2.3 核酸的物理化学性质

合集下载

核酸理化性质讲义

核酸理化性质讲义

核算理化性质-讲义目录1.一般物理性质;2.核酸的紫外吸收;3.变性;4.复性;5.杂交;教学目的:了解核酸的一般物理性质及DNA序列的测定方法,掌握核酸的紫外吸收特性、变性和复性及核酸的分离、提纯和定量测定。

教学重点:核酸的紫外吸收及变性和复性;教学难点:核酸的变性和复性1.一般物理性质1.1形态DNA —— 白色纤维状固体 RNA —— 白色粉末状固体1.2溶解性微溶于水;不溶于乙醇、乙醚和氯仿等一般的有机溶剂;用乙醇可以沉淀核酸。

RNA核蛋白体(RNP)易溶于0.14mol/L NaCl溶液;DNP可溶于1~2mol/L的NaCl溶液;RNA在碱性溶液中不稳定; DNA在碱性溶液中稳定。

显色反应:利用核糖和脱氧核糖不同的显色反应鉴定DNA与RNA。

核糖与地衣酚(3,5-二羟甲苯)试剂反应呈鲜绿色。

脱氧核糖与二苯胺试剂反应生成蓝色化合物,而核糖无此反应。

1.3粘度DNA溶液粘度极高 (因其分子直径小而长度大)RNA溶液粘度要小得多★核酸变性或降解后,粘度降低1.4两性解离概念:核酸为两性电解质,因核苷酸含有磷酸基与碱基,磷酸基和碱基可以解离,在不同pH条件下解离程度不同,在一定条件下可形成兼性离子,表现为两性离子状态,通常表现为酸性。

效果:由于磷酸基团的酸性很强,所以pI(等电点)较低,整个分子相当于多元酸。

应用:利用核酸的两性解离可以通过调节核酸溶液的pH来沉淀核酸,也可通过电泳分离纯化核酸。

2. 紫外吸收性质2.1机理:嘌呤和嘧啶具有共轭双键,能强烈吸收紫外光。

2.2性质1:在260nm处有最大吸收峰。

对于纯的DNA或RNA,可以通过测得A260来推测其核酸含量。

A260/ A280值可以反映核酸的纯度。

性质2:纯的DNA:A260/ A280 =1.8 纯的RNA:A260/ A280 =2.02.3.定义:增色效应(hyperchromic effect)是变性后DNA 溶液的紫外吸收作用增强的效应。

核酸的理化性质

核酸的理化性质

DNA变性的特点-爆发式
变性作用发生于一个很窄温度范围内。
34
Tm值
DNA 的 双 螺 旋 结 构 失 去 一 半 时 对 应 的 温 度 称 为 DNA的解链温度(Tm)。
浓 度 50ug/mL 时 , 双 链 DNA A260=1.00; 完全变性(单链)时, A260= 1.37 。当 A260 增加到最大 增大值一半时,即 1.185 时,对 应的温度即为Tm 。
8
P503
③按磷酸二酯键断裂方式分类: 3′-OH与磷酸基之间断裂 如 蛇毒磷酸二酯酶 5′-OH与磷酸基之间断裂 如 牛脾磷酸二酯酶
P482
蛇毒磷酸二酯酶从核酸的5’端逐个水解下5’核苷酸 牛脾磷酸二酯酶从核酸的3’端逐个水解下3’核苷酸
9
蛇毒磷酸二酯酶从核酸的5’端逐个水解下5’核苷酸,称为核酸5’ 外切酶,水解3’-OH形成的酯键。 牛脾磷酸二酯酶从核酸的3’端逐个水解下3’核苷酸,称为核酸3’ 外切酶,水解5’-OH形成的酯键。 10
13
14
四、N-糖苷酶类:各种非特异的糖苷酶或对碱基特异
的N-糖苷酶,可水解糖苷键。
15
第二节 核酸的酸碱性质
核酸的碱基、核苷、核苷酸均能发生解离,因此核酸
也就具备了可解离的酸碱性质。
16
1.碱基的解离
由于嘧啶和嘌呤化合物杂环中N以及各取代基(-OH) 具结合和释放质子的能力,所以这些物质既有碱性解离又 有酸性解离。 各种碱基的解离特点及其常数见课本P505
1、Southern Blotting (DNA-blotting) 2、Northern Blotting (RNA-blotting) 3、Western Blotting (protein-blotting)

核酸分离纯化的原则

核酸分离纯化的原则

核酸分离纯化的原则
核酸的分离纯化原则主要包括以下几个方面:
1. 根据物理化学性质分离:包括碱基成分、大小、形态等,如使用聚丙烯酰胺凝胶电泳分离DNA和RNA;利用离心、超滤和电泳等技术可分离DNA、RNA和蛋白质。

2. 根据碱基组成分离:由于不同物种、不同个体的DNA碱基组成不同,因此可以利用这一差异利用测序、杂交、PCR等方法进行分离。

3. 根据功能分离:可以根据DNA和RNA的功能和特异性进行分离。

例如,使用特异性结合染料或核酸探针选择性地富集DNA或RNA。

4. 根据生化特性分离:DNA和RNA在不同条件下的生化特性差异较大,可以利用这一特点进行分离纯化,如利用酸性或碱性溶液进行分离纯化。

5. 根据亲和性分离:根据DNA或RNA与某些物质的亲和性选择性地富集、分离纯化DNA或RNA,例如使用特异性结合蛋白质来富集特定DNA或RNA序列。

核酸分子生物学基础

核酸分子生物学基础
ADP ATP

AMP
戊 糖
HO CH2 5´ O OH HO CH2 O OH
4´ 3´
OH


OH OH
核糖(ribose) (构成RNA)
脱氧核糖(deoxyribose) (构成DNA)
Hale Waihona Puke • 戊糖DNA,RNA中主要的碱基、核苷
戊糖
RNA
D-核糖
碱基
A G C U A G C T
核苷
四、变性与复性
(一) 变性(denaturation) 1、核酸的变性与增色效应


核酸的变性是指核酸双螺旋区的氢键断裂,变成单链结 构的过程。 变性:不涉及共价键3’,5’-磷酸二酯键的断裂,所以它 的一级结构(碱基顺序)保持不变 降解:多核苷酸骨架上共价键断裂,引起相对分子质量 降低


核酸分子细长,溶液的粘度很大,且DNA溶液的粘 度比RNA的大得多。发生变性或降解时,它们的粘 度降低。
二、两性解离



核酸是两性电解质(含有磷酸和氨基),可发 生两性解离。 核酸的解离状态与溶液的pH有关,当核酸溶液 在某一pH时,核酸分子内的酸性解离与碱性解 离相等,所带的正负电荷相等,净电荷为零, 此时核酸溶液的pH称为核酸的等电点(pI)。 由于磷酸酸性较强,而碱基(氨基)是弱碱, 所以核酸的等电点较低。DNA的等电点为4~ 4.5,RNA的等电点为2~2.5。
2、分布
真核细胞
细胞核(95%): 线型双链,一般与组蛋白结合 成染色体 线粒体、叶绿体(5%):环 状双链 细胞质(75%) 线粒体、叶绿体(15%) 细胞核(10%)
原核细胞
环状双链 主要集中于核区

核酸的理化性质

核酸的理化性质

限制性内切酶
原核生物(及病毒)中存在着一类能识别外源DNA双螺旋中 4-8个碱基对所组成的特异的具有二重旋转对称性的回文序列, 并在此序列的某位点水解DNA双螺旋链,产生粘性末端或平末 端,这类酶称为限制性内切酶(ristriction endonuclease)。 山东落花生花落东山 帘卷晚晴天,天晴晚卷帘 Was it a cat I saw?

二、核酸的酸碱性质
1、碱基的解离
2、核苷的解离
3、核苷酸的解离
结合及释放 质子的能力
第 1、碱基的解离 14 章 碱基:含氮碱基,杂环化合物(很多生物碱的结构) 核 1)、具有芳香环的结构特征,呈平面或近乎平面 酸 含有共轭双键体系,紫外区有吸收(260nm)。 的 物 2)、氮原子位于环上或取代氨基上 弱碱性来自于环上氮原子,pKa约9.5,倾向于接受H 理 取代氨基(或曰碱基环外的氨基)碱性很弱,生理 化 条件下不能被质子化。 学 性 质
核酸的物理化学性质
一、核酸的水解 二、核酸的酸碱性质 三、核酸的紫外吸收性质 四、核酸的变性、复性及杂交
一、核酸的水解
(一)酸水解 糖苷键比磷酸二酯键 更易被酸水解 嘌呤碱基的糖苷键比 嘧啶碱基的糖苷键对 酸更不稳定
NH 2
酯键
O
N N O
N 9 N
5' HO P O CH2 O
-
糖苷
1' H H 2' OH
H
H OH
腺苷酸
(二)碱水解 RNA的磷酸酯键易被碱 水解,产生核苷酸。 由于RNA的核糖上有2’OH基,在碱作用下形成 磷酸三酯。 磷酸三酯极不稳定,随 即水解产生,产生 2’,3’-环磷酸酯,再水 解成2’-核苷酸及3’-核 苷酸

核酸的物理化学性质

核酸的物理化学性质

第15章、核酸的物理化学性质(上册P502)本章重点:1、核酸的水解,2、核酸的紫外吸收,3、核酸的变性和复性本章的主要内容:(一)核酸的水解:所有糖苷键和磷酸酯键都能被水解。

(1)酸水解:糖苷键比磷酸二酯键易被水解,嘌呤碱糖苷键比嘧啶碱更易水解。

(2)碱水解:磷酸酯键易水解,RNA比DNA易水解,因为RNA核糖上有2‘-OH,水解过程见P502。

(3)酶水解:为水解磷酸二酯键的酶,专一水解核酸的为核酸酶。

1.核酸酶的分类:按底物专一性分为RNase(核糖核酸酶)和DNase(脱氧核糖核酸酶)。

按对底物作用方式分为内切酶(作用点在核糖核酸酶内部)和外切酶(作用点在末端)。

2.RNase:如牛胰核糖核酸酶(EC 2.7.7.16),内切酶,作用位点为嘧啶核苷(Py)-3‘-磷酸与其他核苷酸之间的连键。

3.限制性内切酶:为DNase。

剪裁DNA的工具,可用于核酸测序和基因工程。

在细菌中发现,目前已找到限制性内切酶数千种。

限制性内切酶往往与甲基化酶成对存在,自身酶作用位点的碱基被甲基化,内切酶不再降解,因而可识别和降解外源DNA。

断裂位点处常有二重旋转(轴)对称性(回文结构,正读反读相同),在特定位点两条链切断后形成粘末端或平末端。

限制性内切酶命名:如E. coR Ⅰ,第1个字母E(大写),为大肠杆菌(E.coli)属名的第一个字母,第2、3两个字母co(小写)为种名头两个字母,第4个字母R,表示菌株,最后一个罗马字为该细菌中已分离这一类酶的编号。

(二)核酸的酸碱性质:核苷和核苷酸都是兼性离子,碱基和磷酸基均能解离,见P505,具有酸碱性。

由于DNA酸碱变性,使酸碱滴定曲线不可逆。

(三)核酸的紫外吸收:嘌呤环与嘧啶环具有共轭双键,核苷和核酸的吸收波段在240~290nm,最大吸收值在260nm附近(蛋白质最大吸收值280nm)。

(1)可用于测样品纯度(测吸光度A):A260/A280比值,纯DNA应大于1.8,纯RNA应达到2.0,若样品混有杂蛋白,比值明显降低。

核酸的性质

核酸的性质

DNA的核苷酸序列测定
DNA的测序策略
DNA片断的序列测定
英国Sanger , 1975年加减法,1977年末端 终止法,目前广泛用于DNA的自动测序 美国Maxam和Gilbert , 1977年化学断裂法 基本原理:把DNA变成在不同碱基的核苷酸处 打断的四套末端标记的DNA片断,当相应于四 个不同碱基产生的四套DNA片断并排进行电泳 分离时,产生一个可以直接读出DNA顺序的区 带。
模板DNA的变性:双链DNA解离,使之成为单链,以便 它与引物结合 模板DNA与引物的退火(复性):模板DNA经加热变性 成单链后,温度降至55℃左右,引物与模板DNA单链的 互补序列配对结合(退火温度与Tm有关,温度太低非特 异扩增增加,温度过高引物和模板不易结合) 引物的延伸:DNA模板--引物结合物在Taq DNA聚合酶 的作用下,以dNTP为反应原料,靶序列为模板,按碱基 互补配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链 重复循环变性--退火--延伸三过程就可获得更多的“半 保留复制链”,而且这种新链又可成为下次循环的模板
真核生物mRNA的分离:亲和层析
真核生物的mRNA有polyA的尾巴,能被oligo-dT柱 子吸附而和其他物质分离开来
真核生物mRNA的分离
核酸纯度鉴定与含量测定
根据A260/A280的比值判断核酸样品的纯度 (若样品中含有杂蛋白或苯酚,则 A260/A280比值明显降低)
纯DNA:A260/A280=1.8 纯RNA:A260/A280=2.0
核酸的物理化学性质
核酸的水解 核酸的磷酸二酯键和糖苷键可 以被水解

室温条件下,DNA在碱中变性, 但不水解,RNA水解,水解产物为 2’-和3’-核苷酸的混合物。

核酸的物理化学性质和常用的研究方法

核酸的物理化学性质和常用的研究方法
3) 引物不应有发夹结构,即不能有4 bp以上的回文序列 4) 引物之间不应有大于4bp以上的互 补序列或同源序列 5) 引物中碱基的分布要尽可能均匀, G + C含量接近50%
25
七、聚合酶链反应(PCR)
2、优化反应条件 包括模板、引物、 dNTP、DNA聚 合酶和Mg2+,PCR中常用的聚合酶是 Taq DNA聚合酶 3、 选择热循环温度 PCR 过程的温度控制十分关键。 热循环温度:变性温度,退火温度(低 于引物Tm值的2-3℃),延伸温度
A:光吸收值 C:磷的摩尔浓度 L:比色杯内径 W:每升溶液中磷的重量(g)
4
一、核酸的紫外吸收
DNA的ε(P):6600 RNA的ε(P):7700-7800
核酸的ε(P)比核苷酸单体低 单链多核苷酸的ε(P)比双螺 旋多核苷酸的ε(P)要高 增色效应:核酸变性时, ε(P)增加 减色效应:当核酸复性时, ε(P)降低
第十九章
核酸的物理化学性质 和常用的研究方法
1
核酸的物理化学性质
天然DNA分子细丝状的双螺旋结构 赋予DNA一系列显著的物化特性: 极大的粘度; 易于断裂; 易形成纤维状物质; 在稀盐溶液中热变性; 熔点高 RNA分子没有如此明显的物化特性
2
一、核酸的紫外吸收
1、核酸具有紫外吸收 吸收范围:240-290 nm λmax = 260nm (定量测定) 2、根据紫外吸收判断样品纯度 不纯的样品
29
九、DNA的限制酶图谱
细菌内有二种不同功能的酶(Arber等) : 限制性内切酶:识别并水解DNA的某特 定碱基序列 修饰酶(甲基化酶):识别限制酶识别的碱 基顺序并将其甲基化 被甲基化了的DNA不会被限制酶降解, 所以细菌自身的DNA不会被自身酶降解。 而当异源DNA侵入细胞时,就会被限制酶 降解

核酸检测物理知识点总结

核酸检测物理知识点总结

核酸检测物理知识点总结一、核酸的结构与性质1.1 核酸的化学结构核酸是一种由核苷酸经过磷酸二脂酸酯键连接形成的生物大分子,包括DNA和RNA两种类型。

DNA由脱氧核糖核苷酸组成,RNA由核糖核苷酸组成。

核苷酸由核苷和磷酸二脂酸组成,核苷包括一个含氮碱基和一个糖分子,磷酸二脂酸作为链的连接部分。

1.2 核酸的物理性质核酸具有许多特殊的物理性质,如双螺旋结构、碱基配对、DNA超螺旋等。

其中双螺旋结构是DNA的典型结构,由两条螺旋形成,而碱基配对是通过氢键将两条链连接在一起,碱基的配对规律是腺嘌呤(A)与胸腺嘧啶(T)之间形成两个氢键,鸟嘌呤(G)与胞嘧啶(C)之间形成三个氢键。

此外,DNA还具有超螺旋结构,这种结构形式使得DNA在细胞分裂时更容易分离。

1.3 核酸的光学性质核酸具有一定的光学性质,如吸收光谱、荧光光谱等。

DNA和RNA在紫外光下有显著的吸收,其中DNA在260nm处有最大吸收峰,而RNA在260nm处有一个稍微红移的吸收峰。

此外,核酸还具有荧光发射的性质,一些荧光染料可以与核酸结合产生荧光信号,用于核酸的检测和定量分析。

二、核酸检测的原理与技术2.1 核酸检测的原理核酸检测的原理是通过特定的技术手段来识别和检测样品中的核酸序列,常用的技术包括PCR(聚合酶链式反应)、分子杂交、核酸电泳、原位杂交等。

PCR是最常用的核酸扩增技术,通过模拟细胞内DNA复制的过程来扩增目标DNA序列,从而实现对目标基因的检测和分析。

2.2 核酸检测的技术手段核酸检测的技术手段包括一系列的实验方法和设备,如核酸提取、PCR扩增、凝胶电泳、原位杂交、微阵列技术等。

其中核酸提取是核酸检测的首要环节,其目的是从样品中提取出目标DNA或RNA序列,为后续的PCR扩增和检测做准备;PCR扩增是一种快速、高效、特异性强的核酸扩增技术,可将目标核酸的复制数量扩大上百万倍,从而实现对微量核酸的检测和分析。

2.3 核酸检测的应用核酸检测技术在临床医学、疾病预防和控制、食品安全监测等领域有着广泛的应用,如临床诊断中的传染病检测、肿瘤基因检测、遗传病筛查等;疾病预防和控制中的病毒核酸监测、病原微生物检测、环境污染监测等;食品安全监测中的食源性疾病的检测、转基因食品的检测等。

核酸性质

核酸性质

核酸的凝胶电泳
核酸的序列测定 DNA聚合酶链反应 DNA的化学合成
第十五章 核酸的研究方法
一 核酸的分离、提纯和定量测定
核酸制备
总的要求:防止核酸的降解和变性,要尽量保
持其在生物体内天然状态
注意的事项:条件温和,防止过酸、过碱、避
免剧烈搅拌,防止核酸酶作用
P513
第十五章 核酸的研究方法
(一)DNA的分离

Chapter14
核酸的物理化学性质

核酸的变性、复性及杂交
(三)、核酸的杂交
2. 常见杂交的类型


(1)Southern blotting (2)Northern blotting (3)Western blotting
(1). Southern印迹杂交

将在电泳凝胶中分离的DNA片段转移并结合在适当的 滤膜上,然后通过与标记的单链DNA或RNA探针的杂 交作用检测这些被转移的DNA片段
经验式: (G-C)%=(Tm-69.3)×2.44


(3)介质中的离子强度 一般在较高的离子强 度时,DNA的Tm值较高,而且熔解过程发生在 一个较小的温度范围之内。
P509
Chapter14
核酸的物理化学性质

核酸的变性、复性及杂交
(二)、复性 (renaturation)

变性DNA在适当条件下,又可使两条彼此分开的链重新缔合成为双螺 旋结构,这过程称复性 1. DNA复性的特点:
一、 核酸的水解
二、核酸的酸碱性质
三、核酸的紫外吸收
四、核酸的变性、复性及分子杂交 五、核酸的沉降特性
502
Chapter14
核酸的物理化学性质

生物化学-生化知识点_核酸的物理化学性质

生物化学-生化知识点_核酸的物理化学性质

7-3 核酸的物理化学性质上册P502一一一核酸的水解:所有糖苷键和磷酸酯键都能被水解。

一1一酸水解:糖苷键比磷酸二酯键易被水解,嘌呤碱糖苷键比嘧啶碱更易水解。

一2一碱水解:磷酸酯键易水解,RNA比DNA易水解,因为RNA核糖上有2‘-OH,水解过程见P502。

一3一酶水解:为水解磷酸二酯键的酶,专一水解核酸的为核酸酶。

1.核酸酶的分类:按底物专一性分为RNase(核糖核酸酶)和DNase(脱氧核糖核酸酶)。

按对底物作用方式分为内切酶(作用点在核糖核酸酶内部)和外切酶(作用点在末端)。

2.RNase:如牛胰核糖核酸酶(EC 2.7.7.16),内切酶,作用位点为嘧啶核苷(Py)-3‘-磷酸与其他核苷酸之间的连键。

3.限制性内切酶:为DNase。

剪裁DNA的工具,可用于核酸测序和基因工程。

在细菌中发现,目前已找到限制性内切酶数千种。

限制性内切酶往往与甲基化酶成对存在,自身酶作用位点的碱基被甲基化,内切酶不再降解,因而可识别和降解外源DNA。

断裂位点处常有二重旋转(轴)对称性(回文结构,正读反读相同),在特定位点两条链切断后形成粘末端或平末端。

限制性内切酶命名:如E. coRⅠ,第1个字母E(大写),为大肠杆菌(E.coli)属名的第一个字母,第2、3两个字母co(小写)为种名头两个字母,第4个字母R,表示菌株,最后一个罗马字为该细菌中已分离这一类酶的编号。

一一一核酸的酸碱性质:核苷和核苷酸都是兼性离子,碱基和磷酸基均能解离,见P505,具有酸碱性。

由于DNA酸碱变性,使酸碱滴定曲线不可逆。

一一一核酸的紫外吸收:嘌呤环与嘧啶环具有共轭双键,核苷和核酸的吸收波段在240~290nm,最大吸收值在260nm附近(蛋白质最大吸收值280nm)。

一1一可用于测样品纯度(测吸光度A):A260/A280比值,纯DNA应大于1.8,纯RNA应达到2.0,若样品混有杂蛋白,比值明显降低。

对于纯样品,从260nm的A值即可算出含量。

生物大分子理化性质的研究与应用

生物大分子理化性质的研究与应用

生物大分子理化性质的研究与应用生物大分子是构成生命体的重要组成元素之一,其理化性质研究及应用具有重要意义。

本文将从蛋白质、核酸和多糖三个方面探讨生物大分子理化性质的研究与应用。

一、蛋白质的理化性质研究与应用蛋白质是生命体内最为重要的大分子之一,具有复杂的理化性质。

在生化实验中,常常需要对蛋白质进行纯化和测定,因此研究蛋白质的理化性质意义重大。

1.蛋白质的电泳测定蛋白质电泳是一种常用的蛋白质分离方法,其原理是利用蛋白质的电性质在电场中的运动方向和速度不同,以达到分离的目的。

因此,电泳法对于纯化蛋白质,测定蛋白质的分子量和判定蛋白质异构体具有重要应用价值。

2.蛋白质的荧光光谱测定蛋白质的荧光光谱是一种非常敏感的检测方法,其原理是利用蛋白质的荧光特性来测定其结构和性质。

荧光光谱可以测定蛋白质的荧光强度和最大荧光波长,识别蛋白质的种类和确定其结构变化,具有优异的选择性和敏感性。

3.蛋白质的质谱测定蛋白质的质谱测定是一种用质谱仪来分析蛋白质的分子质量和肽段的序列的方法。

利用蛋白质的质谱被广泛应用于生物化学研究中,例如识别新的蛋白质,分析蛋白质的修饰,确定蛋白质的结构变化等。

二、核酸的理化性质研究与应用核酸是生命体内储存遗传信息的重要分子,其理化性质的研究与应用对于分子生物学的研究具有重大意义。

1.核酸的UV吸收光谱测定核酸的UV吸收光谱测定是一种用于检测核酸浓度和纯度的方法。

核酸特有的吸收峰可以用来测定其浓度和比率,因此这种方法被广泛用于测定RNA或DNA样品的浓度和纯度。

2.核酸的电泳分离核酸电泳分离是分析DNA或RNA分子量的方法,其原理是利用DNA或RNA 的带电性在支持介质中的运动速度不同达到分离目的。

核酸电泳分离技术被广泛用于分析DNA或RNA的分子量,也被用来检测DNA或RNA的异构体,如转座子或重复序列等。

3.核酸的PCR扩增测定PCR是一种核酸扩增技术,可以将低浓度的DNA或RNA扩增成大量的片段,从而得到足量的样品来进行各种实验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大小与G+C含量成正比。
• 指增色效应达50%时的温度 • 一般DNA Tm 值在85 - 90 C之间
Tm值大小与下列因素有关:
(1)DNA的均一性: (2)G-C含量:
经验公式: XG+C=(Tm-69.3)×2.44
(3)介质中的离子强度:
(二)核酸的复性(renaturation)
H2N
N
NH
N
N
-
2、核苷的解离
•戊糖可增强碱基的酸性解离 •核糖中的羟基也可发生解离
3.核苷酸的解离
•磷酸基使核苷酸具有很强的酸性
O R O P OH
pK 0.7 1.6
' 1
O O P OH
N
OH
R
O
-
pK 5.9 6.5
' 2
O O P O
-
R
O
-
H
CH 2 O
H
– DNA纯品: OD260/OD280 = 1.8 – RNA纯品: OD260/OD280 = 2.0 – 含杂蛋白及苯酚,降低
3.判断DNA是否变性
四、核酸的变性、复性与杂交
(一) 核酸的变性(denaturation)
1、DNA的变性:
在某些理化因素作用下,DNA双链解 开成两条单链的过程。
• 变性DNA在适当的条件下,两条彼此分开的 单链重新缔合成双链——复性。 热变性的DNA经缓慢冷却后即可复性, 这一过程称为退火(annealing) 。
DNA复性
• 分子量越大复性越难; • 浓度越大,复性越容易; • DNA复性也与它本身组成和结构有关 (具有很多重复序列DNA,复性快)。
2、变性的实质
某些理化因素破坏了氢键和碱基堆积力, 使核酸分子高级结构改变、理化性质及 生物活性发生改变。 不涉及磷酸二酯键断裂,一级结构不变
DNA变性的本质是双链间氢键的断裂
降解:核苷酸骨架上3’,5 ’-磷酸二酯键的断裂
3、变性因素
高温(一般>75℃)— 热变性
强酸、碱 — 酸碱变性
甲醛(Agarose中RNA )
• 减色效应(低色效应) —— 复性时紫外吸收减少的现象
(三)
核酸的杂交
变性
复性
不同来源的 DNA分子
DNA-DNA 杂交双链分子
Southern杂交 Northern杂交 Western杂交
' pK 2 9.8
HN
pK1' 4.15 N
H
O H+ N
N
N
N
NH
N
NH
H
O N
N
N
-
HN
pK1' 3.2
H
H2N
HN
' pK 2 9.6
H2N
N
NH
N
NH
H
鸟嘌呤和次黄嘌呤中质子则结合到N7上
O
-
O H+ N
N
pK 3' 12.4
H
H2N
N
-
N
由于变性或降解引起紫外吸收增加的现 象称增色效应
DNA变性
5Hale Waihona Puke DNA热变性的特征变性过程是“跃变式”的,而非渐 变
解链曲线: 连续加热 DNA ,以温度对
A260作图,所得的曲线称为解链曲线。
Tm:DNA变性时,OD260达
到最大值的 50% 时的温度称 为 DNA 的解链温度或融解温 度(Tm)。
CH 2 O
N
-
OH pK 1.5
' 1
-
OH
-
O O P O OH
O O P O O
H
CH 2 O
N
CH 2 O
N
OH
OH
• DNA等电点为4~4.5; • RNA等电点为2~2.5
三、核酸的紫外吸收
• 碱基含有共轭双键
• 最大吸收峰260nm左右
核酸溶液紫外吸收以摩尔磷的吸光度表示,摩尔 磷即相当于摩尔核苷酸。
尿素(PAGE中DNA )
4、变性后理化性质变化
OD260增高 比旋度下降 酸碱滴定曲线改变
粘度下降 浮力密度升高 生物活性丧失
RNA变性:从螺旋到线团之间的转变 RNA的变性引起的性质变化没有DNA明显
完全变性后核酸紫外吸收值增加: • 天然DNA 25-40%、RNA 约1.1% • 实质:碱基暴露
第15章 核酸物理化学性质
一、核酸的水解
酸、碱、酶水解
• 作用于磷酸二酯键和糖苷键 • DNA/RNA对酸/碱的耐受程度有差别
二、核酸的酸碱性质
1、碱基的解离
具有芳香环结构特点 • 能发生酮式/烯醇式、氨式/亚氨式互变 • 嘌呤和嘧啶碱基都具有弱碱性 ______主要是环内氨基的贡献
胞嘧啶中
NH2
+
NH2
NH2
' pK 2 12.5
HN
pK1' 4.6 N
H
N
-
H
O N H O N H
O
N H
尿嘧啶及胸腺嘧啶中
O O O CH3 NH O
NH
pK1' 9.5 NH
N H O N H O
pK1' 9.9 NH
O N H
CH3
O
N H
NH2
+
NH2 N
NH2 N
30.98 A P)= ( WL
ε:摩尔吸光系数 A:吸收值 W:每升溶液磷重量 L :比色杯内径
• OD260的应用: 1. DNA或RNA的定量
– OD260=1.0相当于 • 50μg/ml双链DNA • 40μg/ml单链DNA(或RNA) • 20μg/ml寡核苷酸
2.判断核酸样品的纯度
相关文档
最新文档