Optimization Algorithm of Frequency-Dependent model for Viscoelastic dampilng Material

合集下载

毫米波大规模MIMO系统多用户波束赋形优化算法

毫米波大规模MIMO系统多用户波束赋形优化算法

σ2 很小的情况下,波束赋形矢量矩阵为
( ) W∗ = H
ΛHH H-1 + σ2IK
P -1
1 2
(12)
其中 P 为对应的新的功率分配矩阵。
图 2 N=16,K=16 时平均和速率
图 3 N=32,K=16 时平均和速率
图 2 为 BS 阵列天线数 N=16,用户数 K=16 时每 信道平均和速率与平均 SINR 关系图。本文所提优 化算法在低 SINR 情况下能最大化信号功率,在高 SINR 情 况 下 能 抑 制 用 户 间 干 扰 ,性 能 优 于 传 统 ZFBF 及 MRT 波 束 赋 形 接 收 算 法 ,更 接 近 理 论 最 优。在 SINR=13dB 时,本文所提算法每信道高于 ZFBF 及 MRT10bit。图 3 给出了当 BS 阵列天线数 N=32,K=16 时每信道平均和速率与平均 SINR 关系 图。随着 BS 天线数量的增加,本文算法和 ZFBF 在 高 SINR 时接近理论最优,在低 SINR 时本文算法优 于 ZFBF,达到相同和速率所需 SINR 更低,在 N=32, SINR=25 时,本文算法每信道平均和速率能达到 130.4bit。 4结论
阵列响应矩阵,Gk 为路径增益,η 为与接收信号功
率线性关系的标准化因子。假定接收信号能够获
取完全信道状态信息,wk 为第 k 个用户的空间线性
波 束 赋 形 矢 量 ,w1, …, w K
∈ ℂN×1

wk wk
为 N 维空间
中一个方向上的波束赋形矢量,范数 wk 2 为向用
户 k 的分配功率。用户 k 的接收信干噪比(Signal-
k=1
k=1
∑ ∑ || || =

remez函数说明

remez函数说明

Compute the Parks-McClellan optimal FIR filter design Syntaxb = remez(n,f,a)b = remez(n,f,a,w)b = remez(n,f,a,'ftype')b = remez(n,f,a,w,'ftype')b = remez(...,{lgrid})b = remez(n,f,'fresp',w)b = remez(n,f,'fresp',w,'ftype')b = remez(n,f,{'fresp',p1,p2,...},w)b = remez(n,f,{'fresp',p1,p2,...},w,'ftype')[b,delta] = remez(...)[b,delta,opt] = remez(...)Descriptionremez designs a linear-phase FIR filter using the Parks-McClellan algorithm [1]. The Parks-McClellan algorithm uses the Remez exchange algorithm and Chebyshev approximation theory to design filters with an optimal fit between the desired and actual frequency responses. The filters are optimal in the sense that the maximum error between the desired frequency response and the actual frequency response is minimized. Filters designed this way exhibit an equiripple behavior in their frequency responses and are sometimes called equiripple filters. remez exhibits discontinuities at the head and tail of its impulse response due to this equiripple nature.b = remez(n,f,a) returns row vector b containing the n+1 coefficients of the order n FIR filter whose frequency-amplitude characteristics match those given by vectors f and a.The output filter coefficients (taps) in b obey the symmetry relation:Vectors f and a specify the frequency-magnitude characteristics of the filter:1.f is a vector of pairs of normalized frequency points, specified in the range between 0 and 1, where 1 corresponds to the Nyquist frequency. The frequencies must be in increasing order.2.a is a vector containing the desired amplitudes at the points specified in f.The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for k odd is the line segment connecting the points (f(k), a(k)) and (f(k+1), a(k+1)).The desired amplitude at frequencies between pairs of points (f(k), f(k+1)) for k even is unspecified. The areas between such points are transition or "don't care" regions.3. f and a must be the same length. The length must be an even number.remez always uses an even filter order for configurations with a passband at the Nyquist frequency. This is because for odd orders, the frequency response at the Nyquist frequency is necessarily 0. If you specify an odd-valued n, remez increments it by 1.remez(n,f,a,w) uses the weights in vector w to weight the fit in each frequency band. The length of w is half the length of f and a, so there is exactly one weight per band.b = remez(n,f,a,'ftype') and b = remez(n,f,a,w,'ftype') specify a filter type, where 'ftype' is: 1.'hilbert', for linear-phase filters with odd symmetry (type III and type IV)The output coefficients in b obey the relation b(k) = -b(n+2-k), k = 1, ..., n + 1. This class of filters includes the Hilbert transformer, which has a desired amplitude of 1 across the entire band.For example,h = remez(30,[0.1 0.9],[1 1],'hilbert');designs an approximate FIR Hilbert transformer of length 31.2.'differentiator', for type III and type IV filters, using a special weighting technique For nonzero amplitude bands, it weights the error by a factor of 1/f so that the error at low frequencies is much smaller than at high frequencies. For FIR differentiators, which have an amplitude characteristic proportional to frequency, these filters minimize the maximum relative error (the maximum of the ratio of the error to the desired amplitude).b = remez(...,{lgrid}) uses the integer lgrid to control the density of the frequency grid, which has roughly (lgrid*n)/(2*bw) frequency points, where bw is the fraction of the total frequency band interval [0,1] covered by f. Increasing lgrid often results in filters that more exactly match an equiripple filter, but that take longer to compute. The default value of 16 is the minimum value that should be specified for lgrid. Note that the {lgrid} argument must be a 1-by-1 cell array.b = remez(n,f,'fresp',w) returns row vector b containing the n+1 coefficients of the order n FIR filter whose frequency-amplitude characteristics best approximate the response specified by function fresp. The function is called from within remez with the following syntax.[dh,dw] = fresp(n,f,gf,w)The arguments are similar to those for remez:1.n is the filter order.2.f is the vector of normalized frequency band edges that appear monotonically between 0 and 1, where 1 is the Nyquist frequency.3.gf is a vector of grid points that have been linearly interpolated over each specified frequency band by remez. gf determines the frequency grid at which the response function must be evaluated, and contains the same data returned by cremez in the fgrid field of the opt structure.4.w is a vector of real, positive weights, one per band, used during optimization. w is optional in the call to remez; if not specified, it is set to unity weighting before being passed to fresp.5.dh and dw are the desired complex frequency response and band weight vectors, respectively, evaluated at each frequency in grid gf.The predefined frequency response function fresp that remez calls is remezfrf in the signal/private directory.b = remez(n,f,{'fresp',p1,p2,...},w) allows you to specify additional parameters (p1, p2, etc.) to pass to fresp. Note that b = remez(n,f,a,w) is a synonym for b =remez(n,f,{'remezfrf',a},w), where a is a vector containing the desired amplitudes at the points specified in f.b = remez(n,f,'fresp',w,'ftype') and b = remez(n,f,{'fresp',p1,p2,...},w,'ftype') design antisymmetric (odd) rather than symmetric (even) filters, where 'ftype' is either 'd' for a differentiator or 'h' for a Hilbert transformer.In the absence of a specification for ftype, a preliminary call is made to fresp to determine the default symmetry property sym. This call is made using the syntax.sym = fresp('defaults',{n,f,[],w,p1,p2,...})The arguments n, f, w, etc., may be used as necessary in determining an appropriate value for sym, which remez expects to be either 'even' or 'odd'. If the fresp function does not support this calling syntax, remez defaults to even symmetry.[b,delta] = remez(...) returns the maximum ripple height in delta.[b,delta,opt] = remez(...) returns a structure with the following fields.opt.fgrid: Frequency grid vector used for the filter design optimizationopt.des: Desired frequency response for each point in opt.fgridopt.wt: Weighting for each point in opt.fgridopt.H:Actual frequency response for each point in opt.fgridopt.error:Error at each point in opt.fgrid (opt.des-opt.H)opt.iextr:Vector of indices into opt.fgrid for extremal frequenciesopt.fextr:Vector of extremal frequenciesExamplesGraph the desired and actual frequency responses of a 17th-order Parks-McClellan bandpass filter:f = [0 0.3 0.4 0.6 0.7 1];a = [0 0 1 1 0 0];b = remez(17,f,a);[h,w] = freqz(b,1,512);plot(f,a,w/pi,abs(h))Algorithmremez is a MEX-file version of the original Fortran code from [1], altered to design arbitrarily long filters with arbitrarily many linear bands. remez designs type I, II, III, and IV linear-phase filters. Type I and type II are the defaults for n even and n odd, respectively, while type III (n even) and type IV (n odd) are obtained with the 'hilbert' and 'differentiator' flags. The different types of filters have different symmetries and certain constraints on their frequency responses (see [5] for more details).DiagnosticsIf you get the following warning message, -- Failure to Converge --Probable cause is machine rounding error.it is possible that the filter design may still be correct. Verify the design by checking its frequency response.。

考虑关键节点和重要线路的电力系统PMU_优化配置

考虑关键节点和重要线路的电力系统PMU_优化配置

第 42 卷第 4 期2023年 7 月Vol.42 No.4Jul. 2023中南民族大学学报(自然科学版)Journal of South-Central Minzu University(Natural Science Edition)考虑关键节点和重要线路的电力系统PMU优化配置徐光辉1,2,肖克1,2,柯善焜1,2,王淑青1,2,汪繁荣1,2(1 湖北工业大学电气与电子工程学院,武汉430068;2 湖北工业大学产业研究院,襄阳441000)摘要相量测量单元(PMU)是一种测量电压和电流的设备,随着电力系统的规模和结构越来越复杂,PMU的数量也大幅增加.利用改进蝠鲼觅食优化算法(IMRFO)对PMU进行了配置,使电力系统在正常运行、考虑关键节点和考虑重要线路时都能完全可观测,同时使PMU配置数最少.在蝠鲼觅食算法的基础上增加了混沌映射以提升算法的收敛速度,增加了跳跃因子以提高算法的勘测能力,从而避免算法陷入局部最优. 通过度、特征向量和接近度三种指标,利用TOPSIS综合评价寻找系统的关键节点,利用线的中间中心度判断系统的重要线路.对IEEE-14和IEEE-69节点系统进行了实验仿真,结果表明:IMFRO算法与未改进时相对比,在配置时所需的PMU数和迭代次数均有一定的减少,验证了所提方法对解决PMU优化配置问题的有效性和优越性.关键词电力系统;相量测量单元;关键节点;重要线路;蝠鲼觅食算法中图分类号TP242;TM711 文献标志码 A 文章编号1672-4321(2023)04-0535-06doi:10.20056/ki.ZNMDZK.20230415Optimization of PMU for power system considering key nodesand important linesXU Guanghui1,2,XIAO Ke1,2,KE Shankun1,2,WANG Shuqing1,2,WANG Fanrong1,2(1 School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China;2 Industrial Institute, Hubei University of Technology, Xiangyang 441000, China)Abstract Phasor measuring unit (PMU) is a device for measuring voltage and current. As the scale and structure of power system become more complex,the number of PMUs increases greatly. The improved manta ray foraging optimization algorithm (IMRFO)is used to configure PMUs,so that the power system can be fully observable during normal operation, considering critical nodes and important lines, and at the same time, the number of configured PMUs is minimized. On the basis of the manta ray foraging algorithm, chaotic mapping is added to improve the convergence speed of the algorithm, and a jump factor is added to improve the exploration ability of the algorithm, so as to avoid the algorithm falling into local optimal. The key nodes of the system are found by TOPSIS comprehensive evaluation through three indexes of degree, feature vector and proximity. The central degree of the line is used to judge the important line of the system. Experimental simulations of the IEEE-14 and IEEE-69 node systems are performed. The results show that compared with IMFRO algorithm without improvement, the number of PMU and iteration times are reduced to a certain extent,which verifies the effectiveness and superiority of the proposed method to solve the problem of optimal PMU configuration.Keywords power system; phasor measuring unit; key node; important line; manta ray foraging algorithm随着电网规模越来越大,一些关键的节点发生故障可能引起级联效应而导致整个电网崩溃;一些重要的输电线路因自然因素等原因而造成运行故障[1],为了保障电网的安全性和稳定性,需要实时对电网的各相数据进行监测,同步相量测量单元(Phase Measurement Unit,PMU)的出现能解决这一收稿日期2023-02-24作者简介徐光辉(1986-),男,副教授,博士,研究方向:复杂网络群集控制和优化,E-mail:************.cn 基金项目国家自然科学基金资助项目(61603127)第 42 卷中南民族大学学报(自然科学版)问题.PMU能实时测量节点电压、电流相量等信号,在配电网状态估计[2]、检测线路故障[3]等方面上取得了不错的效果,为电力系统部门及时掌握系统运行状态,出现异常情况采取必要的控制措施.由于PMU具有高采样率,若电网中所有的节点都配置PMU,会产生冗余的数据并且是不经济的,在此背景下,PMU最优配置(Optimal PMU Placement, OPP)这一问题具有重要的意义.目前,解决OPP问题的算法主要为数值算法和启发式算法[4].数值算法发展较成熟,对小型的电力系统,具有计算速度快、收敛能力强等特点,但在大型系统中,存在着全局搜索能力弱、普适性差等问题.闰玲玲等[5]提出了基于0‐1整数规划算法的PMU配置方法,在配置小型电力系统节点上有很好的实用性,但在大型电力系统节点上所需时间较长.郑明忠等[6]利用了整数规划算法,能解决考虑故障情况下的OPP问题,但同样存在收敛过慢等不足.启发式优化方法具有全局搜索能力强、运行速度快等特点,在求解多目标、高维度模型上有一定的优势,由于OPP问题一般是多约束和高维度的,所以在OPP问题上,启发式优化方法使用得较多,如遗传算法[7]、模拟退火算法[8].MAJI T K等[9]提出了一种改进二进制粒子群算法,通过非线性惯性权重系数来提高搜索能力,通过改进阈值函数来提高收敛速度,但没有考虑关键节点等问题.PAL A等[10]提到了关键节点,但配置时只对关键节点优先考虑且没有保证系统的完全可观测性.ALMASABI S等[11]提出了用脆弱性指数来评判线路的重要性,将脆弱性指数集成到可观察性中,作为目标函数的一个指标使总安装成本最小化.虽然上述部分文献提到了关键节点和重要线路,但没有针对考虑关键节点和重要线路时的PMU配置情况,基于此,本文的主要贡献如下:本文提出改进蝠鲼觅食(Improved Manta Ray Foraging Optimization,IMRFO)算法来实现OPP问题,通过混沌映射增加算法初始化的多样性,通过跳跃因子使算法易于跳出局部解.实验表明:改进后的算法能有效地跳出局部最优;使用图论的3种指标来判断电力系统的关键节点,利用线的中间中心度判断电力系统的重要线路,在保证系统完全可观测和PMU配置数目最小的情况下,分别对正常运行、考虑关键节点和考虑重要线路的PMU配置情况加以分析.通过仿真分析验证所提出的方法的正确性和优越性.1 PMU最优配置规则和模型1.1 PMU配置规则当一个电力系统的所有节点电压相量能被PMU 直接或间接观测时,称这个系统是全网可观测的.电力系统节点的可观测性由以下规则来判断[12]:规则1:若节点i安装了PMU,其节点的电压相量能被直接测量,则节点i是直接可观测的;规则2:若节点i安装了PMU,通过欧姆定律能计算其所有邻接节点的电压相量,则与节点i所有的邻接节点是间接可观测的.在原有的基础上本文通过新增加两条规则来对关键节点和重要线路加以说明.规则3:为了确保在关键节点上测量数据的有效性,所以在关键节点处至少能被两个PMU所观测;规则4:由于一些客观的因素(如线路老化)影响线路中的参数,为了尽可能使PMU测量线路电流和电压的准确性,所以在重要线路的两端,至少有一端能被PMU直接观测.1.2 PMU的配置模型要使配置PMU数量最小并且使整个电力系统节点完全可观测,则电力系统n个节点PMU配置模型的目标函数如下:min f(x)=∑i=1n x i,(1)其中:f(x)表示n个节点所安装PMU的最小数量;x i 是一个二进制数,若节点i安装了PMU,则为1,否则为0.根据以上条件,就可以写出PMU配置的约束条件:AX≥b,(2)Aij=ìíî1,i=j或i、j相连,0,其他,(3)其中:X=(x1,x2,...,x n)T表示相应节点PMU配置的情况;式中b在正常情况下为[1,1,…,1]的n维列向量;矩阵A表示节点的连接情况,如果节点i连接到节点j或节点i和j是同一节点,则A ij=1,否则A ij=0. 2 改进蝠鲼觅食算法原理2.1 蝠鲼觅食算法蝠鲼觅食算法(Manta Ray Foraging Optimization,536第 4 期徐光辉,等:考虑关键节点和重要线路的电力系统PMU 优化配置MRFO )是一种群智能优化算法,虽然蝠鲼的食物并不是均匀分布或集中在某些地区,但是蝠鲼在群体觅食中总能精准找到食物,这是因为它们进化出了一套智能觅食策略,将这种智能策略转换为数学模型就可得到MRFO 算法[13].2.2 基于改进蝠鲼觅食算法的最优配置问题虽然MRFO 算法具有较好的性能,但还是存在容易陷入局部最优解和收敛性过慢等问题,因此需要通过对MRFO 算法进行改进使性能得以提升,并更加适用于OPP 问题的求解.种群初始化的位置能在一定程度影响算法性能.与随机搜索相比,混沌映射在搜索空间上遍历性更好,可使算法在一定程度上跳出局部最优.在配置PMU 时,只有两种情况,即“1”为配置PMU ,“0”为不配置PMU.在算法的初始化过程中,种群有较大的概率在0和1附近,能增加算法的收敛速度和准确性.Sine 映射倾向于在0‐1之间的两端[14],因此在种群初始化时用Sine 映射,其数学模型如下:z k +1=a4sin (πz k ),(4)其中:z k 是迭代序列值,z 0∈(0,1),a ∈(0,4];一般情况下,z 0取0.152,a 取4.在算法迭代前期,权重因子β值过大有利于提高算法的勘察能力;在迭代后期时,β值过小有利于提高算法的开发能力.在迭代过程中,用较大概率的短步来提高开发能力,用较小概率的长步来提高探索能力,使算法有机会跳出局部解.为了增加种群搜索的多样性,提出了跳跃因子来增加种群的搜索能力,如式(5)所示:βnew =ìíîïïβ+2(rand 1-0.5)(h -t T ),rand 2≤0.2,β,rand 2>0.2,(5)其中:h 为跳跃因子,一般设置为15;t 和T 分别表示当前迭代和最大迭代次数;rand 1和rand 2均为[0,1]是随机数.为了验证改进的有效性,采用单峰、多峰和固定维测试函数,测试函数如表1[15].为了保证公平的比较,所有算法都采用相同的维数,相关参数均未改变.最大迭代次数和种群数量相同,所有测试函数运行30次.表2为GWO 、PSO 、MRFO 和IMRFO 的收敛结果的比较.可以看出,在MRFO 在改进后性能有一定的提升.IMRFO 算法求解OPP 问题的流程图如图1所示.3 关键节点和重要线路的判断3.1 关键节点的判断本文利用TOPSIS 综合图论中的度、特征向量和接近度三种指标,评价关键节点的位置.节点的度说明自身和周围节点的连接程度,本文认为节点的度越大,说明该节点越重要.节点i 的度计算公式为:De(i )=∑j =1L A ij ,(6)其中,L 为支路总数.表1 测试函数Tab.1 Test function函数f 1f 2f 3函数名QuarticRastrigin Hartmann 3D搜索范围[‒1.28, 1.28][‒5.12, 5.12][0,1]最优值00‒3.86表2 测试函数的仿真数据Tab.2 Simulation data of test function 函数f 1f 2f 3指标平均数标准差平均数标准差平均数标准差GWO4.21×10‒52.42×10‒55.86×10‒134.73×10‒11‒3.862.07×10‒3PSO7.86×10‒22.63×10‒26.45×1011.67×101‒3.863.10×10‒15MRFO5.92×10‒65.96×10-61.07×10‒62.26×10‒7‒3.860IMRFO4.92×10‒64.61×10‒600‒3.86图1 基于IMRFO 算法的OPP 流程图Fig.1 Flowchart of OPP based on IMRFO algorithm537第 42 卷中南民族大学学报(自然科学版)在评估节点的重要性时不仅考虑节点的连接情况,而且还考虑了节点的连接关系.在电力系统中有N个节点,λ1,...,λn为邻接矩阵B的N个特征值,e=[e1,e2,...e n]T为最大特征值λ对应的最大特征向量,则邻接矩阵的最大特征值的特征向量为:T(i)=λ-1∑j=1N B ij e j,(7)其中:T(i)中各分值大小代表着相应节点的重要程度,分值越大表明对应的节点越重要.接近度反映了节点通过网络到达其他节点的容易程度[16].节点i的接近度为该节点到达网络中其他节点的最短距离之和的倒数,节点i的接近度为:D i=éëêê∑j=1N d ijùûúú-1,(8)其中:d ij为节点i到节点j的最短距离,N为系统中总节点数.3.2 重要线路的判断在电力系统输电线中,每条线路发生故障的概率与环境条件、输电等级和线路所处的位置等因素有关.由于环境条件因素辨别困难,本文只考虑在相同条件下线路所处的位置造成的影响.线的中间中心度测量的是一条线出现在一条最短路径上的次数,需要考虑系统中所有经过该线路两点之间的最短路径,计算该线路在全部最短路径中所占的比例,它能反映线路的重要程度[17].4 算例分析4.1 IEEE-14节点分析图2所示为输电网IEEE-14节点系统.表3为IEEE-14节点系统的度、特征向量和接近度三种指标的计算结果.利用TOPSIS综合评价得出得分权重矩阵S=[0.06 0.13 0.07 0.16 0.13 0.08 0.08 0 0.10 0.03 0.03 0.03 0.05 0.04].关键节点占总节点数的10%左右[10],因此本文取3个权重大的节点为关键节点,所以节点2、4、5为关键节点.根据规则3,节点2、4、5至少能被两个PMU所观测.TOPSIS 处理的步骤如下.步骤1:将3种判断结果写成矩阵Z n×m,其中n为电力系统中节点的个数,m为判断关键节点的种类,即在IEEE-14节点系统中,n为14,m为3;步骤2:正向化和标准化.正向化是得出的结果越大则该节点越重要;标准化是消除量纲的影响;步骤3:找出每列中的最大值矩阵D+和最小值矩阵D-,并计算出各个节点与D+和D-的欧式距离,并将m种指标赋予相同的权重;步骤4:计算出所有节点的得分矩阵S,再进行归一化处理.通过计算得出线的中间中心度矩阵M,M为对称矩阵,“0”表示节点之间不相连或为自身节点,数值的大小代表输电线路的重要程度.由式(9)可知线路5-6、4-5、4-9和9-14相比于其他线路为重要线路.根据规则4,这两条线路至少有一端能被PMU直接观测.表3 三类关键节点判断结果Tab.3 Judgment results of three types of critical nodesIEEE-14 节点节点1节点2节点3节点4节点5节点6节点7节点8节点9节点10节点11节点12节点13节点14度35365542533343特征向量0.2470.4210.2710.4910.4110.2240.2560.0760.2940.1180.1020.1070.1360.128接近度0.0290.0360.0290.0420.0400.0370.0340.0240.0400.0310.0300.0280.0310.032图2 IEEE-14节点系统Fig.2 IEEE-14 node system538第 4 期徐光辉,等:考虑关键节点和重要线路的电力系统PMU 优化配置M =éëêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêêùûúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúú050040089087016000002300001300000000013000015001100000000001300000011000900000090000000000090000040015110 .(9)表4为IEEE -14和IEEE -69节点系统三种情况下的OPP 配置情况.由表4可知,在IEEE -14节点正常情况下需要配置4个PMU ,而在关键节点和考虑关键线路情况下,需要配置5个PMU.考虑关键节点和重要线路是在正常情况的基础上分别增加了规则3和规则4,故这两种情况配置的PMU 数都大于或等于正常情况下的配置数目.本文所提出的IMRFO 和MRFO 算法分别对IEEE -14节点进行了仿真,对比结果如图3所示.对比MRFO 算法和文献[18]采用的改进整数规划法,本文方法迭代次数相对较少,说明本文算法有较快的收敛速度.4.2 IEEE -69节点分析图4所示为配电网IEEE -69节点系统.利用TOPSIS 综合评价得出IEEE -69节点系统的关键节点为节点3、4、8、11和12.利用线的中间中心度得出重要线路为线路3-4、3-26、4-5、8-9、9-53、9-10、12-13和11-12.配置的结果和仿真图分别为表4和图5.由图5可知,IMRFO 与MRFO 算法相比,表4 IEEE -14和IEEE -69节点的配置情况Tab.4 Configuration of IEEE -14 node and IEEE -69 node3种情况下PMU 配置情况正常情况下考虑关键节点考虑关键线路IEEE -14 节点2,6,7,93,5,6,8,94,5,6,8,9IEEE -69 节点2,4,7,9,14,17,20,23,26,28,31,34,37,40,43,45,49,51,55,58,61,64,66,682,5,7,9,12,15,18,21,24,26,28,31,34,37,40,43,45,47,49,51,55,58,61,64,66,682,4,7,9,12,15,18,21,24,26,29,32,34,36,39,42,45,49,51,55,58,61,64,66,68迭代次数44.24.44.64.855.25.45.65.86配置P M U 数图3 正常情况下IEEE -14节点系统仿真图Fig.3 Simulation diagram of IEEE -14 node system under normal conditions图4 IEEE -69节点系统Fig.4 IEEE -69 node system539第 42 卷中南民族大学学报(自然科学版)IMRFO5 结语针对MRFO 算法易陷入局部最优和收敛速度慢等问题,本文提出了一种增加混沌映射和跳跃因子的IMRFO 算法,利用图论的3种指标和线的中间中心度寻找电力系统的关键节点和重要线路.为了保证电力系统完全可观测,利用IMRFO 算法分别在3种情况下进行了PMU 配置仿真,结果表明了IMRFO 算法对求解OPP 问题的有效性和优越性.在今后的研究中,应根据实际情况判断关键节点和重要线路,并进一步开发MRFO 算法的性能.参 考 文 献[1] 王沛. 基于大数据技术的输电线路运行故障诊断关键技术[J ]. 电测与仪表,2021,58(5):182-189.[2] 曹鹏. 面向状态估计的配电网量测系统优化配置研究[D ]. 贵阳:贵州大学,2022.[3] AHSACE M G , SADEH J. A novel fault -locationalgorithm for long transmission lines compensated by series FACTS devices [J ]. IEEE Transactions on Power Delivery , 2011, 26(4):2299-2308.[4] CHAKRABARTI S , KYRIAKIDES E. Optimal placementof phasor measurement units for power system observability[J ]. IEEE Transactions on Power System , 2008, 23(3):1433-1440.[5] 闰玲玲,刘中印,艾永乐,等. 基于0-1整数规划算法的PMU 量测点优化配置新方法[J ]. 电力系统保护与控制,2017,45(12):101-106.[6] 郑明忠,张道农,张小易,等. 基于节点集合的PMU 优化配置方法[J ]. 电力系统保护与控制,2017,45(13):138-142.[7] 徐岩,郅静. 基于改进自适应遗传算法的PMU 优化配置[J ]. 电力系统保护与控制,2015,43(2):55-62.[8] 袁澎,艾芊,赵媛媛. 基于改进的遗传-模拟退火算法和误差度分析原理的PMU 多目标优化配置[J ]. 中国电机工程学报,2014,34(13):2178-2187.[9] MAJI T K , ACHARJEE P. Multiple solutions of optimalPMU placement using exponential binary PSO algorithm for smart grid applications [J ]. IEEE Transactions onIndustry Applications , 2017,53(3):2500-2559.[10] PAL A , SANCHEZ -AYALA G A , CENTENO V A , et al.A PMU placement scheme ensuring real -time monitoring of critical buses of the network [J ]. IEEE Transactions on Power Delivery ,2014,29(2):510-517.[11] ALMASABI S , MITRA J. A fault -tolerance based approachto optimal PMU placement [J ]. IEEE Transactions onSmart Grid , 2019, 10(6):6070-6079.[12] 孔祥玉,王玉婷,袁枭枭,等. 基于定制遗传算法考虑配电网多种拓扑可观性的PMU 优化配置[J ]. 电力自动化设备,2020,40(1):66-72.[13] GHOSH K K , GUHA R , BERA S K , et al. S -shapedversus V -shaped transfer functions for binary manta ray foraging optimization in feature selection problem [J ]. Neural Computing and Applications ,2021,33(17):11027-11041.[14] YU Y , GAO S , CHENG S , et al. CBSO : A memeticbrain storm optimization with chaotic local search [J ].Memetic Computing , 2018, 10:353-367.[15] 张晓萌,张艳珠,刘禄,等. 融合多策略的改进麻雀搜索算法[J ]. 计算机应用研究,2022,39(4):1086-1091,1117.[16] 张岐山,文闯. 基于均衡接近度灰关联的增强二部图推荐算法[J ]. 计算机应用研究,2020,37(9):2620-2624.[17] CRUZ M A R S , ROCHA H R O , PAIVA M H M , et al.An algorithm for cost optimization of PMU and communication infrastructure in WAMS [J ]. International Journal of Electrical Power & Energy Systems , 2019,106:96-104.[18] 曹鹏,刘敏. 基于改进的整数规划法结合零注入节点的PMU 优化配置方法[J ]. 电力系统保护与控制,2021,49(16):143-150.(责编 曹东,校对 刘钊)迭代次数242628303234363840配置P M U 数图5 正常情况下IEEE -69节点系统仿真图Fig.5 Simulation diagram of IEEE -69 node system under normal conditions540。

优化算法(Optimizationalgorithms)

优化算法(Optimizationalgorithms)

优化算法(Optimizationalgorithms)1.Mini-batch 梯度下降(Mini-batch gradient descent)batch gradient descent :⼀次迭代同时处理整个train dataMini-batch gradient descent: ⼀次迭代处理单⼀的mini-batch (X{t} ,Y{t})Choosing your mini-batch size : if train data m<2000 then batch ,else mini-batch=64~512 (2的n次⽅),需要多次尝试来确定mini-batch sizeA variant of this is Stochastic Gradient Descent (SGD), which is equivalent to mini-batch gradient descent where each mini-batch has just 1 example. The update rule that you have just implemented does not change. What changes is that you would be computing gradients on just one training example at a time, rather than on the whole training set. The code examples below illustrate the difference between stochastic gradient descent and (batch) gradient descent.(Batch) Gradient Descent:X = data_inputY = labelsparameters = initialize_parameters(layers_dims)for i in range(0, num_iterations):# Forward propagationa, caches = forward_propagation(X, parameters)# Compute cost.cost = compute_cost(a, Y)# Backward propagation.grads = backward_propagation(a, caches, parameters)# Update parameters.parameters = update_parameters(parameters, grads)Stochastic Gradient Descent:X = data_inputY = labelsparameters = initialize_parameters(layers_dims)for i in range(0, num_iterations):for j in range(0, m):# Forward propagationa, caches = forward_propagation(X[:,j], parameters)# Compute costcost = compute_cost(a, Y[:,j])# Backward propagationgrads = backward_propagation(a, caches, parameters)# Update parameters.parameters = update_parameters(parameters, grads)1def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0):2"""3 Creates a list of random minibatches from (X, Y)45 Arguments:6 X -- input data, of shape (input size, number of examples)7 Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples)8 mini_batch_size -- size of the mini-batches, integer910 Returns:11 mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y)12"""1314 np.random.seed(seed) # To make your "random" minibatches the same as ours15 m = X.shape[1] # number of training examples16 mini_batches = []1718# Step 1: Shuffle (X, Y)19 permutation = list(np.random.permutation(m))20 shuffled_X = X[:, permutation]21 shuffled_Y = Y[:, permutation].reshape((1,m))2223# Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case.24 num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning25for k in range(0, num_complete_minibatches):26### START CODE HERE ### (approx. 2 lines)27 mini_batch_X = shuffled_X[:,k*mini_batch_size:(k+1)*mini_batch_size]28 mini_batch_Y = shuffled_Y[:,k*mini_batch_size:(k+1)*mini_batch_size]29### END CODE HERE ###30 mini_batch = (mini_batch_X, mini_batch_Y)31 mini_batches.append(mini_batch)3233# Handling the end case (last mini-batch < mini_batch_size)34if m % mini_batch_size != 0:35### START CODE HERE ### (approx. 2 lines)36 mini_batch_X =shuffled_X[:,(k+1)*mini_batch_size:m]37 mini_batch_Y =shuffled_Y[:,(k+1)*mini_batch_size:m]38### END CODE HERE ###39 mini_batch = (mini_batch_X, mini_batch_Y)40 mini_batches.append(mini_batch)4142return mini_batches2.指数加权平均数(Exponentially weighted averages):指数加权平均数的公式:在计算时可视V t⼤概是1/(1-B)的每⽇温度,如果B是0.9,那么就是⼗天的平均值,当B较⼤时,指数加权平均值适应更缓慢指数加权平均的偏差修正:3.动量梯度下降法(Gradinent descent with Momentum)1def initialize_velocity(parameters):2"""3 Initializes the velocity as a python dictionary with:4 - keys: "dW1", "db1", ..., "dWL", "dbL"5 - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.6 Arguments:7 parameters -- python dictionary containing your parameters.8 parameters['W' + str(l)] = Wl9 parameters['b' + str(l)] = bl1011 Returns:12 v -- python dictionary containing the current velocity.13 v['dW' + str(l)] = velocity of dWl14 v['db' + str(l)] = velocity of dbl15"""1617 L = len(parameters) // 2 # number of layers in the neural networks18 v = {}1920# Initialize velocity21for l in range(L):22### START CODE HERE ### (approx. 2 lines)23 v["dW" + str(l+1)] = np.zeros(parameters["W"+str(l+1)].shape)24 v["db" + str(l+1)] = np.zeros(parameters["b"+str(l+1)].shape)25### END CODE HERE ###2627return v1def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):2"""3 Update parameters using Momentum45 Arguments:6 parameters -- python dictionary containing your parameters:7 parameters['W' + str(l)] = Wl8 parameters['b' + str(l)] = bl9 grads -- python dictionary containing your gradients for each parameters:10 grads['dW' + str(l)] = dWl11 grads['db' + str(l)] = dbl12 v -- python dictionary containing the current velocity:13 v['dW' + str(l)] = ...14 v['db' + str(l)] = ...15 beta -- the momentum hyperparameter, scalar16 learning_rate -- the learning rate, scalar1718 Returns:19 parameters -- python dictionary containing your updated parameters20 v -- python dictionary containing your updated velocities21"""2223 L = len(parameters) // 2 # number of layers in the neural networks2425# Momentum update for each parameter26for l in range(L):2728### START CODE HERE ### (approx. 4 lines)29# compute velocities30 v["dW" + str(l+1)] = beta*v["dW" + str(l+1)]+(1-beta)*grads["dW" + str(l+1)]31 v["db" + str(l+1)] = beta*v["db" + str(l+1)]+(1-beta)*grads["db" + str(l+1)]32# update parameters33 parameters["W" + str(l+1)] = parameters["W" + str(l+1)]-learning_rate*v["dW" + str(l+1)]34 parameters["b" + str(l+1)] = parameters["b" + str(l+1)]-learning_rate*v["db" + str(l+1)]35### END CODE HERE ###3637return parameters, v#β=0.9 is often a reasonable default.4.RMSprop算法(root mean square prop):5.Adam 优化算法(Adam optimization algorithm):Adam 优化算法基本上就是将Momentum 和RMSprop结合在⼀起1def initialize_adam(parameters) :2"""3 Initializes v and s as two python dictionaries with:4 - keys: "dW1", "db1", ..., "dWL", "dbL"5 - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters. 67 Arguments:8 parameters -- python dictionary containing your parameters.9 parameters["W" + str(l)] = Wl10 parameters["b" + str(l)] = bl1112 Returns:13 v -- python dictionary that will contain the exponentially weighted average of the gradient.14 v["dW" + str(l)] = ...15 v["db" + str(l)] = ...16 s -- python dictionary that will contain the exponentially weighted average of the squared gradient.17 s["dW" + str(l)] = ...18 s["db" + str(l)] = ...1920"""2122 L = len(parameters) // 2 # number of layers in the neural networks23 v = {}24 s = {}2526# Initialize v, s. Input: "parameters". Outputs: "v, s".27for l in range(L):28### START CODE HERE ### (approx. 4 lines)29 v["dW" + str(l+1)] = np.zeros(parameters["W" + str(l+1)].shape)30 v["db" + str(l+1)] = np.zeros(parameters["b" + str(l+1)].shape)31 s["dW" + str(l+1)] = np.zeros(parameters["W" + str(l+1)].shape)32 s["db" + str(l+1)] = np.zeros(parameters["b" + str(l+1)].shape)33### END CODE HERE ###3435return v, s1def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01,2 beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8):3"""4 Update parameters using Adam56 Arguments:7 parameters -- python dictionary containing your parameters:8 parameters['W' + str(l)] = Wl9 parameters['b' + str(l)] = bl10 grads -- python dictionary containing your gradients for each parameters:11 grads['dW' + str(l)] = dWl12 grads['db' + str(l)] = dbl13 v -- Adam variable, moving average of the first gradient, python dictionary14 s -- Adam variable, moving average of the squared gradient, python dictionary15 learning_rate -- the learning rate, scalar.16 beta1 -- Exponential decay hyperparameter for the first moment estimates17 beta2 -- Exponential decay hyperparameter for the second moment estimates18 epsilon -- hyperparameter preventing division by zero in Adam updates1920 Returns:21 parameters -- python dictionary containing your updated parameters22 v -- Adam variable, moving average of the first gradient, python dictionary23 s -- Adam variable, moving average of the squared gradient, python dictionary24"""2526 L = len(parameters) // 2 # number of layers in the neural networks27 v_corrected = {} # Initializing first moment estimate, python dictionary28 s_corrected = {} # Initializing second moment estimate, python dictionary2930# Perform Adam update on all parameters31for l in range(L):32# Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v".33### START CODE HERE ### (approx. 2 lines)34 v["dW" + str(l+1)] = beta1* v["dW" + str(l+1)]+(1-beta1)*grads["dW" + str(l+1)]35 v["db" + str(l+1)] = beta1* v["db" + str(l+1)]+(1-beta1)*grads["db" + str(l+1)]36### END CODE HERE ###3738# Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected".39### START CODE HERE ### (approx. 2 lines)40 v_corrected["dW" + str(l+1)] = (v["dW" + str(l+1)])/(1-np.power(beta1,t))41 v_corrected["db" + str(l+1)] = (v["db" + str(l+1)])/(1-np.power(beta1,t))42### END CODE HERE ###4344# Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s".45### START CODE HERE ### (approx. 2 lines)46 s["dW" + str(l+1)] = beta2* s["dW" + str(l+1)]+(1-beta2)*np.power(grads["dW" + str(l+1)],2)47 s["db" + str(l+1)] = beta2* s["db" + str(l+1)]+(1-beta2)*np.power(grads["db" + str(l+1)],2)48### END CODE HERE ###4950# Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected".51### START CODE HERE ### (approx. 2 lines)52 s_corrected["dW" + str(l+1)] = s["dW" + str(l+1)]/(1-np.power(beta2,t))53 s_corrected["db" + str(l+1)] = s["db" + str(l+1)]/(1-np.power(beta2,t))54### END CODE HERE ###5556# Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters".57### START CODE HERE ### (approx. 2 lines)58 parameters["W" + str(l+1)] = parameters["W" + str(l+1)]-learning_rate*v_corrected["dW" + str(l+1)]/(s_corrected["dW" + str(l+1)]+epsilon)59 parameters["b" + str(l+1)] = parameters["b" + str(l+1)]-learning_rate*v_corrected["db" + str(l+1)]/(s_corrected["db" + str(l+1)]+epsilon)60### END CODE HERE ###6162return parameters, v, s6.学习率衰减(Learning rate decay):加快学习算法的⼀个办法就是随时间慢慢减少学习率,这样在学习初期,你能承受较⼤的步伐,当开始收敛的时候,⼩⼀些的学习率能让你步伐⼩⼀些。

matlab里optimization函数

matlab里optimization函数

matlab里optimization函数Matlab (MATrix LABoratory) 是一种广泛使用的数值计算和科学数据可视化软件。

在Matlab 中,优化是一个重要的问题,经常涉及到求解最大化或最小化一个目标函数的问题。

为了实现这一目标,Matlab 提供了一系列的优化函数,其中最常用的是optimization函数。

本文将逐步回答有关Matlab中优化函数的各种问题,包括功能、用法以及示例。

一、优化函数的功能optimization函数是Matlab中用于求解数学规划问题的函数,它能够找到目标函数在给定约束条件下的最优解。

优化函数可以解决线性和非线性问题,并且支持不等式和等式约束条件。

它可以求解多种类型的优化问题,包括线性规划、整数规划、非线性规划、二次规划等。

在实际应用中,优化函数常用于最优化问题的求解,例如最小化生产成本、最大化利润等。

二、优化函数的用法在Matlab中,使用优化函数的一般步骤如下:1. 定义目标函数:首先需要定义一个目标函数,即要最小化或最大化的函数。

目标函数可以是线性或非线性的,并且可以包含一个或多个变量。

在定义目标函数时,需要将其编写为一个Matlab函数文件。

2. 定义约束条件:如果问题存在约束条件,则需要定义约束条件。

约束条件可以是等式约束,也可以是不等式约束。

约束条件可以用等式或不等式的形式表示,并且可以包含一个或多个变量。

在定义约束条件时,需要将其编写为一个Matlab函数文件。

3. 设置优化参数:在求解优化问题之前,需要设置一些优化参数,包括最大迭代次数、容许误差等。

这些参数将影响优化算法的收敛速度和精度。

4. 调用优化函数:使用Matlab中的优化函数来求解优化问题。

根据问题的类型和要求,可以选择不同的优化函数。

在调用优化函数时,需要输入目标函数、约束条件、优化参数等,并将结果保存在一个变量中。

5. 解析最优解:最后,根据优化函数的返回结果,可以解析获得问题的最优解。

最优化第四部分

最优化第四部分

无,且xk+1=xk,则缩短步长,仍从xk出发进行下一次轴向移动;若
无,且xk+1xk,则仍从xk出发用步长k进行下一次轴向移动.
最优化理论与方法 第四部分 直接搜索的数值解法
从xk+1出发的模式移动是指以1为步长沿加速方向:dk=xk+1–xk
移动一步,得到新的参考点y=xk+1+dk=2xk+1–xk , 然后 , 从新的参 考点y出发 , 仍以k为步长进行轴向移动.
所以第三次轴向移动结束,令 x3 y (3, 2)T .由于 f ( x3 ) f ( x2 ) ,
2 1 0.1 , 且 x3 x2 ,
因此,令 x3 x2 (2 , 1)T , 3 2 ,
取参考点 y x3 (2,1)T .
最优化理论与方法 第四部分 直接搜索的数值解法
二、Powell 法
本节介绍由Powell提出的一种求解无约束最优化问题
(4.1.1)的直接法. 它本质上是以正定二次函数为背景,以共 轭方向为基础的一种方法. 本节分别介绍原始Powell法和Powell法. 补充:共轭方向 设H为一正定对称矩阵,若有一组非零向量S1,S2,……,Sn
满足 量(方向)。 当H为单位矩阵时,有
由梯度法的分析知,此时点X1的梯度必与方向S0垂直,即有
f X S
1 T
0
0
(4-21)

f X 1 HX1 B

(4-22)
最优化理论与方法 第四部分 直接搜索的数值解法
从点X1开始沿另一下降方向S1作一维搜索,得 (4-23) X 2 X 1 S1
1
若欲使X2成为极小点,根据极值的必要条件,应有

面向智能制造的不规则零件排样优化算法

面向智能制造的不规则零件排样优化算法

Vol. 27 No. 6June2021第27卷第6期2 0 2 1年6月计算机集成制造系统Computer Integrated Manufacturing SystemsDOI : 10. 13196/j. cims. 2021. 06. 013面向智能制造的不规则零件排样优化算法高 勃X张红艳X朱明皓2+(1-北京交通大学计算机与信息技术学院'匕京100044;2.北京交通大学经济管理学院,北京100044&摘 要:以智能工厂应用场景为例,为提高广泛应用于智能制造领域的二维不规则件的排样性能,提出了基于启发式和蚁群的不规则件排样优化算法$首先提取不规则件的几何特征,对零件进行组合操作预处理,使两个或多个不规则零件组合为矩形件或近似矩形件并对其包络矩形,然后利用蚁群学习算法对预处理后的零件进行排样,确定零件排放的最佳位置,不断更新得到最优排样结果。

仿真实验结果表明,综合考虑板材利用率以及耗时情况,所提算法取得了较好的结果能总够满足实际生产的需求$关键词:二维板材;不规则零件;启发式算法;蚁群学习算法;优化排样中图分类号:TP391文献标识码:AOptimization algorithm of irregular parts layout for intelligent manufacturingGAO B o 1 , ZHANG Hongyan 1 , ZHUMinghao 2(1. School of Computer and Information Technology, Beijing Jiaotong University ,Beijing 100044, China ;2. School of Economics and Management , Beijing Jiaotong University , Beijing 100044, China)Abstract :To improve the performance of two-dimensional irregularly shaped part layout in the field of intelligent manufacturing and smart factories 'an optimization algorithmbased on heuristics and ant colony optimizations wasproposed.Thegeometricfeaturesofirregularlyshapedpartswereextractedtopreprocesscombinatorialoperationof theseparts 'which madetwoormorepartscombineintorectangularorapproximatelyrectangularparts.Thentheant colony learning algorithm was used to find an initial combination of parts.After irregularly shaped parts are nes- ted 'thebestpositionofeachpartwasdeterminedandoptimizediteratively.Theresultsofsimulationexperimentsshowed that the algorithm had achieved satisfactory results in terms of the utilization rate ofboards and time-com-plexity 'which madeareasonablesolutiontobeadoptedforactualproductions.Keywords :two-dimensional plate ; irregular parts ; heuristic algorithm ; ant colony learning algorithm ; optimized lay ­outo 引言二维零件排样是实际应用中最常见的排样问题,广泛应用在机械制造、轻工、服装和印刷业等行业中。

demc参数优化算法

demc参数优化算法

demc参数优化算法英文回答:The Differential Evolution Markov Chain (DEMC) algorithm is a population-based metaheuristic optimization algorithm that combines the principles of differential evolution (DE) and Markov chain Monte Carlo (MCMC) methods. DE is a powerful evolutionary algorithm that utilizes the concept of differential mutation to generate new solutions, while MCMC is a probabilistic approach that allows the algorithm to explore the search space more efficiently.The DEMC algorithm works by first generating a population of candidate solutions. Each solution is represented by a vector of values, and the goal is to find the solution that minimizes or maximizes a given objective function. The algorithm then iteratively updates the population by applying the following steps:1. Selection: A subset of the population is selectedusing a probabilistic approach based on the fitness of each solution.2. Mutation: The selected solutions are mutated using the differential evolution operator to generate new candidate solutions.3. Crossover: The mutated solutions are then crossed over with the original selected solutions to create newtrial solutions.4. Acceptance/Rejection: The trial solutions are evaluated using the objective function, and a Metropolis-Hastings acceptance/rejection criterion is used to determine whether each trial solution is accepted or rejected.The DEMC algorithm continues to iterate through these steps until a stopping criterion is met, such as a maximum number of iterations or a desired level of convergence. The final population contains the best solutions found by the algorithm.The DEMC algorithm has several advantages over other optimization algorithms, including:Robustness: DEMC is less sensitive to noise and outliers in the data, making it suitable for real-world optimization problems.Flexibility: The algorithm can be easily customized to solve different types of optimization problems by modifying the objective function and the mutation and crossover operators.Efficiency: DEMC can efficiently explore the search space and find high-quality solutions in a reasonable amount of time.DEMC has been successfully applied to a wide range of optimization problems, including:Engineering design: Optimization of aircraft design, antenna design, and mechanical components.Financial optimization: Portfolio optimization, risk management, and asset allocation.Bioinformatics: Protein folding, drug design, and gene selection.Image processing: Image segmentation, feature extraction, and image registration.中文回答:DEMC 参数优化算法。

P_第9章-时频分析

P_第9章-时频分析
对理想的时频变换TFx (t, ) ,在一个给定时间 t0 , TFx (t0 , ) 表达了信号在时刻 t0 所 包含的频率成分,考虑线性调频信号的例子,t0 时,信号仅包含一个频率分量,瞬时频率为 (t0 ) 2t0 0 ,仅有 TFx (t0 ,2t0 0 ) 0 ,因此线性调制信号的理想时-频谱图是 在 (t, ) 平面上 2t 0 的一条直线,这就是图 9.3(a)所示的情况。理想时-频谱图精
信号 x(t) 通过线性时不变系统等价为算子 L 作用于 x(t) ,即 Lx(t) 。容易验证, e jt 是线 性时不变系统算子 L 的特征矢量, 该算子的特征值是 hˆ( ) 。故
372
Le jt hˆ( )e jt
(9.1)
这里 hˆ()
h
t
e jt dt ,
h(t) L (t) 。由于傅立叶变换将一个函数 x(t) 分解为一系
这里,我们也观察到了时-频变换的限制,即在 t, 处,得到的不是精确地描述“时间 t 处,频率 的成分”,而是 t 附近和 附近,面积为 t 的区间内信号的能量分布,如果 有两个频率分量距离小于 ,或两个脉冲距离小于 t ,TFx (t, ) 将无法区分,这就是说, 时-频变换TFx (t, ) 的时间分辨率受 t 限制,频率分辨率受 限制。
以上这些关系奠定了线性时不变系统分析的基础, 对离散信号和系统也有一组相应的
公式存在。但由(9.3)式可以注意到, 要得到 x(t) 的傅立叶变换, 必须在整个时间轴上对 x(t)
和 e jt 进行混合, (9.3)的内积运算的几何解释是求 x(t)在 e jt 分量上的投影,由于 e jt 的单 频率性和无穷伸展性, xˆ( ) 表示了在 , 的时间域上,x(t)中 e jt 分量的强度和相位。

稀疏恢复和傅里叶采样

稀疏恢复和傅里叶采样

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Leslie A. Kolodziejski Chair, Department Committee on Graduate Students
2
Sparse Recovery and Fourier Sampling by Eric Price
Submitted to the Department of Electrical Engineering and Computer Science on August 26, 2013, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science
Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Department of Electrical Engineering and Computer Science August 26, 2013
Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Piotr Indyk Professor Thesis Supervisor

安捷伦ADS信号完整性讲座(英文)

安捷伦ADS信号完整性讲座(英文)

YIELD OPTIMIZATION
OPTIMIZATION FROM LAYOUT DESIGN OF EXPERIMENT
YIELD NALYSIS
AUTOMATED FINITE METAL THICKNESS
PHYSICAL CONNECTIVITY ENGINE FAST 2.5D EM SIMULATOR
Time Domain Numeric Domain Electromagnetic Domain
• Method of Moment • Finite Element Analysis • Finite Difference Time Domain
Page 6
3DEM, Simulation and Measurement Advances for 2006 Expands SI Horizons
3DEM, Simulation and Measurement Advances for 2006 Expands SI Horizons
Serial Link Design - Simulation Challenges
• Why S-parameter are important at high data rate? • Majority of the SPICE simulator have problem dealing with S-parameter models • Majority of SPICE simulators cannot predict accurate time domain response from S-parameter interconnect models • BBSPICE have problems dealing with noisy S-parameter data • SERDES could not be modeled • Other DSP tools alone are not sufficient to model RF Channel • Integrated EM simulator are must for a successful design

MIMO参考文献综述

MIMO参考文献综述

MIMO参考文献分类综述1.Jian Li and Petre Stoica,MIMO Radar with Colocated Antennas. IEEE SIGNAL PROCESSING MAGAZINE, 106-114 SEPTEMBER 20072.Alexander M. Haimovich, Rick S. Blum, and Leonard J. Cimini, Jr, MIMO Radar with Widely Separated Antennas. IEEE SIGNAL PROCESSING MAGAZINE, 116-129 JANUA RY 20083. B J Donnet, I D Longstaff, MIMO Radar, Techniques and Opportunities, Proceedings of the 3rd EuropeanRadar Conference, 112-115, September 2006, Manchester UK对抗目标闪烁及目标检测1.Eran Fishler, Alexander Haimovich , Rick S. Blum,edt.Spatial Diversity in Radars-Models and DetectionPerformance. IEEE Trans, SP, VOL. 54, NO. 3, MARCH 20062.Antonio Demaio, Marco Lops, Design Principles of MIMO Radar Detectors, IEEE Trans, AEROSPACEAND ELECTRONIC SYSTEMS VOL. 43, NO. 3, 886-898,JULY 20073.Nikolaus H. Lehmann, Eran Fishler, Alexander M. Haimovich,edt., Evaluation of Transmit Diversity inMIMO-Radar Direction Finding. IEEE Trans, SP, VOL. 55, NO. 5, 2215-2225, MAY 20074.Eran Fishler, Alex Haimovich, Rick Blum,edt.Performance of MIMO Radar Systems: Advantagesof Angular Diversity, 305-309, 2004MIMO阵列中的自适应方法1.Chun-Yang Chen and P. P. Vaidyanathan. A Subspace Method for MIMO Radar Space-Time AdaptiveProcessing. ICASSP 2007Ⅱ 925-9282.P.F. Sammartino , C.J. Baker, H.D. Griffiths. Adaptive MIMO radar system in clutter. 20063.Zengjiankui,Hezishu,Liubo. Adaptive Space-time-waveform Processing for MIMO Radar 20074.Luzhou Xu, Jian Li, Petre Stoica, Adaptive Techniques for MIMO Radar 20065.Vito F. Mecca, Dinesh Ramakrishnan, Jeffrey L. Krolik, MIMO Radar Space-Time Adaptive Processing forMultipath Clutter Mitigation, 249-253, 2006发射波形设计1.Ian J. Craddock, G.S. Hilton and P. Urwin-Wright, An Investigation of Pattern Correlation and MutualCoupling in MIMO Arrays 2004 ,1247-12502.Geoffrey San Antonio and Daniel R. Fuhrmann, Beampattern synthesis for wideband MIMO radar systems.2005, 105-1083.Hammad A. Khan, David J. Edwards, Doppler Problems in Orthogonal MIMO Radars, 244-247, 20064.Tuomas Aittom¨aki, Visa Koivunen, Low-Complexity Method for Transmit Beamforming in MIMO Radars,II 305-308 IEEE ICASSP 20075.Yang Yang,Rick S. Blum,Minimax Robust MIMO Radar Waveform Design, IEEE JOURNAL OFSELECTED TOPICS IN SIGNAL PROCESSING, VOL. 1, NO. 1,147-155, JUNE 20076.Douglas A Gray, Rowan Fry,MIMO Noise Radar – Element and Beam Space Comparisons, Conf.Waveform Diversity & Design, , 344-347,20077.Geoffrey San Antonio, Daniel R. Fuhrmann, Frank C. Robey,MIMO Radar Ambiguity Function s, IEEEJOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 1, NO. 1, 167-177 JUNE 2007 8.Yang Yang,Rick S. Blum, MIMO Radar Waveform Design Based on Mutual Information and MinimumMean-Square Error Estimation, IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICSYSTEMS VOL. 43, NO. 1,330-343 JANUARY 20079.Petre Stoica,Jian Li, Yao Xie, On Probing Signal Design For MIMO Radar, IEEE TRANSACTIONS ONSIGNAL PROCESSING, VOL. 55, NO. 8,4151-4161, AUGUST 200710.Bo Liu, Zishu He, Qian He, Optimization of Orthogonal Discrete Frequency-Coding Waveform Based onModified Genetic Algorithm for MIMO Radar,11.Gordon J. Frazer, Ben A. Johnson, Yuri I. Abramovich, Orthogonal Waveform Support in MIMO HF OTHRadars,Conf, IEEE Waveform Diversity & Design, 423-427 2007ngford B White and Pinaki S Ray, Signal Design for MIMO Diversity Systems, 973-977,200413.Bekkerman and J. Tabrikian, Spatially coded signal model for active arrays, ICASSP 2004 209-21214.Daniel R. Fuhrmann ,Geoffrey San Antonio, Transmit Beamforming for MIMO Radar SystemsUsing Partial Signal Correlation, 295-299,200415. K,W,Forsythe, D.W.Bliss,Waveform correlation and optimization issues for MIMO radar, 1306-1310,200516. BENJAMIN FRIEDLANDER, Waveform Design for MIMO Radars, 2005 IEEE CORRESPONDENCE17. Luzhou Xu1, Jian Li1, Petre Stoica2,Waveform Optimization for MIMO Radar A Cramer-Rao Bound BasedStudy, II 917-920, IEEE ICASSP 2007目标检测及参数估计1.Joseph Tabrikian, Barankin Bounds for Target Localization by MIMO Radars. 278-281,20062.Abbas Sheikhi Ali Zamani, Coherent Detection for MIMO Radars, 302-307, 20073.Nikolaus H. Lehmann, Alexander M. Haimovich,edt, High Resolution Capabilities of MIMO Radar 20064.Xi-Zeng Dai, Jia Xu ,Ying-Ning Peng, High Resolution Frequency MIMO Radar, 693-698, 20075.Luzhou Xu and Jian Li,Iterative Generalized-Likelihood Ratio Test for MIMO Radar,IEEE Trans, SP,VOL. 55, NO. 6, 2375-2385 JUNE 20076.Jian Li, Petre Stoica, Luzhou Xu, edt,On Parameter Identifiability of MIMO Radar, IEEE SIGNALPROCESSING LETTERS 1-4 20077.Chaoran Du, John S. Thompson, and Yvan Petillot, Predicted Detection Performance of MIMO Radar, IEEESIGNAL PROCESSING LETTERS, VOL. 15,83-86, 20088.Eran Fishler, Alexander Haimovich, Rick S. Blum, edt, Spatial Diversity in Radars—Models andDetection Performance, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 3,823-838,MARCH 20069.Ilya Bekkerman and Joseph Tabrikian, Target Detection and Localization Using MIMO Radars and Sonars,IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 54, NO. 10,3873-3883, OCTOBER 2006其它论题1.K. W. Forsythe, D. W. Bliss, G. S. Fawcett, Multiple-Input Multiple-Output (MIMO) Radar: PerformanceIssues, 310-315,2004。

LFM-PC复合调制信号优化设计算法

LFM-PC复合调制信号优化设计算法

雷达科学与技术Radar Science and Technology第1期2021年2月Vol. 19 No. 1February 2021DOI : 10. 3969/j. issn. 1672-2337. 2021. 01. 015LFM-PC 复合调制信号优化设计算法李晨,张劲东,丁逊,尚东东(南京航空航天大学电子信息工程学院,江苏南京211100)摘要:针对相位编码(Phase Coded,PC)信号在高速运动平台和高速目标探测中运用存在多普勒敏 感问题,研究了一种基于线性调频(Linear Frequency Modulation, LFM)信号和相位编码信号复合调制的宽多普勒容限信号形式一LFM-PC 复合调制信号。

本文推导了 LFM-PC 信号的模糊函数,在多普勒容 限内以最小归一化积分旁瓣为准则建立了信号优化设计模型,提出了基于交替方向乘子法(Alternating Di ­rection Method of Multipliers,ADMM)的低复杂度信号优化算法。

仿真结果表明,基于此算法优化设计的 LFM-PC 信号具有宽多普勒容限的同时降低了归一化旁瓣,并且此优化算法具有收敛速度快、运算量低的特点。

关键词:复合调制信号;模糊函数;多普勒容限;信号优化设计;交替方向乘子法中图分类号:TN95& 3文献标志码:A文章编号:1672-2337(2021)01-0092-07Optimal Design Algorithm of LFM-PC Hybrid Modulated SignalLI Chen, ZHANG Jindong, DING Xun, SHANG Dongdong{College of Electronic and Information Engineering , Nanjing University of Aeronautics and Astronautics , Nanjing 211100, China)Abstract : Phase coded (PC) signal has Doppler sensitivity problem when used in high-speed moving plat ­forms and high-speed target detection. A wide Doppler tolerance signal form based on the hybrid modulation of linear frequency modulation (LFM) signal and PC signal —LFWPC signal is studied to deal with this problem in this paper. The ambiguity function of LFM-PC signal is deduced and the optimal design model of the signal is es ­tablished within the Doppler tolerance based on the criterion of the minimum normalized integral side lobe. A low-complexity signal optimization algorithm based on alternating direction method of multiplier (ADMM) is proposed The simulation results show that the LFM-PC signal based on this optimization algorithm has a wide Doppler tolerance while reducing the normalized side lobes. The optimization algorithm has the characteristics of fast convergence speed and low calculation amountKey words : hybrid modulated signal ; ambiguity function ; Doppler tolerance ; signal optimization design ; al ­ternating direction method of multipliers0引言PC 信号因其分辨率、测量精度较高的优点被 广泛应用,但是只能被运用于窄多普勒频移的场 合,并且形式简单,抗干扰能力一般。

proximal policy optimization algorithms 原文

proximal policy optimization algorithms 原文

proximal policy optimization algorithms 原文Proximal Policy Optimization (PPO) is a widely used algorithm for reinforcement learning, particularly in robotic and game environments, due to its simplicity and effectiveness. The PPO algorithm is a variant of policy gradient methods, which update the policy function according to the gradient of the reward function. However, PPO addresses the problem of instability in policy gradient methods by constraining the updates to a specific range, thus preventing the policy from changing too drastically.PPO achieves this by modifying the update rule of the policy gradient method, adding a clipping parameter to restrict the size of the updates. Specifically, PPO uses a surrogate objective function that includes two terms: the first term minimizes the distance between the old and new policy, and the second term limits the change in the probability ratio of the old and new policies.The PPO algorithm has several advantages over other deep reinforcement learning algorithms, such as being more stable and not requiring extensive hyper-parameter tuning. It is also easy to implement and has a low computational cost. Additionally, PPO can be used with a variety of neural network architectures, such as convolutional neural networks for image-based environments or recurrent neural networks for sequential data.One of the key advantages of PPO is its ability to handle large state and action spaces. This makes it particularly useful for complex environments like video games, where there are often many possible actions and observations. PPO can also be used in continuous action spaces, where actions are not discretized andinstead take on a continuous range of values.There have been several extensions and modifications to the original PPO algorithm, aimed at improving its performance and addressing specific challenges in different environments. For example, PPO2 is a modification that incorporates a value function into the algorithm to improve learning efficiency. Other extensions focus on techniques to improve exploration, such as adding noise to the policy or using a separate exploration policy.In conclusion, the Proximal Policy Optimization algorithm is a powerful and versatile tool for deep reinforcement learning. Its ability to handle large state and action spaces, as well as its simplicity and stability, make it a popular choice in many different applications. Researchers continue to explore ways to improve and modify the algorithm to address new challenges and environments.。

基于PSO-ESPRIT 算法的SAW 温度传感器解调方法

基于PSO-ESPRIT 算法的SAW 温度传感器解调方法

第43卷第5期包装工程2022年3月PACKAGING ENGINEERING·219·基于PSO-ESPRIT算法的SAW温度传感器解调方法程蕾,范彦平,张晓燊(上海理工大学光电信息与计算机工程学院,上海200093)摘要:目的为了提高声表面波(Surface acoustic wave, SAW)温度传感器的测量精度,设计一种基于PSO-ESPRIT算法的高精度SAW温度传感器解调方法。

方法以ESPRIT谱估计方法为基础,把Hankel 矩阵的时间窗长度与计算噪声方差时的K值作为粒子群优化(Particle swarm optimization, PSO)算法的输入变量,并以频率估计标准差作为粒子的适应度函数,利用PSO对ESPRIT算法中的参数进行优化,以改善频率估计精度,从而提高SAW回波信号频率估计的分辨率,实现SAW温度传感器的高精度解调。

结果仿真和实验结果表明,所设计的方法与其他谱估计算法相比,其对SAW回波信号估计的频率误差最小,标准差小于0.66 kHz。

把设计的算法用于SAW温度传感器的温度解调,得到的温度值与实际温度的误差小于0.4 ℃。

结论测试结果说明,设计的温度解调方法提高了SAW回波信号频率解调精度,可用于SAW温度传感器的解调,实现了对食品包装储运过程中温度的实时监测。

关键词:声表面波;温度传感器;PSO-ESPRIT;谱估计中图分类号:TB486 文献标识码:A 文章编号:1001-3563(2022)05-0219-08DOI:10.19554/ki.1001-3563.2022.05.030Demodulation Method for SAW Temperature Sensor Based on PSO-ESPRIT AlgorithmCHENG Lei, FAN Yan-ping, ZHANG Xiao-shen(School of Optoelectronic Information and Computer Engineering, University of Shanghai for Science andTechnology, Shanghai 200093, China)ABSTRACT: The work aims to design a high-precision demodulation method for surface acoustic wave (SAW) tempera-ture sensor based on the PSO-ESPRIT algorithm, in order to improve the measurement accuracy of SAW sensor. Based on the ESPRIT spectrum estimation method, the time window length of the Hankel matrix and the K value for calculating the noise variance were used as the input variables of the particle swarm optimization (PSO) algorithm. PSO was used to op-timize the parameters of ESPRIT algorithm to improve the frequency estimation accuracy, thus increasing the resolution of frequency estimation of SAW echo signal and realizing high-precision demodulation of SAW temperature sensor. Si-mulation and experimental results indicated that compared with other spectrum estimation algorithms, the designed me-thod had the smallest frequency error in the estimation of SAW echo signals, and the standard deviation was less than 0.66 kHz. When the designed algorithm was used in the temperature demodulation of the SAW temperature sensor, the ror between the obtained temperature value and the actual temperature was less than 0.4 °C. According to the test results, the designed temperature demodulation method improves the frequency demodulation accuracy of the SAW echo signal, and can be used for the demodulation of the SAW temperature sensor to realize the real-time monitoring of the tempera-收稿日期:2021-05-18基金项目:国家自然科学基金(51705326,52075339)作者简介:程蕾(1995—),女,上海理工大学硕士生,主攻信息获取与处理。

考虑排队时延的系统保护通信网络路由选择算法

考虑排队时延的系统保护通信网络路由选择算法

考虑排队时延的系统保护通信网络路由选择算法刘川;黄在朝;陶静;贾惠彬【摘要】目前满足系统保护通信网络的路由算法是在综合时延和可靠性的要求下,计算一条快速且可靠传输的路径,而没有考虑到当电网发生故障或网络中通信量过大时,通信网络中许多节点的排队时延会极大地增加,忽略排队时延对路径传输总时延的影响会导致路径的错误选择,从而影响系统保护的实时性.针对此问题,提出了一种考虑排队时延的路由选择算法,用于计算信息传输总时延最小的最优路径,以提高系统保护通信的实时性.实验结果表明,通过本文提出的路由选择算法计算得到的路径在满足系统保护可靠性要求的基础上信息传输总时延最小.【期刊名称】《电信科学》【年(卷),期】2018(034)010【总页数】6页(P47-52)【关键词】系统保护;实时性;排队时延;路由选择;可靠性【作者】刘川;黄在朝;陶静;贾惠彬【作者单位】全球能源互联网研究院有限公司,江苏南京210003;国家电网公司电力通信网络技术实验室,江苏南京210003;全球能源互联网研究院有限公司,江苏南京210003;国家电网公司电力通信网络技术实验室,江苏南京210003;全球能源互联网研究院有限公司,江苏南京210003;国家电网公司电力通信网络技术实验室,江苏南京210003;华北电力大学,河北保定071003【正文语种】中文【中图分类】TN914.341 引言随着交/直流混联电网格局与电源结构的深刻变化,系统稳定问题由局部、孤立向全局、连锁方向演化。

为确保大电网安全可靠运行,系统保护的广域信息采集、多元协调精准控制等功能对通信网的覆盖范围、传输速率、信号质量和安全性能等提出全新的支撑要求。

而当前成熟应用的控制技术具有一定的局限性,基于本地信息的保护算法和安全自动控制策略已难以完全满足大型电网稳定运行与可靠供电的要求[1-3]。

对于系统保护广域信息采集而言,路由选择是实现信息可靠实时传输的关键,尤其当电网系统发生故障时,信息流量瞬间急剧增加,如何选择合适的路径实现信息快速、可靠地传输到控制中心至关重要。

一种全局优化的两阶段算法

一种全局优化的两阶段算法

一种全局优化的两阶段算法张玉芬;王永军【摘要】为了提高算法的有效性,利用梯度算法和粒子群算法独立的运行机制,采用驱赶技术和重新初始化部分群体的技术,提出了一种基于梯度下降法和粒子群算法的两阶段优化算法,并对新算法进行了理论分析和数值仿真.数值结果显示新算法比单纯梯度算法有更好的全局优化能力,比单纯粒子群算法有更快的收敛速度和更高的精度.新算法求解质量更高,运行更稳定.%To enhance effectiveness of algorithm, on the basis of analyzing the independent operating mechanism of both gradient algorithm and particle swarm algorithm, a two-phase optimization algorithm based on gradient descent and particle swarm algorithm is presented; it adopts the driving technique and the re-initialization technique of part of population. Then, the theoretical analysis and numerical simulation about the new algorithm are made. The numerical simulation shows this new algorithm has better global optimization ability than the gradient algorithm, and it has faster convergences speed and lighter solution accuracy than particle swarm algorithm. This new algorithm produces a lighter quality solution and has more stable operation.【期刊名称】《河北大学学报(自然科学版)》【年(卷),期】2012(032)002【总页数】5页(P207-211)【关键词】全局优化;两阶段算法;梯度算法;粒子群算法【作者】张玉芬;王永军【作者单位】河北大学数学与计算机学院,河北保定071002;东方地球物理公司研究院数据处理中心,河北涿州 072751【正文语种】中文【中图分类】O241.3全局优化问题广泛应用于金融模型、网络交通、图像处理、集成电路设计、分子生物学、数据库、物流配送系统设计中.因为这些优化问题存在多个不同于全局最优解的局部最优解,所以传统的非线性规划中的局部优化方法不能有效地处理这类问题.而且,随着科学的发展,工程中遇到的优化问题的规模越来越大、复杂性越来越高,这使得全局优化问题的求解变得更加困难.全局优化问题的难以解决阻滞了许多学科的发展,因而全局优化方法的研究显得尤为重要.梯度类算法是一种确定性的局部优化方法,它能够快速高效地找到临近初始点的局部最优值.常见的算法有最速下降法、牛顿法、拟牛顿法、共轭梯度方法等.它们已经广泛地应用于许多领域[1-5].此类算法的主要缺点是对初始点的严重依赖性、目标函数和约束区域的拓扑结构的严格要求性.粒子群算法是一种群体智能优化方法[1],在粒子群算法中,群体中的一个粒子根据它本身找到的最优位置以及整个群体当前为止找到的最优位置,来不断地调整它本身的位置.算法的核心思想是用当前最好的已知的位置来引导群体朝搜索空间的最优位置移动.粒子群算法设计简单,参数少,容易实现,且表现出了较好的局部跳跃性,已经被应用到许多领域.但算法有时搜索到的只是局部解,找到高精度的解需要较长的运行时间,解决大规模优化问题至今还没有涉及.文献[2]提出了一种把梯度信息混合到粒子的速度更新公式中加快算法收敛的方法.这种方法没有使用现存的梯度算法的有效性和群体搜索中找到的最优信息.过于强调启发,而改变了传统粒子群算法的核心思想.文献[6]提出了一种基于梯度方法和动态隧道法的混合技术(用GRDT表示)来解决全局优化问题.在GRDT方法中,梯度用来加快局部搜索,动态方程用来寻找好的初始点.但是,该方法需要多次积分动态方程,对高维函数耗时较多,填充函数法和隧道法中的参数较难调节. 1.1 算法原理不同于一般意义下的进化算法,即局部搜索限制在进化算法的框架内,本文设计了一种新的混和算法.在新算法中,粒子群按照其独有的进化机制演化,而梯度算法使用目标函数的梯度信息进行独立的搜索.粒子群算法起着全局搜索的作用,而梯度搜索起着局部探测的作用.从而把2种算法混合为一个两阶段方法,发挥出它们各自的优点以解决复杂函数的优化问题是本文的核心思想所在.具体而言,第1步,从可行域中随机产生的一点出发,使用梯度算法得到目标函数的一个局部最优点.其次,以得到的最优点为均值,使用高斯分布函数初始化粒子群.然后,在最大的迭代次数内,运用粒子群算法找到一个更好的点.以找到的点作为初始点,回到第1步,重新开始梯度搜索.另外,为了利用算法已经得到的最优值信息(所有已经找到的局部最优点)防止群体早熟现象,把一种驱赶群体技巧[7]以及部分初始化群体方法加入到新算法中.驱赶技术利用当前点与已经找到的局部最优点之间的距离,建立起一种屏障,使得新产生的点不要落到已经找到的局部最优点太近的范围内,这可以使粒子向着更有希望的区域飞行,同时避免重复搜索.文献[7]已经证明了此方法可以有效地加快群智能算法的收敛.部分初始化群体方法是在群体搜索不能取得全局进展时,使用均匀分布函数产生的部分群体代替当前群体中同等规模的较差个体的一种做法.1.2 算法步骤假设群体规模是NP,n是问题的规模,M是一个随机生成的数值,M∈{1,2,…,NP}.本文使用的驱赶技术见算法1,更多的信息可以参考文献[5].本文使用的部分初始化群体技术执行如下:根据当前群体的适应值进行排序,在可行域中按均匀分布随机产生M个样本点,执行驱赶技术,然后代替当前群体中M个较差的个体,其余NP-M个个体保留在群体中,进而形成同等规模的新群体.新群体继续执行粒子群算法搜索.新算法记做GRPSO(gradient based particle swarm optimization method),见算法2.算法1 驱赶技术[5]步骤0.输入算法找到的极小点集S*={X*j(j=1,2,…,m)},这里的m 是找到的极小点的个数.给定小生境的半径rij与驱赶因子mij.步骤1.对群体中的每一个粒子Xi,i=1,2,…,NP.步骤1a.计算距离d ij=|X i-X*j|j=1,2,m.步骤1b.对集合S*中的每一个元素X*j,j=1,2,…,m.如果d ij<rij,那么令Zij=(X i-X*j)/d ij.然后置X i=Xi+Pij Z ij.步骤2.输出群体Xi,i=1,2,…,NP.算法2 提出的新算法(GRPSO)步骤0.随机生成可行域中的初始点X0,并置局部搜索计数器k=0.给定粒子群内部的最大迭代次数Smax和计数器Npso=1、调用粒子群算法的最大次数SSmax.设最优点集合S*=Φ.步骤1.(局部搜索)从Xk出发,应用梯度下降法找到可行域中的1个极小点X*k,同时保留到集合S*中.步骤2.(使用粒子群算法的全局搜索)步骤2a.根据高斯分布,以X*k为均值,在可行域中初始化群体,并找出最好个体gbest.若f(X*k)<f(gbest),令gbest=X*k,k=1转步骤1.否则,令gbest=X*k,计数器SS=1,转入步骤2b.步骤2b.当最大迭代次数Smax没有达到时1)更新pbest,如果当前个体适应值好于f(pbest),i=1,2,…,NP.2)更新gbest,如果当前群体中的最优个体适应值好于f(gbest).3)如果f(gbest)<f(X*k),令X*k=gbest,结束循环.4)根据速度更新公式(1)和位置更新公式(2)更新群体的速度和位置.5)把当前群体和极小点集S*作为输入集,执行算法1的驱赶技术(Algorithm 1).然后,令Npso=Npso+1.步骤2c.如果gbest=X*k,SS=SS+1.如果SS>SSmax,停止计算并输出gbest=X*k.否则,重新初始化M∈{1,2,…,NP}个粒子,并执行算法1的驱赶技术,保证此M个粒子远离找到的局部最优点.令Npso=+1,转入步骤2b.否则,令X*k+1=gbest,k=k+1,转入步骤1.2.1 实验结果用文献[3]中已经被GRDT测试过的10个函数来检验新算法的优化性能.首先,把函数值的计算次数设定为2 100,比较最终解的质量,数值结果见表1.用新算法GRPSO对10个标准测试函数进行优化,把运算的结果与其他的算法,如GRDT (梯度算法和动态隧道法的混合方法[3])、HGPSO(混合粒子群算法[6])和专门设计处理高维函数的GRADSA(混合梯度和模拟退火技术的算法[4])做比较.由于解的质量、收敛速度(计算机的CPU时间或目标函数值的计算次数)、算法的寻优成功率是衡量算法优劣的主要标准,对10个复杂函数[3]的20次独立运行后这几个指标的平均结果总结如表1.然后,在给定的最大函数值计算次数下,比较算法找到给定精度的解的成功率,数值结果见表2和3.2.2 结果分析从表1可以看出,GRPSO可以找到所有测试函数的最优值,其结果接近理论上的分析值.与GRDT和其他文献报道的结果相比,新算法找到的结果更好一些,比如函数H3和SH是2个典型的例子.从表2和3可以看到,新算法HGPSO运行效果更好,尽管它们都是基于梯度搜索的混PSO算法.同时,数值结果意味着在同样给定的计算时间内,新算法可以得到比GRPSO更高精度的解.说明两阶段的独立搜索更有助于各个算法发挥其基本功能.从表2可以看出,根据函数值的计算次数,新算法优化性能高于GRDT和HGPSO方法,尤其对于GP和H3函数的优化效果更明显.与其他典型方法如PRS (纯随机搜索)、MS(多起点方法)、SA1(基于微分方程的模拟退火方法)、SA2(基本模拟退火方法)、TS(禁忌搜索)、TA(树退火)和TT(信赖方法TRUST)相比,新算法的计算量大大降低.总之,梯度算法帮助新算法加快局部收敛,并找到高精度的解.加入了驱赶技术和部分初始化群体的粒子群算法增加了群体多样性,防止了群体早熟,进而使新算法能有效地跳出局部最优.所有这些显示新算法对低维的复杂函数优化效果好.提出了一种基于梯度算法和粒子群算法的两阶段混和算法.从有效的局部搜索(使用梯度算法)开始,然后借助进化算法(采用粒子群算法)的全局跳跃性质探索更有希望区域,为局部搜索找到更好的出发点.寻找高精度的解由局部搜索完成,因而省却了演化算法的进化时间,粒子群算法的全局搜索信息得以利用.不同于一般框架下的演化算法,该算法有效地利用了梯度算法和粒子群算法独立的运行机制.另外,新算法中采用了驱赶技术和重新初始化部分群体的技术.数值结果显示新算法比单纯梯度算法有更好的全局优化能力,比单纯粒子群算法有更快的收敛速度、解的精度.【相关文献】[1]KENNEDY J,EBERHART R C.Particle swarm optimization[Z].Proceedings of IEEE International Conference on Neural Networks,Perth Australia,1995.[2]ROY C P,SINGH Y P,CHANSARKAR R A.Hybridization of gradient descent algorithms with dynamic tunneling methods for global optimization[J].IEEE T Syst Man Cy,2000,30(3):384-390.[3]NOEL M M,JANNETT T C.Simulation of a new hybrid particle swarm optimization algorithm[J].System Symposium,2004,32(4):150-153.[4]SUGANTHAN P N.Particle swarm optimiser with neighbourhood operator[Z].Proceedings of the IEEE Congress on Evolutionary Computation,Piscataway,NJ,1999.[5]PARSOPOULOS K E,VRAHATIS M N.On the computation of all global optimizers through particles warm optimization[J].IEEE Trans on Evolutionary Computation,2004,8(3):211-224.[6]刘星宝,蔡自兴,王勇.用于全局优化问题的混合免疫进化算法[J].西安电子科技大学学报,2010,37(5):971-980.LIU Xingbao,CAI Zixing,WANG Yong.Hybrid immune evolutionary algorithm for global optimization problems[J].Journal of Xidian University,2010,37(5):971-980. [7]路克中,王汝传,章家顺.最优化问题全局寻优的PSO-BFGS混合算法[J].计算机应用研究,2007,24(5):17-19.LU Kezhong,WANG Ruchuan,ZHANG Jiashun.PSO-BFGS algorithm of global optimum for optimization problems[J].Application Research of Computers,2007,24(5):17-19.。

最优化算法【线搜索-黄金分割(0.618)算法】

最优化算法【线搜索-黄金分割(0.618)算法】

最优化算法【线搜索-黄⾦分割(0.618)算法】使⽤条件优化函数在搜索区间内为单峰函数算法算法类似于⼆分查找算法,能够求单峰函数在搜索区间的极值算法如下:step0:确定单峰函数f(x)的搜索区间[a0,b0];容错误差δ=a−b, ϵ=f(b)−f(a) ,t=0.618;p=a0+(1−t)(b0−a0),q=a0+t(b0−a0) step1:f(p)<=f(q)yes,to step 2 no,to step 3step2:if |f(b)-f(a)| >= $\epsilon or |b-a|>=\delta$b=q,f(b)=f(q), q=p, f(q)=f(p);p=a+(1-t)(b-a), resolve f(p);elsestop;print p;\\p为求得极值点step3:if |f(b)-f(a)| >= $\epsilon or |b-a|>\delta$a=p,f(a)=f(p), p=q, f(p)=f(q);q=a+t(b-a), resolve f(q);elsestop;print q;\\p为求得极值点算法实现函数:function [R,loos,loos_t] = xiansousuo_golds(func,a,b,delta,epsilon,iterate) t = (sqrt(5)-1)/2;p = a+(1-t)*(b-a);q = a+t*(b-a);f_a=func(a);f_b=func(b);f_p = func(p);f_q = func(q);R=zeros(1,2);loos_t = zeros(iterate,1);loos = zeros(1,2);%step1k=0;while abs(f_b-f_a)>=epsilon || abs(b-a) >= delta || k < iteratek=k+1;loos_t(k,1)=abs(f_b-f_a);if f_p <= f_qb=q;f_b=f_q;q=p;f_q =f_p;p=a+(1-t)*(b-a);f_p = func(p);elsea=p;f_a=f_p;p=q;{f_p =f_q;q=a+t*(b-a);f_q=func(q);end%disp([p,abs(f_b-f_a)]);endif f_p <= f_qR(1,1)=p;R(1,2)=func(p);elseR(1,1)=q;R(1,2)=func(q);endloos=[abs(b-a),abs(f_b-f_a)];endmain函数clc;close all;iterate=30;func=@(s) s^2-sin(s);[R,loos,loos_t]=xiansousuo_golds(func,0,1,1e-4,1e-5,iterate);disp(R);disp(loos);figure(1);plot(1:iterate,loos_t);figure(2);t=linspace(0,1,iterate);y=zeros(iterate,1);for i =1:iteratey(i,1)=func(t(i));endplot(t,y);hold on;minimum = fminbnd(func,0,1);f_min=func(minimum);plot(minimum,f_min,'rp','MarkerSize',10);text(minimum,f_min,['(',num2str(minimum),',',num2str(f_min),')'],'color','b'); disp([minimum,f_min]);epsilon随迭代变化所求函数及极⼩值conclusion1. 算法求得结果和matlab极⼩值函数结果相同,精度较⾼;2. 对于应⽤范围有限制【单峰函数】。

Gaussian优化第三步

Gaussian优化第三步

Gaussian优化第三步优化第三步:优化结果分析,⼀般要进⾏频率计算,⽆虚频,表⽰是极⼩值;有虚频,表⽰是过渡态。

如果出现虚频,可根据虚频的简正模式进⾏调整以获得极⼩值,我还没有碰到这种情况,希望各位朋友能给些详细的资料。

如前信所说,键长键⾓有差别是很正常的,因为⽓相分⼦和晶体内分⼦的结构不可能完全吻合,只可能近似相同。

另外,对不同元素的限制主要看基组是否能计算该类元素,例如你所采⽤的⽅法中⽤了6-31G(D)基组,该基组⽀持H-Kr的元素,即可以计算Br原⼦但是不能够计算I原⼦。

如果你所⽤的基组不⽀持你所计算的某个原⼦可以采⽤扩展基组来进⾏计算,或者降低基组的精度。

我⽤Gaussian优化⼀个分⼦结构,由于⽬前实验上没有办法得到纯净的样品来实验验证,那么我怎么判断优化得到的结构是正确的?⼀些主要的键长和键⾓的实验值或者别⼈计算的值是否和与你计算的分⼦类似?这个判断不好做。

所谓正确不正确,如果计算出来的频率没有虚频,就表⽰你找到了⼀个局域稳定点。

要确定是不是全局稳定点很难,只有通过别的⽅式⽐如HOMO-LUMO能级差等信息看你算出来态是不是稳定。

也觉得⾼级的⽅法和⼤基组的结果更可信,谢谢各位⾼⼿的指点!!再问⼀个问题,如果出现虚频如何修改得到分⼦稳定的结构⽤GV看⼀下,根椐产⽣虚频的振动模式调整结构消去虚频有什么技巧?我有⼀个计算结果,虚频有三个,都只有-30~-20左右,如果结构改动过⼤,⼀不⼩⼼,虚频就会更⼤。

头痛ing~~~那你就把结构朝振动的⽅向改⼩⼀点试⼀下确实据我了解,消除虚频的主要⽅法是改变构型。

其次在计算上还可以尝试:nosymm;加⼤循环次数;提⾼收敛度;iop(1/8=1)等。

其实我⾃⼰也是有这个问题,对于势能⾯很平,较⼩的虚频很难消除。

⾸先,1在优化时采⽤Scf(tight)的选项,增加收敛的标准。

再去计算频率。

如果还有虚频,参见下⼀步。

2. 对称性的影响,很多情况下的虚频是由于分⼦本⾝的对称性造成的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Optimization Algorithm of Frequency-Dependent model for Viscoelastic Damping Material Y.Q.Cao1, a, Z.X.Deng1,2,b , J. Li1, H.J.Liu1,d
1
Where, G ′(ω )
N ˆω ˆ i2 ) + (2ξ ˆ 2 (ω 2 − ω i i) = G ∞ 1 + ω 2 ∑ α i 2 , 2 2 2 2 ˆω ˆ ˆ ( ω ω ) ω ( 2 ξ ) − + i = 1 i i i
Keywords: viscoelastic damping multi-Parameter optimization
Abstract. In order to obtain the parameters of viscoelastic damping material model, namely GHM, which account for frequency dependence and allow time-domain analysis of viscoelastic composite structure, a new optimization algorithm which is composed of particle swarm optimization(PSO) and sequential quadratic programming (SQP) algorithm is presented . The results are compared with those of standard rheological model and fractional derivative model as well as the experiment results. The results show that the hybrid algorithm can obtain the better optimum solution for the model and have a fast convergence , it will correctly describe the constitutive characteristics of viscoelastic damping material. 1.Introduction In engineering practice, the composite structure with damping has been widely used to suppress the vibration and noise of the structure. As the constitutive relationship of the viscoelastic material changes with time, frequency and temperature, so the constitutive models of viscoelastic material have become complex and diverse, and its parameters become more complicated for calculation. At present most of the literatures has calculated by directly substituting empirical parameters into the constitutive model, lack of optimization of the parameters of the model[1,2,3,4]. GHM Model, proposed by the Golla and Hughes in 1985 and improved by McTavish in 1993, is easily used to works with the finite element method to obtain the the dynamic equations of viscoelastic composite structure. So it is favored by many scholars[2,3,4,5,6].However, the determination of GHM model parameters is an optimization characterized by nonlinear, multi-variable, multi-objective programming, and constraint conditions. Obviously it is difficult to solve this problem. There is no mathematical condition to express the global optimal solution of such problems. The optimization based on traditional mathematical programming is difficult to handle because it can easily trap into the local minimum[7]. Modern optimization algorithms such as genetic algorithms, may facilitate the premature state, resulting in long convergence time, failure of optimization[8].As mentioned, a solution method based on the combination of the particle swarm optimization (PSO) and sequential quadratic programming (SQP) is presented. Firstly, with the global optimization function of the PSO algorithm, the possible location of the global optimal solution can be determined. Then with the ability of local fine search of SQP algorithm , the local optimal solution of the model can be found. In this research, the optimization Model of GHM model is established and its optimal results are obtained. In order to validate the correctness of the optimization algorithm, the results are compared with those of standard rheological model and fractional derivative model as well as the experiment results. It is possible to provide an optimization method to the material model for different type of viscoelastic material structure.
Institute of Mechanical Engineering of Chongqing University, China
2
State Key Laboratory of Vehicle NVH and Safety Control, China
b c d
a
cyq_cqu@, zxdeng@, 1lijun@, huijie258@ material; GHM model; PSO-SQP hybrid algorithm;
Advanced Materials Research Vols. 129-131 (2010) pp 416-420 © (2010) Trans Tech Publications, Switzerland doi:10.4028//AMR.129-131.416
All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of the publisher: Trans Tech Publications Ltd, Switzerland, . (ID: 123.147.247.122-30/07/10,04:21:45)
Advanced Materials Research Vols. 129-131
417
2. GHM Model of Visoelastic Material Structure GHM material model is that it describe the frequency-dependent characteristic for viscoelastic material properties by inducting auxiliary dissipation coordinates to the interior of element.The complex modulus model of viscoelastic material in Laplace domain for GHM model is expressed as: n ˆω ˆ s 2 + 2ξ ~ ∞ i is . (1) G ( s) = G 1 + ∑ α i 2 2 ˆ ˆ ˆ s + ξ ω s + ω 2 i =1 i i i ~ In Eq.1, G ( s ) is the complex shear modulus of viscoelastic material; G ∞ corresponds to the relaxation modulus; s is the Laplace operator α i ,ξi ,ωi are the material parameters of the i-th order GHM model. n is the total number of the amount of mini Oscillator items. If there are n order perturbation, 3n +1 parameters need to be determined. As s = iω ,the complex modulus model of viscoelastic material in frequency domain can be expressed as: 2 N ˆω ˆ (iω ) + 2ξ ~ i i (iω ) (2) G (iω ) = G ∞ 1 + ∑ α i = G ′(ω ) + iG ′′(ω ) . 2 2 ˆω ˆ ˆ ω ξ ω ω ( i ) 2 ( i ) + + i = 1 i i i
相关文档
最新文档