八年级数学下册第1章直角三角形1.2直角三角形的性质与判定Ⅱ第2课时习题课件新版湘教版
八年级数学下册第1章直角三角形1.1直角三角形的性质与判定(Ⅰ)第2课时习题课件(新版)湘教版
1.在△ABC中,若BC= 1 AC,则∠A的度数为 ( )
2
A.30°
B.60°
C.90°
D.无法确定
【解析】选D.由题意虽然知道BC=1 AC,而∠B的大小不确定,所
2
以∠A无法确定.
2.如图,在Rt△ABC中,∠C=90°,∠1=120°,
如果BC=1,则AB=
.
【解析】∵在Rt△ABC中,∠C=90°,∠1=120°,
【思考】
在上面的问题中,如果BC= 1 AB,那么∠BAC=30°吗?
2
提示:∠BAC=30°.
【总结】 (1)含有30°角的直角三角形的性质:在直角三角形中,如果一 个内角等于30°,那么它所对的__直__角__边_等于__斜__边_的一半. (2)含有30°角的直角三角形的性质的逆运用:在直角三角形中, 如果一条直角边等于斜边的一半,那么这条直角边所对的锐角 等于_3__0_°_.
∴∠A=∠1-∠C=120°-90°=30°,∴AB=2BC=2×1=2.
答案:2
3.△ABC中,∠A=30°,∠C=90°,若AB=12cm,则BC=
.
【解析】因为∠A=30°,∠C=90°,所以BC= A1 B= 1
22
×12=6(cm).
答案:6cm
4.如图,在等腰直角三角形ABC中,∠C=90°,
2
2.如图,等腰△ABC中,∠BAC=120°,BC中点为D,
过D作DE⊥AB于E,AE=4cm,则AD等于 ( )
A.8 cm
B.7 cm
C.6 cm
D.4 cm
【解析】选A.∵△ABC中,∠BAC=120°,BC中点为D,
∴∠BAD=∠CAD=60°,∵DE⊥AB,∴∠ADE=30°,
八下第1章直角三角形1-1直角三角形的性质和判定Ⅰ第2课时含30°角的直角三角形的性质习题新版湘教版
腰长为12 m,则底边上的高是( B
A.4 m
B.6 m
C.10 m
D.12 m
)
(第6题)
7.(母题:教材P8习题T6)如图,在△ABC中,∠C=90°,点
E是边AC上的点,且∠1=∠2,DE垂直平分边AB,垂足
为点D.若EC=3 cm,则AE的长为 6 cm
∴∠B=30°,∴∠BAC= (180°-∠B)=75°.
②如图(b),AC=BC,AD⊥BC交BC的延长线于点D,
AD在三角形的外部,∴∠CAB=∠B.由题意知AD= BC=
AC,∴∠ACD=30°=∠B+∠CAB.
∵∠B=∠CAB,∴∠BAC= ∠ACD=15°.
③如图(c),AC=AB,AD⊥BC,BC边为等腰三角形底
交BC于点D,E为AB上一点,连接DE,则下列说法错误的
是( D
)
A.∠CAD=30°
B.AD=BD
C.BD=2CD
D.CD=ED
3.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC
绕点C按顺时针方向旋转一定角度得到△DEC,点D恰好在
AB上.
(1)若AC=4,求DE的长度;
【解】在△ABC中,∠ACB=90°,
形状
12. [新考法 分类判断法]如图,在Rt△ABC中,∠C=90°,
∠A=30°,BC=12 cm.动点P从点A出发,沿AB向点B运
动,动点Q从点B出发,沿BC向点C运动.如果动点P以2
cm/s,动点Q以1 cm/s的速度同时出发,设运动时间为t
s,解答下面的问题:
湘教版八年级数学下册教学课件(XJ) 第1章 直角三角形 第2课时 勾股定理的实际应用
解:(1)在Rt△ ABC中,
A
别踩我,我怕疼!
C 根据勾股定理得
AB 32 42 5米,
∴这条“径路”的长为5米. (2)他们仅仅少走了
(3+4-5)×2=4(步). B
二 利用勾股定理求最短距离
问题 在A点的小狗,为了尽快吃到B点的香肠,它选择A 不选择A C B路线,难道小狗也懂数学?
问题 观看下面同一根长竹竿以三种不同的方式进门的情况,并结合曾 小贤和胡一菲的做法,对于长竹竿进门之类的问题你有什么启发?
这个跟我们学的勾股 定理有关,将实际问 题转化为数学问题
典例精析 例1 一个门框的尺寸如图所示,一块长3m,宽2.2m的长方形薄木板能
否从门框内通过?为什么?
分析:可以看出木板横着,竖着都不能通过,
A A
B
解:台阶的展开图如图,连接AB.
在Rt△ABC中,根据勾股定理得
C
B
AB2=BC2+AC2=552+482=5329,
∴AB=73cm.
能力提升: 5. 为筹备迎新晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然 后缠绕红色油纸,如图.已知圆筒的高为108cm,其横截面周长为36cm, 如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?
例4 在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂, 树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?
6 米
8米
A
6 米
C
8米
解:根据题意可以构建一直角三角
形模型,如图.
在Rt△ABC中,
AC=6米,BC=8米,
由勾股定理得
AB AC2 BC2
62 82
B
AB32= 62 +(10+8)2 =360, B2 ∴AB1<AB2<AB3.
数学八年级下册第1章直角三角形1.2直角三角形的性质与判定Ⅱ
练习:如图,一个3米长的梯子AB,斜着靠在竖直的墙 AO上,这时AO为2.5米.
①求梯子的底端B距墙角O多少米?
②如果梯子的顶端A沿墙下滑0.5米至C,请
同学们:
猜一猜,底端也将滑动0.5米吗?
算一算,底端滑动的距离近似值
A
是多少? (结果保留两位小数)
C
O
BD
【例3】如图,铁路上A,B两点相距25km,C,D为两庄,DA⊥AB 于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建 一个土特产品收购站E,使得C,D两村到E站的距离相等,则E站 应建在离A站多少km处?
读一读
我国古代把直角三角形中较短的直角边称为勾,较长的直 角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由三国 时期的数学家赵爽作出的.图1-2是在北京召开的2002年国际数 学家大会(TCM-2002)的会标,其图案正是“弦图”,它标 志着中国古代的数学成就.
图1-1
图1-2
相传2500年前,毕达哥拉斯有一次 在朋友家做客时,发现朋友家的用砖铺 成的地面中反映了直角三角形三边的某 种数量关系.
4.(广东·中考)如图(1),已知小正方形ABCD的面积
为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正 方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如 图(2));···以此下去,则正方形A4B4C4D4的面积 为__________.
C2
C1
D1 D C A B B1
5.在一个直角三角形中, 两边长分别为3,4, 则第三边的长为_5__或____7_
6.求下列图中表示边的未知数x,y,z的值.
81 144
八年级数学下册 第1章 直角三角形 1.3 直角三角形全等的判定课件
1.3 直角三角形全等的判定(pàndìng)
第一页,共十四页。
第1章 直角三角形
1.3 直角三角形全等的判定
(pàndìng)
知识目标 目标突破
总结反思
第二页,共十四页。
1.3 直角三角形全等的判定(pàndìng)
知识(zhī shi)目标
1.在归纳全等三角形判定定理的基础上,结合勾股定理,推导出“HL” 判定定理. 2.根据题意,能综合应用(yìngyòng)直角三角形全等的判定知识作图.
【归纳总结】作直角三角形的原理及作图步骤
利用“HL”判定定理实现直角三角形的位置转移. 作图步骤:(1)作直角.采用作线段垂直平分线的方法或作一个角等 于已知角的方法;(2)作线段相等(xiāngděng).采用截取法,注意一般按
照从直角边到斜边的截取顺序进行.
第九页,共十四页。
1.3 直角三角形全等的判定
第五页,共十四页。
1.3 直角三角形全等的判定(pàndìng)
【归纳总结】 “HL”判定定理(dìnglǐ)的适用条件
(1)在两个直角三角形中; (2)有一对直角边对应相等;
(3)两条斜边对应相等.
第六页,共十四页。
1.3 直角三角形全等的判定(pàndìng)
目标(mùbiāo)二 会作直角三角形
△A′B′C′是否全等?如果全等,请给出证明;如果不全等,请举出反
例.张翔同学的解答过程如下:
第十一页,共十四页。
1.3 直角三角形全等的判定(pàndìng)
解:这两个三角形全等.证明如下:
如图1-3-3,在Rt△ABD和Rt△A′B′D′中,
∵AB=A′B′,AD=A′D′, ∴Rt△ABD≌Rt△A′B′D′,∴BD=B′D′. 同理可证DC=D′C′,∴BC=B′C′.
八年级数学下册第1章直角三角形1.2直角三角形的性质和判定Ⅱ第2课时教学课件湘教版
一个门框尺寸如图所示.
①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过? ②若薄木板长3米,宽1.5米呢? ③若薄木板长3米,宽2.2米呢?为什么?
∵木板的宽2.2米大于1米,
∴ 横着不能从门框C通过;
∵木板的宽2.2米大于2米,
∴竖着也不能从门框通2过m.
∴ 只能试试斜着能否通过,
对 要角 求线 出AACC的 的A长 长1最 ,m大 怎, 样B因 求此呢需?
3.如图,要在高3m,斜坡5m的楼梯表面铺
B
地毯,地毯的长度至少需____7____米
C
A
4.在一棵树的10米高处有两只猴子,一只猴子爬下树走到离 树20米处的池塘的A处.另一只爬到树顶D后直接跃到A处, 距离以直线计算,如果两只猴子所经过的距离相等,则这棵 树高____1_5______米.
5.在Rt△ABC中, ∠C=90°, ∠A ,∠ B, ∠C 的对边分别为 a,b,c. (1) 已知: a=5, b=12, 求c. c=12. (2) 已知: b=6,•c=10 , 求a. a=8. (3) 已知: a=7, c=25, 求b. b=24. (4) 已知: a=7, c=8, 求b . b= 15.
A
解:在Rt△ABC中, ∵∠ACB=90°,
D
∴ AC2+ BC2=AB2, 2.42+ BC2=2.52,
∴BC=0.7m. 由题意得:DE=AB=2.5m,
C
BE
DC=AC-AD=2.4-0.4=2m.
在Rt△DCE中,∵∠DCE=90°, ∴ DC2+ CE2=DE2 ,22+ CE2=2.52, ∴CE=1.5m, ∴BE=1.5-0.7=0.8m≠0.4m.
【最新】湘教版八年级数学下册第一章《直角三角形的性质和判定(Ⅱ)》精品课件.ppt
◆如图,在的正方形网格中,每个小正方形的边 长都为1.请在所给网格中按下列要求画出图形.
. ⑴从点A出发的一
条线段AB,使它
A
的另一个端点落
在格点(即小正
方形的顶点)上,
且长度为 2 2 ;
◆如图,在的正方形网格中,每个小正方形的边 长都为1.请在所给网格中按下列要求画出图形.
. ⑵以⑴中的AB为
A
D
C
B
●邮递员从车站O正东1km的邮局A 出发,先向正北走了3km到B,又向正西走 了4km到C,最后再向正南走了6km到D,那 么最终该邮递员与邮局的距离为多少km?
C
B
OA D
如图,已知:△ABC中,AD是中线 ,AE⊥BC于E.
⑴若AB=12,BC=10,AC=8 ,求:
DE的长度.
A
B
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
B
C
A
D
◆在图中,如果在箱内的A处有一只昆
. 虫,它要在箱壁上爬行到B处,至少要
爬多远?
B
.A
C
D
. B
.
八年级数学下册第1章直角三角形1.3直角三角形全等的判定习题课件
判定方法 SAS HL AAS
ASA或AAS
题组一:应用“HL”证明直角三角形全等 1.如图,四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°, 则∠BCD的度数为 ( )
A.145°
B.130°
C.110°
D.70°
【解析】选C.∵∠ABC=∠ADC=90°, ∴在Rt△ABC与Rt△ADC中, CB=CD,AC=AC, ∴△ABC≌△ADC,又∠BAC=35°, ∴∠ACD=∠ACB=55°, ∴∠BCD=110°.
【思路点拨】(1)根据等腰三角形三线合一的性质可得∠BDE= ∠CDE,然后利用“边角边”证明△BDE和△CDE全等即可. (2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的 两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF= ∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.
【总结】 斜边、直角边定理:___斜__边和一条___直__角__边对应相等的两个
直角三ቤተ መጻሕፍቲ ባይዱ形全等(可以简写成“__斜__边__、__直__角__边_”或“_H__L”).
(打“√”或“×”) (1)“HL”定理适合所有三角形全等的判定. ( × ) (2)判定两个直角三角形全等只能用“HL”定理. ( × ) (3)有两条边对应相等的三角形全等. ( × ) (4)一条直角边和一个锐角对应相等的三角形全等. ( √ )
DC, FD.
∴Rt△EBD≌Rt△CFD(HL),∴BE=CF.
【总结提升】应用“HL”应注意的三个问题 1.“HL”是判定两个直角三角形全等的方法,对于一般的三角 形不成立,在使用时一定要注意其应用的范围. 2.在书写格式上,三角形的前面必须注明“Rt”. 3.在题设中,没有指明但又是直角三角形的,必须依照定义说明 或推证是直角三角形,否则不能直接应用“HL”.
北师大版八年级数学下册第一章1.2.1直角三角形的性质与判定课件
(3)一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等. 上面每组中两个命题的条件和结论也有类似的关系吗?
与同伴交流.
1.在两个命题中,如果一个命题的条件和结论分别 是另一个命题的结论和条件,那么这两个命题称 为互逆命题,其中一个命题称为另一个命题的逆 命题.
2.如果一个定理的逆命题经过证明是真命题,那么 它也是一个定理,其中一个定理称为另一个定理 的逆定理,这两个定理称为互逆定理.
证明: 如图(2) ,作Rt △A′B′C′ ,使
∠A′=90° A′B′=AB, A′C′=AC,
则A′B′ 2+A′C′ 2 =B′C′ 2(勾股定理). ∵AB2+AC2=BC2 , ∴BC2 = B′C′ 2. ∴BC = B′C′. ∴△ABC≌ △A′B′C′ (SSS). ∴ ∠A=∠A′=90°(全等三角形的对应角相等). 因此, △ABC是直角三角形.
例3 判断下列命题的真假,写出逆命题,并判断逆命题 的真假: (1)如果两条直线相交,那么它们只有一个交点; (2)如果a>b,那么a2>b2; (3)如果两个数互为相反数,那么它们的和为零; (4)如果ab<0,那么a>0,b<0.
导引:根据题目要求,先判断原命题的真假,再将原命题 的题设和结论部分互换,写出原命题的逆命题,最 后判断逆命题的真假.
AB·CD,
∴AC·BC=AB·CD.又由方法一知AB=15,
∴CD= 9 12 = 36 ,即点C到AB的距离为 3 6 .
15 5
5
新知小结
应用方程思想求线段的长很常见,而用面积法求 线段的长更是简化了计算步骤,使解题过程变得 简明 易懂.
巩固新知
1 在△ABC中,已知∠A=∠B=45°,BC=3, 求AB的长.
北师大版数学八年级下册第1课时直角三角形的性质与判定课件(共21张)
问题1:直角三角形的两个锐角有怎样的关系?为什么?
△ABC 是直角三角形, ∵∠A +∠B +∠C = 180°, ∴∠A +∠B = 90°. 又∵∠C = 90°,
问题2:如果一个三角形有两个角互余,那 么这个三角形是直角三角形吗? 为什么?
∵∠A +∠B +∠C = 180°, 又∵∠A +∠B = 90°, ∴∠C = 90°. ∴△ABC 是直角三角形 定理1 直角三角形的两个锐角互余.
b ca
S大正方形 = 4S直角三角形 + S小正方形 = 4× 1 ab + c2
2
cb a
= c2 + 2ab, ∴ a2 + b2 + 2ab = c2 + 2ab, ∴ a2 +b2 = c2.
证法2 赵爽弦图
大正方形的面积可以表示为 c 2 ;
也可以表示为
4×1
2
ab
+
(
b
-
a
)
2
.
a
c
一个三角形中相等的边所对的角相等; 一个三角形中相等的角所对的边相等.
视察上面三组命题,你发现了什么?
归纳总结
在两个命题中,如果一个命题的条件和结论 分别是另一个命题的结论和条件,那么这两个命 题称为互逆命题.
如果把其中一个命题叫做原命题,那么另一个命题 就叫做它的逆命题.
想一想
你能写出命题“如果两个有理数相等,那么它们
上面两个定理的条件和结 论有什么关系?
3 互逆命题与互逆定理
合作探究
视察上面第一个定理和第二个定理,它们的条件 和结论之间有怎样的关系?
【最新】湘教版八年级数学下册第一章《直角三角形的性质和判定(Ⅱ)》公开课课件 (2).ppt
其实我国早在三千多年前就已经知道直角三 角形的上述性质,由于古人称直角三角形的直角 边中较短的一边为勾,较长的一边为股,斜边为 弦(如图1-14),因此这一性质被称为勾股定理.
弦 勾
股
勾股定理揭示了直角三角形三边之间的关系. 在直角三角形中,若已知直角三角形任意两条边长, 我们可以根据勾股定理,求出第三边的长.
由图1-10 可知, S1 = 32, S2 = 42 , 为了求 S3 , 我可以先算出红色区域 内大正方形的面积, 再减去4 个小三 角形的面积, 得 S3 = 52.
∵ 32 + 42 = 52, ∴ S1 + S2 = S3 .
图1-10
图1-10
在图1-10 中, S1 + S2 =S3 , 即BC2 +AC2 =AB2 , 那么是否对所有的直角三角形,都有两直角边的平方和 等于斜边的平方呢?
图1-11
步骤2 再剪出1 个边长为c 的正方形,如图1-12所示.
图1-12
步骤3 把步骤1和步骤2中剪出来的图形拼成 如图1-13的图形.
由于△DHK≌△EIH, ∴ ∠2 =∠4. 又∵ ∠1 +∠2 = 90°, ∴ ∠1 +∠4 = 90°.
图1-13
又∠KHI = 90°, ∴ ∠1 +∠KHI +∠4 = 180°, 即D,H,E 在一条 直线上. 同理E,I,F在一条直线上; F ,J,G 在一条直线上; G ,K,D 在一条直线上. 因此拼成的图形是正方形DEFG,它的边长为(a + b), 它的面积为(a + b)2 .
图1-13
又正方形DEFG 的面积为c2 +4 ·1 a b ,
肥西县七中八年级数学下册第1章直角三角形1.2直角三角形的性质和判定Ⅱ第2课时勾股定理的实际应用教
1.2 直角三角形的性质和判定(Ⅱ)第2课时勾股定理的实际应用【知识与技能】1.勾股定理从边的方面进一步刻画直角三角形的特征,学生将在原有的基础上对直角三角形有更深刻的认识和理解.2.掌握直角三角形三边关系——勾股定理及直角三角形的判别条件——勾股定理的逆定理.【过程与方法】1.放手学生从多角度地了解勾股定理.2.提高学生亲自动手的能力.【情感态度】1.学会运用勾股定理来解决一些实际问题,体会数学的应用价值.2.尽可能的给学生提供有关勾股定理的材料,给予交流的机会,并在与他人交流的过程中,敢于发表不同的见解,在交流活动中获得成功的体验.【教学重点】应用勾股定理有关知识解决有关问题.【教学难点】灵活应用勾股定理有关知识解决有关问题.一、创设情境,导入新课问题勾股定理的内容是什么?它揭示了直角三角形三边之间的关系,今后我们来看看这个定理的应用.【教学说明】教师创设问题,有针对性地复习了勾股定理,对本节课的应用勾股定理解决实际的问题打下了坚实的基础.教师讲课前,先让学生完成预习.二、思考探究,获取新知问题勾股定理的应用思考教材第12页“动脑筋”【教学说明】提出问题,提供学生参与数学活动的时间与空间,调动学生的观察能动性,引导学生建立数学模型,提高学生分析问题、解决问题的能力.例:教材第12页例2【教学说明】以古代的数学问题为背景,一方面及时巩固勾股定理的运用,另一方面让学生感受到数学文化.三、运用新知,深化理解1.直角三角形中已知其中的两条边长是4和5,则第三条边等于()A.3B. 41C.3或41D.无法确定2.在Rt△ABC中,AB=c,BC=a,AC=b,∠B=90°.①已知a=5,b=12,求c;②已知a=20,c=29,求b.3.如图,圆柱形无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛,所能走的最短路线的长度.【教学说明】由学生独立完成,以加深对知识的理解和运用,便于了解学生掌握情况,给有困难的学生给予指导,及时纠正他们出现的错误,并改正强化,在完成上述题目后,教师引导学生完成练习册中本课时的对应训练部分.答案:1.C3.解:将曲面沿AB展开,如图,过C作CE⊥AB于E,在Rt△ECF中,∠E=90°,EF=18-1-1=16(cm ),CE=1/2×60=30(cm ),由勾股定理,得CF=22CE EF +=223016+=34(cm )四、师生互动,课堂小结通过本节课的学习,给同学们谈谈你的收获是什么?你认为自己还在哪些问题上存在疑问?与大家共同交流.【教学说明】学生自已总结归纳加深印象.引导学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.1.布置作业:习题1.2中的第5、9题.2.完成练习册中本课时练习的作业部分.就练习的情况来看,一方面学生简单机械地套用了a 2+b 2=c 2,没有分析问题的本质所在;另一方面对于曲面转化为平面问题和在实际问题中抽象出数学模型还存在较大的困难,在今后的教学中要通过实例不断训练提高,以达到全面提高.分式的乘除【课题】分式的乘除【教学目的】熟练地进行分式乘除法的混合运算. 利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的.课堂练习以学生自己讨论为主,使学生对所做的题目作自我评价, 【教学重难点】重点:熟练地进行分式乘除法的混合运算难点:熟练地进行分式乘除法的混合运算. 关键是点拨运算符号问题、变号法则.【课时安排】1课时 【教学方法】【教学步骤】或【课堂教学设计】 第一步:课堂引入计算:(1))(xy yx xy -⋅÷ (2) )21()3(43xyx yx -⋅-÷第二步:讲授新课(P17)例4.计算[分析] 是分式乘除法的混合运算. 分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.(补充)例.计算(1))4(3)98(23232b x b a xy y x ab -÷-⋅=x b b a xy y x ab 34)98(23232-⋅-⋅ (先把除法统一成乘法运算) =xb b a xy y x ab 349823232⋅⋅ (判断运算的符号) =32916ax b (约分到最简分式) (2) x x x x x x x --+⋅+÷+--3)2)(3()3(444622=x x x x x x x --+⋅+⋅+--3)2)(3(31444622 (先把除法统一成乘法运算)=x x x x x x --+⋅+⋅--3)2)(3(31)2()3(22 (分子、分母中的多项式分解因式)=)3()2)(3(31)2()3(22---+⋅+⋅--x x x x x x=22--x 第三步:随堂练习计算(1))2(216322b a a bc a b -⋅÷ (2)103326423020)6(25ba c c ab b ac ÷-÷ (3)x y y x x y y x -÷-⋅--9)()()(3432 (4)22222)(xyx xy y xy x x xy -⋅+-÷-答案:(1)c a 432- (2)485c- (3)3)(4y x - (4)-y第四步:课堂小结本节课主要讲授分式乘除法的混合运算,分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的.第五步:课后练习 计算(1))6(4382642z yx yx y x -÷⋅-(2)9323496222-⋅+-÷-+-a a b a b a a (3)229612316244yyy y y y --÷+⋅-+- (4)xyy xyy x xy x xy x -÷+÷-+222)( 答案: (1)336y xz (2) 22-b a (3)122y - (4)x1-【作业布置】第十四章整式的乘法与因式分解14.1整式的乘法课时4 整式的除法【知识与技能】(1)掌握同底数幂的除法法则.(2)理解不等于0的数的0次幂的定义.(3)理解单项式除以单项式,多项式除以单项式的法则,并会进行简单的相关运算.【过程与方法】通过探索整式的除法的一般规律,能熟练地进行有关的计算.【情感态度与价值观】让学生自主探索整式的除法法则,体验通过转化构建新知识体系,培养学生大胆猜想、善于思考、归纳的数学思维品质和创新精神.整式的除法法则的运用.整式的除法法则的运用.多媒体课件.师生共同复习回顾:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即a m·a n=a m+n(m,n都是正整数).教师接着出示问题:一张数码照片的文件大小是28 KB,一个存储量为26 MB(1 MB=210 KB)的移动存储器能存储多少张这样的数码照片?学生先思考,再小组内讨论解决:移动存储器的存储量单位与文件大小的单位不一致,所以要先统一单位.移动存储器的容量为26×210=26 624(KB).所以它能存储这种数码照片的数量为(26 624÷28)张.教师:我们已经学习了整式的加法、减法、乘法运算.在整式的运算中,有时还会遇到两个整式相除的情况.由于除法是乘法的逆运算,因此我们可以利用整式的乘法来理解和学习整式的除法.(板书课题)探究1:同底数幂的除法教师让学生解决以下问题:1.用你熟悉的方法计算.2.概括.在学生讨论、计算的基础上,教师提问:你们能发现什么?由学生回答,教师板书,发现:你能根据除法的意义来说明这些运算结果是怎么得到的吗?3.分组讨论.各组选出一名代表来回答问题,师生达成共识,除法是乘法的逆运算,所以除法的问题实际上是“已知乘积和一个因数,去求另一个因数”的问题,于是上面的问题可以转化为乘法问题加以解决,即:师生共同总结:一般地,我们有a m÷a n=a m-n,并且m≥n,m,n为正整数,即同底数幂相除,底数不变,指数相减.(教师板书)4.利用除法的意义说明这个法则的算理.让学生仿照问题的解决过程,讲清算理,并请几名学生代表回答,教师加以评析.5.让学生互相讨论.当m=n时,a m÷a n的结果是多少?能总结出什么规律?师生共同总结:当m=n时,a m÷a n=a m-m=a0=1(a≠0),即任何不等于0的数的0次幂都等于1.探究2:单项式除以单项式与多项式除以多项式教师引入:利用同底数幂的除法法则,我们可以计算单项式与单项式的除法,进一步探究多项式与单项式的除法,下面我们先来探讨单项式与单项式的除法.教师出示问题:木星的质量约是1.90×1024吨,地球的质量约是5.98×1021吨.你知道木星的质量约为地球质量的多少倍吗?学生思考后回答:这是除法运算,木星的质量约为地球质量的[(1.90×1024)÷(5.98×1021)]倍.接着教师让学生解决以下问题:1.计算(1.90×1024)÷(5.98×1021),并说说你计算的根据是什么.2.你能利用1中的方法计算下列各式吗?3.你能根据2说说单项式除以单项式的运算法则吗?讨论结果展示:可以从两个思路考虑:(思路一)从乘法与除法互为逆运算的角度去考虑.×1021×( )=1.90×1024÷5.98≈0.318,所求单项式的幂值部分应包含1024÷1021,即103,由此可知 5.98×1021×(0.318×103)≈1.90×1024.所以(1.90×1024)÷(5.98×1021)≈0.318×103.2.可以想象2a·( )=8a3,根据单项式与单项式相乘的运算法则,可以考虑:8÷2=4,a3÷a=a2,即2a·(4a2)=8a3.所以8a3÷2a=4a2.同样的道理可以得出所以(思路二)从除法的意义去考虑.上述两种算法有理有据,所以结果都正确.教师引导学生观察上述几个式子的运算过程,总结出它们的共同特征:(1)都是单项式除以单项式.(2)运算的结果都是把系数、同底数幂分别相除后作为商的因式;对于只在一个被除式中含有的字母,则连同它的指数一起作为商的一个因式.(3)单项式相除是在同底数幂的除法的基础上进行的.教师出示教材P103例7:学生自主解答.教师:那么对于多项式除以单项式,同学们可仿照上述的探究过程,自己尝试.学生小组讨论.师生共同总结:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.教师出示教材P103例8:教师引导学生共同分析,教师板书(1),请2名学生代表上台板演(2)(3).接着教师让学生完成教材P104练习第1,2,3题.(学生独立完成之后,教师点评) 多项式除以单项式的结果仍然是多项式.。
湘教版八年级数学下册第一章《直角三角形的性质和判定(Ⅱ)》优质公开课课件
(13) (1)
* * (2) * * (3)
(12) (11)
助手分别握住第4个结和第8个结,拉 紧绳子,就会得到一个直角三角形,其
(10) 直角在第4个结处. (9)
* ** (4)
* * * * * (5) (6)
(7) (8)
你想知道这是什么道理吗?
小组探究
试用小塑料棒拼出三边长度分别为如 下数据的三角形,猜想它们是些什么形状 的三角形?(按角分类)
??? 那么这个三角形是直角三角形吗
你知道吗
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
* * * * * *据说*,古埃*及人*曾用*下面*的方*法画*直角:
他们用13个等距离的结把一根绳
子分成等长的12段,一个工匠同时握
住绳子的第1个结和第13个结,两个
• 12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 • 13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/5/52022/5/5May 5, 2022 • 14、孩子在快乐的时候,他学习任何东西都比较容易。 15、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。
忆一忆
直角三角形有哪些性质?
(1)有一个角是直角; (2)两个锐角的和为90°(互余 ); (3)两直角边的平方和等于斜边的平方 .
反之,一个三角形满足什么条件 才能是直角三角形呢?
想一想 一个三角形满足什么条件才能是直角三角形?
(1)有一个角是直角的三角形是直角三角形; (2)有两个角的和为90°的三角形是直角三角形; (3)如果一个三角形的三边a ,b ,c 满足a2 +b 2=c2 ,
湘教版八年级数学下册第一章《 直角三角形的性质和判定(Ι)》优质课课件
射线 C D 交AB于D , 使 ∠ DCA= ∠A ,则 CD=AD.
图1-3
图1-4
又∵ ∠A +∠B=90° , D C A + D C B 9 0 ,
图1-2
•11、即使是普通孩子,只要教育得法,也会成为不平凡的人。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、儿童是中心,教育的措施便围绕他们而组织起来。 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、生活即教育,社会即学校,教学做合一。 •16、当在学校所学的一切全都忘记之后,还剩下来的才是教育。2021年10月21日星期四2021/10/212021/10/212021/10/21 •17、播种行为,可以收获习惯;播种习惯,可以收获性格;播种性格,可以收获命运。2021年10月 2021/10/212021/10/212021/10/2110/21/2021 •18、我们发现了儿童有创造力,认识了儿童有创造力,就须进一步把儿童的创造力解放出来2021/10/212021/10/21October 21, 2021 •19、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2021/10/212021/10/212021/10/212021/10/21
•
结论
由此得到:
有两个角互余的三角形是直角三角形.
探究
如图1-3,画一个Rt△ABC, 并作出斜边AB上的中 线CD,比较线段CD 与线段AB 之间的数量关系,你能 得出什么结论?
2019年春八年级数学下册第1章直角三角形1.2直角三角形的性质与判定(Ⅱ)第2课时勾股定理的应用课
(2)设 EN=DM=BF=x 米,则 BM=DF=CF=(7-x)米. ∵EN⊥AB,∠EAB=30°,∴AE=2x 米, ∴AN= AE -EN = 3x 米. ∵AN+MN+BM=AB,即 3x+2+(7-x)=6+3 ∴EN=3 米,AN=3 3米,DF=CF=4 米. 3+3) 3,解得 x=3,
目标二 会构造直角三角形应用勾股定理解决问题
例 2 教材补充例题 图 1-2-5 是某学校主楼梯从底楼到二楼的 楼梯截面图,已知 BC=7 米,AB=(6+3 3)米,中间平台 DE 与 地面 AB 平行,且 DE 的长度为 2 米,DM,EN 为平台的两根支柱,
DM, EN 垂直于 AB, 垂足分别为 M, N, ∠EAB=30°, ∠CDF=45°,
2 2 2 2
第2课时 勾股定理的应用
【归纳总结】建立直角三角形模型解决实际问题的一般步骤 (1)读懂题意,建立数学模型; (2)分析数量关系,数形结合,正确标图,将已知条件体现到图 形中,充分利用图形的功能和性质; (3)应用勾股定理进行计算或建立等量关系,构建方程求解; (4)解决实际问题.
第2课时 勾股定理的应用
线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.
第2课时 勾股定理的应用
解:如图,设大树高为 AB=10 m,小树高为 CD=4 m,过点 C 作 CE⊥AB 于点 E, 则四边形 EBDC 是长方形,∴EB=4 m,EC=8 m,AE=AB-EB=10-4=6(m).连 接 AC,在 Rt△AEC 中,AC= AE +EC = 6 +8 =10(m),故小鸟至少飞行 10 m.
路程为5 cm.
内部文件,请勿外传
楼梯宽度为 3 米.
图1-2-5