一道不等式恒成立问题的五种解法
恒成立问题常见类型及解法
【解析】令 f (m) =( x2 1)m -2 x +1,则上述问题即可转化为关于 m 的
一次函数 y f (m) 在区间[-2,2]内函数值小于 0 恒成立的问题。考察区
间端点,只要
f f
(2)<0,解得 (2)<0
7 1<x< 2
3 1, 2
即 x 的取值范围是( 7 1 , 3 1 ).
a)
0
,即
(4 a)2 a 4
16
0
,
aa
0或a 4
8 ,解得
a
-8.
方法 2(利用根与系数的分布知识)
即要求 t2+(4+ a )t+4=0 有正根。
y
设 f(t)= t2+(4+ a )t+4.
当 =0 时,即(4+ a )2-16=0,
4
即 1 4m2 3 2 1在 x [3 , ) 上恒成立。
m2
x2 x
2
当
x
3 2
时函数
y
3 x2
2 x
1 取得最小值
5 3
,
所以
1 m2
4m2
5 3
,即 (3m2
1)(4m2
3)
0,
解得 m
3 或m
3
。
2
2
四、利用函数的性质解决恒成立问题
2
个单位。若所得图象与原图象重合,则
的值不.可.能.等于(
)
A.4
B.6
C.8
不等式恒成立问题的基本类型及常用解法 - 副本
不等式恒成立问题基本类型及常用解法类型1:设f(x)=ax+bf(x) >0在x ∈[]n m ,上恒成立⇔ ⎩⎨⎧0)(0)( n f m ff(x) <0在x ∈[]n m ,上恒成立⇔⎩⎨⎧0)(0)( n f m f . 例1. 设y=(log 2x)2+(t-2)log 2x-t+1,若t 在[-2,2]上变化,y 恒取正值,求实数x 的取值范围。
例2. 对于 -1≤a ≤1,求使不等式(21)ax x +2<(21)12-+a x 恒成立的x 的取值范围。
类型2:设f(x)=ax 2+bx+c (a ≠0)f(x) >0在x ∈R 上恒成立⇔a >0 且△<0;f(x) <0在x ∈R 上恒成立⇔a <0 且△<0.说明:①.只适用于一元二次不等式②.若未指明二次项系数不等于0,注意分类讨论.例3.不等式3642222++++x x m mx x <1对一切实数x 恒成立,求实数m 的取值范围。
类型3:设f(x)=ax 2+bx+c (a ≠0)(1) 当a >0时① f(x) >0在x ∈[]n m ,上恒成立 ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或⎪⎩⎪⎨⎧∆-o n a b m 2或⎪⎩⎪⎨⎧≥-0)(2 n f n a b ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或△<0或⎪⎩⎪⎨⎧≥-0)(2 n f n a b . ② f(x) <0在x ∈[]n m ,上恒成立⇔⎩⎨⎧0)(0)( n f m f . (2) 当a <0时① f(x) >0在x ∈[]n m ,上恒成立⇔ ⎩⎨⎧0)(0)( n f m f ② f(x) <0在x ∈[]n m ,上恒成立 ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或⎪⎩⎪⎨⎧∆-o n a b m 2或⎪⎩⎪⎨⎧≥-0)(2 n f n a b ⇔⎪⎩⎪⎨⎧≤-0)(2 m f m a b 或△<0或⎪⎩⎪⎨⎧≥-0)(2 n f n a b . 说明:只适用于一元二次不等式.类型4:a >f(x) 恒成立对x ∈D 恒成立⇔a >f(x)m ax ,a <f(x)对x ∈D 恒成立⇔ a <f(x)m in .说明:①. f(x) 可以是任意函数②.这种思路是:首先是---分离变量,其次用---极端值原理。
不等式恒成立问题
九招破解不等式恒成立问题绵阳东辰国际学校 冷世平不等式恒成立问题求解的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用构造函数法、变量分离法、数形结合法等解题方法求解.解题过程本身渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了重要的作用,因此也成为历年各地高考的一个热点内容.解决恒成立问题主要有以下几种方法,供各位同行参考.一、反客为主法此方法又称为改变主元法.有一些数学题,题中涉及到若干个量,其中有常量,也有变量,学生在解答时,由于思维定势,不太习惯把其中的常量暂视为变量,把其中的变量暂视为常量的做法,结果导致求解过程异常复杂甚至难以解出.其实,常量与变量是相对的,是辩证统一的关系,根据需要可以将它们的地位调换,即“反客为主”,改变主元,常常使许多难题巧妙获解.例1 对于满足2p ≤的所有实数p ,求使不等式212x px p x ++>+恒成立的x 的取值范围.【分析】在不等式中出现了两个字母:x 及p ,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将p 视作自变量,则上述问题即可转化为在[]2,2-内关于p 的一次函数大于0恒成立的问题.【解析】不等式即2(1)210x p x x -+-+>,设2()(1)21f p x p x x =-+-+,则()f p 在[]2,2-上恒大于0,故有(2)0(2)0f f ->⎧⎨>⎩,即2243010x x x ⎧-+>⎪⎨->⎪⎩,从而解得1x <-或3x >. 【点评】在不等式中出现了两个字母:x 及p ,而我们都习惯把x 看成是一个变量,p 作为常数.本题转换视角,可将p 视作自变量,则上述问题即可转化为在[]2,2-内关于p 的一次函数大于0恒成立的问题. 此类题本质上是利用了一次函数在闭区间上的图象是一条线段,故只需保证该线段两利用函数单调性解题是历年高考的重点和难点.如何攻克这个难点呢?一个词:去壳.利用函数单调性解不等式的关键就是:准确判断出函数单调性,成功去掉f 这层外壳,把关于因变量之间的不等关系转化为关于自变量之间的不等关系,然后解关于x 的简单不等式即可.例2 定义在R 上的函数()f x 既是奇函数,又是减函数,且当0,2πθ⎛⎫∈ ⎪⎝⎭时,有2(cos 2sin )(22)0f m f m θθ++-->恒成立,求实数m 的取值范围.【解析】由2(cos 2sin )(22)0f m f m θθ++-->得到2(cos 2sin )(22)f m f m θθ+>---,因为()f x 为奇函数,故有2(cos 2sin )(22)f m f m θθ+>+恒成立,又因为()f x 为R 减函数,从而有2cos 2sin 22m m θθ+<+对0,2πθ⎛⎫∈ ⎪⎝⎭恒成立,设sin ,(0,1)t t θ=∈,则22210t mt m -++>对于(0,1)t ∈恒成立,再设函数2()221g t t mt m =-++,对称轴为t m =.①当0t m =<时,函数()y g t =在(0,1)t ∈上单调递增,min ()(0)210g t g m ==+≥,即12m ≥-,又10,02m m <∴-≤<; ②当[]0,1t m =∈,即01m ≤≤时, 2min ()()210g t g t m m ==-++>,即2210,1212m m m --<∴-<<+,又[]0,1,01m m ∈∴≤≤;③当1t m =>时,函数()y g t =在(0,1)t ∈上单调递增,min()(1)122120g t g m m ==-++=>恒成立,1m ∴>.综上所述,实数m 的取值范围为12m ≥-. 【点评】此题属于含参数二次函数的轴动区间定的问题,对轴与区间的位置进行分类讨论.对于二次函数在R 上恒成立问题常采用判别式法,而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题.三、变量分离法若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解.例3 已知函数22(),[1,)x x a f x x x++=∈+∞,若对任意[1,),()0x f x ∈+∞>恒成立,试求实数a 的取值范围.【分析】此题可经过等价转化为在区间[1,)+∞上220x x a ++>恒成立,再将转化后的不等式分离参数得()()g a h x >恒成立,再求得()h x 得最大值max ()h x ,由max ()()g a h x >可得实数a 的取值范围.【解析】在区间[1,)+∞上,()0f x >恒成立220x x a ⇔++>在区间[1,)+∞上恒成立,要使220x x a ++>恒成立,只需222(1)1a x x x >--=-++恒成立,由二次函数的性质可得2(1)13x -++≤,故只需3a >-,故所示实数a 的取值范围为3a >-.例3 已知二次函数2()(,0)f x ax x a R a =+∈≠,若[0,1]x ∈时,总有()1f x ≤,试求实数a 的取值范围.【解析】①当0x =时,有(0)01f =<恒成立;② 当0x ≠时,21ax x +≤,即2211ax x ax x ⎧+≤⎪⎨+≥-⎪⎩,分离参数可得221111()a x x a x x ⎧≤-⎪⎪⎨⎪≥-+⎪⎩,令1,(0,1]t x x =∈, (1,]t ∴∈+∞,即当(1,]t ∈+∞时恒有22,()a t t a t t ⎧≤-⎪⎨≥-+⎪⎩当(1,]t ∈+∞时,22min max ()0,[()]2t t t t -=-+=-, 即02a a ≤⎧⎨≥-⎩,又因为0a ≠,故实数a 的取值范围为[2,0)-. 【点评】将所求变量与其他变量分离开,通过研究式中另外一个变量的已知范围来确定所求变量的范围.若所求变量为a ,则根据()a f x >恒成立max ()a f x ⇔>; ()a f x <恒成立min ()a f x ⇔<.此题一般性解法是利用根的分布对211ax x -≤+≤进行讨论,其解题过程复杂性显而易见,而将参数从恒成立不等式中分离出来,可以避免较为复杂的讨论.例4 已知当x R ∈时,不等式cos254sin a x x +<-+a 的取值范围.【分析】在不等式中含有两个变量a 及x ,其中x 的范围已知,另一变量a 的范围即为所求,故可考虑将a 及x 分离.【解析】原不等式等价于4sin cos25x x a +<-,要使上式恒成立,5a-大于4sin cos2x x +的最大值,故上述问题转化成求()4sin cos2f x x x =+的最值问题.224sin cos22sin 4sin 12(sin 1)33,53x x x x x a +=-++=--+≤->,即2a >+,上式等价于22054054(2)a a a a ⎧-≥⎪-≥⎨⎪->-⎩或20540a a -<⎧⎨-≥⎩,解得485a ≤<. 【点评】注意到题目中出现了sin x 及cos2x ,而2cos212sin x x =-,故若把sin x 换元成t ,则可某些含参不等式恒成立问题,我们在解题过程中,可以把不等式进行合理的变形后,将不等式两端的式子分别看作两个函数,且正确作出两个函数的图象,然后通过观察两图象(特别是交点时)的位置关系,列出关于参数的不等式,以达到求解的目的.例5 设[0,4]x ∈ax 恒成立,求a 的取值范围.【解析】设1(4)y x x =-,则2211(2)4(0x y y -+=≥),它表示的是以(2,0)为圆心,2为半径的上半圆(如图所示),设2y ax =,它的几何意义是一条经过原点,斜率为a 的直线,将两者图像画在同一坐标系下,根据不等式(4)x x ax -≥的几何意义,要使得半圆恒在直线l 的上方(包括相交),当且仅当0a ≤时才成立,所以a 的取值范围就是0a ≤.【点评】此题还可以利用变量分离法求解,略解如下:当0x =时,不等式显示恒成立;当(]0,4x ∈时,不等式(4)x x ax -≥恒成立等价于41a x -≥恒成立,令41y x =-,显然函数41y x =-在区间(]0,4上是单调递减函数,故min 4104y =-=,故a 的取值范围就是0a ≤. 例6 当(1,2)x ∈时,不等式2(1)log a x x -<恒成立,求a 的取值范围. 【分析】若将不等号两边分别设成两个函数,则左边为二次函数,图象是抛物线,右边为常见的对数函数的图象,故可以通过图象求解. 【解析】设212(1),log a y x y x =-=,则1y 的图象为如图所示的抛物线,要使对一切12(1,2),x y y ∈<恒成立,显然1a >,并且必须也只需当2x =时2y 的函数值大于等于1y 的函数值.故log 211a a >⎧⎨>⎩,从而可得12a <≤. 【点评】我国著名数学家华罗庚曾说过:“数缺形时少直观,形少数时难 入微;数形结合百般好,隔离分家万事休”,作为一种数学思想方法,数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”.本题是数形结合思想中的“形”中觅“数”,“数”上构“形”的充分体现,由表达式结构特征,能让我们了解到用其几何意义去处理.五、构造向量法向量是数形结合的重要工具,对于形式、结构比较复杂的不等式恒成立问题,可以巧妙的构造向量,使数学问题增添新的活力且简单易解.例7 2252510x x x a +-+对于任意的x R ∈恒成立,求实数a 的取值范围.【分析】由题目的结构形式可联想到平面向量,于是令(,5),(55)m x n x ==-,由向量的模之间的关系5m n m n +≥+=,求得实数a 的取值范围.【解析】令2222525105(5)5,(,5),(55)u x x x x x m x n x =+-+=+-+==-,2222(5,25),5,(5)5,5,52510m n m x n x m n u x x x m n +=∴=+=-++=∴=++-+=+5m n ≥+=∴故实数a 的取值范围是5a ≤.【总结】本题还可以根据结构联想到两点间的距离公式,将不等式左边看作函数22222252510(0)(05)(5)(05)y x x x x x =++-+=-+-+-+-,所求问题转化为平面上一个动点(,0)A x 到两定点B C 的距离之和的最小值,易求出点B 关于原点对称的点'(0,B ,显然'5B C =即为所求,故实数a 的取值范围是5a ≤.六、构造函数法根据题目中所给的含参不等式的结构特征,构造适当的函数,并利用函数的性质来求参数的范围.例8 若函数()f x =R ,求实数a 的取值范围. 【分析】该题就转化为被开方数222(1)(1)01a x a x a -+-+≥+在R 上恒成立问题,并且注意对二次项系数的讨论.【解析】依题意,当x R ∈时,222(1)(1)01a x a x a -+-+≥+恒成立, ①当210a -=时,有21010a a ⎧-=⎨+≠⎩,解得1a =,此时222(1)(1)10,11a x a x a a -+-+=≥∴=+ ②当210a -≠时,222102(1)4(1)01a a a a ⎧->⎪⎨∆=---≤⎪+⎩,即有2211090a a a ⎧>⎨-+≤⎩,解得19a <≤; 综上所述,()f x 的定义域为R 时,实数a 的取值范围为[1,9].七、集合思想法集合是高中数学的理论基础,贯穿于整个高中数学的始终,其中所包含的子集思想和补集思想在高中数学解题中应用十分广泛,在不等式恒成立问题中巧妙利用这两种解题思想,能达到意想不到的效果.例9 已知52x a -<时,不等式254x -<恒成立,求实数a 的取值范围. 【分析】若记a x <-25的解集是2,54A x -<的解集是B ,则a x <-25成立时254x -<成立,则应有A B ⊆,根据子集的知识可求得a 的取值范围.【解析】由52x a -<,可得5522a x a -<<+,由254x -<,可得31x -<<-或13x <<.记55(,),(3,1)(1,3)22A a a B =-+=--⋃,则55,3122A B a a ⊆∴-≤-<+≤-或551322a a ≤-<+≤,从而解得102a <≤. 【点评】不等式在集合A 中恒成立等价于集合A 是不等式解集B 的子集,通过研究集合间的关系便可求出参数的取值范围.八、绝对值几何意义法在不等式中,常会遇到含有绝对值的不等式求解问题,处理这类问题的关键在于如何去掉绝对值符号,将问题转化为不含绝对值符号的常规问题来解决,这是解含绝对值不等式问题的一般解法,下面来探求这类问题的另一种解法-----利用实数绝对值的几何意义来求解.例10 x R ∈时,关于x 的不等式13x x a -++>恒成立,求实数a 的取值范围.【分析】由13x x a -++>恒成立,即13x x -++的最小值大于a ,再由绝对值得几何意义知13x x -++的最小值是4,故可求得a 的取值范围. 【解析】13x x a -++>恒成立,即13x x -++的最小值大于a ,又13x x -++表示数轴上点x 到两点1和3-的距离之和,当31x -≤≤时,这个距离和最小且等于4,故实数a 的取值范围是4a <.【点评】对于一些绝对值内为关于x 的一次式的不等式,我们常可以根据绝对值的基本性质,采用等价转化法或零点分段脱去绝对值符号,将问题转化为不含绝对值符号的常规问题来求解,另外也可以根据绝对值的几何意义用数形结合的方法直观、快速、准确地求解这类含有绝对值的不等式.九、三角代换法根据题目的特点,选取恰当的三角代换,能达到化难为易,化繁为简的目的,它是解不等式问题中常用的方法.例11 当(,)P m n 为圆22(1)1x y +-=上任意一点时,不等式0m n c ++≥恒成立,则c 的取值范围是( ).11A c -≤11c ≤≤.1C c ≤.1D c ≥【解析】设cos ,1sin x y θθ==+,则)104x y c c πθ+++++≥恒成立,即)14c πθ≥+-,设())14f πθθ=+-,只要max ()c f θ≥,故得1c . 【点评】三角代换的特点是将原来两个变元,x y 问题转化为关于一个变元θ的问题,通过换元达到减元的目的,在使用三角代换时,一定要注意新变量与原变量间的取值范围是否一致.此题还可以利用数形结合方法求解,略解如下:由0m n c ++≥,可以看作是点(,)P m n 在直线0x y c ++=的右侧,而点(,)P m n 在圆22(1)1x y +-=上,实质相当于是22(1)1x y +-=在直线的右侧并与它相离或相切,01011c c ++>⎧⎪∴∴≥≥.不等式恒成立的题型和解法还有很多,只要我们充分利用所给定的函数的特点和性质,具体问题具体分析,选择恰当、简便的方法,但不管用哪种方法,其核心思想还是等价转化,抓住了这点,才能“以不变应万变”,才能使问题获得顺利解决,只有这样才能真正提高学生分析问题和解决问题的能力,当然这需要我们在实际工作中不断的去领悟、体会和,这样自己的业务能力才能声速得以提高.[文档可能无法思考全面,请浏览后下载,另外祝您生活愉快,工作顺利,万事如意!]。
高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!
开篇语:不等式恒成立问题在高中数学是一类重点题型,高考也是必考内容。
由于不等式问题题型众多,题目也比较灵活。
所以在学习过程中,同学们要学会总结各种解题方法!方法一:分离参数法解析:分离参数法适用的题型特征:当不等式的参数能够与其他变量完全分离出来,并且分离后不等式其中一边的函数的最值或范围可求时,则将参数式放在不等式的一边,分离后的变量式放在另一边,将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min方法二:变换主元法(也可称一次函数型)解析:学生通常习惯把x当成主元(未知数),把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,则可简便解题。
适用于变换主元法的题型特征是:题目有两个变量,且已知取值范围的变量只有一次项,这时就可以将不等式转化为一次函数求解。
方法三:二次函数法解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析 1,判断二次函数的开口方向2,二次函数的判别式是大于0还是小于03,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性 方法四:判别式法解析:不等式一边是分式,且分式的分子和分母的最高次项都是二次项时,利用判别式法可以快速的解题,分离参数将会使解题变得复杂。
方法五:最值法解析:不等式两边是两个函数,且含有参数时,我们可以分出出参数,构造新函数,求函数的导数来求得新函数的最值。
总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。
平时练习过程中,应注意观察,总结!。
不等式恒成立问题的大全
不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。
另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用。
本文就结合实例谈谈这类问题的一般求解策略。
一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。
一般地,对于二次函数),0()(2R x a c bx ax x f ∈≠++=,有1)0)(>x f 对R x ∈恒成立⎩⎨⎧<∆>⇔00a ;2)0)(<x f 对R x ∈恒成立.00⎩⎨⎧<∆<⇔a例1.已知函数])1(lg[22a x a x y +-+=的定义域为R ,数a 的取值围。
解:由题设可将问题转化为不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a 解得311>-<a a 或。
所以实数a 的取值围为),31()1,(+∞--∞ 。
若二次不等式中x 的取值围有限制,则可利用根的分布解决问题。
例2.设22)(2+-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,数m 的取值围。
解:设m mx x x F -+-=22)(2,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=∆m m m 即时,0)(>x F 显然成立;当0≥∆时,如图,0)(≥x F 恒成立的充要条件为:⎪⎪⎩⎪⎪⎨⎧-≤--≥-≥∆1220)1(0m F 解得23-≤≤-m 。
综上可得实数m 的取值围为)1,3[-。
二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)a x f >)(恒成立min )(x f a <⇔ 2)a x f <)(恒成立max )(x f a >⇔1.已知两个函数2()816f x x x k =+-,32()254g x x x x =++,其中k 为实数.(1)若对任意的[]33,-∈x ,都有)()(x g x f ≤成立,求k 的取值围; (2)若对任意的[]3321,、-∈x x ,都有)()(21x g x f ≤,求k 的取值围. (3)若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,求k 的取值围.【分析及解】 (1) 令k x x x x f x g x F +--=-=1232)()()(23, 问题转化为0)(≥x F 在 []3,3-∈x 上恒成立,即0)(min ≥x F 即可 ∵)2(61266)(22'--=--=x x x x x F , 由0)('=x F , 得2=x 或 1-=x .∵(3)45(3)9(1)7(2)20F k F k F k F k -=-=--=+=-,,,, ∴45)(min -=k x F , 由045≥-k , 解得 45≥k .(2)由题意可知当[]33,-∈x 时,都有min max )()(x g x f ≤. 由01616)('=+=x x f 得1-=x .∵k f k f --=--=-8)1(24)3(,, k f -=120)3(, ∴120)(max +-=k x f . 由04106)(2'=++=x x x g 得321-=-=x x 或, ∵21)3(-=-g , 111)3(=g , 1)1(-=-g , 2728)32(-=-g ,∴21)(min -=x g .则21120-≤-k , 解得141≥k .(3) 若对于任意1x []3,3∈-,总存在[]03,3x ∈-使得)()(10x f x g =成立,等价于()f x 的值域是()g x 的值域的子集,由(2)可知, 2()816f x x x k =+-在[]3,3-的值域为[]8,120k k ---+,32()254g x x x x =++在[]3,3-的值域为[]21,111-,于是,[][]8,12021,111k k ---+⊆-,即满足 821,120111.k k --≥-⎧⎨-+≤⎩解得913k ≤≤2.已知x x x x g a x x x f 4042)(,287)(232-+=--=,当]3,3[-∈x 时,)()(x g x f ≤恒成立,数a 的取值围。
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法不等式的恒成立问题基本解法:9种解法导语:在数学中,我们经常会遇到不等式的问题,而不等式的恒成立问题则更加耐人寻味。
不等式的恒成立问题是指对于某个特定的不等式,是否存在一组解使得不等式始终成立。
解决这种问题需要灵活运用数学知识和技巧。
本文将介绍不等式的恒成立问题的基本解法,共包括9种方法。
一、置换法。
这是最简单的一种方法,即将不等式中的变量互相置换,然后观察不等式是否成立。
如果成立,则不等式恒成立。
对于x^2 +y^2 ≥ 0这个不等式,我们可以将x和y置换一下,得到y^2 + x^2 ≥ 0。
由于平方数是非负数,所以不等式始终成立。
二、加法法则。
这种方法是通过在不等式的两边同时加上相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时加上-3,得到2x + 3 - 3 ≥ x + 4 - 3,即2x ≥ x + 1。
由于x的取值范围不限制,所以不等式恒成立。
三、减法法则。
与加法法则相似,减法法则是通过在不等式的两边同时减去相同的数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时减去x,得到x + 3 ≥ 4。
由于x的取值范围不限制,所以不等式恒成立。
四、乘法法则。
这种方法是通过在不等式的两边同时乘以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时乘以2,得到4x + 6 ≥ 2x + 8。
由于x的取值范围不限制,所以不等式恒成立。
五、除法法则。
与乘法法则相似,除法法则是通过在不等式的两边同时除以相同的正数来改变不等式的符号。
对于不等式2x + 3 ≥ x + 4,我们可以在两边同时除以2,得到x + 3/2 ≥ 1 + x/2。
由于x的取值范围不限制,所以不等式恒成立。
六、平方法则。
这种方法是通过平方运算来改变不等式的符号。
对于不等式x^2 ≥ 0,我们可以将x^2展开为(x + 0)^2,得到x^2 + 0 ≥ 0。
不等式恒成立问题3种基本方法
不等式恒成立问题3种基本方法
一、回溯法
回溯法是一种通过搜索所有可能的结果来求解问题的方法,它通过不断地枚举搜索所有可能的结果,并在搜索过程中剪枝来减少搜索空间,直到找到问题的答案为止。
二、动态规划
动态规划是一种在求解复杂问题时,将原问题分解为若干个规模较小的子问题,逐个求解子问题,从而求解原问题的一种方法。
三、贪心算法
贪心算法是一种在每一步选择中都采取在当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。
它对每一步都采取局部最优解,希望最后能够得到全局最优解。
27用含参不等式恒成立问题的解法
例1、对于不等式(1-m)x2+(m-1)x+3>0
................
(*)
(1)当| x | ≤2,不等式恒成立,求实数m的取值范围 ;
求谁,谁就是参数; 另一个是自变量
(2)当| m | ≤2,不等式恒成立,求实数x的取值范围 .
变更“主元” 解(2) : 设g(m)=(-x2+x)m+(x2-x+3) (m∈[-2,2])法
(Ⅱ){a|a≥-4}
练 习
设f(x)=x2-2ax+2(a∈R),g(x)=lgf(x) (1)当x∈R时,f(x)≥a恒成立,求a的取值范围; (2)若g(x)的值域为R,求a的取值范围; (3)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
(1){a|-2≤a≤1}; (2){a|a≥ 或a≤2 }2
例1:已知关于x的不等式: (a-2)x2 + (a-2)x +1 ≥ 0恒成立, 试求a的取值范围.
解:由题意知: ①当a -2=0,即a =2时,不等式化为 1 ≥ 0,它恒成立,满足条件. ②当a -2≠0,即a ≠2时,原题等价于
a 2 0 2 ( a 2) 4( a 2) 0
练 已知不等式x2+mx>4x+m-4. 习 (1)若对于0≤m≤4的所有实数m,不等式恒成立,求实数x的取值范围.
(2)若对于x≤1的所有实数x,不等式恒成立,求实数m的取值范围. (1)实数x的取值范围为:(-∞,0)∪(0,2)∪(2,+∞); (2)实数m的取值范围是:{m|m<4}. 求谁,谁就是参数; 另一个是自变量
f 0 >0 则 f 4 >0
高三专题复习不等式恒成立问题
高三数学 第一讲 不等式恒成立问题在近些年的数学高考题及高考模拟题中经常出现不等式恒成立问题,此类问题一般综合性强,既含参数又含变量,往往与函数、数列、方程、几何等有机结合起来,具有形式灵活、思维性强、不同知识交汇等特点.高考往往通过此类问题考查学生分析问题、解决问题、综合驾驭知识的能力。
此类问题常见解法:一、构造函数法在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题面目更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数.例1 已知不等式对任意的都成立,求的取值范围.例2:在R 上定义运算⊗:x ⊗y =x(1-y) 若不等式(x -a)⊗(x +a)<1对任意实数x 成立,则 ( )(A)-1<a<1 (B)0<a<2 (C) 2321<<-a (D) 3122a -<< 例3:若不等式x 2-2mx+2m+1>0对满足0≤x ≤1的所有实数x 都成立,求m 的取值范围。
二、分离参数法在题目中分离出参数,化成a>f(x) (a<f(x))型恒成立问题,再利用a>f max (x) (a<f min (x))求出参数范围。
例4.(2012•杭州一模)不等式x 2﹣3>ax ﹣a 对一切3≤x ≤4恒成立,则实数a 的取值范围是 .例5:设a 0为常数,数列{a n }的通项公式为a n =51[3n +(-1)n-1·2n ]+(-1)n ·2n ·a 0(n ∈N * )若对任意n ≥1,n ∈N *,不等式a n >a n-1恒成立,求a 0的取值范围。
例6.(2012•安徽模拟)若不等式x 2+ax+4≥0对一切x ∈(0,1]恒成立,则a 的取值范围是 . 例7.(2011•深圳二模)如果对于任意的正实数x ,不等式恒成立,则a 的取值范围是 .例8.(2013•闵行区一模)已知不等式|x ﹣a|>x ﹣1对任意x ∈[0,2]恒成立,则实数a 的取值范围是 .三、数型结合法例9:如果对任意实数x ,不等式kx 1x ≥+恒成立,则实数k 的取值范围是例10:已知a>0且a ≠1,当x ∈(-1,1)时,不等式x 2-a x <21恒成立,则a 的取值范围 例11、 已知函数若不等式恒成立,则实数的取值范围是 .例12、(2009•上海)当时,不等式sin πx ≥kx 恒成立.则实数k 的取值范围是 .例13、若不等式log a x >sin2x (a >0,a ≠1)对任意都成立,则a 的取值范 B C D 四、利用函数的最值(或值域)求解(1)m x f ≥)(对任意x 都成立m x f ≥⇔min )(;(2)m x f ≤)(对任意x 都成立max )(x f m ≥⇔。
不等式 恒成立问题
由题意得,对于 恒成立 对于 恒成立,令 ,设 ,则 ,
, , k的取值范围是k> .
解:令 , 所以原不等式可化为: ,
要使上式在 上恒成立,只须求出 在 上的最小值即可。
注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。
四、变换主元法
处理含参不等式恒成立的某些问题时,若能适时的把主元变量和参数变量实行“换位”思考,往往会使问题降次、简化。
例4.对任意 ,不等式 恒成立,求 的取值范围。
1) 函数 图象恒在函数 图象上方;
2) 函数 图象恒在函数 图象下上方。
例5:已知 ,求实数a的取值范围。
解析:由 ,在同一直角坐标系中做出两个函数的图象,如果两个函数分别在x=-1和x=1处相交,则由 得到a分别等于2和0.5,并作出函数 的图象,所以,要想使函数 在区间 中恒成立,只须 在区间 对应的图象在 在区间 对应图象的上面即可。当 才能保证,而 才能够,所以 。
3.设 ,当 时, 恒成立,求实数 的取值范围。
解:设 ,则当 时, 恒成立
当 时, 显然成立;
当 时,如图, 恒成立的充要条件为:
解得 。
综上可得实数 的取值范围为 。
4:在 ABC中,已知 恒成立,求实数m的范围。
解析:由
, , 恒成立, ,即 恒成立,
5、若不等式 对满足 的所有 都成立,求 的取值范围。
解:设 ,对满足 的 , 恒成立,
解得:
6、若不等式 在 内恒成立,求实数 的取值范围。
解:由题意知: 在 内恒成立,
在同一坐标系内,分别作出函数 和
观察两函数图象,当 时,若 函数 的图象显然在函数 图象的下方,所以不成立;
关于不等式恒成立问题的几种求解方法
关于不等式恒成立问题的几种求解方法不等式恒成立问题,在高中数学中较为常见。
这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。
不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。
下面我们一起来探讨其中一些典型的问题一、一次函数型――利用单调性求解例1、若不等式对满足的所有实数m都成立,求x的取值范围。
若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。
这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。
能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。
分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将m 视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。
解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立,设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有:此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。
给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于?。
?,或)可合并成同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;若改为:,构造函数,画出图象,得a。
破解含参不等式恒成立的5种常用方法
破解含参不等式恒成立的5种常用方法含参数不等式恒成立问题越来越受高考命题者的青睐,且由于对导数应用的加强,这些不等式恒成立问题往往与导数问题交织在一起,在近年的高考试题中不难看出这个基本的命题趋势。
对含有参数的不等式 恒成立问题,破解的方法有:分离参数法、数形结合法、单调性分析法、最值定位法、构造函数法等。
一 分离参数法分离参数法是解决含问题的基本思想之一。
对于含参不等式的问题,在能够判断出参数的系数正负的情况下,可以根据不等 式的性质将参数分离出来 ,得到一个一端是参数、另一端是变量表达式的不等式,只要研究变量表达式的性式就可以解决问题。
例1 已知函数a x f x x 421)(++=在(-∞,1]上有意义,试求的取值范围。
分析 :函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,这里参数的系数04>x ,故可以分离参数。
解析:函数)(x f 在(-∞,1]上有意义,等价于0421≥++a x x 在区间(-∞,1]上恒成立,即⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-≥x x a 2141,∈x (-∞,1]恒成立,记)(x g a ≥,∈x (-∞,1],因此问题又等价于)(x g a ≥在)(x g a ≥上恒成立,)(x g 在(-∞,1]上是增函数,因此)(x g 的最大值为)1(g 。
)(x g a ≥在(-∞,1]上恒成等价于43)1()(max -==≥g x g a 。
于是工的取值范围为43-≥a 。
【点评】)(x f a ≥恒成立等价于max )(x f a ≥;)(x f a ≤恒成立等价于min )(x f a ≤。
如果函数)(x f 不存在最值,上面的最大值就替换为函数值域的右端点,最小值就替换为函数值域的左端点。
解这类问题时一定要注意区间的端点值。
二 数形结合法数形到结合法是一种重要的数学思想方法,其要点是“见数想形,以形助数”,从而达到解决问题的目的,数形结合法是破解含参数不等式恒成立问题的又一个主要方案。
不等式的恒成立问题基本解法9种解法
不等式的恒成立问题基本解法9种解法在解决不等式的恒成立问题时,有多种基本解法可以选择,每种解法都有其独特的特点和适用场景。
在本文中,我们将深入探讨不等式的恒成立问题,并从不同的角度提出9种基本解法,帮助读者更全面、深入地理解这一主题。
1. 直接法直接法是解决不等式的恒成立问题最直接的方法。
通过对不等式的特定性质和条件进行分析,直接得出不等式恒成立的结论。
这种方法通常适用于简单的不等式,能够快速得到结果。
2. 间接法间接法是一种通过反证法或对立法解决不等式的恒成立问题的方法。
当直接法无法直接得出结论时,可以尝试使用间接法来推导不等式的恒成立条件。
这种方法通常适用于较为复杂的不等式,可以通过推翻假设得到结论。
3. 分类讨论法分类讨论法是一种将不等式的条件分为多种情况进行分析的方法。
通过将不同情况进行分类讨论,找出每种情况下不等式的恒成立条件,从而得出综合结论。
这种方法适用于不等式条件较为复杂的情况,能够全面考虑不同情况下的特殊性。
4. 代入法代入法是一种通过代入特定的数值进行验证的方法。
通过选择合适的数值代入不等式中,可以验证不等式在特定条件下是否恒成立。
这种方法通常适用于验证不等式的特定性质或条件。
5. 齐次化法齐次化法是一种将不等式中的不定因子统一化的方法。
通过将不等式中的不定因子进行统一化,可以简化不等式的表达形式,从而更容易得出不等式的恒成立条件。
这种方法通常适用于不等式较为复杂的情况,能够简化问题的复杂度。
6. 几何法几何法是一种通过几何形象进行分析的方法。
通过将不等式转化为几何图形,可以直观地理解不等式的恒成立条件。
这种方法通常适用于具有几何意义的不等式问题,能够通过几何图形进行直观分析。
7. 递推法递推法是一种通过递归关系进行推导的方法。
通过建立递推关系,可以得出不等式的递推解,从而得出恒成立条件。
这种方法通常适用于递推关系较为明显的不等式问题,能够通过递推求解不等式问题。
8. 极限法极限法是一种通过极限的性质进行分析的方法。
八种解法解决不等式恒成立问题
八种解法解决不等式恒成立问题1最值法例1.已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中c b a ,,为常数.(I )试确定b a ,的值;(II )讨论函数)(x f 的单调区间;(III )若对于任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围.分析:不等式22)(c x f -≥恒成立,可以转化为2min 2)(c x f -≥解:(I )(过程略)3,12-==b a .(II )(过程略)函数)(x f 的单调减区间为)1,0(,函数)(x f 的单调增区间为),1(+∞. (III )由(II )可知,函数)(x f 在1=x 处取得极小值c f --=3)1(,此极小值也是最小值.要使22)(c x f -≥(0>x )恒成立,只需223c c -≥--,解得23≥c 或1-≤c . 所以c 的取值范围为),23[]1,(+∞⋃--∞.评注:最值法是我们这里最常用的方法.a x f ≥)(恒成立a x f ≥⇔)(min ;a x f ≤)(恒成立a x f ≤⇔)(max .2分离参数法例2.已知函数x x x x f +-+=1)1(ln )(22(I )求函数)(x f 的单调区间;(II )若不等式e n a n ≤++)11(对于任意*∈N n 都成立(其中e 是自然对数的底数),求a 的最大值.分析:对于(II )不等式e na n ≤++)11(中只有指数含有a ,故可以将函数进行分离考虑. 解:(I )(过程略)函数)(x f 的单调增区间为)0,1(-,)(x f 的单调减区间为),0(+∞(II )不等式e n a n ≤++)11(等价于不等式1)11ln()(≤++n a n ,由于111>+n ,知1)11ln()(≤++na n n n a -+≤⇔)11ln(1;设x x x g 1)1ln(1)(-+= ]1,0(∈x ,则221)1(ln )1(1)(x x x x g +++-=')1(ln )1()1(ln )1(2222x x x x x x ++-++=. 由(I )知,01)1(ln 22≤+-+x x x ,即0)1(ln )1(22≤-++x x x ;于是,0)(<'x g ]1,0(∈x ,即)(x g 在区间]1,0(上为减函数.故)(x g 在]1,0(上的最小值为12ln 1)1(-=g . 所以a 的最大值为12ln 1-. 评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当]2,1(∈x 时,不等式x x a log )1(2≤-恒成立,则实数a 的取值范围是___.直角坐标系内作出函数2)1()(-=x x f x x g a log )(=在]2,1(∈x 观、简捷求解.解:在同一平面直角坐标系内作出函数2)1()(-=x x f 与函数x x g a log )(=在(∈x 图象(如右),从图象中容易知道:当0<a )(x g 上方,不合题意;当1>a 且]2,1(∈x 或部分点重合,就必须满足12log ≥a ,即21≤<a .故所求的a 的取值范围为]2,1(.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法. 4 变更主元法例4.对于满足不等式11≤≤-a 的一切实数a ,函数)24()4(2a x a x y -+-+=的值恒大于0,则实数x 的取值范围是___.分析:若审题不清,按习惯以x 为主元,则求解将非常烦琐.应该注意到:函数值大于0对一定取值范围的谁恒成立,则谁就是主元.解:设)44()2()(2+-+-=x x a x a f ,]1,1[+-∈a ,则原问题转化为0)(>a f 恒成立的问题. 故应该有⎩⎨⎧>>-0)1(0)1(f f ,解得1<x 或3>x . 所以实数x 的取值范围是),3()1,(+∞⋃-∞.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设0a 是常数,且1123---=n n n a a (*∈N n ).(I )证明:对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,求0a 的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意1≥n 有1->n n a a 求出0a 的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I )递推式可以化归为31)3(32311+-=--n n nn a a ,]51)3[(3251311--=---n n n n a a ,所以数列}513{-n n a 是等比数列,可以求得对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,取2,1=n 就有⎩⎨⎧>=->-=-0603101201a a a a a a 解得3100<<a ; 下面只要证明当3100<<a 时,就有对任意*∈N n 有01>--n n a a 由通项公式得011111215)1(2)1(332)(5a a a n n n n n n n ⋅⋅⋅-+⋅-⋅+⋅=------当12-=k n (*∈N k )时,02523322152332)(511101111=⋅-⋅+⋅>⋅⋅-⋅+⋅=--------n n n n n n n n a a a当k n 2=(*∈N k )时,023*********)(51101111=⋅-⋅>⋅⋅+⋅-⋅=-------n n n n n n n a a a ,可见总有1->n n a a . 故0a 的取值范围是)31,0(评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法. 6分段讨论法例6.已知2)(--=a x x x f ,若当[]0,1x ∈时,恒有()f x <0,求实数a 的取值范围. 解:(i )当0x =时,显然()f x <0成立,此时,a R ∈(ii )当(]0,1x ∈时,由()f x <0,可得2x x -<a <2+x x , 令 (](]22(),(0,1);()(0,1)g x x x h x x x x x=-∈=+∈ 则221)(xx g +='>0,∴()g x 是单调递增,可知[]max ()(1)1g x g ==- 221)(xx h -='<0,∴()h x 是单调递减,可知[]min ()(1)3h x h == 此时a 的范围是(—1,3)综合i 、ii 得:a 的范围是(—1,3) .例7.若不等式032>+-ax x 对于]21,21[-∈x 恒成立,求a 的取值范围. 解:(只考虑与本案有关的一种方法)解:对x 进行分段讨论,当0=x 时,不等式恒成立,所以,此时R a ∈; 当]21,0(∈x 时,不等式就化为x x a 3+<,此时x x 3+的最小值为213,所以213<a ; 当)0,21[-∈x 时,不等式就化为x x a 3+>,此时x x 3+的最大值为213-,所以213->a ; 由于对上面x 的三个范围要求同时满足,则所求的a 的范围应该是上三个a 的范围的交集即区间)213,213(- 说明:这里对变量x 进行分段来处理,那么所求的a 对三段的x 要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在),0(+∞的函数)(x f 满足)()()(xy f y f x f =+,且1>x 时不等式0)(<x f 成立,若不等式)()()(22a f xy f y x f +≤+对于任意),0(,+∞∈y x 恒成立,则实数a 的取值范围是___.解:设210x x <<,则112>x x ,有0)(12<x x f .这样,0)()()()()()()()(121112111212<=-+=-⋅=-x x f x f x f x x f x f x x x f x f x f ,则)()(12x f x f <,函数)(x f 在),0(+∞为减函数. 因此)()()(22a f xy f y x f +≤+⇔)()(22xy a f y x f ≤+⇔xy a y x ≥+22xy y x a 22+≤⇔;而2222=≥+xy xyxy y x (当且仅当y x =时取等号),又0>a ,所以a 的取值范围是]2,0(.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式012>++ax ax 对于任意R x ∈恒成立.则实数a 的取值范围是___. 分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意R x ∈恒成立,可以选择判别式法.解:当0=a 时,不等式化为01>,显然对一切实数恒成立; 当0≠a 时,要使不等式012>++ax ax 一切实数恒成立,须有⎩⎨⎧<-=∆>0402a a a ,解得40<<a .综上可知,所求的实数a 的取值范围是)4,0[.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于x 的不等式ax xx x ≥-++232525在]12,1[∈x 上恒成立,求 实数a 的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵]12,1[∈x ,∴不等式可以化为a x x x x ≥-++5252;下面只要求x x xx x f 525)(2-++=在]12,1[∈x 时的最小值即可,分段处理如下.当]5,1[∈x 时,x x x x f 256)(2++-=,223225622562)(x x x x x x f -+-=-+-=',再令2562)(231-+-=x x x f ,0126)(21=+-='x x x f ,它的根为2,0;所以在区间)2,1[上有0)(1>'x f ,)(x f 递增,在区间]5,2(上有0)(1<'x f ,)(x f 递减,则就有2562)(231-+-=x x x f 在]5,1[∈x 的最大值是017)2(1<-=f ,这样就有0)(<'x f ,即)(x f 在区间]5,1[是递减.同理可以证明)(x f 在区间]12,5[是递增;所以,x x xx x f 525)(2-++=在]12,1[∈x 时的最小值为10)5(=f ,即10≤a . 技巧解:由于]12,1[∈x ,所以,25225≥+xx ,052≥-x x 两个等号成立都是在5=x 时;从而有10525)(2≥-++=x x x x x f (5=x 时取等号),即10≤a . 评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。
不等式恒成立问题方法完美归纳教师版
不等式恒成立与有解问题解法归纳一、分离变换法: (一)分离参数法若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,即分离参数法。
基本步骤为:第一步 首先对待含参的不等式问题在能够判断出参数的系数正负的情况下,可以根据不等式 的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式; 第二步 先求出含变量一边的式子的最值; 第三步 由此推出参数的取值范围即可得出结论. 分离参数法有以下几种类型: I.常规法分离参数所谓常规法分离参数,就是通过解不等式或解方程把参数解出来,再研究分离出来的函数的值域或最值,从而求出参数取值范围。
例、若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B .(-∞,3] C.⎣⎡⎭⎫518,+∞ D .[3,+∞)【解析】f′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝⎛⎭⎫x +1x 在[1,4]上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518【例】已知函数H (x )=ln x x -λ()x 2-1,若对任意x ∈[1,+∞),不等式H (x )≤0,求实数λ的取值范围.【分析】H (x )≤0=H (1)恒成立转化为H ′(x )=ln x +1-2λx ≤0恒成立,再分离参数求解【解析】设函数H (x )=ln x x -λ()x 2-1,从而对任意x ∈[1,+∞),不等式H (x )≤0=H (1)恒成立.又H ′(x )=ln x +1-2λx ,当H ′(x )=ln x +1-2λx ≤0,即ln x +1x ≤2λ恒成立时, 函数H (x )单调递减.设r (x )=ln x +1x ,则r ′(x )=-ln xx 2≤0,所以r (x )max =r (1)=1,即1≤2λ⇒λ≥12,符合题意;当λ≤0时,H ′(x )=ln x +1-2λx ≥0恒成立,此时函数H (x )单调递增. 于是,不等式H (x )≥H (1)=0对任意x ∈[1,+∞)恒成立,不符合题意; 当0<λ<12时,设q (x )=H ′(x )=ln x +1-2λx ,则q ′(x )=1x -2λ=0⇒x =12λ>1, 当x ∈⎝⎛⎭⎫1,12λ时,q ′(x )=1x -2λ>0,此时q (x )=H ′(x )=ln x +1-2λx 单调递增,所以H ′(x )=ln x +1-2λx >H ′(1)=1-2λ>0,故当x ∈⎝⎛⎭⎫1,12λ时,函数H (x )单调递增. 于是当x ∈⎝⎛⎭⎫1,12λ时,H (x )>0成立,不符合题意; 【变式训练】1、已知不等式2x +m +8x -1>0对一切x ∈(1,+∞)恒成立,则实数m 的取值范围是________.2、设124()lg ,3x xa f x ++=其中a R ∈,如果(.1)x ∈-∞时,()f x 恒有意义,求a 的取值范围。
“恒成立”的几种常用的解法
“恒成立”的几种常用的解法已知不等式恒成立,求参数范围的问题,涉及函数、方程、不等式,综合性强,在高考中常常涉及,许多学生对此类问题不知从何着手,本文结合实例,谈谈这类问题常见的几种方法。
一.判别式法此方法适用于二次函数的情况,利用)0(02>>++a c bx ax的解集是R 0<∆⇔;)0(02<<++a c bx ax的解集是R 0<∆⇔,这类问题的特点是二次函数在R 上恒成立。
例1.已知函数3)(2++=ax x x f ,当时,a x f ≥)(恒成立,求a 的取值范围。
解:要使03x)(2≥-++≥a ax a x f 恒成立,即恒成立,必须且只需26,0124a 0)3(4a 22≤≤-∴≤-+≤--∆a a a 即=二.图象法此方法主要用于二次函数,指数对数函数,三角函数等,由其函数图象确定值域,进而解之。
类型1:作一个函数的图像:例2.已知函数3)(2++=ax x x f ,若]2,2[-∈x 时,a x f ≥)(恒成立,求a 的取值范围。
解:43)2(3)(222aa x ax x x f -++=++=(1) 当7,-2a f(-2)f(x)4a ,22min+==>-<-时,即a由Φ∈∴≤≥+a ,37a a 72a 得-(2) 当,4a-3f(x )4a 4,2222min=≤-≤≤-≤-时,即a由24,2a 6a 4a-32≤≤-∴≤-≤≥a 得(3) 当7,2a f(2)f(x)4a ,22min+==-<>-时,即a由47,7a a 72a -<≤-∴-≥≥+a 得 综上得]2,7[-∈a类型2:作两个函数的图像: 1.当时10≤≤x ,不等式kx x≥2sin π恒成立,则实数k 的取值范围是_______________.【答案】k ≤1【解析】作出2sin 1xy π=与kx y =2的图象,要使不等式kx x≥2sinπ成立,由图可知须k≤1。
不等式恒成立求参的多种解法
不等式恒成立求参的多种解法(2017大庆一模理科)已知()()214ln ,f x a x x x R =+-∈ 。
(I )若12a =,求曲线()f x 在点()()1,1f 处的切线方程;(II )若对任意[]()1,,1x e f x ∈< 恒成立,求实数a 的取值范围。
答案:(I )24y x =-+ ;(II )方法一(分离参数法):()24ln 11x a x +<+ ,作()()[]24ln 1,1,1x g x x e x +=∈+ ,则()()348ln 21x x g x x -+'=+, 设()48ln 2h x x x =-+,因为()2480h x x x'=--<,所以()h x 在()1,e 上单调递减,又因为()()160,0h h e =>< ,所以()()001,,0x e h x ∃∈= ,即()00g x '=所以()g x 在()01,x 单调递增,在()0,x e 上单调递减,所以()()(){}max 1max 1,4g x g g e ==所以14a <。
方法二(构建函数法): ()()[]()()222214ln ,1,,ax ax f x a x x x e f x x+-'=+-∈=,设()22g x ax ax =+- 。
当0a = 时,()0f x '< ,所以()f x 在[]1,e 上单调递减,所以()()110f x f ≤=-< 符合题意。
当0a < 时,()g x 对称轴是12x =-且开口向下,所以()g x 在[]1,e 上单调递减,所以()()1220g x g a ≤=-< ,所以()0f x '< ,所以()f x 在[]1,e 上单调递减,所以()()1410f x f a ≤=-< 符合题意。
高中数学复习指导:一道含有三角函数的不等式恒成立问题的5种解法(20200710031916)
注意到 g (x) = 2m( x - 1) - 1 的图象是以 (1,- 1) 为端点的线段,
1 由图象可知只要 f (0) > g (0), 即 0 > - 2m - 1 ,∴ m > - .
2 1 即 m 的取值范围是 (- 2 , +∞) .
2
解法 5(直接求导法,, 注意分类讨论,, 实际上与解法 2 类似,, 只是没有换元 ) :
1
综上, m 的取值范围是
1 ( - , +∞) .
2
解法 3(分分离离参参数数,,再分离常数,,一般可以利用基本不等式, ,但是本题中利用基本不等式时
等号不成立,, 于是仍然利用函数的单调性) ):
不等式等价于 1 - sin2 θ+ 2m sinθ- 2m - 2 < 0 ,
即 - sin2 θ+ 2msinθ- 2m - 1 < 0 ,即 m(2sin θ- 2) < sin 2 θ+ 1 .
不等式等价于 1 - sin2 θ+ 2m sinθ- 2m - 2 < 0 , 即 - sin2 θ+ 2msinθ- 2m - 1 < 0 , 即 sin2 θ- 2msin θ+ 2m + 1 > 0 . 令 sinθ= x ,则 x2 - 2mx + 2m +1 > 0 . 令 f (x) = x2 - 2mx + 2m + 1 = ( x - m)2 - m2 + 2m + 1,x∈[0,1].
f (θ) max = f ( π) = - 2 < 0, 符合题意 . 2
(2)当 0 ≤m ≤1 时, sin θ< m 时, f ′(θ) > 0 , sinθ> m 时, f ′(θ) < 0 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一道不等式恒成立问题的五种解法
探究一题多解对于培养学生的发散思维能力有很大的作用,现在给出一道不等式恒成立问题的五种解法,希望对同学们有所启发,以达抛砖引玉的效果.
题目:设[0,]2
π
θ∈,且2cos 2sin 220m m θθ+--<恒成立,求m 的取值范围. 解法1(分离参数,构造函数,利用导数):
不等式等价于21sin 2sin 220m m θθ-+--<,
2sin 2sin 210m m θθ-+--<,
2(2sin 2)sin 1m θθ-<+. ∵[0,]2
π
θ∈,sin [0,1]θ∈. (1)当sin 1θ=时,不等式显然成立.
(2)当sin [0,1)θ∈时,不等式等价于21sin 12sin 1
m θθ+>⋅-, 令sin ,x θ=211()([0,1))21x f x x x +=⋅∈-,则22
1(1)2()02(1)x f x x --'=⋅<-, ()f x 是减函数, max 1()(0).2
f x f ==-∴1.2m >- 综上,m 的取值范围是1(,)2
-+∞. 解法2(利用二次函数的性质):
不等式等价于21sin 2sin 220m m θθ-+--<,
即2sin 2sin 210m m θθ-+--<,
即2sin 2sin 210m m θθ-++>.
令sin x θ=,则22210x mx m -++>.
令222()221()21,[0,1].f x x mx m x m m m x =-++=--++∈
(1)当1m >时,min ()(1)20f x f ==>,符合题意.
(2)当01m ≤≤时,22min ()()21(1)20,f x f m m m m ==-++=--+>符合题意.
(3)当0m <时,min ()(0)210,f x f m ==+>∴10.2m -<<
综上,m 的取值范围是1(,)2
-+∞.
解法3(分离参数,再分离常数,一般可以利用基本不等式,但是本题中利用基本不等式时等号不成立,于是仍然利用函数的单调性):
不等式等价于21sin 2sin 220m m θθ-+--<,
即2sin 2sin 210m m θθ-+--<,即2(2sin 2)sin 1m θθ-<+.
∵[0,]2
π
θ∈,sin [0,1]θ∈. (1)当sin 1θ=时,不等式显然成立.
(2)当sin [0,1)θ∈时,不等式等价于21sin 12sin 1
m θθ+>⋅-, 设sin 1x θ-=,则[1,0)x ∈-, 且221sin 11(1)112(2)2sin 122x x x x
θθ+++⋅=⋅=⋅++-, 令12()(2)2f x x x =⋅++,则212()(1)02f x x
'=⋅-<, ∴()f x 是减函数, ∴max 121()(12).212f x =⋅-++=--∴1.2
m >- 综上,m 的取值范围是1(,)2
-+∞. 解法4( 利用函数的图象):
不等式等价于21sin 2sin 220m m θθ-+--<,
即2sin 2sin 210m m θθ-+--<,即2sin 2sin 21m m θθ>--,
令 sin x θ=,则22(1)1x m x >--,[1,0]x ∈-.
在同一个坐标系中作出函数2()f x x =和()2(1)1g x m x =--的图象,
注意到()2(1)1g x m x =--的图象是以(1,1)-为端点的线段,
由图象可知只要(0)(0),f g >即021m >--,∴1.2m >-
即m 的取值范围是1(,)2
-+∞.
解法5(直接求导法,注意分类讨论,实际上与解法2类似,只是没有换元) : 令2()cos 2sin 22f m m θθθ=+--, ()2cos sin 2cos 2cos (sin )f m m θθθθθθ'=-+=--. ∵[0,]2
π
θ∈,∴sin [0,1]θ∈,cos [0,1]θ∈, (1)当1m >时,()0f θ'>,(),f θ[0,]2
π
θ∈是增函数, max ()()20,2
f f π
θ==-<符合题意. (2)当01m ≤≤时,sin m θ<时,()0f θ'>,sin m θ>时,()0f θ'<, 2222max ()122221(1)20f m m m m m m θ=-+--=--=--< ,符合题意.
(3)当0m <时,min ()(0)210,f x f m ==+>∴1
0.2
m -<<
综上,m 的取值范围是1(,)2-+∞.
在具体的题目中,应该选择适当的解法,本例中的解法1、解法2比较合适. 而这个题目:“当01x ≤≤时,不等式sin 2x
kx π≥恒成立,求实数k 的取值范围”
,则是利用图象比较合适,其答案是 (,1]-∞,请同学们作图求解.。