在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE,即10-2t=2t,解得t=.符合题意.②当∠DEF=90°时,由(2)知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°-∠C=60°,∴∠AED=30°.∴AE=2AD,即t=2(10-2t),解得t=4.符合题意.③当∠EFD=90°时,△DEF不存在.综上所述,当t=s或4s时,△DEF为直角三角形.2.邻边不相等的平行四边形纸片剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图a,▱ABCD中,若AB=1,BC=2,则▱ABCD为1阶准菱形.(1)判断与推理:①邻边长分别为2和3的平行四边形是阶准菱形;②小明为了剪去一个菱形,进行如下操作:如图b,把▱ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE.请证明四边形ABFE是菱形.(2)操作、探究与计算:①已知▱ABCD的邻边长分别为1,a(a>1),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=6b+r,b=5r,请写出▱ABCD是几阶准菱形.解析(1)①2.②证明:由折叠知,∠ABE=∠FBE,AB=BF.∵四边形ABCD是平行四边形,∴AE∥BF,∴∠AEB=∠FBE,∴∠AEB=∠ABE,∴AE=AB,∴AE=BF,∴四边形ABFE是平行四边形,又AE=AB,∴四边形ABFE是菱形.(2)①②10阶准菱形.。

1.1 菱形的性质与判定 北师大版九年级数学上册同步练习(含解析)

1.1 菱形的性质与判定 北师大版九年级数学上册同步练习(含解析)

北师大版九上1.1菱形的性质与判定同步练习一、选择题(共10题)1. 菱形不具备的性质是( )A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形2. 菱形ABCD中,∠A:∠B=1:5,若其周长为8,则菱形ABCD的高为( )B.4C.1D.2 A.123. 菱形ABCD中,AB=2,∠D=120∘,则对角线AC的长为( )A.1B.3C.2D.234. 菱形ABCD中,AC=10,BD=24,则该菱形的周长等于( )A.13B.52C.120D.2405. 如图,菱形ABCD中,E,F分别是AB,AC的中点,若EF=3,则菱形ABCD的周长是( )A.12B.16C.20D.246. 已知O为平行四边形ABCD对角线的交点,下列条件能使平行四边形ABCD成为菱形的是( )A.AB=BC B.AC=BDC.OA=OC,OB=OD D.∠A=∠B=∠C=90∘7. 如图,B,C分别是锐角∠A两边上的点,AB=AC,分别以点B,C为圆心,以AB的长为半径画弧,两弧相交于点D,连接BD,CD,则根据作图过程判定四边形ABDC 是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四条边都相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线平分一组对角的四边形是菱形8. 点E,F,G,H分别是四边形ABCD的边AB,BC,CD,AD的中点,AC,BD交于点O,当四边形ABCD的对角线满足( )条件时,四边形EFGH是菱形.A.AC⊥BD B.AC=BDC.OA=OC,OB=OD D.OA=OB9. 平面直角坐标系中,四边形ABCD的顶点坐标分别是A(―3,0),B(0,2),C(3,0),D(0,―2),则四边形ABCD是( )A.矩形B.菱形C.正方形D.平行四边形10. 如图,四边形ABCD的对角线AC,BD互相垂直,则下列条件能判定四边形ABCD为菱形的是( )A.BA=BC B.AC,BD互相平分C.AC=BD D.AB∥CD二、填空题(共10题)11. 如图,菱形ABCD的周长是8 cm,AB的长是cm.12. 已知菱形两条对角线的长分别为4和6,则菱形的边长为.13. 已知菱形的周长为20 cm,一条对角线长为6 cm,则这个菱形的面积是cm2.14. 如图,若菱形的边长为4,∠BAD=120∘,则较短对角线AC长为.15. 如图,菱形ABCD的对角线AC,BD交于点O,E为DC的中点,若OE=3,则菱形的周长为.16. 如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,反向延长交BC于点F,则EF的长为.17. 如图,菱形ABCD的对角线AC,BD相交于点O,已知OB=4,菱形ABCD的面积为24,则AC的长为.18. 如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②AB=AC;③BF∥CE.从中选择条件可使四边形BECF是菱形.19. 如图,在四边形ABCD中,AB≠CD,E,F,G,H分别是AB,BD,CD,AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.20. 如图,在△ABC中,AD⊥BC于点D,点E,F分别是AB,AC边的中点,请你在△ABC中添加一个条件:,使得四边形AEDF是菱形.三、解答题(共7题)21. 【测试4】如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD,BC分别相交于点M,N.(1) 求证:四边形BNDM是菱形;(2) 若BD=24,MN=10,求菱形BNDM的周长.22. 已知:如图,在平行四边形ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1) 求证:△ABE≌△CDF;(2) 连接DG,若DG=BG,则四边形BECF是什么特殊四边形?请说明理由.23. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1) ∠CEB=∠CBE;(2) 四边形BCED是菱形.24. 如图,AC是平行四边形ABCD的对角线,∠BAC=∠DAC.(1) 求证AB=BC;(2) 若AB=2,AC=23,求平行四边形ABCD的面积.25. 在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF,求证:(1) △ABF≌△DAE.(2) DE=BF+EF.26. 在正方形ABCD中,对角线BD所在的直线上有两点E,F满足BE=DF,连接AE,AF,CE,CF,如图所示.(1) 求证:△ABE≌△ADF;(2) 试判断四边形AECF的形状,并说明理由.27. 如图,四边形ABCD中,AC,BD相交于点O,O是AC的中点,AD∥BC,AC=8,BD=6.(1) 求证:四边形ABCD是平行四边形;(2) 若AC⊥BD,求平行四边形ABCD的面积.答案一、选择题(共10题)1. 【答案】B2. 【答案】C3. 【答案】D4. 【答案】B5. 【答案】D6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】B10. 【答案】B二、填空题(共10题)11. 【答案】212. 【答案】1313. 【答案】2414. 【答案】415. 【答案】2416. 【答案】24517. 【答案】618. 【答案】②19. 【答案】AD=BC20. 【答案】如:AB=AC,答案不唯一三、解答题(共7题)21. 【答案】(1) ∵AD∥BC,∴∠DMO=∠BNO,∵MN 是对角线 BD 的垂直平分线,∴OB =OD ,MN ⊥BD ,在 △MOD 和 △NOB 中,∠DMO =∠BNO,∠MOD =∠NOB,OD =OB,∴△MOD ≌△NOB (AAS),∴OM =ON ,∵OB =OD ,∴ 四边形 BNDM 是平行四边形,∵MN ⊥BD ,∴ 四边形 BNDM 是菱形.(2) ∵ 四边形 BNDM 是菱形,BD =24,MN =10,∴BM =BN =DM =DN ,OB =12BD =12,OM =12MN =5,在 Rt △BOM 中,由勾股定理得:BM =OM 2+OB 2=52+122=13, ∴ 菱形 BNDM 的周长 =4BM =4×13=52.22. 【答案】(1) ∵ 四边形 ABCD 是平行四边形,∴AB =CD ,∠BAE =∠DCF ,在 △ABE 和 △CDF 中,AB =CD,∠BAE =∠DCF,AE =CF,∴△ABE ≌△CDF (SAS);(2) 四边形 BEDF 是菱形;理由如下:如图所示:∵ 四边形 ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵AE =CF ,∴DE =BF ,∴ 四边形 BEDF 是平行四边形,∴OB =OD ,∵DG =BG ,∴EF ⊥BD ,∴ 四边形 BEDF 是菱形.23. 【答案】(1) ∵ △ABC ≌△ABD ,∴ ∠ABC =∠ABD .∵ CE ∥BD ,∴ ∠CEB =∠DBE ,∴ ∠CEB =∠CBE .(2) ∵ △ABC ≌△ABD ,∴ BC =BD .∵ ∠CEB =∠CBE ,∴ CE =CB ,∴ CE =BD .∵ CE ∥BD ,∴ 四边形 CEDB 是平行四边形.∵ BC =BD ,∴ 四边形 CEDB 是菱形.24. 【答案】(1) 因为四边形 ABCD 是平行四边形,所以 AD ∥BC ,所以 ∠DAC =∠BCA ,因为 ∠BAC =∠DAC ,所以 ∠BAC =∠BCA ,所以 AB =BC .(2) 连接 BD 交 AC 于点 O ,因为四边形 ABCD 是平行四边形,AB =BC ,所以四边形 ABCD 是菱形,所以 AC ⊥BD ,OA =OC =12AC =3,OB =OD =12BD ,所以 OB =AB 2―OA 2=22―(3)2=1,所以 BD =2OB =2,所以 S 平行四边形ABCD =12AC ⋅BD =12×23×2=23.25. 【答案】(1) ∵ 四边形 ABCD 是菱形,∴AB =AD ,AD ∥BC ,∴∠BOA =∠DAE ,∵∠ABC =∠AED ,∴∠BAF =∠ADE ,∵∠ABF =∠BPF ,∠BPA =∠DAE ,∴∠ABF =∠DAE ,∵AB =DA ,∴△ABF ≌△DAE (ASA).(2) ∵△ABF ≌△DAE ,∴AE =BF ,DE =AF ,∵AF =AE +EF =BF +EF ,∴DE =BF +EF .26. 【答案】(1) ∵ 正方形 ABCD ,∴AB =AD ,∠ABE =∠ADF =135∘,在 △ABE 和 △ADF 中,AB =AD,∠ABE =∠ADF,BE =DF,∴△ABE ≌△ADF (SAS).(2) 四边形 AECF 为菱形.证明:连接 AC ,∵△ABE ≌△ADF ,∴AE =AF ,∵正方形ABCD,∴EF垂直平分AC,∴EA=EC,FA=FC,∴EA=EC=FA=FC,∴四边形AECF是菱形.27. 【答案】(1) ∵O是AC的中点,∴OA=OC,∵AD∥BC,∴∠ADO=∠CBO.在△AOD和△COB中,∠ADO=∠CBO,∠AOD=∠COB,OA=OC,∴△AOD≌△COB,∴OD=OB,∴四边形ABCD是平行四边形.(2) ∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,∴平行四边形ABCD的面积=1AC⋅BD=24.2。

北师大版九年级数学上《菱形的性质与判定》典型例题 (含答案)

北师大版九年级数学上《菱形的性质与判定》典型例题  (含答案)

《菱形的性质与判定》典型例题例1 如图,在菱形ABCD 中,E 是AB 的中点,且a AB AB DE =⊥,,求:(1)ABC ∠的度数;(2)对角线AC 的长;(3)菱形ABCD 的面积.例2 已知:如图,在菱形ABCD 中,AB CE ⊥于AD CF E ⊥,于 F .求证:.AF AE =例 3 已知:如图,菱形ABCD 中,E ,F 分别是BC ,CD 上的一点,︒=∠=∠60EAF D ,︒=∠18BAE ,求CEF ∠的度数.例4 如图,已知四边形ABCD 和四边形BEDF 都是长方形,且DF AD =. 求证:GH 垂直平分CF .例 5 如图,ABCD中,AB=,E、F在直线CD上,且AD2=.DE=CFCD求证:AFBE⊥.例6 如图,在Rt△ABC中,ο∠ACB,E为AB的中点,四边形BCDE=90是平行四边形.求证:AC与DE互相垂直平分参考答案例1 分析 (1)由E 为AB 的中点,AB DE ⊥,可知DE 是AB 的垂直平分线,从而DB AD =,且AB AD =,则ABD ∆是等边三角形,从而菱形中各角都可以求出.(2)而OC AO BD AC =⊥,,利用勾股定理可以求出AC .(3)由菱形的对角线互相垂直,可知.21BD AC S ⋅= 解 (1)连结BD ,∵四边形ABCD 是菱形,∴.AB AD =E Θ是AB 的中点,且AB DE ⊥,∴.DB AD =∴ABD ∆是等边三角形,∴DBC ∆也是等边三角形.∴.120260︒=⨯︒=∠ABC(2)∵四边形ABCD 是菱形,∴AC 与BD 互相垂直平分, ∴.212121a AB BD OB === ∴a a a OB AB OA 23)21(2222=-=-=,∴.32a AO AC == (3)菱形ABCD 的面积.23321212a a a BD AC S =⋅⋅=⋅= 说明:本题中的菱形有一个内角是60°的特殊的菱形,这个菱形有许多特点,通过解题应该逐步认识这些特点.例2 分析 要证明AF AE =,可以先证明DF BE =,而根据菱形的有关性质不难证明DCF BCE ∆≅∆,从而可以证得本题的结论.证明 ∵四边形ABCD 是菱形,∴D B CD BC ∠=∠=,,且︒=∠=∠90DFC BEC ,∴DCF BCE ∆≅∆,∴DF BE =,AD AB =Θ,∴DF AD BE AB -=-,∴.AF AE =例3 解答:连结AC .∵四边形ABCD 为菱形,∴︒=∠=∠60D B ,AD CD BC AB ===.∴ABC ∆与CDA ∆为等边三角形.∴︒=∠=∠=∠=60,BAC ACD B AC AB∵︒=∠60EAF ,∴CAF BAE ∠=∠∴ACF ABE ∆≅∆∴AF AE =∵︒=∠60EAF ,∴EAF ∆为等边三角形.∴︒=∠60AEF∵CEF AEF BAE B AEC ∠+∠=∠+∠=∠,∴CEF ∠+︒=︒+︒601860∴︒=∠18CEF说明 本题综合考查菱形和等边三角形的 性质,解题关键是连AC ,证ACF ABE ∆≅∆例4 分析 由已知条件可证明四边形BGDH 是菱形,再根据菱形的对角线平分对角以及等腰三角形的“三线合一”可证明GH 垂直平分CF .证明:∵四边形ABCD 、BEDF 都是长方形∴BF DE //,CD AB //,ο90=∠=∠BCD DFH ,BC AD =∴四边形BGDH 是平行四边形∵DF AD =,∴BC DF =在△DFH 和△BCH 中⎪⎩⎪⎨⎧=∠=∠∠=∠BC DF BHC DHF BCH DFH∴△DFH ≌△BCH ∴BH DH =,HC HF =∵四边形BGDH 是平行四边形∴四边形BGDH 是菱形∴GH 平分BHD ∠ ∴GH 平分FHC ∠ ∵HC HF =∴GH 垂直平分FC .例5 分析 要证AF BE ⊥,关键是要证明四边形ABHG 是菱形,然后利用菱形的性质证明结论.证明 ∵四边形ABCD 是平行四边形 ∴CD AB //,CD AB =,BH AG //,∴E ∠=∠1 ∵ED CD =,∴ED AB =在△ABG 和△EDG 中 ⎪⎩⎪⎨⎧=∠=∠∠=∠ED AB E 321∴△ABG ≌△DEG ∴GD AG = ∵AB AD 2= ∴AB AG =同理:BH AB = ∴BH AG =∵BH AG //∴四边形ABHG 是平行四边形∵BH AB = ∴四边形ABHG 是菱形 ∴BE AF ⊥.例6 分析 要证明AC 与DE 互相垂直平分,只要证明四边形ADCE 是菱形.所以要连结AD证明 ∵在Rt △ABC 中,E 为AB 的中点 ∴BE CE AE ==∵四边形BCDE 是平行四边形∴AB CD //,BE CD = ∴AE CD //,∴四边形ABCE 是平行四边形∵EC AE = ∴ADCE 是菱形 ∴AC 与DE 互相垂直平分.。

菱形的性质与判定同步练习题2021-2022学年九年级数学北师大版上册

菱形的性质与判定同步练习题2021-2022学年九年级数学北师大版上册

2021-2022学年北师大版九年级数学上册《1.1菱形的性质与判定》同步练习题(附答案)1.如图,在菱形ABCD中,DE⊥AB于点E,AE=2BE,DE=5,则菱形的边长为()A.3B.2C.5D.2.如图,在菱形ABCD中,AC与BD相交于点O,AB=AC,点E在BC上,且∠CAE=15°,AE与BD相交于F,下列结论不正确的是()A.∠EBF=30°B.BE=BF C.F A>EF D.OE⊥BC3.菱形ABCD的一条对角线的长为6,边AB的长是方程x2﹣7x+12=0的一个根,则菱形ABCD的周长为()A.16B.12C.12或16D.无法确定4.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠BAD=120°,则BD的长为()A.2B.3C.2D.5.如图,在菱形ABCD中,对角线BD=4,AC=3BD,则菱形ABCD的面积为()A.96B.48C.24D.66.如图,在菱形ABCD中,AE,AF分别垂直平分BC,CD,垂足分别为E,F,则∠EAF 的度数是()A.30°B.45°C.60°D.90°7.如图,在平面直角坐标系中,菱形ABCD的边长为6,它的一边AB在x轴上,且AB的中点是坐标原点,点D在y轴正半轴上,则点C的坐标为()A.(3,3)B.(3,3)C.(6,3)D.(6,3)8.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4B.8C.D.69.如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC的中点,过点E作EF⊥BD于F,EG⊥AC于G,则四边形EFOG的面积为()A.S B.S C.S D.S10.如图,把菱形ABCD沿AH折叠,使B点落在BC上的E点处,若∠B=70°,则∠EDC 的大小为()A.10°B.15°C.20°D.30°11.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE 所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为()A.1B.C.2D.2﹣212.已知如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点BD是对角线,AG ∥DB,交CB的延长线于G,连接GF,若AD⊥BD.下列结论:①DE∥BF;②四边形BEDF是菱形;③FG⊥AB;④S△BFG=.其中正确的是()A.①②③④B.①②C.①③D.①②④13.如图,分别以直角△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°,给出如下结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④4FH=BD;其中正确结论的是()A.①②③B.①②④C.①③④D.②③④14.如图,在菱形ABCD中,∠BAD=120°,以AC、BD的交点,O为圆心,OC为半径作弧交BC于点E,再分别以点E、C为圆心,大于EC的长为半径作弧交于点F(作图痕迹如图所示),作射线OF交BC于点M,若OM=3,则AC的长是.15.如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是.16.有两个全等矩形纸条,长与宽分别为10和6,按如图所示的方式交叉叠放在一起,则重合部分构成的四边形BGDH的周长为.17.如图,E,F分别是菱形ABCD的边AD,CD的中点,且AB=5,BD=6.(1)求线段EF的长;(2)探究四边形DEOF是什么特殊四边形?并对结论给予证明.18.如图,已知平行四边形ABCD.过A作AM⊥BC于点M.交BD于点E,过C作CN∥AM交AD于点N,交BD于点F,连接AF、CE.(1)求证:四边形AECF为平行四边形;(2)当四边形AECF为菱形,M点为BC的中点,且BC=3时,求CF的长.19.在菱形ABCD中,对角线AC、BD相交于点O,过点O直线EF分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:△AOE≌△COF;(2)若EF=BD,BE=8,BF=16,求菱形ABCD的面积;(3)若EF⊥AB,垂足为G,OB=3AG,求的值.20.在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点,连接OE并延长到点F,使EF=EO,连接AF,BF.(1)求证:四边形AOBF是矩形;(2)若AD=5,sin∠AFO=,求AC的长.21.如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.(1)请判断△OEF的形状,并证明你的结论;(2)若AB=13,AC=10,请求出线段EF的长.22.如图,D、E、F分别是△ABC各边的中点.(1)如果BC=8cm,那么EF=cm;(2)当AB和AC满足时,四边形AFDE是菱形,并证明.23.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.24.如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F,AD 平分∠BAC,求证:四边形AEDF为菱形.25.如图,将两条宽度都为3的纸条重叠在一起得到四边形ABCD.(1)试判断四边形ABCD是什么图形,并证明你的结论;(2)若∠ABC=60°,求四边形ABCD的面积.26.如图,在平行四边形ABCD中,按下列步骤作图:①以点B为圆心,以适当长为半径作弧,交AB于点N.交BC于点M;②再分别以点M和点N为圆心,大于MN的长为半径作弧,两弧交于点G;③作射线BG交AD于F;④过点A作AE⊥BF交BF于点P,交BC于点E;⑤连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=8,AD=10,∠ABC=60°,求△APD的面积.27.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且与AE交于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若AC=6,BD=8,AM⊥BC于M,求AM的长.28.已知:如图,在△ABC中,直线PQ垂直平分AC,与边AB交于点E,连接CE,过点C作CF∥BA交PQ于点F,连接AF.(1)求证:四边形AECF是菱形;(2)若AD=3,AE=5,则求菱形AECF的面积.29.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)证明:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)30.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC 的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求的值.参考答案1.解:∵四边形ABCD是菱形,∴AB=AD=CD=BC,∵DE⊥AB,∴∠DEA=90°,设BE=x,则AE=2x,∴AD=AB=AE+BE=3x,在Rt△ADE中,由勾股定理得:DE===x,∵DE=5,∴x=5,∴x=,∴AB=3,即菱形的边长为3,故选:A.2.解:如图在菱形ABCD中,AB=CB=AD=CD,∵AB=AC,∴AB=CB=AD=CD=AC,∴△ABC和△ADC都是等边三角形,∴∠ABC=∠BAC=∠ACB=60°,∵BD=BD(公共边)∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=∠ABC=30°;∴∠EBF=30°.∴A正确;∵∠ABC=∠BAC=60°,∠CAE=15°,∴∠BAE=60°﹣15°=45°,∴∠BEF=180°﹣60°﹣45°=75°,∴∠BFE=180°﹣30°﹣75°=75°,∴∠BEF=∠BFE,∴BE=BF.∴B正确;∵AB=BC>BE,∴F A>EF,∴C正确;假设OE⊥BC正确,则∠BEO=90°,∵∠BEF=75°,∴∠OEA=90°﹣75°=15°=∠CAE,∴OE=OA=OC,∴∠OEC=∠OCE=60°,∵∠OEC=60°与OE⊥BC相矛盾,∴假设不成立,∴OE⊥BC错误,∴D不正确.故选:D.3.解:∵x2﹣7x+12=0,∴(x﹣3)(x﹣4)=0,∴x1=3,x2=4,当x1=3时,由菱形的对角线的一条对角线6和菱形的两边3,3不能组成三角形,即不存在菱形,舍去;当x2=4时,由菱形的对角线的一条对角线6和菱形的两边4,4能组成三角形,即存在菱形,∴菱形的周长为4×4=16.故选:A.4.解:∵四边形ABCD是菱形,∴AC⊥BD,BD=2BO,∵∠BAD=120°,∴∠BAO=60°,∠ABO=30°,∴AO=AB=1,BO==,∴BD=2.故选:C.5.解:∵BD=4,AC=3BD,∴AC=12,∴菱形ABCD的面积为AC×BD==24.故选:C.6.解:连接AC,如图:∵AE,AF分别垂直平分BC,CD,∴AB=AC,AD=AC,∠AEC=∠AFC=90°,又∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴AB=AC=BC=AD=CD,∴△ABC、△ACD是等边三角形,∴∠B=∠ACB=∠ACD=60°,∴∠BCD=120°,∴在四边形AECF中,∠EAF=360°﹣90°﹣90°﹣120°=60°.故选:C.7.解:∵四边形ABCD是菱形∴AB=AD=CD=6,AB∥CD∵AB的中点是坐标原点,∴AO=BO=3,∴DO==3∴点C坐标(6,3)故选:D.8.解:∵四边形ABCD是菱形,∴OA=OC=6,OB=OD,AC⊥BD,∴AC=12,∵DH⊥AB,∴∠BHD=90°,∴OH=BD,∵菱形ABCD的面积=×AC×BD=×12×BD=48,∴BD=8,∴OH=BD=4;故选:A.9.解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,S=AC×BD,∵EF⊥BD于F,EG⊥AC于G,∴四边形EFOG是矩形,EF∥OC,EG∥OB,∵点E是线段BC的中点,∴EF、EG都是△OBC的中位线,∴EF=OC=AC,EG=OB=BD,∴矩形EFOG的面积=EF×EG=AC×BD=S;故选:B.10.解:根据菱形的对角相等得∠ADC=∠B=70°.∵AD=AB=AE,∴∠AED=∠ADE.根据折叠得∠AEB=∠B=70°.∵AD∥BC,∴∠DAE=∠AEB=70°,∴∠ADE=∠AED=(180°﹣∠DAE)÷2=55°.∴∠EDC=70°﹣55°=15°.故选:B.11.解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠易得△ABB′为等腰直角三角形,∴S△ABB′=BA•AB′=2,S△ABE=1,∴CB′=2BE﹣BC=2﹣2,∵AB∥CD,∴∠FCB′=∠B=45°,又由折叠的性质知,∠B′=∠B=45°,∴CF=FB′=2﹣.故选:C.12.解:①∵在平行四边形ABCD中,E、F分别为边AB、CD的中点∴四边形DEBF为平行四边形∴DE∥BF故①正确②由①知四边形DEBF为平行四边形∵AD⊥BD E为边AB的中点∴DE=BE=AE∴四边形BEDF是菱形故②正确③∵AG∥DB AD∥BGAD⊥BD∴AGBD为矩形∴AD=BG=BC要使FG⊥AB,则BF=BC=BG不能证明BF=BC,即FG⊥AB不恒成立故③不正确④由③知BC=BG∴S△BFG=∵F为CD中点∴S△FCG=S平行四边形ABCD∴S△BFG=故④正确.故选:D.13.解:∵△ACE是等边三角形,∴∠EAC=60°,AE=AC,∵∠BAC=30°,∴∠EAF=∠ACB=90°,AB=2BC,∵F为AB的中点,∴AB=2AF,∴BC=AF,在△ABC和△EF A中,,∴△ABC≌△EF A(SAS),∴FE=AB,∠AEF=∠BAC=30°,∴∠AHE=180°﹣∠EAC﹣∠AEF=180°﹣60°﹣30°=90°,∴EF⊥AC,故①正确,∵EF⊥AC,∠ACB=90°,∴FH∥BC,∵F是AB的中点,∴FH是△ABC的中位线,∴FH=BC,∵BC=AB,AB=BD,∴BD=4FH,故④正确;∵AD=BD,BF=AF,∴∠DFB=90°,∠BDF=30°,∵∠F AE=90°,∴∠DFB=∠EAF,∵EF⊥AC,∴∠AEF=30°,∴∠BDF=∠FEA,在△DBF和△EF A中,,∴△DBF≌△EF A(AAS),∴AE=DF,∵FE=AB=AD,∴四边形ADFE为平行四边形,∵AB>AC,∴AD>AE,∴四边形ADFE不是菱形,故②错误;∵AG=AF,∴AG=AB,∵AD=AB,则AD=4AG,故③正确,故选:C.14.解:由题意可得OM⊥BC,∵四边形ABCD是菱形,∠BAD=120°,∴AC⊥BD,AO=CO,∠ABC=60°,∠DBC=∠ABD=30°,∴BO=2OM=6,BO=CO,∴CO=2,∴AC=2OC=4,故答案为4.15.解:∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB.在Rt△OAB中,∵∠AOD=90°,∴OB=1,∴BD=2.故答案为2.16.解:由题意得:矩形ABCD≌矩形BEDF,∴∠A=90°,AB=BE=6,AD∥BC,BF∥DE,AD=10,∴四边形BGDH是平行四边形,∴平行四边形BGDH的面积=BG×AB=BH×BE,∴BG=BH,∴四边形BGDH是菱形,∴BH=DH=DG=BG,设BH=DH=x,则AH=10﹣x,在Rt△ABH中,由勾股定理得:62+(10﹣x)2=x2,解得:x=,∴BH=,∴四边形BGDH的周长=4BH=,故答案为:.17.(1)证明:∵四边形ABCD是菱形,∴OA=AC,OB=OD=BD=3,AC⊥BD,∴∠AOB=90°,∴OA===4,∴AC=2OA=8,∵E、F分别是AB、AD的中点,∴EF是△ABD的中位线,∴EF=BD=4,(2)四边形DEOF是菱形.理由如下:∵四边形ABCD是菱形,∴DA=DC,OA=OC,OB=OD,∴O是AC,BD的中点,∵E,F分别是菱形ABCD的边AD,CD的中点,∴DE=DA,DF=DC,OE,OF分别是△ACD和△CDA的中位线,∴DE=DF,OE∥FD,OF∥DE,∴四边形DEOF平行四边形,∵DE=DF,∴四边形DEOF是菱形.18.证明:(1)∵四边形ABCD是平行四边形,∴BC∥AD,AD=BC,∴∠ADE=∠CBD,又∵AM⊥BC,∴AM⊥AD;∵CN⊥AD,∵AM∥CN,∴AE∥CF;在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AE=CF,∴四边形AECF为平行四边形;(2)如图,连接AC交BF于点O,当四边形AECF为菱形时,则AC与EF互相垂直平分,∵BO=OD,∴AC与BD互相垂直平分,∴▱ABCD是菱形,∴AB=BC;∵M是BC的中点,AM⊥BC,∴AB=AC,∴△ABC为等边三角形,∴∠ABC=60°,∠CBD=30°,∴BC=CF=3,∴CF=.19.证明:(1)∵四边形ABCD是菱形,∴OA=OC,AD∥BC,∴∠EAO=∠FCO,又∠AOE=∠COF∴△AOE≌△COF(AAS);(2)由△AOE≌△COF,得OE=OF,∵四边形ABCD是菱形,∴OB=OD∴四边形EBFD是平行四边形,∵EF=BD,∴▱EBFE是矩形,∴∠EBF=90°,设菱形ABCD的边长为x,∴AB=AD=x,∴AE=16﹣x,在Rt△AEB中,根据勾股定理,得AB2=AE2+BE2,即x2=(16﹣x)2+82,解得x=10,∴S菱形=BC•BE=10×8=80.答:菱形ABCD的面积为80.(3)∵EF⊥AB,垂足为G,∵四边形ABCD是菱形,∴OA⊥OB∴∠AOG+∠BOG=90°,∵OG⊥AB,∴∠AOG+∠OAG=90°,∴∠BOG=∠OAG,∠AGO=∠BGO=90°,∵在Rt△GOB中,根据勾股定理,得OG2=OB2﹣BG2∴OB2﹣BG2=AG•BG,∵OB=3AG,∴BG2+AG•BG﹣90AG2=0∴(BG﹣9AG)(BG+10AG)=0BG=9AG,BG=﹣10AG(不符合题意,舍去),AB=BG+AG=10AG,在Rt△AOB中,根据勾股定理,得OA2=AB2﹣OB2=100AG2﹣90AG2=10AG2∴OA=AG∴=答:的值为.20.解:(1)证明:∵点E为AB的中点,EF=EO,∴四边形AOBF是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴四边形AOBF是矩形;(2)∵四边形AOBF是矩形,∴AB=OF,∠F AO=90°,又∵四边形ABCD是菱形,∴AB=AD=5,∴OF=5,在Rt△AFO中,OF=5,∵sin∠AFO=,∴OA=3,∴AC=6.21.解:(1)△OEF是等腰三角形,理由:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∵点E,F分别是边AB,AD的中点,∴EO=AB,OF=AD,∴EO=FO,∴△OEF是等腰三角形;(2)∵四边形ABCD是菱形,AC=10,∴AO=5,∠AOB=90°,∴BO===12,∴BD=24,∵点E,F分别是边AB,AD的中点,∴EF BD,∴EF=12.22.解:(1)∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=4(cm),故答案为:4;(2)当AB=AC时,四边形AFDE是菱形,证明如下:∵D、E、F分别是△ABC各边的中点,∴DE、DF分别是△ABC的中位线,∴DE∥AC,DF∥AB,∴四边形AFDE是平行四边形,∵AB=AC,D是BC的中点,∴AD⊥BC,由(1)EF是△ABC的中位线,∴EF∥BC,∴AD⊥EF,∴平行四边形AFDE是菱形,故答案为:AB=AC.23.证明;(1)∵△ABC≌△ABD,∴∠ABC=∠ABD,∵CE∥BD,∴∠CEB=∠DBE,∴∠CEB=∠CBE.(2))∵△ABC≌△ABD,∴BC=BD,∵∠CEB=∠CBE,∴CE=CB,∴CE=BD∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.24.证明:∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠ADE=∠F AD,∵AD平分∠BAC,∴∠EAD=∠F AD,∴∠EAD=∠ADE,∴AE=DE,∴平行四边形AEDF是菱形.25.解:(1)四边形ABCD是菱形,证明如下:由题意得:AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3,∴S四边形ABCD=AB×3=BC×3,∴AB=BC,∴平行四边形ABCD是菱形;(2)过A作AE⊥BC,垂足为E,∵∠ABC=60°,∴∠BAE=90°﹣60°=30°,∴AB=2BE,BE=AE=,∴AB=2,∴S菱形ABCD=BC•AE=2×3=6.26.证明:(1)由作图知BA=BE,∠ABF=∠EBF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EBF=∠AFB,∴∠ABF=∠AFB,∴AB=AF=BE,∴四边形ABEF是平行四边形,又AB=BE,∴四边形ABEF是菱形;(2)作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=8,∴AB=AF=8,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=4,∴PH=2,∴.27.(1)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,AO=AC=3,BO=BD=4,∴AB===5,∴BC=AB=5,∴BC•AM=AC•BD,即5AM=×6×8,∴AM=.28.证明:(1)∵CF∥AB,∴∠DCF=∠DAE,∵PQ垂直平分AC,∴CD=AD,在△CDF和△AED中∵,∴△CDF≌△AED,∴AE=CF,∴四边形AECF是平行四边形,∵PQ垂平分AC,∴AE=CE,∴四边形AECF是菱形;(2)∵四边形AECF是菱形,∴△ADE是直角三角形,∵AD=3,AE=5,∴DE=4,∴AC=2AD=6,EF=2DE=8,∴菱形AECF的面积为AC•EF=24.29.(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB=90°,D是AB的中点,∴CD=AB=BD=AD,∴平行四边形ADCE是菱形;(2)解:过点D作DF⊥CE,垂足为点F,如图所示:DF即为菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE∥AB,∴∠DCE=∠BDC=60°,又∵CD=BC=6,∴在Rt△CDF中,DF=3.30.(1)证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形.∴CE=BD,又∵CD是边AB上的中线,∴BD=AD,∴CE=DA,又∵CE∥DA,∴四边形ADCE是平行四边形.∵∠BCA=90°,CD是斜边AB上的中线,∴AD=CD,∴四边形ADCE是菱形;(2)解:过点C作CF⊥AB于点F,由(1)可知,BC=DE,设BC=x,则AC=2x,在Rt△ABC中,AB==x.∵AB•CF=AC•BC,∴CF==x.∵CD=AB=x,=.。

2017年九年级数学上1.1菱形的性质与判定(1)(北师大)最新版

2017年九年级数学上1.1菱形的性质与判定(1)(北师大)最新版
北师大版九年级(上)
第一章 特殊平行四边形
1.1 菱形的性质与判定(1)
新知导入
如果平行四边形的边或角满足一定的条件,那么就 会形成一些特殊的平行四边形:菱形、矩形、正方形。 你知道它们有哪些特殊的性质吗?你对此有兴趣进行探 究吗?你能证明这些特殊平行四边形的相关性质吗?
问题情景
下面几幅图片中都含有一些平行四边形,观察这些 平行四边形,你能发现它们有什么样的共同特征?
现代人每天生活在纷繁、复杂的社会当中,紧张、高速的节奏让人难得有休闲和放松的时光。人们在奋斗事业的搏斗中深感身心的疲惫。然而,如果你细心观察,你会发现作 为现代人,其实人们每天都在尽可能的放松自己,调整生活节奏,追求充实快乐的人生。看似纷繁的社会里,人们的生活方式其实也不复杂。大家在忙忙碌碌中体味着平凡的 人生乐趣。由此我悟出一个道理,那就是----生活简单就是幸福。生活简单就是幸福。一首优美的音乐、一支喜爱的歌曲,会让你心境开朗。你可以静静地欣赏你喜爱的音乐, 可以在流荡的旋律中回忆些什么,或者什么都不去想;你可以一个人在房间里大声的放着摇滚,也可以在网上用耳麦与远方的朋友静静地共享;你还可以一边放送着音乐,一 边做着家务....生活简单就是幸福。一杯清茶,或一杯咖啡,放在你的桌边,你的心情格外的怡然。你可以浏览当天的报纸,了解最新的国内外动态,哪怕是街头趣闻;或者捧 一本自己喜欢的杂志、小说,从字里行间获得那种特别的轻松和愉悦....生活简单就是幸福。经过精心的烹制,一桌可心的菜肴就在你的面前,你招呼家人快来品尝,再备上最 喜欢的美酒,这是多么难得的享受!生活简单就是幸福。春暖花开的季节,或是清风送爽的金秋,你和家人一起,或是朋友结伴,走出户外,来一次假日的郊游,享受大自然 带给你的美丽、芬芳。吸一口新鲜的空气,忘却都市的喧嚣,身心仿佛受到一番洗涤,这是一种什么样的轻松感受!生活简单就是幸福。你参加朋友们的一次聚会,那久违的 感觉带给你温馨和激动,在觥酬交错之间你享受与回味真挚的友情。朋友,是那样的弥足珍贵....生活简单就是幸福。周末的夜晚,一家老小围坐在电视机旁,尽享团圆的欢乐 现代人越来越会生活,越来越会用各种不同的方式来放松自己。垂钓、上网、打牌、玩球、唱卡拉OK、下棋.....不一而足。人们根据自己的兴趣爱好寻找放松身心的最佳方式, 在相对固定的社交圈子里怡然的生活,而且不断的扩大交往的圈子,结交新的朋友有时,你会为新添置的一套漂亮时装而快乐无比;有时,你会为孩子的一次小考成绩优异而 倍感欣慰;有时,你会为刚参加的一项比赛拿了名次而喜不自胜;有时,你会为完成了上司交给的一个任务而信心大增生活简单就是幸福!生活简单就是幸福,不意味着我们 放弃了对目标的追逐,是在忙碌中的停歇,是身心的恢复和调整,是下一步冲刺的前奏,是以饱满的精力和旺盛的热情去投入新的“战斗”的一个“驿站”;生活简单就是幸 福,不意味着我们放弃了对生活的热爱,是于点点滴滴中去积累人生,在平平淡淡中寻求充实和快乐。放下沉重的负累,敞开明丽的心扉,去过好你的每一天。生活简单就是 幸福!我的心徜徉于春风又绿的江南岸,纯粹,清透,雀跃,欣喜。原来,真正的愉悦感莫过于触摸到一颗不染的初心。人到中年,初心依然,纯真依然,情怀依然,幸甚至 哉。生而为人,芳华刹那,真的不必太多要求,一盏茶,一本书,一颗笃静的心,三两心灵知己,兴趣爱好一二,足矣。亦舒说:“什么叫做理想生活?不用吃得太好穿得太 好住得太好,但必需自由自在,不感到任何压力,不做工作的奴隶,不受名利的支配,有志同道合的伴侣,活泼可爱的孩子,丰衣足食,已经算是理想。”时间如此猝不及防, 生命如此仓促,忠于自己的内心才是真正的勇敢,以不张扬的姿态,将自己活成一道独一无二的风景,才是最大的成功。试问,你有多久没有靠在门槛上看月亮了,你有多久 没有在家门口的那棵大树下乘凉了,你有多久没有因为一个人一件事而心生感动了,你又有多久没有审视自己的内心了?与命运的较量中,我们被迫前行,却忘记了来时的方

北师大版九年级数学上册--第一章 1.1《菱形的性质与判定》同步练习题(含答案)

北师大版九年级数学上册--第一章  1.1《菱形的性质与判定》同步练习题(含答案)

1.1菱形的性质与判定练习一、选择题1、如图,在平行四边形ABCD 中,对角线AC 、BD 交于点O ,添加下列一个条件,能使平行四边形ABCD 成为菱形的是( )A .AO =BOB .AC =AD C .AB =BC D .OD =AC题1图 题2图 题6图2、如图,要想证明平行四边形ABCD 是菱形,下列条件中不能添加的是( )A .∠ABD =∠ADB B .AC ⊥BD C .AB =BC D .AC =BD3、平面直角坐标系中,四边形ABCD 的顶点坐标分别是A (﹣3,0),B (0,2),C (3,0),D (0,﹣2),则四边形ABCD 是( )A .矩形B .菱形C .正方形D .平行四边形4、下列不能判定一个四边形是菱形的是( )A.有一组邻边相等的平行四边形是菱形B.对角线互相垂直的平行四边形是菱形C.四条边都相等的四边形是菱形D.对角线相等的平行四边形是菱形5、下列条件:①四边相等的四边形; ②对角线互相垂直且平分的四边形; ③一组邻边相等的四边形; ④一条对角线平分一组对角的平行四边形。

其中能判断四边形是菱形的有( )A.1个B.2个C.3个D.4个6、如图,在菱形ABCD 中,对角线AC 与BD 交于点O ,OE ⊥AB ,垂足为E ,若∠ADC=130°,则∠AOE 的大小为( )A.75°B.65°C.55°D.50°7、若菱形ABCD 的周长为16,∠A:∠B=1:2,则菱形的面积为( ) A.32 B.33 C.34 D.38题7图 题8图 题9图8、如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( )A.△ABD 与△ABC 的周长相等B.△ABD 与△ABC 的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍9、如图,菱形ABCD 的周长为16,∠ABC=120°,则AC 的长为( ) A.34 B.4 C.32 D.2二、填空题1、一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为________。

北师大版-数学-九年级上册-第一章第一节 菱形的性质与判定 课时练习

北师大版-数学-九年级上册-第一章第一节 菱形的性质与判定 课时练习

第一节菱形的性质与判定课时练习一、单选题(共15题)1.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是()A.43B.33C.23D.3答案:B解析:解答:∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴BC×AE=CD×AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°-30°-30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴AE3∴EF=AE3过A作AM⊥EF,∴AM=AE•sin60°=3,∴△AEF的面积是:12EF•AM=12×23×3=33故选:B.分析: 首先利用菱形的性质及等边三角形的判定可得判断出△AEF是等边三角形,再根据三角函数计算出AE=EF的值,再过A作AM⊥EF,再进一步利用三角函数计算出AM的值,即可算出三角形的面积2. 如图,在菱形ABCD中,AB=8,点E,F分别在AB,AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为()A.6.5 B.6 C.5.5 D.5答案:C解析:解答: ∵四边形ABCD是菱形,∴AD=BC=AB=CD,AD∥BC,AB∥CD,∵EG∥AD,FH∥AB,∴四边形AEOF与四边形CGOH是平行四边形,∴AF=OE,AE=OF,OH=GC,CH=OG,∵AE=AF,∴OE=OF=AE=AF,∵AE=AF,∴BC-BH=CD-DG,即OH=HC=CG=OG,∴四边形AEOF与四边形CGOH是菱形,∵四边形AEOF与四边形CGOH的周长之差为12,∴4AE-4(8-AE)=12,解得:AE=5.5,故选C分析: 根据菱形的性质得出AD∥BC,AB∥CD,推出平行四边形ABHF、AEGD、GCHO,得出AF=FO=OE=AE和OH=CH=GC=GO,根据菱形的判定得出四边形AEOF与四边形CGOH是菱形,再解答即可3. 如图,BD是菱形ABCD的对角线,CE⊥AB交于点E,交BD于点F,且点E是AB 中点,则tan∠BFE的值是()A.12B.2 C.3D.3答案:D解析:解答: ∵四边形ABCD是菱形,∴AB=BC,∵CE⊥AB,点E是AB中点,∴BE=12 BC∴∠ABC=60°,∴∠EBF=30°,∴∠BFE=60°,∴tan∠BFE的值为3故选D.分析: 首先利用菱形的性质得出AB=BC,即可得出∠ABC=60°,再利用三角函数得出答案4.如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE的长等于()A.3.5 B.4 C.7 D.14答案:A解析:解答: ∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=12AB=12×7=3.5.故选A.分析: 根据菱形的四条边都相等求出AB,再根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解即可5.如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18 B.183C.36 D.363答案:B解析:解答: 过点A作AE⊥BC于E,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠ABC=60°∴∠BAE=30°,∵AE⊥BC,∴AE3∴菱形ABCD的面积是6×33故选B分析: 本题考查了菱形的邻角互补的性质,作辅助线求出菱形边上的高线的长度是解题的关键6.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC 的长等于()A.63米B.6米C.33米D.3米答案:A解析:解答: ∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,OB=OD,AB=BC=CD=AD=24÷4=6(米),∵∠BAD=60°,∴△ABD为等边三角形,∴BD=AB=6(米),OD=OB=3(米),在Rt△AOB中,根据勾股定理得:OA=2263=33(米),则AC=2OA=63米,故选A.分析: 由四边形ABCD为菱形,得到四条边相等,对角线垂直且互相平分,根据∠BAD=60°得到三角形ABD为等边三角形,在直角三角形ABO中,利用勾股定理求出OA 的长,即可确定出AC的长7. 如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过顶点B,则k的值为()A.-12 B.-27 C.-32 D.-36答案:C解析:解答:解:∵A(-3,4),∴OA=2234+=5,∴CB=OC=5,则点B的横坐标为-3-5=-8,故B的坐标为:(-8,4),将点B的坐标代入y=kx得,4=8k解得:k=-32.故选C.分析: 根据点A的坐标以及菱形的性质求出点B的坐标,然后利用待定系数法求出k 的值即可8.如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD的周长为()A.4 B.3.7.28答案:C解析:解答: ∵E,F分别是AB,BC边上的中点,EF3∴AC=2EF3∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC3OB=12BD=2,∴AB22AO BO+7∴菱形ABCD的周长为7C.分析: 首先利用三角形的中位线定理得出AC,进一步利用菱形的性质和勾股定理求得边长,得出周长即可9. 菱形具有而平行四边形不具有的性质是()A.两组对边分别平行B.两组对角分别相等C.对角线互相平分D.对角线互相垂直答案:D解析:解答: A.不正确,两组对边分别平行;B.不正确,两组对角分别相等,两者均有此性质正确,;C.不正确,对角线互相平分,两者均具有此性质;D.菱形的对角线互相垂直但平行四边形却无此性质.故选D.分析: 根据菱形的特殊性质可知对角线互相垂直10.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为()A.20m B.25m C.30m D.35m答案:C解析:解答: 如图,∵花坛是由两个相同的正六边形围成,∴∠FGM=∠GMN=120°,GM=GF=EF,∴∠BMG=∠BGM=60°,∴△BMG是等边三角形,∴BG=GM=2.5(m),同理可证:AF=EF=2.5(m)∴AB=BG+GF+AF=2.5×3=7.5(m),∴扩建后菱形区域的周长为7.5×4=30(m),故选:C.分析:根据题意和正六边形的性质及等边三角形的性质得出△BMG是等边三角形,再根据正六边形的边长得出BG=GM=2.5m,同理可证出AF=EF=2.5m,再根据AB=BG+GF+AF,求出AB,从而得出扩建后菱形区域的周长11. 如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108° B.72° C.90° D.100°答案:B解析:解答: 连接PA,如图所示:∵四边形ABCD是菱形,∴∠ADP=∠CDP=12∠ADC=36°,BD所在直线是菱形的对称轴,∴PA=PC,∵AD的垂直平分线交对角线BD于点P,∴PA=PD,∴PD=PC,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°;故选:B.分析: 本题考查了菱形的性质、线段垂直平分线的性质、等腰三角形的性质;熟练掌握菱形的性质,证明三角形是等腰三角形是解决问题的关键12.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于()A.60° B.55° C.45° D.30°答案:A解析:解答: 如图,连接AC,∵AE⊥BC,点E是BC的中点,∴AB=AC,∵四边形ABCD是菱形,∴AB=BC,∴△ABC是等边三角形,∴∠CAE=30°,同理可得∠CAF=30°,∴∠EAF=∠CAE+∠CAF=30°+30°=60°.故选A.分析: 连接AC,根据线段垂直平分线上的点到线段两端点的距离相等可得AB=AC,然后求出△ABC是等边三角形,再根据等边三角形的性质求出∠CAE=30°,同理可得∠CAF=30°,然后根据∠EAF=∠CAE+∠CAF计算即可得解13.菱形的两条对角线长分别为6和8,则菱形的面积是()A.10 B.20 C.24 D.48答案:C解析:解答:∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:12×6×8=24.故选C.分析: 由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.14. 在菱形ABCD中,下列结论错误的是()A.BO=DO B.∠DAC=∠BAC C.AC⊥BD D.AO=DO答案: D解析:解答:∵四边形ABCD是菱形,∴AC⊥BD,∠DAC=∠BAC,BO=DO,故A,B,C正确,D错误.故选D.分析: 根据菱形的两条对角线互相垂直且平分,并且每一条对角线平分一组对角;即可求得答案15.如图,在菱形ABCD中,P、Q分别是AD、AC的中点,如果PQ=3,那么菱形ABCD 的周长是()A.30 B.24 C.18 D.6答案:B解析:解答:由题意可知,PQ是△ADC的中位线,则DC=2PQ=2×3=6,那么菱形ABCD 的周长=6×4=24,故选B.分析: 根据题意得PQ是△ADC的中位线,从而可求得菱形的边长,则菱形的周长就不难求得了二、填空题(共5题)16.如图,AD是△ABC的高,DE∥AC,DF∥AB,则△ABC满足条件________时,四边形AEDF是菱形.答案: AB=AC或∠B=∠C解析:解答: 需加条件AB=AC,这样可根据三线合一的性质,得出D是BC的中点,根据中位线定理可得,DE平行且等于AF,则AEDF为平行四边形,又可得AE=AF,则四边形AEDF为菱形.则添加条件:AB=AC.当∠B=∠C时,四边形AEDF是菱形.故答案为:AB=AC或∠B=∠C.分析:由三角形的中位线的性质,可得四边形AEDF为平行四边形,如AE=AF,则四边形AEDF为菱形,则添加条件:AB=AC17. 如图,在△ABC中,已知E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥AB,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是________ 就可以证明这个多边形是菱形答案:AB=AC,答案不唯一解析:解答: 添加:AB=AC,∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵E、F、D分别是AB、AC、BC上的点,∴DE=12AC,DF=12AB,∵AB=AC,∴ED=DF,∴四边形AEDF是菱形.故答案为:AB=AC.分析:此题主要考查了菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形18.如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:_________,使四边形ABCD成为菱形.答案:AB=AD,答案不唯一解析:解答: 添加AB=AD,∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AB=AD,∴四边形ABCD是菱形,故答案为:AB=AD分析: 由条件OA=OC,OB=OD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定19. 如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是_________答案:菱形解析:解答:∵分别以A和B为圆心,大于12AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC是菱形.故答案为:菱形.分析: 根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形20.如图,四边形ABCD是平行四边形,AC与BD相交于点O,添加一个条件:__________ ,可使它成为菱形答案:AB=BC|AC⊥BD等解析:解答:∵四边形ABCD是平行四边形,∴当AB=BC时,平行四边形ABCD是菱形,当AC⊥BD时,平行四边形ABCD是菱形.故答案为:AB=BC或AC⊥BD等分析: 菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形,进而得出答案三、解答题(共5题)21.如图,已知△ABC中,∠ACB=90°,CE是中线,△ACD与△ACE关于直线AC对称.(1)求证:四边形ADCE是菱形;(2)求证:BC=ED.答案:(1)证明:∵∠C=90°,点E为AB的中点,∴EA=EC,∵△ACD与△ACE关于直线AC对称.∴△ACD≌△ACE,∴EA=EC=DA=DC,∴四边形ADCE是菱形;(2)证明:∵四边形ADCE是菱形,∴CD∥AE且CD=AE,∵AE=EB,∴CD∥EB且CD=EB∴四边形BCDE为平行四边形,∴DE=BC.解析:分析:(1) 利用直线对称性得出△ACD≌△ACE,进而得出EA=EC=DA=DC,求出即可;(2)利用平行四边形的判定得出四边形BCDE为平行四边形,进而得出答案22. 如图,△ABC与△CDE都是等边三角形,点E、F分别为AC、BC的中点.(1)求证:四边形EFCD是菱形;(2)如果AB=8,求D、F两点间的距离.答案:解答:(1)证明:∵△ABC与△CDE都是等边三角形∴AB=AC=BC,ED=DC=EC∵点E、F分别为AC、BC的中点∴EF=12AB,EC=12AC,FC=12BC∴EF=EC=FC∴EF=FC=ED=DC,∴四边形EFCD是菱形.(2)解:连接DF,与EC相交于点G,∵四边形EFCD是菱形∴DF⊥EC,垂足为G∵EF=12AB=4,EF∥AB∴∠FEG=∠A=60°在Rt△EFG中,∠EGF=90°∴DF=2FG=2×4sin∠FEC=8sin60°=43解析:分析:(1)利用三角形的中位线定理即可得到四边形EFCD的四边相等,即可证得;(2)连接DF,与EC相交于点G,△EFC是等边三角形,则△EFG是直角三角形,利用三角函数即可求得GF的长,根据DF=2GF即可求得23.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.答案:解答:(1)∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形,∠2=∠3,又∵AC平分∠BAD,∴∠1=∠2,∴∠1=∠3,∴AD=DC,∴四边形AECD是菱形;(2)直角三角形.理由:∵AE=EC∴∠2=∠4,∵AE=EB,∴EB=EC,∴∠5=∠B,又因为三角形内角和为180°,∴∠2+∠4+∠5+∠B=180°,∴∠ACB=∠4+∠5=90°,∴△ACB为直角三角形.解析:分析: (1)利用两组对边平行可得该四边形是平行四边形,进而证明一组邻边相等可得该四边形为菱形;(2)利用菱形的邻边相等的性质及等腰三角形的性质可得两组角相等,进而证明∠ACB 为直角即可.如图,四边形ABCD中,AB∥CD,CE∥AD交AB于E,24.AE=AD.求证:四边形AECD是菱形答案:解答:证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形,∵AE=AD,∴四边形AECD是菱形;解析:分析: 首先根据定义证明四边形AECD是平行四边形,则以及菱形的定义即可证得25. 如图,由两个等宽的矩形叠合而得到四边形ABCD.试判断四边形ABCD的形状并证明答案:解答:四边形ABCD是菱形.理由:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵两个矩形等宽,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形解析:分析: 作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AP=AQ得平行四边形ABCD是菱形。

2023学年北师大版九年级数学上学期专项讲练1-1 菱形的性质与判定(知识讲解)

2023学年北师大版九年级数学上学期专项讲练1-1 菱形的性质与判定(知识讲解)

专题1.1 菱形的性质与判定(知识讲解)【学习目标】1. 理解菱形的概念;2. 掌握菱形的性质定理与判定定理;3. 掌握求菱形的两种方法,利用等面积法求线段;利用菱形的对称称求最值;【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.特别说明::菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.,菱形的定义也是判定菱形的方法。

要点二、菱形的性质1.从边出发:菱形的四条边都相等;2.从对角线出发:菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.特别说明:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分. 利用菱形是轴对称图形求几何最值问题。

(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.从边出发:(1)定义:有一组邻边相等的平行四边形是菱形;(2)四条边相等的四边形是菱形.2.从对角线出发:(3)对角线互相垂直的平行四边形是菱形.特别说明::前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、利用菱形的性质求角1.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.【答案】(1)见分析; (2)45°【分析】(1)分别以A 、B 为圆心,大于12AB 长为半径画弧,过两弧的交点作直线即可; (2)根据∠DBF =∠ABD ﹣∠ABF 计算即可;解:(1)如图所示,直线EF 即为所求;(2)∠四边形ABCD 是菱形,∠∠ABD =∠DBC 12=∠ABC =75°,DC ∠AB ,∠A =∠C , ∠∠ABC =150°,∠ABC +∠C =180°,∠∠C =∠A =30°.∠EF 垂直平分线段AB ,∠AF =FB ,∠∠A =∠FBA =30°,∠∠DBF =∠ABD ﹣∠FBE =45°.【点拨】本题考查了线段的垂直平分线作法和性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题.【变式1】如图,在菱形ABCD 中,4AB =,120BAD ∠=︒,O 是对角线BD的中点,过点O 作OE CD ⊥ 于点E ,连结OA .则四边形AOED 的周长为( )A .9+B .9C .7+D .8【答案】B【分析】由已知及菱形的性质求得∠ABD=∠CDB=30º,AO∠BD ,利用含30º的直角三角形边的关系分别求得AO 、DO 、OE 、DE ,进而求得四边形AOED 的周长.解:∠四边形ABCD 是菱形,O 是对角线BD 的中点,∠AO∠BD , AD=AB=4,AB∠DC∠∠BAD=120º,∠∠ABD=∠ADB=∠CDB=30º,∠OE∠DC ,∠在RtΔAOD 中,AD=4 , AO=12AD =2 ,=在RtΔDEO 中,OE=12OD =3=, ∠四边形AOED 的周长为故选:B.【点拨】本题考查菱形的性质、含30º的直角三角形、勾股定理,熟练掌握菱形的性质及含30º的直角三角形边的关系是解答的关键.【变式2】如图,在菱形ABCD 中,AB 的垂直平分线交对角线BD 于点F ,垂足为点E ,连接AF 、AC ,若∠DCB =70°,则∠F AC =______.【答案】20°【分析】由菱形的性质和等腰三角形的性质求出∠BAC 和∠F AB的度数,即可解决问题.解:∠EF 是线段AB 的垂直平分线,∠AF =BF ,∠∠F AB =∠FBA ,∠四边形ABCD 是菱形,∠DCB =70°,∠BC =AB ,∠BCA =12∠DCB =35°,AC ∠BD ,∠∠BAC =∠BCA =35°,∠∠FBA =90°﹣∠BAC =55°,∠∠F AB =55°,∠∠F AC =∠F AB ﹣∠BAC =55°﹣35°=20°,故答案为:20°.【点拨】本题考查菱形的性质和等腰三角形的性质,熟练掌握菱形的性质和等腰三角形的性质是解题的关键. 类型二、利用菱形的性质求线段2.如图,菱形ABCD 中,作BE AD ⊥、CF AB ⊥,分别交AD 、AB 的延长线于点E F 、.(1)求证:AE BF =;(2)若点E 恰好是AD 的中点,2AB =,求BD 的值.【答案】(1)见分析;(2)2BD =.【分析】(1)由“AAS ”可证AEB BFC ∆∆≌,可得AE BF =;(2)由线段垂直平分线的性质可得2BD AB ==.解:(1)四边形ABCD 是菱形,∠,AB BC AD BC =∕∕,∠A CBF ∠=∠,∠BE AD ⊥、CF AB ⊥,∠90AEB BFC ∠=∠=︒,∠()AEB BFC AAS ∆∆≌,∠AE BF =;(2)∠E 是AD 中点,且BE AD ⊥,∠直线BE 为AD 的垂直平分线,∠2BD AB ==.【点拨】本题考查了菱形的性质,全等三角形的判定和性质,线段垂直平分线的性质,熟练运用菱形的性质是本题的关键.【变式1】如图,在菱形ABCD 中,60ABC ∠=︒,连接AC 、BD ,则AC BD 的值为( )A .12 B C D【答案】D【分析】设AC 与BD 的交点为O ,由题意易得1,2ABD CBD ABC AB BC ∠=∠=∠=,,,AC BD BO DO AO CO ⊥==,进而可得∠ABC 是等边三角形,BO =,然后问题可求解.解:设AC 与BD 的交点为O ,如图所示:∠四边形ABCD 是菱形, ∠1,2ABD CBD ABC AB BC ∠=∠=∠=,,,AC BD BO DO AO CO ⊥==, ∠60ABC ∠=︒,∠∠ABC 是等边三角形,∠30,ABO AB AC ∠=︒=, ∠12AO AB =,∠OB ,∠,2BD AC AO ==,∠AC BD == 故选D .【点拨】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.【变式2】如图,菱形ABCD ,以点B 为圆心,BD 长为半径作弧,交AD 于点E ;分别以点D ,E 为圆心,大于12DE 长为半径作弧,两弧交于点F ,射线BF 交边AD 于点G ,连接CG ,若∠BCG =30°,AG =3,则AB 的长为______.【分析】由作法得∠AGB =90°,利用菱形的性质得到AD ∠BC ,AB =BC ,所以∠GBC =90°,在Rt △BCG 中,设BG =x ,则BC,所以AB ,在Rt △ABG 中利用勾股定理得到x 2+32=)2,然后解方程求出x ,从而得到AB 的长.解:由作法得BG ∠AD ,∠∠AGB =90°,∠四边形ABCD 为菱形,∠AD∠BC,AB=BC,∠∠GBC=90°,在Rt△BCG中,设BG=x,∠∠BCG=30°,∠BC,∠AB,在Rt△ABG中,x2+32=)2,解得x1x2=(舍去),∠AB=.【点拨】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了菱形的性质.类型三、利用菱形的性质求面积3.如图,在∠ABCD中,BC=2AB=4,点E,F分别是BC,AD的中点.(1)求证:∠ABE∠∠CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【答案】(1)见试题解析;(2)【分析】(1)由□ABCD可得AB=CD,BC=AD,∠ABC=∠CDA,再结合点E、F分别是BC、AD的中点即可证得结论;(2)当四边形AECF为菱形时,可得∠ABE为等边三角形,根据等边三角形的性质即可求得结果.解:∠在□ABCD中,AB=CD,∠BC=AD,∠ABC=∠CDA.又∠BE=EC=12BC,AF=DF=12AD,∠BE=DF .∠∠ABE∠∠CDF .(2)当四边形AECF 为菱形时,∠ABE 为等边三角形,四边形ABCD ,∠菱形AECF 的面积为【点拨】本题考查的是平行四边形的性质,菱形的性质,解答本题的关键是熟练掌握平行四边形的对边平行且相等,对角相等;菱形的四条边相等.【变式1】已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为( ) A .B .8C .D .【答案】D【分析】根据菱形的性质和菱形面积公式即可求出结果.解:如图,∠两邻角度数之比为1:2,两邻角和为180°,∠∠ABC =60°,∠BAD =120°,∠菱形的周长为8,∠边长AB =2,∠菱形的对角线AC =2,BD =2×2sin60°=∠菱形的面积=12AC •BD =12故选:D .【点拨】本题考查菱形的性质,解题关键是掌握菱形的性质.【变式2】如图,在菱形ABCD 中,E ,F 分别是AD ,DC 的中点,若5BD =,4EF =,则菱形ABCD 的面积为________.【答案】20【分析】连接AC ,利用中位线的性质,得AC =2EF =8,再利用菱形对角线乘积的一半求面积即可.解:连接AC∠E ,F 分别是AD ,DC 的中点∠EF 是ACD 的中位线又EF =4∠AC =8∠S 菱形ABCD =12×BD ×AC =12×5×8=20 故答案为:20.【点拨】本题考查了中位线的性质以及菱形的面积求法,熟练掌握以上知识点作出辅助线是解决问题的关键.类型四、利用菱形的性质证明4.如图,在菱形ABCD 中,E ,F 是对角线AC 上的两点,且AE CF =.(1)求证:ABE △∠CDF ; (2)证明四边形BEDF 是菱形.【分析】(1)利用SAS 证明即可; (2)从对角线的角度加以证明即可.解:(1)∠四边形ABCD 为菱形,∠AB CD =,且BAE DCF ∠=∠,又∠AE CF =,∠ABE △∠CDF .(2)证明:连接BD 交AC 于点O ,∠四边形ABCD 为菱形,∠AC BD ⊥,且O 为AC ,BD 中点,又∠AE CF =,∠EO FO =∠BD 与EF 互相垂直且平分,故四边形BEDF 是菱形.【点拨】本题考查了菱形的判定和性质,三角形的全等判定和性质,熟练掌握三角形全等判定的基本原理,菱形判定基本方法和性质是解题的关键.【变式1】如图,四边形ABCD 是菱形,点E ,F 分别在,BC DC 边上,添加以下条件不能判定ABE ADF ≌的是( )A .BE DF =B .BAE DAF ∠=∠C .AE AD = D .AEB AFD ∠=∠【答案】C【分析】根据三角形全等判定定理SAS 可判定A ,三角形全等判定定理ASA 可判定B ,三角形全等判定定理可判定C ,三角形全等判定定理AAS 可判定D 即可.解:∠四边形ABCD 是菱形,∠AB =AD ,∠B =∠D ,A . 添加BE DF =可以,在△ABE 和△ADF 中,AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∠ABE ADF ≌(SAS ),故选项A 可以;B .添加 BAE DAF ∠=∠可以,在△ABE 和△ADF 中BAE DAF AB ADB D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∠ABE ADF ≌(ASA );故选项B 可以;C . 添加AE AD =不可以,条件是边边角故不能判定;故选项C 不可以;D . 添加AEB AFD ∠=∠可以,在△ABE 和△ADF 中BEA DFA B DAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∠ABE ADF ≌(SAS ).故选项D 可以;故选择C .【点拨】本题考查添加条件判定三角形全等,菱形性质,掌握三角形全等判定定理,菱形性质是解题关键.【变式2】如图,四边形ABCD 为菱形,70ABC ∠=︒,延长BC 到E ,在DCE ∠内作射线CM ,使得15ECM ∠=︒,过点D 作DF CM ⊥,垂足为F.若DF =BD 的长为______.【答案】【分析】连接AC 交BD 于H ,证明DCH ∠DCF ,得出DH 的长度,再根据菱形的性质得出BD 的长度.解:如图,连接AC 交BD 于点H ,由菱形的性质得∠BDC =35︒,∠DCE =70︒,又∠∠MCE =15︒,∠∠DCF =55︒,∠DF ∠CM ,∠∠CDF =35︒,又∠四边形ABCD 是菱形,∠BD 平分∠ADC ,∠∠HDC =35︒, 在CDH 和CDF 中,CHD CFD HDC FDC DC DC ∠∠⎧⎪∠∠⎨⎪⎩=== ∠CDH ∠CDF (AAS ),∠=DF DH∠DB=故答案为【点拨】本题主要考查菱形的性质和全等三角形的判定,菱形的对角线互相平分是此题的关键知识点,得出∠HDC =∠FDC 是这个题最关键的一点.类型五、添加一个条件证明四边形是菱形5.如图,AC 是∠ABCD 的一条对角线,过AC 中点O 的直线分别交AD ,BC 于点E ,F.(1)求证:∠AOE∠∠COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.【答案】(1)证明见分析;(2)EF∠AC时,四边形AFCE是菱形,理由见分析.【分析】(1)由平行四边形的性质得出AD∠BC,得出∠EAO=∠FCO,利用对顶角相等∠AOE=∠COF,O是AC的中点,OA=OC,所以由ASA即可得出结论;(2)此题应用菱形的判定,先说明四边形AFCE已经是平行四边形,再应用对角线互相垂直的平行四边形是菱形即可.由∠AOE∠∠COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF∠AC,即可得出四边形AFCE是菱形.解:(1)∠四边形ABCD是平行四边形,∠AD∠BC,∠∠EAO=∠FCO,∠O是CA的中点,∠OA=OC,又∠∠AOE=∠COF(对顶角相等),∠∠AOE∠∠COF(ASA);(2)∠∠AOE∠∠COF,∠AE=CF,∠AE∠CF,∠四边形AFCE是平行四边形(一组对边平行且相等的四边形是平行四边形),当EF∠AC时四边形AFCE是菱形(对角线互相垂直的平行四边形是菱形),∠EF∠AC时,四边形AFCE是菱形.【点拨】本题考查平行四边形的性质与判定;全等三角形的判定与性质;菱形的判定.【变式1】如图,要判定ABCD是菱形,需要添加的条件是()A .AB AC =B .BC BD = C .AC BD = D .AB BC =【答案】D【分析】 根据菱形的判定方法即可解决问题.解:根据邻边相等的平行四边形是菱形,可知选项D 正确,故选:D .【点拨】本题考查菱形的判定,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式2】如图,在△ABC 中,AD ∠BC 于点D ,点E ,F 分别是A 4B .AC 边的中点,请你在△ABC 中添加一个条件:_______________使得四边形AEDF 是菱形.【答案】AB =AC (或∠B =∠C ,或BD =DC )【分析】可根据三角形的中位线定理、等腰三角形的性质、菱形的判定,分析得出当∠ABC 满足条件AB =AC 或∠B =∠C 时,四边形AEDF 是菱形.解:要使四边形AEDF 是菱形,则应有DE =DF =AE =AF ,∠E ,F 分别为AC ,BC 的中点∠AE =BE ,AF =FC ,应有DE =BE ,DF =CF ,则应有∠BDE ∠∠CDF ,应有BD =CD ,∠当点D 应是BC 的中点,而AD ∠BC ,∠∠ABC 应是等腰三角形,∠应添加条件:AB =AC 或∠B =∠C .则当∠ABC 满足条件AB =AC 或∠B =∠C 时,四边形AEDF 是菱形.故答案为:AB =AC (或∠B =∠C ,或BD =DC ). 【点拨】本题考查了菱形的判定,解答此类题的关键是要突破思维定势的障碍,运用发散思维,多方思考,探究问题在不同条件下的不同结论,挖掘它的内在联系,向“纵、横、深、广”拓展,从而寻找出添加的条件和所得的结论.类型六、证明已知四边形是菱形6.如图,在ABCD 中,G 为BC 边上一点,DG DC =,延长DG 交AB 的延长线于点E ,过点A 作//AF ED 交CD 的延长线于点F .求证:四边形AEDF 是菱形.【分析】先证四边形AEDF 是平行四边形,再证BAD ADE ∠∠=,则AE DE =,即可得出结论. 解:四边形ABCD 是平行四边形,BAD C ∴∠∠=,//AD BC ,//AB CD ,//AF ED ,∴四边形AEDF 是平行四边形,//AD BC ,DGC ADE ∴∠∠=,DG DC =,DGC C ∴∠∠=,BAD ADE ∴∠∠=,AE DE ∴=,∴平行四边形AEDF 是菱形.【点拨】本题考查了平行四边形的性质,等边对等角,菱形的判定定理,熟练掌握以上几何性质是解题的关键.【变式1】如图,在ABC 中,,BD CE 分别是边,AC AB 上的中线,BD CE ⊥于点O ,点,M N 分别是,OB OC 的中点,若8OB =,6OC =,则四边形DEMN 的周长是( )A.14B.20C.22D.28【答案】B【分析】根据已知条件证明四边形MNDE为菱形,结合OB和OC的长求出MN,OM,OE,计算出EM,可得结果.解:∠BD和CE分别是∠ABC的中线,∠DE=12BC,DE∠BC,∠M和N分别是OB和OC的中点,OB=8,OC=6,∠MN=12BC,MN∠BC,OM=12OB=4,ON=12OC=3,∠四边形MNDE为平行四边形,∠BD∠CE,∠平行四边形MNDE为菱形,∠OE=ON=310,∠DE=MN=EM=DN=5,∠四边形MNDE的周长为20,故选B.【点拨】本题考查了菱形的判定,中位线定理,勾股定理,解题的关键是掌握菱形的判定.【变式2】如图,△ABC是边长为1的等边三角形,D,E为线段AC上两动点,且△DBE=30°,过点D,E分别作AB,BC的平行线相交于点F,分别交BC,AB于点H,G.现有以下结论:∠S△ABC∠当点D与点C重合时,FH=12;∠AE+CD;∠当AE=CD时,四边形BHFG为菱形.则其中正确的结论的序号是________.【答案】∠∠∠【分析】过A 作AI ∠BC 垂足为I ,然后计算∠ABC 的面积即可判定∠;先画出图形,然后根据等边三角形的性质和相似三角形的性质即可判定∠;如图将∠BCD 绕B 点逆时针旋转60°得到∠ABN ,求证NE =DE ;再延长EA 到P 使AP =CD =AN ,证得∠P =60°,NP =AP =CD ,然后讨论即可判定∠;如图1,当AE =CD 时,根据题意求得CH =CD 、AG =CH ,再证明四边形BHFG 为平行四边形,最后再说明是否为菱形.解:如图1,过A 作AI ∠BC 垂足为I ,∠ABC 是边长为1的等边三角形,∠∠BAC =∠ABC =∠C =60°,CI =1212BC =,∠AI ==∠S △ABC =11122AI BC =⨯=,故∠正确;如图2,当D 与C 重合时,∠∠DBE =30°,ABC 是等边三角形,∠∠DBE =∠ABE =30°,∠DE =AE =1122AD =, ∠GE//BD ,∠1BG DE AG AE==,∠BG=11 22 AB ,∠GF//BD,BG//DF,∠HF=BG=12,故∠正确;如图3,将∠BCD绕B点逆时针旋转60°得到∠ABN,∠∠1=∠2,∠5=∠6=60°,AN=CD,BD=BN,∠∠3=30°,∠∠2+∠4=∠1+∠4=30°,∠∠NBE=∠3=30°,又∠BD=BN,BE=BE,∠∠NBE∠∠DBE(SAS),∠NE=DE,延长EA到P使AP=CD=AN,∠∠NAP=180°-60°-60°=60°,∠∠ANP为等边三角形,∠∠P=60°,NP=AP=CD,如果AE+CD成立,则PE,需∠NEP=90°,但∠NEP不一定为90°,故∠不成立;如图1,当AE=CD时,∠GE//BC,∠∠AGE=∠ABC=60°,∠GEA=∠C=60°,∠∠AGE=∠AEG=60°,∠AG=AE,同理:CH=CD,∠AG=CH,∠BG//FH,GF//BH,∠四边形BHFG是平行四边形,∠BG=BH,∠四边形BHFG为菱形,故∠正确.故答案为:∠∠∠.【点拨】本题主要考查了等边三角形的性质、旋转变换、全等三角形的判定和性质以及菱形的判定等知识点,灵活运用相关知识是解答本题的关键.类型七、用菱形的性质与判定求角度7.如图,AE∠BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,AC与BD相交于点O,连接CD(1)求∠AOD的度数;(2)求证:四边形ABCD是菱形.【答案】(1)∠AOD=90°;(2)证明见分析.【分析】(1)首先根据角平分线的性质得到∠DAC=∠BAC,∠ABD=∠DBC,然后根据平行线的性质得到∠DAB+∠CBA=180°,从而得到∠BAC+∠ABD=12(∠DAB+∠ABC)=12×180°=90°,得到答案∠AOD=90°;(2)根据平行线的性质得出∠ADB=∠DBC,∠DAC=∠BCA,根据角平分线定义得出∠DAC=∠BAC,∠ABD=∠DBC,求出∠BAC=∠ACB,∠ABD=∠ADB,根据等腰三角形的判定得出AB=BC=AD,根据平行四边形的判定得出四边形ABCD是平行四边形,即可得出答案.解:(1)∠AC、BD分别是∠BAD、∠ABC的平分线,∠∠DAC=∠BAC,∠ABD=∠DBC,∠AE∠BF,∠∠DAB+∠CBA=180°,∠∠BAC+∠ABD=12(∠DAB+∠ABC)=12×180°=90°,∠∠AOD=90°;(2)证:∠AE∠BF,∠∠ADB=∠DBC,∠DAC=∠BCA,∠AC、BD分别是∠BAD、∠ABC的平分线,∠∠DAC=∠BAC,∠ABD=∠DBC,∠∠BAC=∠ACB,∠ABD=∠ADB,∠AB=BC,AB=AD∠AD=BC,∠AD∠BC,∠四边形ABCD是平行四边形,∠AD=AB,∠四边形ABCD是菱形.【点拨】菱形的判定.【变式1】如图,四边形ABCD 为菱形,若CE 为边AB 的垂直平分线,用ADB ∠的度数为( )A .20°B .25°C .30°D .40°【答案】C【分析】连接AC ,证明∠ABC 为等边三角形,得到∠ABC =60°,根据菱形性质即可求解. 解:连接AC ,∠四边形ABCD 为菱形,∠AB =BC ,∠CE 为边AB 的垂直平分线,∠BC =AC ,∠AB =BC =AC ,∠∠ABC 为等边三角形,∠∠ABC =60°,∠四边形ABCD 为菱形,∠∠ADB =113022ADC ABC ∠=∠=︒. 故选:C【点拨】本题考查了菱形的性质,线段垂直平分线的性质,等边三角形的性质,证明∠ABC 为等边三角形是解题关键.【变式2】如图,在菱形ABCD 中,60B ∠=︒,E 在CD 上,将ADE ∆沿AE 翻折至AD E '∆,且AD '刚好过BC 的中点P ,则D EC '∠=_________.【答案】30°【分析】由菱形的性质得出AB=BC ,∠D=∠B=60°,∠C=120°,得出∠ABC 是等边三角形,由等边三角形的性质得出AD∠BC ,由翻折变换的性质得:D '∠=∠D=60°,求出∠CME=PMD '∠=30°,即可得出D EC '∠的度数.解:连接AC ,如图所示:∠四边形ABCD 是菱形,∠B=60°,∠AB=BC ,∠D=∠B=60°,∠C=120°,∠∠ABC 是等边三角形,∠AD'刚好过BC 的中点P ,∠AD∠BC ,∠∠D'PC=90°,由翻折变换的性质得:D '∠=∠D=60°,∠∠CME=∠PMD'=30°,∠∠D'EC=180°-∠C -∠CME=30°;故答案为:30°.【点拨】本题考查了翻折变换的性质、菱形的性质、等边三角形的判定与性质、直角三角形的性质、三角形内角和定理;熟练掌握翻折变换的性质和菱形的性质是解题关键.类型八 用菱形的性质与判定求线段8.如图,在矩形ABCD 中,O 为对角线AC 的中点,过点O 作直线分别与矩形的边AD ,BC 交于M ,N 两点,连接CM ,AN .(1)求证:四边形ANCM 为平行四边形;(2)若4=AD ,2AB =,且MN AC ⊥,求DM 的长【答案】(1)证明见分析;(2)32【分析】(1)通过证明△AOM 和△CON 全等,可以得到=AM NC ,又因为//AM NC ,所以可以证明四边形ANCM 为平行四边形;(2)根据MN AC ⊥,从而可以证明平行四边形ANCM 是菱形,得到AM AN NC ==,再使用勾股定理计算出BN 的长度,从而可以得到DM 的长度.解:(1)∠四边形ABCD 是矩形∠//AD BC ,//AM NC∠AMN MNC MAC ACN ∠=∠∠=∠,在△AOM 和△CON 中AMN MNC MAC ACN AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠AOM ≌∠CON∠=AM NC又∠//AM NC∠四边形ANCM 为平行四边形.(2)∠四边形ANCM 为平行四边形∠MN AC ⊥∠平行四边形ANCM 是菱形∠AM AN NC ==∠4AD BC ==设BN 的长度为x在Rt △ABN 中,2AB =,4AN x=-222AB BN AN +=2222(4)x x +=-32x = 52AN AM == ∠32DM = 【点拨】(1)本题主要考查了如何证明平行四边形,明确一组对边平行且相等的四边形是平行四边形是解题的关键;(2)本题主要考查了菱形的证明以及勾股定理的应用,知晓对角线互相垂直的平行四边形是菱形是解题的关键.【变式1】四边形ABCD 中,AB CD ∥,90B ∠=︒,AD CD =,点O 为AC 中点,DO 的延长线交AB 于E .若3BE =,4BC =,则AB 的长为( )A .5B .7C .8D .9【答案】C 【分析】连接CE ,根据已知条件证明四边形AECE 是菱形,勾股定理求得CE ,根据AB AE EB =+即可求解.解:如图,连接CEAD CD =,点O 为AC 中点,DAC DCA ∴∠=∠,DO AC ⊥ADO CDO∴∠=∠AB CD ∥CDE DEA ∴∠=∠ADE AED ∴∠=∠AD AE ∴=CD AE ∴=∴四边形AECE 是平行四边形AD DC =∴四边形AECE 是菱形CE AE ∴=在Rt CBE 中,3BE =,4BC =,5CE =538AB AE EB ∴=+=+=故选C【点拨】本题考查了勾股定理,菱形的性质与判定,等腰三角形的性质与判定,证明四边形AECE 是菱形是解题的关键.【变式2】如图,在∠ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F .分别以点F ,B 为圆心,大于12BF 长为半径作弧,两弧交于点G ,作射线AG 交BC 于点E ,若BF =6,AB =5,则AE 的长为 ___.【答案】8【分析】根据作图痕迹得出AE 为∠BAD 的平分线,AB=AF ,根据平行四边形性质和平行线性质可证明四边形ABEF 是菱形,再根据勾股定理求解即可.解:连接EF ,设AE 与BF 交于点O ,由作图得:∠BAE =∠F AE ,AB=AF ,∠四边形ABCD 是平行四边形,∠AD ∠BC ,即AF ∠BE ,∠∠F A E=∠BEA ,∠∠BAE =∠BEA ,∠AB= BE=AF ,∠AF ∠BE ,∠四边形ABEF 是平行四边形,∠AB=AF ,∠四边形ABEF 是菱形,∠BO =12BF =3,OA=12AE ,AE ∠BF ,在Rt∠AOB 中,AB =5,∠AOB =90°,由勾股定理得:4OA =,∠AE =2OA =8,故答案为:8.【点拨】本题考查尺规作图-作角平分线、平行四边形的性质、菱形的判定与性质、等腰三角形的判定与性质、平行线的性质、勾股定理,熟练掌握相关知识的联系与运用是解答的关键.类型九、用菱形的性质与判定求面积9.如图,四边形ABCD 是菱形,点H 为对角线AC 的中点,点E 在AB 的延长线上,CE AB ⊥,垂足为E ,点F 在AD 的延长线上,CF AD ⊥,垂足为F .(1)若60BAD ∠=︒,求证:四边形CEHF 是菱形;(2)若4CE =,ACE 的面积为16,求菱形ABCD 的面积.【答案】(1)证明见分析;(2)20.【分析】(1)由直角三角形斜边中线等于斜边一半和30度直角三角形性质性质可证12EH CE CF FH AC ====,即可证明结论; (2)由根据三角形面积求法可求AE ,设AB =x ,在Rt BCE ,由勾股定理列方程即可求出菱形边长,进而可求面积.解:∠四边形ABCD 是菱形,60BAD ∠=︒,∠30BAC ∠=︒,∠CE AB ⊥,, ∠12EC AC =, 又∠AH CH =, ∠12EH AC =, 12EH CE AC == 同理可得:12CF FH AC ==, ∠EH CE CF FH ===,即:四边形CEHF 是菱形;(2)∠12ACE AE CE =△, ∠14162AE =, ∠8AE =,在四边形ABCD 是菱形中,设==AB BC x ,则8BE AE AB x =-=-在Rt BCE 中,222EC BE BC +=,∠()22248x x +-=,解得5x =,∠菱形ABCD 面积=5420AB CE ⨯=⨯=.【点拨】本题主要考查了菱形的判定和性质,涉及了直角三角形性质和勾股定理.解题关键是灵活运用直角三角形性质得出线段之间发热关系.【变式1】如图,在MON ∠的两边.上分别截取,OA OB ,使OA OB =;分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ;连接,,,AC BC AB OC .若2AB =,四边形OACB的面积为4.则OC 的长为( )A .2B .3C .4D .5【答案】C 【分析】根据作法判定出四边形OACB 是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.解:根据作图,AC =BC =OA ,∠OA =OB ,∠OA =OB =BC =AC ,∠四边形OACB 是菱形,∠AB =2,四边形OACB 的面积为4, ∠12AB •OC =12×2×OC =4,解得OC =4.故选:C .【点拨】本题主要考查菱形的性质与判定,熟练掌握菱形的性质与判定是解题的关键.【变式2】如图所示,四边形ABCD 中,AC BD ⊥于点O ,4AO CO ==,3BO DO ==,点P 为线段AC 上的一个动点.过点P 分别作PM AD ⊥于点M ,作PN DC ⊥于点N .连接PB ,在点P 运动过程中,PM PN PB ++的最小值等于______.【答案】395【分析】作点M 关于AC 的对称点M ',连接PM ',根据题意先证明四边形ABCD 是菱形,则 PM AD ⊥,PN DC ⊥,可知PM AB '⊥,进而可知//PM PN ',,,P M N '共线,根据等面积法求得M N ',当PB AC ⊥时PB 最短即OB 的长,进而求得PM PN PB ++的最小值为M N OB '+.解:如图,作点M 关于AC 的对称点M ',连接PM ',PM PM '∴=,MPA M PA '∠=∠,AC BD ⊥于点O ,4AO CO ==,3BO DO ==,∴四边形ABCD 是菱形,//AB CD ∴,,AB AD DAO BAO =∠=∠,AC DB ⊥,在APM △和APM '△中MAP M AP AP APMPA M PA ∠=∠⎧⎪=⎨⎪∠'=∠⎩', APM APM '∴△≌△(ASA ), PMA PMA'∴∠=∠, PM AD ⊥,PM AB '∴⊥,PN CD ⊥,//AB CD ,PN AB ∴⊥,∴//PM PN ',∴,,P M N '三点共线,4,3AO OB ==,5AB ∴=,1168242255AC BD M N AB ⨯⨯⨯'∴===, 当PB AC ⊥时PB 最短即OB 的长,∴PM PN PB ++的最小值为M N OB '+,2439355M N OB '+=+=. 故答案为:395. 【点拨】本题考查了全等三角形的性质与判定,菱形的判定与性质,勾股定理,轴对称,找到PM PN PB ++的最小值为M N OB '+是解题的关键.。

2023-2024学年北师大版九年级数学上册《第一章 菱形的性质与判定》同步练习题附含答案

2023-2024学年北师大版九年级数学上册《第一章 菱形的性质与判定》同步练习题附含答案

2023-2024学年北师大版九年级数学上册《第一章菱形的性质与判定》同步练习题附含答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.顺次连结矩形各边中点所得的四边形是()A.矩形B.菱形C.正方形D.等腰梯形2.如图,菱形ABCD的周长为8,∠ABC=120°,则AC的长为()A.2 √3B.2 C.√3D.13.如图,在菱形ABOC中,对角线OA在y轴的正半轴上,且OA=4,直线y=23x+43过点C,则菱形ABOC的面积是 ( )A.4 B.323C.8 D.1634.如图,两条宽度都为3cm的纸条,交叉重叠放在一起,它们的交角α为60°,则它们重叠部分(阴影部分)的面积为()A.2√3cm2 B.3√3cm2 C.4√3cm2 D.6√3cm25.如图,菱形ABCD的周长为8cm,高AE长为√3cm,则对角线AC长和BD长之比为()A.1:2 B.1:3 C.1:√2D.1:√36.如图有一张长为12,宽为8的长方形(矩形)纸片,先将其上下对折,再左右对折,最后沿着虚线剪下一个直角三角形①,若该直角三角形①的直角边长为整数,将①展开可得一个四边形,则下列哪个选项不能作为该四边形的面积()A.18 B.24 C.28 D.307.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°8.如图,在▱ABCD中,对角线AC⊥AB,O为AC的中点,经过点O的直线交AD于E交BC于F,连结AF、CE,现在添加一个适当的条件,使四边形AFCE是菱形,下列条件:①OE=OA;②EF⊥AC;③E为AD中点,正确的有()个。

北师大版九年级数学上册《1.1 菱形的性质与判定》同步练习题-附答案

北师大版九年级数学上册《1.1 菱形的性质与判定》同步练习题-附答案

北师大版九年级数学上册《1.1 菱形的性质与判定》同步练习题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知菱形ABCD 的对角线AC ,BD 的长分别为6和8,则该菱形面积是( ).A .12;B .24;C .48;D .96.2.菱形对角线不.具有的性质是( ) A .对角线互相垂直B .对角线所在直线是对称轴C .对角线相等D .对角线互相平分3.如图,在菱形ABCD 中,AB =6cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB .CB 方向向点B 匀速移动,点E 的速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒∠DEF 为等边三角形,则t 的值为( )A .1B .1.3C .1.5D .24.如图,在菱形ABCD 中,对角线BD 、AC 交于点O ,AC=6,BD=4,CBE ∠是菱形ABCD 的外角,点G 是CBE ∠的角平分线BF 上任意一点,连接AG 、CG ,则AGC 的面积等于( )A .6B .9C .12D .无法确定5.菱形一个内角是120°,一边长是8,那么它较短的对角线长是( )A .3B .4C .8D .836.如图,已知菱形OBAC 的顶点()0,0O ,()2,2A --若菱形绕点O 顺时针旋转,每秒旋转45︒,则旋转30秒时,菱形的对角线交点D 的坐标为( )A .1,1B .()1,1-C .()1,0D .(0,2 7.如图在Rt ∠ABC 中,∠BAC =90,AD 是斜边BC 上的高,BE 为∠ABC 的角平分线交AC 于E ,交AD 于F ,FG ∠BD ,交AC 于G ,过E 作EH ∠CD 于H ,连接FH ,下列结论:∠四边形CHFG 是平行四边形,∠AE =CG ,∠FE =FD ,∠四边形AFHE 是菱形,其中正确的是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠8.如图,四边形ABCD 是菱形,连接AC BD ,交于点O ,过点A 作AE BC ⊥,交BC 于点E ,若46AC BD ==,,则CE 的长度是( )A 1213B 513C 813D .759.如图,四边形 ABCD 是菱形,DH AB ⊥ 于点 H .若 AC=8,BD=6,则 DH 的长度为( )A .2.4B .3.6C .4.8D .7.210.菱形ABCD 的周长为32,其相邻两内角的度数比为15:,则此菱形的面积为( )A .8B .16C .32D .64二、填空题11.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,点E 在AD 上,连接EO 并延长,交BC 于点F .若5AB =,OE=2,则四边形CDEF 的周长是 .12.如图,菱形ABCD 中135D ∠=︒,BE CD ⊥于E ,交AC 于F ,FG BC ⊥于G .若BFG 的周长为6,则菱形的边长为 .13.如图,两个长宽分别为7cm 、3cm 的矩形如图叠放在一起,则图中阴影部分的面积是 .14.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为边AD 的中点.若2OE =,则菱形ABCD 的周长为 .15.菱形的四条边都 .16.如图,菱形ABCD 的边长为17,对角线30AC =,点E 、F 分别是边CD 、BC 的中点,连接EF 并延长与AB 的延长线相交于点G ,则EG = .17.如图,四边形ABCD 是平行四边形,分别延长AD CB 、至点F 、E ,使得BE DF =,连接AE CF ,.请再添加一个条件: ,使得四边形AECF 是菱形,并说明理由.(不再添加任何线条、字母)18.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,E 、F 分别是AC 、AD 上的动点,连接DE 、EF ,若4AC =,BD=2,则DE EF +的最小值为 .19.在四边形 ABCD 中,对角线 AC , BD 交于点O .现存在以下四个条件:∠ AB CD ∥;∠ AO OC =;∠ AB AD =;∠ AC 平分DAB ∠.从中选取三个条件,可以判定四边形ABCD 为菱形. 则可以选择的条件序号是 (写出所有可能的情况).20.中国古代数学家刘徽在《九章算术》中,给出了证明三角形面积公式的出入相补法,如图所示,在ABC 中,分别取AB ,AC 的中点D ,E ,连接DE ,过点A 作AF DE ⊥,垂足为F ,ABC 分割后拼接成矩形BCHG ,若4DE =, 3.5AF =则ABC 的面积是 .三、解答题21.如图,某型号千斤顶的工作原理是利用四边形的不稳定性,图中的菱形ABCD 是该型号千斤顶的示意图,保持菱形边长不变,可通过改变AC 的长来调节BD 的长.已知30cm AB =,BD 的初始长为30cm ,如果要使BD '的长达到36cm ,那么AC 的长需要缩短多少cm .22.在平面直角坐标系中,直线AB 与x 轴交于点A ,与y 轴交于点B ,且30OAB ∠=︒,OA=9.(1)如图1,点C 为线段AB 上一点,若93AOC S =△C 的坐标;(2)如图2,点D 在线段OA 上,2,OD DA E F =、是直线AB 上的两个动点且43EF =G 是x 轴上任意一点,连接DE GF 、,求DE EF FG ++的最小值;(3)在(2)的条件下,当DE EF FG ++取最小值时,M 为直线FG 上一动点,N 是平面内任意一点,当A B M N 、、、四点构成的四边形是以AB 为边的菱形时,请直接写出点N 的坐标.23.如图,在菱形ABCD 中80ABC ∠=︒,且BA BE =,试求AED ∠的度数.参考答案 1.B2.C3.D4.A5.C6.A7.D8.B9.C10.C11.1412.613.2877cm .14.1615.相等16.1617.AE EC =(答案不唯一)184545519.∠∠∠,∠∠∠,∠∠∠,∠∠∠20.1221.AC 的长需要缩短()348cm22.(1)(3,23C 1532(3)点N 的坐标为151233232⎛-- ⎝⎭,或151233232⎛+- ⎝⎭,或21633472⎛-- ⎝⎭,或21633472⎛-+ ⎝⎭,. 23.110︒。

(含答案)九年级数学北师大版上册课时练第1章《菱形的性质与判定》(1)

(含答案)九年级数学北师大版上册课时练第1章《菱形的性质与判定》(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练第1单元菱形的性质与判定一、选择题(本大题共12小题,共36分)1.菱形不具备的性质()A.是轴对称图形B.是中心对称图形C.对角线互相垂直D.对角线一定相等2.菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.323.如图,在菱形ABCD中,对角线AC,BD相交于点O,则图中全等的直角三角形共有()A.3对B.4对C.5对D.6对4.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=5,则菱形ABCD的周长为()A.20B.30C.40D.505.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=8,BD=6,点E是CD上一点,连接OE,若OE=CE,则OE的长是()6.C.3D.4A.2B.527.已知菱形的周长为8,两邻角的度数比为1:2,则菱形的面积为()A.83B.8C.43D.238.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△'''.当点'与点C重合时,点A与点'之间的距离为()A.6B.8C.10D.129.下列条件中,不能判定一个四边形是菱形的是()A.一组邻边相等的平行四边形B.一条对角线平分一组对角的四边形C.四条边都相等的四边形D.对角线互相垂直平分的四边形10.下列条件中,能判定▱ABCD是菱形的是()A..=B.⊥.C.=D..⊥11.如图,下列四个条件中,能判定平行四边形ABCD为菱形的是()A.∠=90∘B.=C.=.D.=.12.如图,在△ABC中,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是()A.一组邻边相等的平行四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形13.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形二、填空题(本大题共7小题,共21分)14.如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥AD于点E,交BC于点F,则EF的长为.15.16.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为.17.18.如图,在菱形ABCD中,AB=6,∠ABC=60∘,M为AD的中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是。

北师大版九年级数学上册第一章 《1.1 菱形的性质与判定》 练习题

北师大版九年级数学上册第一章 《1.1 菱形的性质与判定》  练习题

《1.1 菱形的性质与判定》练习题一.选择题1.菱形具有而一般平行四边形所没有的性质是()A.两组对边分别相等B.两条对角线相等C.四个内角都是直角D.对角线平分对角2.已知菱形的边长与一条对角线的长相等,则菱形的最大的内角是()A.90°B.120°C.135°D.150°3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD 上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.44.如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18 B.18C.36 D.365.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为()A.4 B.8 C.D.66.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA.则四边形AOED的周长为()A.9+2B.9+C.7+2D.87. 如图,菱形ABCD的两条对角线相交于点O,若AC=6,BD=4,则菱形ABCD的周长是( )A.24 B.16 C.413 D.2 38. 如图,在平面直角坐标系xOy中,已知点A(2,0),B(1,1).若平移点A 到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是( )A.向左平移1个单位,再向下平移1个单位B.向左平移(22-1)个单位,再向上平移1个单位C.向右平移2个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位9. 如图,已知四边形ABCD的四边都相等,等边三角形AEF的顶点E,F分别在BC,CD上,且AE=AB,则∠C的度数为( )A.100°B.105°C.110°D.120°10.如图6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,边长为1,A,B都在格点上,则AB的长为( )A. 5 B.32C.7 D.52。

专题1 1菱形的性质与判定 新版初中北师大版数学9年级上册同步培优专题

专题1 1菱形的性质与判定  新版初中北师大版数学9年级上册同步培优专题

初中数学9年级上册同步培优专题题库(北师大版)专题1.1 菱形的性质与判定姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间45分钟,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•海安市期中)下列性质中,菱形所具备而平行四边形却不一定具有的是()A.对角线互相平分B.对角线相等C.邻角相等D.邻边相等【分析】根据平行四边形的性质:①边:平行四边形的对边相等.②角:平行四边形的对角相等.③对角线:平行四边形的对角线互相平分;菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角进行解答即可.【解析】菱形具备但平行四边形不一定具有的是邻边相等,故选:D.2.(2020春•锡山区期中)如图,已知点E、F分别是四边形ABCD的边AD、BC的中点,G、H分别是对角线BD、AC的中点,要使四边形EGFH是菱形,则四边形ABCD需满足的条件是()A.AB=CD B.AC=BD C.AC⊥BD D.AD=BC【分析】由点E、F分别是四边形ABCD的边AD、BC的中点,G、H分别是对角线BD、AC的中点,根据三角形中位线的性质,可得EG=FH=12AB,EH=FG=12CD,又由当EG=FH=GF=EH时,四边形EGFH是菱形,即可求得答案.【解析】∵点E、F分别是四边形ABCD的边AD、BC的中点,G、H分别是对角线BD、AC的中点,∴EG=FH=12AB,EH=FG=12CD,∵当EG =FH =GF =EH 时,四边形EGFH 是菱形,∴当AB =CD 时,四边形EGFH 是菱形.故选:A .3.(2020春•锡山区期中)菱形的对角线不具备的性质是( )A .对角线互相平分B .对角线一定相等C .对角线一定垂直D .对角线平分一组对角【分析】由菱形的性质即可得出结论.【解析】菱形的性质:四条边都相等,对角线互相垂直平分,是轴对称图形,并且每一条对角线平分一组对角;菱形的对角线不一定相等;故选:B .4.(2020春•大悟县期中)如图,在菱形ABCD 中,AC =2√3,BD =2,DH ⊥AB 于点H ,则BH 的长为( ) A .1 B .√3 C .23 D .2√33【分析】利用菱形的对角线互相平分线且垂直即可得出菱形的边长,再利用菱形面积公式求出即可求出DH 的长,再由勾股定理即可求出BH 的长. 【解析】∵在菱形ABCD 中,AC =2√3,BD =2,∴AO =CO =12AC =√3,BO =DO =12BD =1, ∴AB =√3+1=2, ∴DH ×2=12AC ×BD , ∴DH =12×2√3×22=√3, ∴BH =√4−3=1,故选:A .5.(2020春•锡山区期中)如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH =( )A .125B .245 C .12 D .24【分析】由四边形ABCD 是菱形,AC =8,DB =6,可求得此菱形的面积与AB 的长,继而求得答案.【解析】设AC 与BD 交于O ,∵四边形ABCD 是菱形,AC =8,DB =6,∴AC ⊥BD ,OA =12AC =4,OB =12BD =3, ∴AB =√AO 2+BO 2=5,∵S 菱形ABCD =12AC •BD =24,DH ⊥AB , ∴DH =24÷DH =245. 故选:B .6.(2020春•江阴市校级期中)如图,在菱形ABCD 中,AB =5cm ,∠ADC =120°,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm /s ,点F 的速度为2cm /s ,经过t 秒△DEF 为等边三角形,则t 的值为( )A .34B .43C .32D .53 【分析】连接BD ,证出△ADE ≌△BDF ,得到AE =BF ,再利用AE =t ,CF =2t ,则BF =BC ﹣CF =5﹣2t 求出时间t 的值.【解析】连接BD ,∵四边形ABCD 是菱形,∴AB =AD ,∠ADB =12∠ADC =60°,∴△ABD 是等边三角形,∴AD =BD ,又∵△DEF 是等边三角形,∴∠EDF =∠DEF =60°,又∵∠ADB =60°,∴∠ADE =∠BDF ,在△ADE 和△BDF 中,{∠ADE =∠BDFAD =BD ∠A =∠DBF,∴△ADE ≌△BDF (ASA ),∴AE =BF ,∵AE =t ,CF =2t ,∴BF =BC ﹣CF =5﹣2t ,∴t =5﹣2t∴t =53, 故选:D .7.(2020春•西城区校级期中)在菱形ABCD 中,∠A :∠B =1:2,若周长为8,则此菱形中较短的那条对角线长为( )A .2√3B .4C .1D .2【分析】由菱形ABCD 中,∠DAB :∠ABC =1:2,可求得∠DAB 的度数,由周长为8,可求得菱形的边长,然后由勾股定理求得菱形的两条对角线的长,即可求解.【解析】如图:∵四边形ABCD是菱形,∴AB∥CD,AD=AB=BC=CD,AC⊥BD,∵菱形ABCD的周长为8,∴AB=2,AD∥BC,∴∠DAB+∠ABC=180°,∵∠DAB:∠ABC=1:2,∴∠DAB=60°,∴△ABD是等边三角形,∴BD=AB=2,∵在Rt△OAB中,∠OAB=12∠DAB=30°,∴OB=1,OA=√3OB=√3,∴AC=2OA=2√3,∵2√3>2,∴较短的那条对角线长为2,故选:D.8.(2020春•西山区期末)如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=4,∠ABC=60°,则BD的长为()A.4√3B.4 C.2√3D.3【分析】由菱形的性质得出AC⊥BD,BD=2OB,OA=OC,证△ABC是等边三角形,得AC=AB=4,则OA=2,由勾股定理求出OB,即可得出答案.【解析】∵四边形ABCD是菱形,∴AC⊥BD,BD=2OB,OA=OC,∵∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=4,∴OA=2,∴OB=√AB2−OA2=√42−22=2√3,∴BD=2OB=4√3故选:A.9.(2020春•番禺区期末)如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD 的周长为()A.16 B.8 C.4√2D.4【分析】根据三角形的中位线定理求出BC,再根据菱形的四条边解答即可.【解析】∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4,∵四边形ABCD是菱形,∴AB=BC=CD=AD=4,∴菱形ABCD的周长=4×4=16.故选:A.10.(2020春•滨江区期末)如图,若要使平行四边形ABCD成为菱形,需添加的条件是()A.AB=CD B.∠ADB=∠DBCC.AO=BO D.AC,BD互相垂直【分析】根据菱形的判定方法得出D正确,A、B、C不正确;即可得出结果.【解析】∵四边形ABCD是平行四边形,AC,BD互相垂直,∴平行四边形ABCD是菱形,故D选项正确;故选:D.二.填空题(共8小题)11.(2020春•贵港期末)如图,▱ABCD的对角线AC、BD相交于点O,则添加一个适当的条件:AC⊥BD或AB=BC(答案不唯一)可使其成为菱形(只填一个即可).【分析】利用菱形的判定方法确定出适当的条件即可.【解析】▱ABCD的对角线AC,BD相交于点O,当AC⊥BD或AB=BC使其成为菱形.故答案为:AC⊥BD或AB=BC(答案不唯一).12.(2020春•曹县期末)如图,菱形ABCD中,AC,BD相交于O,DE⊥BC于E,连接OE,∠BAD=40°,则∠OED的度数为20°.【分析】根据菱形的性质得出∠DAO=12∠BAD=20°,AC⊥BD,DO=BO,AD∥BC,求出DE⊥AD,根据垂直的定义求出∠ADE=90°,∠DEB=90°,求出∠ADO,∠ODE的度数,根据直角三角形斜边上的中线的性质得出OD=OE,求出∠ODE=∠OED即可.【解析】∵四边形ABCD是菱形,∠BAD=40°,∴∠DAO=12∠BAD=20°,AC⊥BD,DO=BO,AD∥BC,∴∠DOA=90°,∴∠ADO=90°﹣∠DAO=70°,∵AD∥BC,DE⊥BC,∴DE⊥AD,∴∠ADE=90°,∴∠ODE=∠AD∠E﹣∠ADO=20°,∵DE⊥BC,∴∠DEB=90°,∵DO=BO,∴OE=12BD=OD,∴∠OED=∠ODE=20°,故答案为:20°.13.(2020春•南京期末)如图,在菱形ABCD中,点P在对角线BD上,PE⊥AB,垂足为E,PE=5,则点P到BC的距离是5.【分析】利用菱形的性质,得BD平分∠ABC,利用角平分线的性质,得结果即可.【解析】∵四边形ABCD是菱形,∴BD平分∠ABC,∵PE⊥AB,PE=5,∴点P到BC的距离等于5,故答案为:5.14.(2020•陕西)如图,在菱形ABCD中,AB=6,∠B=60°,点E在边AD上,且AE=2.若直线l经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF的长为2√7.【分析】过点A和点E作AG⊥BC,EH⊥BC于点G和H,可得矩形AGHE,再根据菱形ABCD中,AB =6,∠B=60°,可得BG=3,AG=3√3=EH,由题意可得,FH=FC﹣HC=2﹣1=1,进而根据勾股定理可得EF的长.【解析】如图,过点A和点E作AG⊥BC,EH⊥BC于点G和H,得矩形AGHE ,∴GH =AE =2,∵在菱形ABCD 中,AB =6,∠B =60°,∴BG =3,AG =3√3=EH ,∴HC =BC ﹣BG ﹣GH =6﹣3﹣2=1,∵EF 平分菱形面积,∴FC =AE =2,∴FH =FC ﹣HC =2﹣1=1,在Rt △EFH 中,根据勾股定理,得EF =√EH 2+FH 2=√27+1=2√7.故答案为:2√7.15.(2020春•锦江区期末)如图,菱形ABCD 的对角线相交于点O ,过点A 作AE ⊥CB 交CB 的延长线于点E ,连接OE .若菱形ABCD 的面积等于12,对角线BD =4,则OE 的长为 3 .【分析】由菱形的性质得出BD =12,由菱形的面积得出AC =9,再由直角三角形斜边上的中线性质即可得出结果.【解析】∵四边形ABCD 是菱形,∴BD ⊥AC ,∵BD =4,S 菱形ABCD ═12AC ×BD =12, ∴AC =6,∵AE ⊥BC ,∴∠AEC =90°,∴OE=12AC=3,故答案是:3.16.(2020春•淮安区期末)已知菱形ABCD的对角线AC=10,BD=8,则菱形ABCD的面积为40.【分析】根据菱形的面积等于对角线长乘积的一半列式计算即可得解.【解析】∵菱形ABCD的对角线AC=10,BD=8,∴菱形的面积S=12AC•BD=12×10×8=40,故答案为:40.17.(2020•哈尔滨)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=2BE,∠DAE=∠DEA,EO=1,则线段AE的长为2√2.【分析】设BE=x,则CD=2x,根据菱形的性质得AB=AD=CD=2x,OB=OD,AC⊥BD,再证明DE=DA=2x,所以1+x=32x,解得x=2,然后利用勾股定理计算OA,再计算AE的长.【解析】设BE=x,则CD=2x,∵四边形ABCD为菱形,∴AB=AD=CD=2x,OB=OD,AC⊥BD,∵∠DAE=∠DEA,∴DE=DA=2x,∴BD=3x,∴OB=OD=32 x,∵OE+BE=BO,∴1+x=32x,解得x=2,即AB=4,OB=3,在Rt△AOB中,OA=√42−32=√7,在Rt△AOE中,AE=√12+(√7)2=2√2.故答案为2√2.18.(2020春•北仑区期末)如图,菱形ABCD中,O是两条对角线的交点,过点O的三条直线将菱形分成阴影部分和空白部分,当菱形的边长为10,一条对角线为12时,则阴影部分的面积为48.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.【解析】连接AC、BD,如图所示:∵四边形ABCD是菱形,∴AB=10,OB=OD=12BD=6,OA=OC,AC⊥BD,∴OA=√AB2−OB2=√102−62=8,∴AC=2OA=16,∴菱形ABCD的面积=12AC×BD=12×16×12=96,∵O是菱形两条对角线的交点,∴阴影部分的面积=12×96=48;故答案为:48.三.解答题(共7小题)19.(2020•海陵区一模)已知:如图,BD是△ABC的角平分线,点E、F分别在AB、BC上,且ED∥BC,EF∥AC.(1)求证:BE=DE;(2)当AB=AC时,试说明四边形EFCD为菱形.【分析】(1)根据平行线的性质得到∠CBD=∠EDB,则可证明∠EBD=∠EDB,然后根据等腰三角形的判定方法得到结论;(2)先判断四边形EFCD为平行四边形,再证明∠EBC=∠EFB得到BE=FE,而BE=DE,从而得到DE=FE,然后根据菱形的判定方法可判断四边形EFCD为菱形.【解答】(1)证明:∵BD是△ABC的角平分线,∴∠EBD=∠CBD,∵DE∥BC,∴∠CBD=∠EDB,∴∠EBD=∠EDB,∴BE=DE;(2)解:∵ED∥BC,EF∥AC,∴四边形EFCD为平行四边形,∵AB=AC,∴∠ABC=∠C,∵EF∥AC,∴∠EFB=∠C,∴∠EBC=∠EFB,∴BE=FE,而BE=DE,∴DE=FE,而四边形EFCD为平行四边形,∴四边形EFCD为菱形.20.(2020春•万州区期末)已知,如图,在▱ABCD中,分别在边BC、AD上取两点,使得CE=DF,连接EF,AE、BF相交于点O,若AE⊥BF.(1)求证:四边形ABEF是菱形;(2)若菱形ABEF的周长为16,∠BEF=120°,求AE的长.【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,证出AF=BE,则四边形ABEF是平行四边形,由AE⊥BF,即可得出四边形ABEF是菱形;(2)由菱形的性质得出AB=BE=4,AB∥EF,证出△ABE是等边三角形,得出AE=AB=4.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵CE=DF,∴AF=BE,∴四边形ABEF是平行四边形,又∵AE⊥BF,∴四边形ABEF是菱形;(2)解:∵菱形ABEF的周长为16,∴AB=BE=4,AB∥EF,∴∠ABE=180°﹣∠BEF=180°﹣120°=60°,∴△ABE是等边三角形,∴AE=AB=4.21.(2020•恩施州)如图,AE∥BF,BD平分∠ABC交AE于点D,点C在BF上且BC=AB,连接CD.求证:四边形ABCD是菱形.【分析】由AE∥BF,BD平分∠ABC得到∠ABD=∠ADB,得到AB=AD,再由BC=AB,得到对边AD =BC,进而得到四边形ABCD为平行四边形,再由邻边相等即可证明四边形ABCD为菱形.【解答】证明:∵AE∥BF,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠DBC=∠ABD,∴∠ADB=∠ABD,∴AB=AD,又∵AB=BC,∴AD=BC,∵AE∥BF,即AD∥BC,∴四边形ABCD为平行四边形,又∵AB=AD,∴四边形ABCD为菱形.22.(2020•鼓楼区二模)如图,△ABC中,D、E分别是边AB、AC的中点,点F是BC上一点,∠B=∠DEF.(1)求证:四边形BDEF是平行四边形;(2)直接写出当△ABC满足什么条件时,四边形BDEF是菱形.【分析】(1)由三角形中位线定理可得DE∥BC,得出∠B=∠ADE,则∠ADE=∠DEF,则可得出结论;(2)根据菱形的判定可得出答案.【解答】(1)证明:∵点D,E分别是边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∴∠B=∠ADE,又∵∠B=∠DEF,∴∠ADE=∠DEF,∴BD∥EF,∵DE ∥BC ,BD ∥EF ,∴四边形BDEF 是平行四边形;(2)答案不唯一;如AB =BC .∵AB =BC ,DE =12BC ,BD =12AB , ∴BD =BF ,∵四边形BDEF 是平行四边形,∴四边形BDEF 是菱形.23.(2020•福建)如图,点E ,F 分别在菱形ABCD 的边BC ,CD 上,且BE =DF .求证:∠BAE =∠DAF .【分析】根据菱形的性质可得∠B =∠D ,AB =AD ,再证明△ABE ≌△ADF ,即可得∠BAE =∠DAF .【解答】证明:四边形ABCD 是菱形,∴∠B =∠D ,AB =AD ,在△ABE 和△ADF 中,{AB =AD ∠B =∠D BE =DF,∴△ABE ≌△ADF (SAS ),∴∠BAE =∠DAF .24.(2020春•中山市期末)如图,▱ABCD 的对角线AC 、BD 相交于点O ,AC 平分∠BAD ,DP ∥AC .CP∥BD .(1)求证:四边形ABCD 是菱形;(2)若AC =4,BD =6,求OP 的长.【分析】(1)根据一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形;(2)根据已知条件证明平行四边形DOCP是矩形,再根据AC=4,BD=6,即可求OP的长.【解析】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,∵AC平分∠BAD,∴∠BAC=∠DAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;(2)∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∵DP∥AC,CP∥BD,∴四边形DOCP是平行四边形,∵∠DOC=90°,∴平行四边形DOCP是矩形,∴OP=CD,∵AC=4,BD=6,∴OC=2,OD=3,∴CD=√OC2+OD2=√13,∴OP=CD=√13.答:OP的长为√13.25.(2020春•姜堰区期中)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC,且DE:AC=1:2,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.【分析】(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.【解答】(1)证明:在菱形ABCD中,OC=12 AC.∵DE:AC=1:2,∴DE=OC,∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)解:在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=√AD2−AO2=√22−12=√3.在Rt△ACE中,AE=√AC2+CE2=√22+(√3)2=√7.。

北师大版九年级数学上册 第一章复习题 附答案不全

北师大版九年级数学上册  第一章复习题  附答案不全

北师版九年级数学上册1.1《菱形的性质和判定的应用》一、选择题(共10小题,3*10=30)1.下列条件中,能判断四边形是菱形的是()A.对角线相等的平行四边形B.对角线互相垂直且相等的四边形C.对角线互相平分且垂直的四边形D.对角线互相垂直的四边形2.如图,在▱ABCD中,AC,BD交于点O,AB=13,AC=24,DB=10,则四边形ABCD是() A.一般的平行四边形B.长方形C.菱形D.不能确定3.如图,要使▱ABCD为菱形,下列添加的条件正确的是()A.AC=AD B.BA=BCC.∠ABC=90° D.AC=BD4.下列命题是真命题的是( )A.两组邻边分别相等的四边形是菱形B.一个角为60°的平行四边形是菱形C.对角线互相垂直的四边形是菱形D.菱形的对角线互相垂直平分5.下列说法中不正确的是()A.四边相等的四边形是菱形B.对角线垂直的平行四边形是菱形C.菱形的对角线互相垂直且相等D.菱形的邻边相等6. 如图,四边形ABCD的两条对角线相交于点O,且互相平分,添加下列条件,仍不能判定四边形ABCD为菱形的是()A.AC⊥BD B.AB=ADC.AC=BD D.∠ABD=∠CBD7.已知一个平行四边形的一条边长为3,两条对角线的长分别为4和25,则这个四边形是( ) A.菱形B.长方形C.正方形D.梯形8.如图,四边形ABCD的对角线互相平分,要使它变成菱形,需要添加的条件是( )A.AB=CD B.AD=BCC.AB=BC D.AC=BD9.用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()10.用两个全等的等边三角形,可以拼成下列哪种图形( )A.长方形B.菱形C.正方形D.等腰梯形二.填空题(共8小题,3*8=24)11.如图,在平面直角坐标系中,四边形ABCD的顶点坐标分别是A(-3,0),B(0,-2),C(3,0),D(0, 2),则四边形ABCD是____.12. 如图,在△ABC中,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是_______________________________________.13.若顺次连接对角线相等的四边形的各边中点所得的四边形是__________.14.如图,在△ABC中,D,E,F分别是边AB,AC,BC的中点,若已知AB=AC,_______(填“能”或“不能”)判定四边形BDEF是菱形。

九年级数学上册试题一课一练1.1《菱形的性质与判定》习题2-北师大版(含答案)

九年级数学上册试题一课一练1.1《菱形的性质与判定》习题2-北师大版(含答案)

1.1 《菱形的性质与判定》习题2一、选择题1.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH AB ⊥于点H ,连接OH ,若6OA =,4OH =,则菱形ABCD 的面积为( )A .72B .24C .48D .962.如图,菱形ABCD 的对角线AC ,BD 交于点O ,且AC=8,BD=6,过点O 作OH 丄AB ,垂足为H ,则点O 到边AB 的距离为( )A .2.4B .3C .4D .53.菱形的周长为8厘米,两相邻角度数比是1:2,则菱形的面积是( )平方厘米.A .B .C .D .4.如图,菱形ABCD 中,120C ∠=︒,2AB =.点E 、F 分别为BC 、CD 的中点,连接AE 、AF 、EF ,则AEF ∆的周长为A .9B .CD .5.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1CD .26.如图所示的木制活动衣帽架是由三个全等的菱形构成,根据实际需要可以调节AE 间的距离,若AE 间的距离调节到60cm ,菱形的边长20AB cm =,则DAB ∠的度数是( )A .90︒B .100︒C .120︒D .150︒7.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF =12,AB =10,则AE 的长为( )A .16B .15C .14D .138.从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD 是菱形,则这个条件是( )A .AC ⊥BDB .AD=CDC .AB=BCD .AC=BD9.如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转60°至OA B C '''的位置,若点C '与点A 重合,4OA =,120C ∠=︒,则点B '的坐标为( )A .(6,-B .3(,C .6)-D .10.如图,在平面直角坐标系xOy 中,已知菱形ABCD 的顶点()3,3A ,()1,1C --,对角线BD 交AC 于点M ,交x 轴于点N ,若2BN ND =,则点B 的坐标是( )A .37,22⎛⎫- ⎪⎝⎭B .(C .(4,2)-D .(2,4)-11.如图,已知在平面直角坐标系中,四边形ABCD 是菱形,其中点B 坐标是(4,1),点D 坐标是(0,1),点A 在x 轴上,则菱形ABCD 的周长是( )A .8B .C .D .1212.如图,直线364y x =-+分别与x 、y 轴交于点A 、B ,点C 在线段OA 上,线段OB 沿BC 翻折,点O 落在AB 边上的点D 处.以下结论:①AB=10;②直线BC 的解析式为26y x =-+;③点D(245,125);④若线段BC 上存在一点P ,使得以点P 、O 、C 、D 为顶点的四边形为菱形,则点P 的坐标是(178,74).正确的结论是( )A .①②B .①②③C .①③④D .①②③④二、解答题 1.已知:如图,BD 是菱形ABCD 的对角线,点E F 、分别在边,CD DA 上,且CE AF =,求证:BED BFD ∠=∠.2.如图菱形ABCD 的一个内角∠B=60°,E 为BC 的中点,F 为CD 的中点,连结AF 、EF .(1) △AEF 的形状如何?试证明;(2)若E 为BC 上的任意一点,F 为CD 的点,且∠EAF=60º,△AEF 的形状如何?试证明3.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE AB =,连接CE .(1)求证:四边形BECD 是平行四边形;(2)若60E ∠=︒,求BAO ∠的大小.(3)在第(2)问的基础上,且2AB =,求四边形BECD 的面积.4.如图,在平行四边形ABCD 中,P 是对角线BD 上的一点,过点C 作CQ ∥DB ,且CQ =DP ,连接AP 、BQ 、PQ .(1)求证:△APD ≌△BQC ;(2)若∠ABP +∠BQC =180°,求证:四边形ABQP 为菱形.5.如图,过□ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC.CD、DA于点P、M、Q、N.(1)求证:PBE≌QDE;(2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.6.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.(1)求证:CF=CE(2)试判断四边形CFHE的形状,并说明理由.7.在矩形ABCD中,O是对角线AC的中点,EF是线段AC的中垂线,交AD、BC 于E、F.求证:四边形AECF是菱形.8.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A 作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)求证:四边形ADCF是菱形.9.如图,已知在矩形ABCD 中,AB =6,BC =2,点E ,F 分别在边CD ,AB 上,且DE =BF .(1)求证:四边形AFCE 是平行四边形;(2)若□AFCE 是菱形,求菱形AFCE 的边长.10.如图,BD 是ABC 的角平分线,BD 的垂直平分线EG 分别交AB ,BD ,BC 于点E ,F ,G ,连接ED ,DG .(1)请判断四边形EBGD 的形状,并说明理由;(2)若30ABC ∠=︒,45C ∠=︒,2ED =,求GC 的长.答案一、选择题1.C.2.A .3.A .4.B .5.B .6.C .7.A .8.D.9.A.10.D .11.C.12.B二、解答题1.解∵四边形ABCD 是菱形,,AB BC A C ∴=∠=∠,在ABF 和CBE ∆中,AF CE A C AB CB =⎧⎪∠=∠⎨⎪=⎩(SAS)ABF CBE ∴∆≅∆,BEC BFA ∴∠=∠180BEC BED BFA BFD ︒∠+∠=∠+∠=,BED BFD ∴∠=∠.2.(1)答:△AEF 为正三角形.证明:连结AC ,如图∵菱形ABCD 的一个内角∠B=60°,∴对角线AC 把菱形分成两个全等的正三角形;∵E 、F 分别是边BC 、CD 的中点,∴AE 、AF 分别是所作正三角形的中线和角平分线;∴∠CAE=∠CAF=30°,且AE=AF ,∴∠EAF=60°,∴△AEF 为正三角形.(2)△AEF 也为正三角形.证明:如图,在△BAE 与△CA F 中,∵BAC CAE EAF CAE ∠-∠=∠-∠, ∴∠BAE=∠CAF ,在△BAE 与△CA F 中,∵60BAE CAF ABE ACF AB AC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△BAE ≌△CA F ,∴AE=AF ;∵∠EAF=60°,∴△AEF 为正三角形.'3.(1)证明:四边形ABCD 是菱形, //AB CD AB CD ∴=,,又BE AB =,//BE CD BE CD ∴=,,∴四边形BECD 是平行四边形; (2)四边形BECD 是平行四边形, //BD CE ∴,60OBA E ∴∠=∠=︒, 又四边形ABCD 是菱形, AC BD ∴⊥,9030BAO OBA ∴∠=︒-∠=︒;(3)过点C 作CF BE ⊥交BE 于F ,2BE ∴=,AE=4,又//BD CE AC BD ,⊥,AC CE ∴⊥,30BAO ∠=︒,2CE =∴,AC ∴=12CF AC ∴==∴BECD S BE CF 四边形=⋅=4.(1)证明:∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC ,∴∠ADB=∠DBC ,∵CQ ∥DB ,∴∠BCQ=∠DBC ,∵DP=CQ ,∴△ADP ≌△BCQ .(2)证明:∵CQ ∥DB ,且CQ=DP ,∴四边形CQPD 是平行四边形,∴CD=PQ ,CD ∥PQ ,∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴AB=PQ ,AB ∥PQ ,∴四边形ABQP 是平行四边形,∵△ADP ≌△BCQ ,∴∠APD=∠BQC ,∵∠∠APD+∠APB=180°,∴∠ABP=∠APB ,∴四边形ABQP 是菱形.5.(1)证明:∵四边形ABCD 是平行四边形, ∴EB=ED ,AB ∥CD ,∴∠EBP=∠EDQ ,在△PBE 和△QDE 中,EBP EDQ EB EDBEP DEQ ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△PBE ≌△QDE(ASA);(2)证明:如图所示:∵△PBE ≌△QDE ,∴EP=EQ ,同理:△BME ≌△DNE(ASA),∴EM=EN ,∴四边形PMQN 是平行四边形,∵PQ ⊥MN ,∴四边形PMQN 是菱形.6.(1)证明:如图∵∠ACB=90°,CD ⊥AB 垂足为D ,∴∠1+∠5=90°,∠2+∠3=90°,又∵∠AE平分∠CAB,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CF=CE(2)四边形CFHE是菱形理由:∵AE平分∠CAB,CE⊥AC,EH⊥AB,∴CE=EH,由(1)CF=CE,∴CF=EH,∵CD⊥AB,EH⊥AB,∴∠CDB=90°,∠EHB=90°,∴∠CDB=∠EB,∴CD∥EH,即CF∥EH,∴四边形CFHE是平行四边形.∵CF=CE,∴四边形CFHE是菱形.7.解:证明:如图所示,∵O是AC的中点,∴AO=CO,又∵在矩形ABCD中,AD//BC,∴∠1=∠2∴在△AOE 和△COF 中,12,,90AO CO AOE COF ∠=∠=∠=∠=, ∴△AOE ≌△COF (ASA),∴AE =CF ,又∵EF 是AC 的垂直平分线, ∴AE =CE ,AF =CF ,∴AE =CE =AF =CF ,∴四边形AECF 是菱形.8.证明:(1)∵AF ∥BC∴∠AFE =∠DBE∵E 是AD 中点,∴AE =DE在△AEF 和DEB 中AFE DBE AEF DEB AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△DEB(AAS)(2)在Rt △ABC 中,D 是BC 的中点, 所以,AD =BD =CD又AF ∥DB ,且AF =DB ,所以,AF ∥DC ,且AF =DC , 所以,四边形ADCF 是菱形.9.(1)∵四边形ABCD 是矩形,∴AB=DC ,AB ∥DC ,又∵DE =BF ,∴EC=AF ,∴四边形AECF 是平行四边形.(2)∵□AFCE 是菱形,∴AF=FC=CE=AE ,设菱形的边长为x , ∵AB =6,BC =2,∴6FB x =-,在Rt △CBF 中,222BF BC CF +=,即()22262x x -+=, 整理得:1240x =, ∴103x =. 故菱形的边长为103.10.解:(1)四边形EBGD 是菱形. 理由:EG 垂直平分BD , EB ED ∴=,GB GD =,EBD EDB ∴∠=∠,EBD DBC ∠=∠,EDF GBF ∴∠=∠在EFD △和GFB 中,EDF GBF EFD GFB DF BF ∠=∠⎧⎪∠=∠⎨⎪=⎩, EFD GFB ∴△≌△,ED BG ∴=,BE ED DG GB ∴===,∴四边形EBGD 是菱形.(2)作DH BC ⊥于点H ,四边形EBGD 为菱形,2ED DG ==, 30ABC ∴∠=︒,30DGH ∠=︒,1DH ∴=,GH =,45C ∠=︒,1DH CH ∴==,1CG GH CH ∴=+=。

九年级数学上第1章1菱形的性质与判定第1课时菱形及其性质习题北师大

九年级数学上第1章1菱形的性质与判定第1课时菱形及其性质习题北师大

∵△APE是等边三角形,∴AP=AE,∠PAE=60°. ∴∠BAP=∠CAE. ∴△BAP≌△CAE (SAS). ∴BP=CE,∠ABP=∠ACE=30°. 易知∠CAH=60°, ∴∠CAH+∠ACH=90°. ∴∠AHC=90°,即CE⊥AD.
精彩一题 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月26日星期六2022/3/262022/3/262022/3/26
件是( C )
A.∠BAF=∠DAE
B.EC=FC
C.AE=AF D.BE=DF
6.(2020·武威)如图所示的木制活动衣帽架是由三个全等的 菱形构成,根据实际需要可以调节A,E间的距离.若A, E间的距离调节到60 cm,菱形的边长AB=20 cm,则 ∠DAB的度数是( C )
A.90° B.100° C.120° D.150°
15.(2019·聊城)如图,在菱形ABCD中,点P是BC上一点, 连接AP,E,F是AP上的两点,连接DE,BF,使得 ∠AED=∠ABC,∠ABF=∠BPF.求证:
(1)△ABF≌△DAE;
证明:∵四边形ABCD是菱形,∴AB=AD,AD∥BC. ∴∠BPA=∠DAE. 又∵∠ABC=∠AED,∴∠BAF=∠ADE. ∵∠ABF=∠BPF,∠BPA=∠DAE,∴∠ABF=∠DAE. 又∵AB=DA,∴△ABF≌△DAE(ASA).
又∵BE= 3,∴AE=1. ∴AD=AB=2.
∴菱形 ABCD 的面积为 AD×BE=2× 3=2 3.
14.(中考·苏州)如图,在菱形ABCD中,对角线AC,BD相交 于点O,过点D作对角线BD的垂线交BA的延长线于点E.
(1)求证:四边形ACDE是平行四边形; 证明:∵四边形ABCD是菱形, ∴AB∥CD,AC⊥BD. ∵DE⊥BD,∴DE∥AC. ∴四边形ACDE是平行四边形.

11 菱形的性质与判定(备作业)-2021-2022学年九年级数学上(北师大版)(原卷版)

11 菱形的性质与判定(备作业)-2021-2022学年九年级数学上(北师大版)(原卷版)

1.1菱形的性质与判定一、单选题1.下列说法中正确的是( )A .四边相等的四边形是菱形B .一组对边相等,另一组对边平行的四边形是菱形C .对角线互相垂直的四边形是菱形D .对角线互相平分的四边形是菱形2.已知菱形ABCD 的对角线AC 、BD 的长分别为4和6,则该菱形面积是( )A .48B .24C .12D .63.菱形的周长为32cm ,一个内角的度数是60°,则两条对角线的长分别是( )A .8cm 和B .4cm 和C .8cm 和D .4cm 和4.如图,在菱形ABCD 中,,AE AF 分别垂直平分,BC CD ,垂足分别为,E F ,则EAF ∠的度数是( )A .90°B .60°C .45°D .30°5.如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )A .3.5B .4C .7D .146.如图,等边三角形ABC 沿射线BC 向右平移到DCE 的位置,连接AD BD ,,则下列结论:①AD BC =;②BD AC ,互相平分;③四边形ACED 是菱形;④ACD DCE ∠=∠.其中正确的个数是( )A .1B .2C .3D .47.如图,在平行四边形ABCD 中,AE CF 、分别是BAD ∠和BCD ∠的平分线,若添加以下一个条件,仍无法判断四边形AECF 为菱形,则这个条件是( )A .AE AF =B .EF AC ⊥ C .60B ∠=D .AC 是EAF ∠的平分线8.如图,在平面直角坐标系中,四边形OABC 为菱形,()0,0O,()4,0A ,60AOC ∠=,则对角线交点E的坐标为( )A .(B .)2C .)D .( 9.如图,在菱形ABCD 中,EF ,分别是BC CD ,的中点,设ABCD S S =四边形,1AEF S S ∆=,则( )A .112S S =B .112S S <C .112S S >D .152S S =10.如图,在菱形ABCD 中,∠BAD =44°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连结DF ,则∠CDF 等于( )A .112°B .114°C .116°D .118°11.如图,菱形ABCD 的边长为9,面积为P 、E 分别为线段BD 、BC 上的动点,则PE PC +的最小值为( )A B .C .D .912.如图,在菱形ABCD 中,AB =BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE =DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .给出如下几个结论:①△AED ≌△DFB :②GC 平分∠BGD ;③S四边形BCDG =4CG 2;④∠BGE 的大小为定值.其中正确的结论个数为( )A .1B .2C .3D .4二、填空题 13.菱形的对角线长分别为5cm 和12cm ,则菱形的周长是________cm .14.如图,在边长为10的菱形ABCD 中,对角线BD =16,点O 是线段BD 上的动点,OE ⊥AB 于E ,OF ⊥AD 于F .则OE +OF =___.15.已知菱形ABCD 的周长为20cm ,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是__________________.16.如图,在菱形ABCD 中,80BAD ∠=︒,AB 的垂直平分线交对角线AC 于点F ,垂足为点E ,连接DF ,BF ,则CDF ∠=______.17.如图,四边形ABCD 为菱形,O 是两条对角线的交点,过点O 的三条直线将菱形分成阴影和空白两部分.当菱形的面积为60时,阴影部分的面积是________.18.三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB =∠AOE =90°,菱形的较短对角线长为2cm .若点C 落在AH 的延长线上,则△ABE 的周长为________cm .19.在四边形ABCD 中,对角线AC ,BD 交于点O ,从(1)AB =CD ;(2)AB ∥CD ;(3)OA =OC ;(4)OB =OD ;(5)AC ⊥BD ;(6)AC 平分∠BAD 这六个条件中,选取三个推出四边形ABCD 是菱形.如(1)(2)(5)⇒四边形ABCD 是菱形,再写出符合要求的两个:________⇒四边形ABCD 是菱形;________⇒四边形ABCD 是菱形.20.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是的边AB ,BC 边的中点.若5AB =, 8BD =,则线段EF 的长为______.21.如图,在菱形ABCD 中,AB 的垂直平分线EF 交对角线AC 于点F ,垂足为点E ,若27CDF ∠=︒,则DAB ∠的度数为____________.22.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,AC=6,BD=8,点P 是AC 延长线上的一个动点,过点P 作PE ⊥AD ,垂足为E ,作DC 延长线的垂线,垂足为F ,则|PE-PF|=_____.23.含60°角的菱形A 1B 1C 1B 2,A 2B 2C 2B 3,A 3B 3C 3B 4,…,按如图的方式放置在平面直角坐标系xOy 中,点A 1,A 2,A 3,…,和点B 1,B 2,B 3,B 4,…,分别在直线y=kx 和x 轴上.已知B 1(2,0),B 2(4,0),则点A 1的坐标是_____;点A 3的坐标是_____;点A n 的坐标是____(n 为正整数).24.如图,在菱形ABCD 中,∠A=60°,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、CG .给出以下结论:①∠BGD=120°;②BG+DG=CG ;③△BDF ≌△CGB ;④2.BCDG S AB =四边形其中正确的有______.三、解答题25.如图,在Rt ABC △中,90ACB ︒∠=,D 为AB 的中点,//AE CD ,//CE AB ,连接DE 交AC 于点O .(1)证明:四边形ADCE 为菱形;(2)若60B ︒∠=,6BC =,求菱形ADCE 的高.26.如图,在四边形ABCD 中,AB =AD ,CB =CD ,点E 是CD 上一点,BE 交AC 于点F ,连接DF .(1)证明:∠BAC =∠DAC ;(2)若AB//CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,试确定点E 的位置,使∠EFD =∠BCD ,并说明理由.27.如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,BE 交AC 于点F ,连接DF.(1)求证:∠BAC =∠DAC ,∠AFD =∠CFE ;(2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,试确定E 点的位置,使∠EFD =∠BCD ,并说明理由.28.如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,过点A 作//AG DB 交CB 的延长线于点G .(1)求证://DE BF ;(2)若90G ∠=︒,求证:四边形DEBF 是菱形.29.如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F 、H 在菱形ABCD 的对角线BD 上.(1)求证:BG DE =;(2)若E 为AD 中点,2FH =,求菱形ABCD 的周长.30.如图,在四边形ABCD 中,,AB DC AB AD =//,对角线,AC BD 交于点,O AC 平分BAD ∠,过点C作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:DAC DCA ∠=∠;(2)求证:四边形ABCD 是菱形;(3)若AB 2==,求OE 的长.31.如图1,点A 是线段BC 上一点,△ABD 和△ACE 都是等边三角形.(1)连结BE ,CD ,求证:BE=CD ;(2)如图2,将△ABD 绕点A 顺时针旋转得到△AB′D′.①当旋转角为 度时,边AD′落在AE 上;②在①的条件下,延长DD’交CE 于点P ,连接BD′,CD′.当线段AB 、AC 满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.32.如图,在平面直角坐标系中,直线1l :182y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :13y x =交于点A .(1)求点A 、B 、C 的坐标;(2)若M 是线段OA 上的点,且COM 的面积为24,求直线CM 的函数表达式;(3)在(2)的条件下,设E 是射线CM 上的点,在平面内是否存在点F ,使以O 、C 、E 、F 为顶点的四边形是菱形?若存在,直接写出点F 的坐标;若不存在,请说明理由.33.如图①,将两个完全相同的三角形纸片ABC 和A B C '''重合放置,其中90C ∠=︒,30B B ∠∠'==︒,2AC AC '==.(1)操作发现:如图②,固定ABC ,将A B C ''绕点C 旋转,当点A '恰好落在AB 边上时. ①CA B ∠''=__,旋转角α=___(090α<<),线段A B ''与AC 的位置关系是____. ②设A BC '的面积为1S ,AB C '的面积为2S ,则1S 与2S 的数量关系是___.(2)猜想论证:当A B C ''绕点C 旋转到③所示的位置时,徐富老师猜想(1)中1S 与2S 的数量关系仍然成立,并尝试分别作出了A BC '和AB C '中BC ,B C '边上的高A D ',AE ,请你证明徐富老师的猜想.(3)拓展探究:如图④,60MON ∠=︒,OP 平分MON ∠,点N 为动点,//PQ MO 交ON 于点Q ,若在射线OM 上作点F ,使//PF OQ ,请证明PNF OPQ S S =△△.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学北师大版九年级上学期第一章 1.1 菱形的性质与判定I

姓名:________ 班级:________ 成绩:________
一、单选题 (共9题;共18分)
1. (2分)(2015·衢州) 如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于()
A . 6 米
B . 6米
C . 3 米
D . 3米
2. (2分)(2019·柯桥模拟) 已知四边形的ABCD中,∠A=∠B=∠C=∠D,则这个四边形是()
A . 平行四边形
B . 矩形
C . 菱形
D . 正方形
3. (2分)(2012·贵港) 如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形;④S四边形ABMD= AM2 .
其中正确结论的个数是()
A . 1
B . 2
C . 3
D . 4
4. (2分) (2019八下·许昌期中) 关于平行四边形ABCD的叙述,正确的是()
A . 若AB⊥BC,则平行四边形ABCD是菱形
B . 若AC⊥BD,则平行四边形ABCD是正方形
C . 若AC=BD,则平行四边形ABCD是矩形
D . 若AB=AD,则平行四边形ABCD是正方形
5. (2分) (2019九上·梅县期中) 如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件错误的是()
A . AB=AD
B . AC⊥BD
C . AC=BD
D . AD=CD
6. (2分) (2019八下·中山期中) 如图,菱形ABCD的对角线相交于点O,若AC=8,BD=6,则菱形ABCD的周长是()
A . 32
B . 24
C . 20
D . 40
7. (2分)如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积是
A .
B .
C .
D . 3
8. (2分) (2019八下·港南期中) 如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB
于点H,则DH等于()
A .
B .
C . 5
D . 45
9. (2分) (2019九上·萧山开学考) 如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线上,过点C作CE∥x轴交双曲线于点E,则CE的长为()
A .
B .
C . 3.5
D . 5
二、填空题 (共4题;共4分)
10. (1分)(2017·宽城模拟) 如图,将▱ABCD沿对角线AC折叠,使点B落在点B'
处.若∠1=∠2=44°,则∠B的大小为________度.
11. (1分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(-3,0),(2,0),点D在y轴上,则点C的坐标是________.
12. (1分)(2019·桂林模拟) 如图,在△ABC中,∠ACB=90°,AC=BC=2 ,将△ABC绕AC的中点D逆时针旋转90°得到△A′B′C′,其中点B的运动路径为弧BB',则图中阴影部分的面积为________.
13. (1分)(2019·新昌模拟) 如图,在中,AD平分,按如下步骤作图:
第一步,分别以点A、D为圆心,以大于的长为半径在AD两侧作弧,交于两点M、N;
第二步,连接MN分别交AB、AC于点E、F;
第三步,连接DE、DF.
若,,,求BD的长是________.
三、作图题 (共1题;共10分)
14. (10分) (2019九上·郑州期末) 如图,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.求证:四边形ABFE为菱形.
四、综合题 (共4题;共40分)
15. (10分)将△ABC绕点A按逆时针方向旋转α度,并使各边长变为原来的n倍,得△AB′C′,我们将这种变换记为[α,n].
(1)如图①,对△ABC作变换[58°, ]得△AB′C′,则S△AB′C′:S△ABC=
________;直线BC与直线B′C′所夹的锐角为________度;(直接写出结果)(2)如图②,△ABC中,∠BA C=30°,∠ACB=90°,对△ABC作变换[α,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB′C′为矩形,求α和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=2,对△ABC作变换[α,n]得△AB′C′,变换后点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,则n的值为________.(直接写出结果)
16. (10分) (2019·益阳) 如图,在Rt△ABC中,M是斜边AB的中点,以CM为直径作圆O交AC于点N,延长MN至D,使ND=MN,连接AD、CD,CD交圆O于点E.
(1)判断四边形AMCD的形状,并说明理由;
(2)求证:ND=NE;
(3)若DE=2,EC=3,求BC的长.
17. (10分) (2019九上·萧山开学考) 已知面积为30的菱形ABCD(顺时针排列)的顶点坐标分别为A(1,-2),B(a,b),C(1,4),D(c,d),求a,b,c,d的值及菱形的周长.
18. (10分) (2018九下·梁子湖期中) 如图,将▱ABCD沿其对角线AC折叠,使△ABC 落在AEC处,CE与AD交于点F,连接DE.
(1)请你判断AC,DE的位置关系,并说明理由;
(2)若折叠后,CE平分AD,AB=4,BC=6,请利用(1)中的结论,求▱ABCD的面积.
参考答案
一、单选题 (共9题;共18分)
1、答案:略
2、答案:略
3、答案:略
4、答案:略
5、答案:略
6、答案:略
7、答案:略
8、答案:略
9、答案:略
二、填空题 (共4题;共4分)
10、答案:略
11、答案:略
12、答案:略
13、答案:略
三、作图题 (共1题;共10分)
14、答案:略
四、综合题 (共4题;共40分)
15、答案:略
16、答案:略
17、答案:略
18、答案:略。

相关文档
最新文档