全等三角形与坐标系

合集下载

易错04 三角形全等问题的分类讨论中漏解从而产生易错(解析版)-2021学年八上期末提优训练

易错04 三角形全等问题的分类讨论中漏解从而产生易错(解析版)-2021学年八上期末提优训练

12020-2021学年八年级数学上册期末综合复习专题提优训练(人教版)易错04 三角形全等问题的分类讨论中漏解从而产生易错【典型例题】1.(2020·江西南昌市·八年级期中)如图,已知在△ABC 中,AB =AC ,BC =12厘米,点D 为AB 上一点且BD =8厘米,点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,设运动时间为t ,同时,点Q 在线段CA 上由C 点向A 点运动.(1)用含t 的式子表示PC 的长为 ;(2)若点Q 的运动速度与点P 的运动速度相等,当2t =时,三角形BPD 与三角形CQP 是否全等,请说明理由; (3)若点Q 的运动速度与点P 的运动速度不相等,请求出点Q 的运动速度是多少时,能够使三角形BPD 与三角形CQP 全等?【答案】解:(1) 由题意得出:122BC BP t ==,122PC BC BP t -=-=,故答案为:()122cm t -(2)当2t =时,224BP CQ ==⨯=厘米,8BD =厘米.2又,12PC BC BP BC =-=厘米,1248PC ∴=-=厘米,PC BD ∴=,又AB AC =,B C ∴∠=∠,在BPD △和CQP 中,BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩,()BPD CQP SAS ∴≌;③P Q v v ≠,BP CQ ∴≠,又,BPD CPQ B C ∠=∠≌,6cm,8cm BP PC CQ BD ∴====,∴点P ,点Q 运动的时间6322PB t ===秒, 83Q CQ V t ∴==厘米/秒. 即点Q 的运动速度是83厘米/秒时,能够使三角形BPD 与三角形CQP 全等. 【点睛】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,题目比较好,但是有一定的难度.【专题训练】一、填空题1.(2020·黑龙江齐齐哈尔市·八年级期中)在Rt△ABC中,∠C=90°,AC=15cm,BC=8cm,AX⊥AC于A,P、Q两点分别在边AC和射线AX上移动.当PQ=AB,AP=_____时,△ABC和△APQ全等.34 【答案】8cm 或15cm解:①当P 运动到AP =BC 时,如图1所示:在Rt △ABC 和Rt △QP A 中,AB QPBC PA =⎧⎨=⎩,∴Rt △ABC ≌Rt △QP A (HL ),即AP =B =8cm ;②当P 运动到与C 点重合时,如图2所示:在Rt △ABC 和Rt △PQA 中,5AB PQ AC PA=⎧⎨=⎩, ∴Rt △ABC ≌Rt △PQA (HL ),即AP =AC =15cm .综上所述,AP 的长度是8cm 或15cm .故答案为:8cm 或15cm .【点睛】本题考查了三角形全等的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键,注意分类讨论,以免漏解. 2.(2020·四川成都市·天府四中七年级期中)如图,ABC ∆中,90,6,8ACB ACcm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.【答案】如图1所示:PEC∆与QFC∆全等,PC QC,683∴-=-t t,解得:1t=;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或7 2.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.3.(2020·宁波市曙光中学九年级月考)如图,已知点(44)A-,,一个以A为顶点的45︒角绕点A旋转,角的两边分别交x轴正半轴,y轴负半轴于E、F,连接EF.当△AEF直角三角形时,点E的坐标是________.67 【答案】(8)0,或(40),①如图所示:90AFE ︒∠=,∴90AFD OFE ︒∠+∠=,∵90OFE OEF ︒∠+∠=,∴AFD OEF ∠=∠,∵90AFE ︒∠=,45EAF ︒∠=,∴45AEF EAF ︒∠==∠,∴AF EF =,在△ADF 和FOE 中,ADE FOEAFD OEF AF EF∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△FDE ,8∴4FO AD ==,8OE DF OD FO ==+=,∴(40)E ,. ②当90AEF ︒∠=时,同①的方法有:8OF =,4OE =,∴(40)E ,, 综上所述,满足条件的点E 坐标为(8,0)或(4,0)故答案为:(8,0)或(4,0)【点睛】本题考查三角形全等性质和判定、等腰直角三角形的性质,注意直角三角形按角分类讨论分三种情况,不要漏解. 4.(2020·常州市北郊初级中学八年级期中)如图,在△ABC 中,AB =AC =12,BC =8,D 为 AB 的中点,点 P 在线段 BC 上以每秒2 个单位的速度由 B 点向 C 点运动,同时,点 Q 在线段 CA 上以每秒 x 个单位的速度由C 点向 A 点运动.当△BPD 与以 C 、Q 、P 为顶点的三角形全等时,x 的值为_____.【答案】2 或 3解:设经过 t 秒后,使△BPD 与△CQP 全等.∵AB =AC =12,点 D 为 AB 的中点.∴BD =6.∵∠ABC =∠ACB .∴要使△BPD 与△CQP 全等,必须 BD =CP 或 BP =CP .9即 6=8﹣2t 或 2t =8﹣2t .1t =1,2t =2.当t =1 时,BP =CQ =2,2÷1=2.当t =2 时,BD =CQ =6,6÷2=3.即点 Q 的运动速度是 2 或 3,故答案为:2 或 3.【点评】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.5.(2020·铜陵市第二中学)如图,5AB cm =,4AC BD cm ==,60CAB DBA ∠=∠=︒.点E 沿线段AB 由点A 向点B 运动,点F 沿线段BD 由点B 向点D 运动,E 、F 同两点时出发,它们的运动时间记为t 秒.已知点E 的运动速度是1cm s ,如果顶点是A 、C 、E 的三角形与顶点是B 、E 、F 的三角形全等,那么点F 的运动速度为______cm s .【答案】1或85解:根据题意,∵60CAB DBA ∠=∠=︒,当AE =BF ,AC =BE 时,△ACE ≌△BEF ,∵AE =t ,5BE t =-,AC =4,∴54t -=,∴1t =,∴BF=AE=1,∴点F的运动速度为1cm s;当AE=BE,AC=BF时,△ACE≌△BFE,∴1155222 AE BE AB===⨯=,∴52 t=;∴点F的速度为:584/25cm s ÷=;综合上述,点F的运动速度为1或85cm s.【点睛】本题考查了全等三角形的判定和性质,点的运动问题,解题的关键是熟练掌握全等三角形的判定和性质,注意运用分类讨论的思想,数形结合的思想进行解题.6.(2020·全国八年级单元测试)如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E 为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为_____厘米/秒时,能够使△BPE与以C、P、Q三点所构成的三角形全等.【答案】3或9 2解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∵B=∵C,10∵∵当BE=CP=6,BP=CQ时,∵BPE与∵CQP全等,此时,6=8﹣3t,解得t=2 3,∵BP=CQ=2,此时,点Q的运动速度为2÷23=3厘米/秒;∵当BE=CQ=6,BP=CP时,∵BPE与∵CQP全等,此时,3t=8﹣3t,解得t=4 3,∵点Q的运动速度为6÷43=92厘米/秒;故答案为3或9 2.【点睛】本题考查了全等三角形的性质和判定的应用,主要考查学生的理解能力和计算能力.7.(2020·河南商丘市·八年级期中)在平面直角坐标系中,点A(4,0)、B(3,2),点P在坐标平面内,以A、O、P为顶点的三角形与∵AOB全等(点P与B不重合),写出符合条件的点P的坐标________________.【答案】(3,-2)或(1,2)或(1,-2)如图:11符合条件的点P有3个,(3,-2)或(1,2)或(1,-2)故答案为:(3,-2)或(1,2)或(1,-2).【点睛】本题考查坐标与图形性质、全等三角形的判定等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.(2020·广西玉林市·八年级期中)已知点A,B的坐标分别为(2,2),(2,4),O是原点,以A,B,P为顶点的三角形与△ABO全等,写出所有符合条件的点P的坐标:_______________.【答案】(4,0)(0,6)(4,6)解:如图,符合条件的点P的坐标有三种情况,分别是:(4,0)、(0,6)、(4,6),故答案为:(4,0)、(0,6)、(4,6).1213【点睛】本题考查三角形全等的判定与直角坐标系的综合运用,根据三角形全等的判定画出全等三角形后写出顶点坐标是解题关键. 9.(2020·江西省宜春实验中学八年级期中)如图,在△ABC 中,点A 的坐标为(0,1),点B 的坐标为(0,4),点C 的坐标为(4,3),点D 在平面直角坐标系中且不与C 点重合,若ABD △与△ABC 全等,则点D 的坐标是_________.【答案】(4,2)或(4,2)-或(4,3)-解:当D 点与C 点关于y 轴对称时,△ABD 与△ABC 全等,此时D 点坐标为∵-4∵3∵;当点D 与点C 关于AB 的垂直平分线对称时,△ABD 与△ABC 全等,此时D 点坐标为∵4∵2∵;点D 点与∵4∵2∵关于y 轴对称时,△ABD 与△ABC 全等,此时D 点坐标为∵-4∵2∵;综上所述,D 点坐标为∵-4∵3∵∵∵4∵2∵∵∵-4∵2∵.故答案为:∵-4∵3∵∵∵4∵2∵∵∵-4∵2∵.【点睛】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法.也考查了坐标与图形性质.10.(2020·广州市第五中学八年级期中)如图,CA⊥AB,垂足为点A,AB=8cm,AC=4cm,射线BM⊥AB,垂足为点B,一动点E从A点出发,以2cm/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动_________秒时,点B、D、E组成的三角形与点A、B、C组成的三角形全等.【答案】0或2或6或8△≌BDE,解:①当E在线段AB上,AB=BE时,ACB这时E在A点未动,因此时间为0秒;△≌BED,②当点E在线段AB上,AC=BE时,ACB∵AC=4cm,∴BE=4cm,∴AE=AB-BE=8-4=4cm,∴点E的运动时间为4÷2=2(秒);△≌BED,③当E在BN上,AC=BE时,ACB∵AC=4cm,∴BE=4cm,∴AE=AB+BE=8+4=12cm,∴点E的运动时间为12÷2=6(秒);14△≌BDE,④当E在BN上,AB=BE时,ACB∵AB=8cm,∴BE=8cm,∴AE=AB+BE=8+8=16cm,∴点E的运动时间为16÷2=8(秒),综上所述,当点E运动0或2或6或8秒时,点B、D、E组成的三角形与点A、B、C组成的三角形全等.故答案为:0或2或6或8.【点睛】本题考查了直角三角形全等的判定,解题的关键是熟练的掌握直角三角形全等的判定定理.二、解答题11.(2020·兴化市乐吾实验学校八年级月考)如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).Array(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】1516解:(1)当1t =时,1AP BQ ==,3BP AC ==,又90A B ∠=∠=︒,在ACP ∆和BPQ ∆中,AP BQA B AC BP=⎧⎪∠=∠⎨⎪=⎩()ACP BPQ SAS ∴∆≅∆.ACP BPQ ∴∠=∠,90APC BPQ APC ACP ∴∠+∠=∠+∠=︒.90CPQ ∴∠=︒,即线段PC 与线段PQ 垂直.(2)①若ACP BPC ∆≅∆,则AC BP =,AP BQ =,则34tt xt =-⎧⎨=⎩,解得:11t x =⎧⎨=⎩;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,则34xtt t=⎧⎨=-⎩,解得:232 tx=⎧⎪⎨=⎪⎩;综上所述,存在11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩使得ACP∆与BPQ∆全等.【点睛】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等.在解题时注意分类讨论思想的运用.12.(2020·长春市第九十七中学校八年级期中)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=4cm,点P从点A出发,沿A→B→A方向以3cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点A时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)求证:AB//DE.(2)写出线段AP的长(用含t的式子表示).(3)连结PQ,当线段PQ经过点C时,求t的值.【答案】(1)证明:在ABC 和EDC中,1718 AC ECACB ECD BC DC=⎧⎪∠=∠⎨⎪=⎩, ∵ABC ∵EDC (SAS ),∵∵A =∵E ,AB =DE =4∵AB //DE .(2)解:当0≤t ≤43时,AP =3tcm ; 当43<t ≤83时,BP =(3t ﹣4)cm ,则AP =4﹣(3t ﹣4)=(8﹣3t )cm ;综上所述,线段AP 的长为3tcm 或(8﹣3t )cm ;(3)解:由(1)得:∵A =∵E ,ED =AB =4cm ,在ACP 和ECQ 中,A EAC CE ACP ECO∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵ACP ∵ECQ (ASA ),∵AP =EQ ,当0≤t ≤43时,3t =4﹣t ,解得:t =1; 当43<t ≤83时,8﹣3t =4﹣t ,解得:t =2;19综上所述,当线段PQ 经过点C 时,t 的值为1s 或2s .【点睛】本题考查了全等三角形的判定与性质、平行线的判定以及一元一次方程的应用等知识;证明三角形全等是解题的关键,属于中考常考题型.13.(2020·湖南长沙市·八年级月考)如图,已知△ABC 中,20cm AB AC ==,16cm BC =,点D 为AB 的中点.(1)如果点P 在线段BC 上以6cm /s 的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?【答案】(1)①因为t =1(秒),所以BP =CQ =6(厘米)∵AB =20,D 为AB 中点,20∴BD =10(厘米)又∵PC =BC −BP =16−6=10(厘米)∴PC =BD ,∵AB =AC ,∴∠B =∠C ,在△BPD 与△CQP 中,BP CQ B C PC BD =⎧⎪∠=∠⎨⎪=⎩,∴△BPD ≌△CQP (SAS ),②因为V P ≠V Q ,所以BP ≠CQ ,又因为∠B =∠C ,要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ , 故CQ =BD =10.所以点P 、Q 的运动时间t =84663BP ==(秒), 此时V Q =1043CQ t ==7.5(厘米/秒); (2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程, 设经过x 秒后P 与Q 第一次相遇,依题意得152x=6x+2×20,解得x=803(秒)此时P运动了803×6=160(厘米)又因为△ABC的周长为56厘米,160=56×2+48,所以点P、Q在AB边上相遇,即经过了803秒,点P与点Q第一次在AB边上相遇.【点睛】此题考查了三角形全等的判定和性质,等腰三角形的性质,以及数形结合思想的运用,解题的根据是熟练掌握三角形全等的判定和性质.21。

全等三角形的相关模型总结

全等三角形的相关模型总结

全等的相关模型总结⼀一、⻆角平分线模型应⽤用1.⻆角平分性质模型:辅助线:过点G作GE射线AC(1).例例题应⽤用:①如图1,在,那么点D到直线AB的距离是cm.②如图2,已知,,..图1图2①2(提示:作DE AB交AB于点E)②,,,,.(2).模型巩固:练习⼀一:如图3,在四边形ABCD中,BC>AB,AD=CD,BD平分..求证:图3练习⼆二:已知如图4,四边形ABCD中,图4练习三:如图5,交CD于点E,交CB于点F.(1)求证:CE=CF.(2)将图5中的△ADE沿AB向右平移到的位置,使点落在BC边上,其他条件不不变,如图6所示,是猜想:于CF⼜又怎样的数量量关系?请证明你的结论.图5图6练习四:如图7,,P是AB的中点,PD平分∠ADC.求证:CP 平分∠DCB .AD ECBP 2143图7练习五:如图8,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,⾃自D 作DE ⊥AB ,DF ⊥AC ,垂⾜足分别为E ,F .求证:BE=CF .图8练习六:如图9所示,在△ABC 中,BC 边的垂直平分线DF 交△BAC 的外⻆角平分线AD 于点D ,F 为垂⾜足,DE ⊥AB 于E ,并且AB>AC 。

求证:BE -AC=AE 。

图9练习七:如图10,D 、E 、F 分别是△ABC 的三边上的点,CE=BF ,且△DCE 的⾯面积与△DBF 的⾯面积相等,求证:AD 平分∠BAC 。

2.⻆角平分线+垂线,等腰三⻆角形⽐比呈现辅助线:延⻓长ED交射线OB于F辅助线:过点E作EF∥射线OB (1).例例题应⽤用:①.如图1所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F。

求证:证明:延⻓长BE交AC于点F。

②.已知:如图2,在,分析:此题很多同学可能想到延⻓长线段CM,但很快发现与要证明的结论毫⽆无关系。

⽽而此题突破⼝口就在于AB=AD,由此我们可以猜想过C点作平⾏行行线来构造等腰三⻆角形.证明:过点C作CE∥AB交AM的延⻓长线于点E.例例题变形:如图,,,求证:①②(3).模型巩固:练习⼀一、如图3,ΔABC是等腰直⻆角三⻆角形,∠BAC=90°,BD平分∠ABC交AC于点D,CE垂直于BD,交BD的延⻓长线于点E。

证明全等三角形的判定方法

证明全等三角形的判定方法

证明全等三角形的判定方法一、SSS 判定法(边边边法)SSS 判定法是判定全等三角形最直接的方法之一。

它指的是如果两个三角形的三条边分别相等,则这两个三角形全等。

例如,对于三角形 ABC 和三角形 DEF,如果 AB = DE,AC = DF,BC = EF,则可以断定三角形 ABC 全等于三角形 DEF。

二、SAS 判定法(边角边法)SAS 判定法是另一种常见的全等三角形判定方法。

它指的是如果两个三角形的两条边和夹角分别相等,则这两个三角形全等。

举例来说,如果在三角形 ABC 和三角形 DEF 中,已知 AB = DE,AC = DF,且角 A = 角 D,则可以得出三角形 ABC 全等于三角形 DEF。

三、ASA 判定法(角边角法)ASA 判定法也是证明三角形全等的有效方法。

它指的是如果两个三角形的两个角和夹在它们之间的边分别相等,则这两个三角形全等。

比如,若在三角形 ABC 和三角形 DEF 中,已知角 A = 角 D,角B = 角 E,且边 AB = 边 DE,则可以推断三角形 ABC 全等于三角形DEF。

四、AAS 判定法(角角边法)AAS 判定法与ASA 判定法类似,也是基于角和边的对应关系来判定全等三角形。

它指的是如果两个三角形的两个角和它们之间的一条非夹边分别相等,则这两个三角形全等。

例如,在三角形 ABC 和三角形 DEF 中,已知角 A = 角 D,角 B = 角 E,且边 AC = 边 DF,则可以得出三角形 ABC 全等于三角形DEF。

五、HL 判定法(斜边直角边法)HL 判定法适用于两个直角三角形的判定。

它指的是如果两个直角三角形的斜边和一个直角边相等,则这两个三角形全等。

举例来说,若在直角三角形 ABC(其中角C = 90°)和直角三角形 DEF(其中角F = 90°)中,已知斜边 AB = 斜边 DE,且直角边AC = 直角边 DF,则可以推断三角形 ABC 全等于三角形 DEF。

全等三角形的知识点

全等三角形的知识点

全等三角形的知识点知识点一:全等三角形的性质例1:如图,AC=DC,BC=EC,请你添加一个条件___________,使得ΔABC ≌ΔDEC. D AE C (例1) D (例2)知识点二:全等三角形的判定例2:如图,点B,F,C,E在一条直线上,AB‖ED,AC‖FD,那么添加下列一个条件后,仍无法判定ΔABC≌ΔDEC的是()A.AB=DEB.AC=DFC.∠A=∠DD.BF=EC知识点三:尺规做全等三角形方法:(1)SSS (2)SAS (3)ASA (4)AAS注:多作边,少作角。

知识点四:利用全等三角形,等腰三角形的性质求三角形中的角例3:如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点(1)求证:ΔAEC ≌Δ(2)若∠1=42°,求∠BDE 的度数 A D C (例3)知识点五:利用全等三角形,等腰三角形的性质证线段倍分关系例4:如图,在ΔABC 中,AB=AC ,AD ⊥BC ,CE ⊥AB ,AE=CE求证:(1)ΔAEF ≌ΔCEB (2)AF=2CDAB (例4) (例5)知识点六:利用等腰三角形,全等三角形的性质解边角关 例5:如图,ΔACB 和ΔDCE 均为等腰三角形,点A ,D ,E 在同一条直线上,连接BE ,若∠CAB=∠CBA=∠CDE=∠CED=50°.(1)求证:AD=BE ; (2)求∠AEB 的度数知识点七:利用三角形全等测距离例6:如图所示,A,B两点分别位于一个池塘的两端。

小明想用绳子测量A,B间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意:先在地上取一个可以直接到达A点和B点的点C,连接AC并延长到D,使CD=CA;连接BC 并延长到E,使CE=CB,连接DE并测量出它的长度。

DE的长度就是A,B 间的距离。

AB C(例7)知识点八:利用含30°角的直角三角形的性质解与全等三角形的综合问题例7:如图,ΔABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于点Q,PQ=3,PE=1.求证:BE=AD. (2)求AD的长知识点九:坐标系中的全等三角形例8:如图1,OA=2,OB=4,以A点为顶点,AB为腰在第三象限作等腰RtΔABC.(1)求C点的坐标.(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰RtΔAPD.过D作DE⊥x轴于E点,求OP-DE的值.y(例8,图1)(例8,图2)知识点十:利用全等三角形证垂直平分线例9:如图所示,已知∠ACB和∠ADB都是直角,且AC=AD,P是AB上任意一点,求证:CP=DP.CBD AE B D(例9) (例10)知识点十一:倍长中线法构造全等三角形例10:已知:如图所示,CE,CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC. 求证:CD=2CE知识点十二:全等三角形的动态问题例11:已知,在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B不重合),如图1. 求证:CF=BD(3)当点D运动到线段BC的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.C D(例11,图1) (例11,图2)知识点十三:全等三角形的旋转问题例12:如图1,△ABC中,BC=AC,△CDE中,CE=CD,现把两个三角形的C 点重合,且使∠BCA=∠ECD,连接BE,AD。

全等三角形复习资料(搜集整理版)

全等三角形复习资料(搜集整理版)

特别鸣谢资源原创者,本人仅仅便于自己的备课整理排版了一下。

第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。

一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。

(2):全等三角形的周长相等、面积相等。

(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等.3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS")边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”))2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等"或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如“公共角”、“公共边"、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。

这条直线叫做对称轴.折叠后重合的点是对应点,叫做对称点4。

轴对称的性质①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

二、线段的垂直平分线1。

经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线.2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。

1期末复习(平面直角坐标系、等腰三角形、全等三角形)

1期末复习(平面直角坐标系、等腰三角形、全等三角形)

期末专题复习(直角坐标系)一、概念复习1、直角坐标系:横轴(x 轴)、纵轴(y 轴)、原点。

直角坐标系的平面叫直角坐标平面。

2、点的坐标:点P 对应的有序数对叫点的坐标,P (a,b )a 叫横坐标,b 叫纵坐标。

3、平面直角坐标系把平面分成四个象限:x 轴、y 轴不属于任何象限。

第一象限(+,+)、第二象限(-,+)、第三象限(-,-)、第四象限(+,-) 4、经过点P (a ,b )且垂直于x 轴(或平行于y 轴)的直线表示为:直线x = a 经过点P (a ,b )且垂直于y 轴(或平行于x 轴)的直线表示为:直线y = b 5、平行于坐标轴的直线上的两点间的距离:平行于x 轴的直线上的两点A (x 1,y )、B (x 2,y )的距离是 21x x AB -= 平行于x 轴的直线上的两点C (x ,y 1)、D (x ,y 2)的距离是 21y y CD -= 6、点P (a ,b )沿着坐标轴(沿与x 轴或y 轴)平行的某一方向平移m (m>0)个单位 则;向右平移所对应的点的坐标为(a+ m ,b ); 向左平移所对应的点的坐标为(a- m ,b ) 向上平移所对应的点的坐标为(a ,b+ m );向下平移所对应的点的坐标为(a ,b- m ) 7、对称点的坐标特征 直角坐标平面内有点M (a ,b ) 与点M (a ,b )关于x 轴对称的点的坐标是(a ,- b ) 与点M (a ,b )关于 y 轴对称的点的坐标是(- a ,b ) 与点M (a ,b )关于原点对称的点的坐标是(- a ,- b )二、典型例题1、点A (-3,2)向左平移4个单位到B ,则B 点的坐标是___________2、点N (3,-4)沿x 轴翻折与M 重合,那么点M 的坐标是___________3、将点Q (10,2)绕原点O 旋转180°后落到P 处,则P 点的坐标是___________4、直角坐标平面内,点A (-2,3)向____平移______个单位后就和点B (2,3)重合5、点P 在第三象限,且点P 到x 轴和到y 轴的距离都是3,则点P 坐标是_______________6、如果点M (3a-1,5+b )与点(b -2,a )关于原点对称,则a=_______,b=__________7、在x 轴上有A 、B 两点,AB =10,若点A 的坐标是(2,0),那么点B 的坐标是___________ 8、在直角坐标平面内,设点P (x,y ),若xy>0,则点P 在_________象限。

八年级上册数学动点问题三角形全等

八年级上册数学动点问题三角形全等

一、动点问题概述动点问题是数学中的一个重要概念,它涉及到物体或点在特定条件下的运动轨迹和位置变化。

在数学中,我们常常会遇到关于动点问题的题目,通过对动点的运动进行分析和建模,从而得出数学解决方案。

在八年级上册数学学习中,动点问题也是一个重要的内容,尤其是在进行三角形全等的学习中,动点问题的应用更是凸显出其重要性。

二、三角形全等的概念1. 三角形全等是指在平面解析几何中,两个三角形在形状和大小上完全相同。

当两个三角形的对应边长相等,对应角度相等时,我们就可以认为它们是全等三角形。

2. 三角形全等的性质:全等的三角形,对应边相等,对应角相等,面积相等。

三、动点问题与三角形全等的联系1. 在动点问题中,三角形全等常常被用来描述动点的运动轨迹。

一个动点在平面内作定点旋转、平移等运动时,可以利用三角形全等的性质来描述动点的位置变化。

2. 通过观察动点在三角形内的运动,我们可以将动点与三角形全等的概念进行结合,从而更深刻地理解动点问题和三角形全等。

四、动点问题三角形全等的举例分析1. 假设动点A在平面内作匀速直线运动,点B、点C分别为该平面内两个定点,且直线AB与BC共线,以BC为直线方向。

如果C到A的距离等于B到A的距离,根据三角形全等的性质,我们可以推断出△ABC与△ACB是全等三角形,即两个三角形的三边和三个角都相等。

2. 再做一个动点问题的三角形全等的举例,如果A、B、C三个点共线,并且A点到B点的距离等于B点到C点的距离。

那么,如果D是AC 上的一个任意一点,那么我们可以得出△ABD与△BCD是全等三角形。

五、动点问题三角形全等的解题方法在解决动点问题与三角形全等的题目时,我们需要遵循以下步骤:1. 观察动点在平面内的运动轨迹,分析三角形的形状和位置变化。

2. 利用三角形全等的性质,建立动点与三角形全等的关系。

3. 根据题目给出的条件和要求,构建方程或等式,求解动点问题与三角形全等。

六、动点问题三角形全等的应用举例1. 在解析几何中,我们常常会遇到这样的动点问题:一个点以一定的规律在平面内作运动,问它经过的点的轨迹是什么形状?这种问题就可以通过分析三角形全等来解决。

全等三角形考点汇总

全等三角形考点汇总

全等三角形全等三角形的概念:经过翻转、平移、旋转后,能够完全重合的两个三角形叫做全等三角形 全等三角形的性质:1. 对应边和对应角完全相等2. 能完全重合的顶点叫做对应顶点3. 全等三角形的周长和面积相等(反之不成立)4. 对应边上的高对应相等,对应边上的中线相等,对应角的角平分线相等 三角形全等判定定理1. 三边对应相等的三角形是全等三角形(SSS 边边边)2. 两边及其夹角对应相等的三角形是全等三角形(SAS 边角边)3. 两角及其夹边对应相等的三角形是全等三角形(ASA 角边角)4. 两角及其一角的对边对应相等的三角形是全等三角形(AAS 角角边)5. 在一对直角三角形中,斜边及一条直角边对应相等是全等三角形(HL) 备注:1)判定三角形全等必须有一组对应边相等2)三角形全等中,两边对应相等,一角,必须是夹角才全等 全等三角形的证明思路SAS HL SSS AAS SAS ASAAAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边专题一考点一 全等图形识别略定义:经过翻转 平移可以完全重合的图形才是全等图形考点二 利用全等图形求正方形网格中角度之和例题1:(2021·全国·八年级专题练习)如图为6个边长相等的正方形的组合图形,则∠1+∠3-∠2=( )A.30°B.45°C.60°D.135°+= 2.(2022·山东·济南市槐荫区教育教学研究中心二模)如图,在44⨯的正方形网格中,求αβ______度.3.(2020·江苏省灌云高级中学城西分校八年级阶段练习)如图,由4个相同的小正方形组成的格点图中,∠1+∠2+∠3=________度.考点三全等三角形的概念略考点四全等三角形的性质1.(2022·四川省南充市白塔中学八年级阶段练习)如图,在平面直角坐标系中,点A坐标为(-12,5),过点A作AB∠x轴于B,C是x轴负半轴上一动点,D是y轴正半轴上一动点,若始终保持CD=OA,且使∠ABO与∠OCD全等,则点D坐标为__________________.2.(2022·云南昭通·八年级期末)如图,把∠ABC沿线段DE折叠,使点B落在点F处;若∥,∠A=70°,AB=AC,则∠CEF的度数为()AC DEA.55°B.60°C.65°D.70°3.(2022·广西·西林县民族初中八年级期末)如图,△ABC∠∠ADE,若∠BAE=135°,∠DAC=55°,那么∠CFE的度数是_________.4.(2022·辽宁·东北育才学校七年级期中)如图,△ABC中,∠ACB=90°,AC=12,BC=16.点P从A点出发沿A—C—B路径向终点运动,终点为B点;点Q从B点出发沿B—C—A路径向终点运动,终点为A点.点P和Q分别以2和6的运动速度同时开始运动,两点都要到相应的终点时才能停止运动,在某时刻,分别过P和Q作PE∠l于E,QF∠l于F.若要△PEC 与△QFC全等,则点P的运动时间为_______.专题二 全等三角形的判定(证明) 考点一 用SAS 证明三角形全等1.(2022·四川省南充市白塔中学八年级阶段练习)如图,点B 、C 、E 、F 共线,AB =DC ,∠B =∠C ,BF =CE .求证:∠ABE ∠∠DCF .考点二 用ASA 证明三角形全等1.(2022·广西百色·二模)如图,在△ABC 和△DCB 中,∠A =∠D ,AC 和DB 相交于点O ,OA =OD .(1)AB =DC ; (2)△ABC ∠∠DCB .2.(2022·贵州遵义·八年级期末)如图,已知AB DE ∥,ACB D ∠=∠,AC DE =.(1)求证:ABC EAD ≅.(2)若60BCE ∠=︒,求BAD ∠的度数.考点三 用AAS 证明三角形全等1.(2022·福建省福州第一中学模拟预测)如图,已知A ,F ,E ,C 在同一直线上,AB ∠CD ,∠ABE =∠CDF ,AF =CE .求证:AB =CD .考点四 用SSS 证明三角形全等1.(2021·河南省实验中学七年级期中)如图,在线段BC 上有两点E ,F ,在线段CB 的异侧有两点A ,D ,且满足AB CD =,AE DF =,CE BF =,连接AF ;(1)B 与C ∠相等吗?请说明理由.(2)若40B ∠=︒,20∠=DFC °,AF 平分BAE ∠时,求BAF ∠的度数.2.(2022·山东济宁·八年级期末)如图,在四边形ABCD 中,CB AB ⊥于点B ,CD AD ⊥于点D ,点E ,F 分别在AB ,AD 上,AE AF =,CE CF =.(1)若8AE =,6CD =,求四边形AECF 的面积;(2)猜想∠DAB ,∠ECF ,∠DFC 三者之间的数量关系,并证明你的猜想.考点五 用HL 证明三角形全等1.(2022·四川省南充市白塔中学八年级阶段练习)如图,AB =CD ,AE ∠BC 于E ,DF ∠BC 于F ,且BF =CE .(1)求证AE=DF;(2)判定AB和CD的位置关系,并说明理由.2.(2022·安徽安庆·八年级期末)如图,AD,BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:∠ACB∠∠BDA;(2)若∠CAB=54°,求∠CAO的度数.2.(2022·江西·永丰县恩江中学八年级阶段练习)如图,在∠ABC中,BC=AB,∠ABC=90°,F 为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt∠ABE∠Rt∠CBF;(2)若∠CAE=30°,求∠ACF的度数.全等三角形综合和常见全等模型汇总1.全等三角形中的平移模型几种常见全等三角形基本图形(平移)1.如图所示,AB∥DE,AC∥DF,BE=CF,求证AB=DE.2.如图,点O是线段AB的中点,OD∥BC且OD=BC,已知∠ADO=34°,∠B=67°,求∠A的度数.2.全等三角形中的轴对称模型1.如图,过等边△ABC的顶点A作线段AD,若∠DAB=20°,则∠COD的度数是()A,100°B,80°C,60°D,40°2.在等边△ABC,点E是AB上的动点,点E与点A,B不重合,点D在CB的延长线上,且EC=ED。

全等三角形》讲义(完整版)

全等三角形》讲义(完整版)

全等三角形》讲义(完整版)全等三角形讲义全等三角形定义:若两个三角形形状大小相同,能够完全重合,则它们是全等形三角形。

对应顶点、对应边、对应角均重合。

全等三角形的性质是对应边相等,对应角相等。

全等三角形判定定理:1.边边边定理(SSS):若两个三角形的三条边对应相等,则它们是全等三角形。

2.边角边定理(SAS):若两个三角形的一条边和它们的夹角对应相等,且另一条边对应相等,则它们是全等三角形。

3.角边角定理(ASA):若两个三角形的两个角和它们的夹边对应相等,则它们是全等三角形。

4.角角边定理(AAS):若两个三角形的两个角和其中一个角的对边对应相等,则它们是全等三角形。

5.斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则它们是全等三角形。

角平分线的性质:在角平分线上的点到角的两边的距离相等。

角平分线的判定:到角的两边距离相等的点在角的平分线上。

三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离相等。

典型例题举例:1.已知△ABN≌△ACM,对应角为∠B和∠C,对应边为AB和AC。

2.已知AB=AC,AD是连结点A与BC中点D的支架,求证△ABD≌△ACD。

3.已知点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF,求证△ABE≌△CDF。

4.在△ABC中,D在AB上,E在AC上,AB=AC,∠B =∠C,求证AD=AE。

5.已知∠1=∠2,∠3=∠4,求证AC=AD,其中D是线段BC上的一点,且BD=DC。

6.在图中,B、E、F、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,判断AB是否平行于CD,说明理由。

7.在图1中,△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,判断△ABC与△AEG 面积之间的关系,并说明理由。

8.在图中,OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB交OB于E,F是OC上的另一点,连接DF,EF,求证DF=EF。

全等三角形动点问题典型题目

全等三角形动点问题典型题目

全等三角形动点问题典型题目
全等三角形的动点问题是几何学中的经典题目之一,它涉及到
平面几何和坐标几何的知识。

一般来说,这类问题会给出一个或多
个三角形,然后要求找到一个点,使得这个点满足某种条件,比如
使得与三角形的三个顶点连线的长度相等,或者使得与三角形的某
条边垂直平分等等。

下面我将从几何和代数两个角度来解释这类问题。

从几何角度来看,全等三角形的动点问题通常可以通过构造几
何图形来解决。

我们可以利用全等三角形的性质,比如边长相等、
角度相等等性质,来构造等式或者方程,从而找到满足条件的动点。

通常情况下,我们可以利用相似三角形的性质,或者利用垂直平分线、角平分线等性质来解决这类问题。

从代数角度来看,我们可以引入坐标系,通过假设动点的坐标,并利用坐标几何的方法来解决问题。

我们可以假设动点的坐标为(x, y),然后根据全等三角形的性质建立方程,通过求解方程来找到动
点的坐标。

这种方法通常需要运用距离公式、中点公式、斜率公式
等知识来解决问题。

综上所述,全等三角形的动点问题是一个涉及到几何和代数知识的综合性问题,需要我们灵活运用几何性质和代数方法来解决。

在解决这类问题时,我们需要画图、列方程、解方程等多种方法结合,才能全面地解决问题。

希望以上解释能够帮助你更好地理解全等三角形的动点问题。

初二数学八上第十二章全等三角形知识点总结复习和常考题型练习(优选.)

初二数学八上第十二章全等三角形知识点总结复习和常考题型练习(优选.)

第十二章全等三角形一、知识框架:二、知识概念:1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边.⑸对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(3)全等三角形的周长相等、面积相等。

(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边(HL):斜边和一条直角边对应相等的两个直角三角形全等.4.证明两个三角形全等的基本思路:5.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)中线倍长法、截长补短法证三角形全等。

全等三角形动点问题解题技巧

全等三角形动点问题解题技巧

全等三角形动点问题解题技巧在解决全等三角形动点问题时,需要灵活运用几何知识、函数图象性质、特殊位置规律、分类讨论思想、数形结合思想和整体思想等技巧,以便快速找到问题的突破口。

一、把握动点轨迹,运用几何知识求解最值动点轨迹是求解全等三角形动点问题的基础。

在解决此类问题时,需要先确定动点的运动轨迹,然后运用几何知识求解最值。

例如,在求解动点A在直线l上移动,求A点到定点B的距离最短值时,可以运用抛物线的定义,将AB沿直线l的投影作为A点的轨迹,然后根据抛物线的性质求解最值。

二、利用函数的图象性质求最值利用函数的图象性质求解全等三角形动点问题,主要是通过建立坐标系,确定动点的坐标,然后利用函数的图象性质求解最值。

例如,在求解一个直角三角形中的动点C,使得AC和BC的长度之和最小值时,可以建立直角坐标系,设A、B两点的坐标分别为(0,0)和(1,0),然后设C点的坐标为(x,y),最后利用函数的图象性质求出AC和BC 的长度之和的最小值。

三、借助特殊位置,寻找动点规律全等三角形动点问题中,常常涉及到动点的特殊位置。

借助这些特殊位置,可以寻找动点的规律,从而快速解决问题。

例如,在求解一个等边三角形中的动点D,使得AD和BD的长度之和最小值时,可以借助等边三角形的三条边的中垂线交点为D的特殊位置,然后根据中位线的性质求出AD和BD的长度之和的最小值。

四、运用分类讨论思想求解动点问题分类讨论思想是求解全等三角形动点问题的重要技巧之一。

在解决此类问题时,需要根据题目中给出的条件,将问题分成不同的情况进行讨论,然后分别求解。

例如,在求解一个矩形中的动点E,使得AE和BE的长度之和最小值时,需要考虑E点在矩形的边和角上两种情况分别进行讨论,然后分别求出最小值。

五、运用数形结合思想求解动点问题数形结合思想是求解全等三角形动点问题的常用技巧之一。

在解决此类问题时,需要根据题目中给出的条件,将问题转换成图形问题进行分析和求解。

等腰三角形、全等三角形及平面直角坐标系

等腰三角形、全等三角形及平面直角坐标系

等腰三角形、全等三角形及直角坐标教学课题等腰三角形、全等三角形及直角坐标教学目标1、能证明全等三角形2、掌握等腰(等边)三角形的性质,会判定等腰(等边)三角形3、掌握平面直角坐标系及相关概念, 类比(由数轴到平面直角坐标系)的方法、数形结合的思想.教学重、难点灵活运用四种全等三角形判定定理;构建平面直角坐标系,掌握平面内点与坐标的对应.◆ 诊查检测:1、如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去2、一个正方形在平面直角坐标系中三个点的坐标为(-2,-3)、(-2,-1)、(2,1),则第四个顶点的坐标为()A.(2,2) B.(3,2) C.(2,-3) D.(2,3)3、判断题:① 两边和一角对应相等的两个三角形全等.()② 两角和一边对应相等的两个三角形全等.()③ 两条直角边对应相等的两个三角形全等. ()④ 腰长相等,顶角相等的两个等腰三角形全等. ()⑤ 三角形中的一条中线把三角形分成的两个小三角形全等.()⑥两个等边三角形全等().⑦ 一腰和底边对应相等的两个等腰三角形全等. ()8 腰长相等,且都有一个40°角的两个等腰三角形全等.()9 腰长相等,且都有一个100°角的两个等腰三角形全等.()10 有两边和第三边上的中线对应相等的两个三角形全等.()4、(1)等腰三角形的一个角是110°,它的另外两个角的度数是(2)等腰三角形的一个角是80°,它的另外两个角的度数是5、点A(2,0),B(-3,0),C(0,2),则△ABC的面积为.6、已知:如图,AD∥BC,BD平分∠ABC.求证:AB=AD.7、如图,等边三角形ABC中,AD是BC上的高,∠BDE=∠CDF=60°,•图中有哪些与BD相等的线段?8、已知:如图,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.9、如图,在△ABC中三个顶点的坐标分别为A(-5,0),B(4,0),C(2,5),将△ABC沿x轴正方向平移2个单位长度,再沿y轴沿负方向平移1个单位长度得到△EFG。

全等三角形)

全等三角形)

课题全等三角形教学目标 1. 系统复习全等三角形这一章节的内容,能熟练运用全等三角形的性质和判定重难点透视1.全等三角形的证明教学内容知识整理1、能够完全重合的两个图形叫做全等形。

能够完全重合的两个三角形叫做全等三角形。

(两个三角形全等,互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角。

)全等三角形的符号表示、读法:△ABC与△A′B′C′全等,记作△ABC≌△A′B′C′,“≌”读作“全等于”。

(两个三角形全等时,通常把对应顶点的字母写在对应的位置上,这样对应的两个字母为端点的线段是对应边;对应的三个字母表示的角是对应角)。

例题:下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2、全等三角形的性质——全等三角形的对应边相等,对应角相等。

例题:如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()3、三角形全等的判定(1).三边对应相等的两个三角形全等,简写成“边边边”或“SSS”。

(2).两边和他们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”。

(3).两角和他们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。

(4).两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”。

(5).斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL”。

(特别注意:SSA、AAA不能识别两个三角形全等,识别两个三角形全等时,必须有边的参与,如果有两边和一角对应相等时,角必须是两边的夹角。

)直角三角形全等的判定:斜边及一条直角边对应相等。

常见的全等三角形:①有公共边:②有公共点:证明三角形全等寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。

通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。

全等三角形与平面直角坐标系综合题

全等三角形与平面直角坐标系综合题

全等三角形与平面直角坐标系综合题一、引言全等三角形是高中数学中重要的概念之一,它涉及到平面几何和坐标系的知识。

在平面直角坐标系中,我们可以通过坐标点的变换来判断两个三角形是否全等。

本文将深入探讨全等三角形的性质以及与平面直角坐标系的综合应用。

二、全等三角形的性质全等三角形是指两个三角形的所有对应的角相等,对应的边长相等。

在平面几何中,我们可以通过以下三种情况来判断两个三角形是否全等:2.1 SSS判据若两个三角形的三边分别相等,则这两个三角形全等。

这是最直观的判断方式,通过测量三边的长度即可确定。

2.2 SAS判据若两个三角形的一边和与其相对的两个角分别相等,则这两个三角形全等。

这种判据常用于实际问题中,通过测量一边的长度和两个角的大小即可确定。

2.3 ASA判据若两个三角形的两个角和与其相对的一边分别相等,则这两个三角形全等。

这种判据常用于实际问题中,通过测量两个角的大小和一边的长度即可确定。

三、平面直角坐标系的基本概念平面直角坐标系是指在平面上引入两个互相垂直的坐标轴,通过坐标点的位置来描述平面上的点。

在平面直角坐标系中,我们可以使用坐标点的变换来判断两个三角形是否全等。

3.1 坐标点的表示在平面直角坐标系中,我们使用有序数对(x, y)来表示一个点的位置,其中x表示横坐标,y表示纵坐标。

例如,点A的坐标为(2, 3),表示A点在横坐标为2,纵坐标为3的位置。

3.2 坐标点的变换在平面直角坐标系中,我们可以通过平移、旋转和缩放等操作来对坐标点进行变换。

这些变换操作可以帮助我们判断两个三角形是否全等。

3.2.1 平移变换平移变换是指将一个点沿着指定的方向和距离移动。

在平面直角坐标系中,我们可以通过给坐标点的横坐标和纵坐标分别加上相同的常数来实现平移变换。

3.2.2 旋转变换旋转变换是指将一个点绕着指定的中心点按照一定的角度旋转。

在平面直角坐标系中,我们可以通过给坐标点的横坐标和纵坐标分别乘以旋转矩阵来实现旋转变换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形与坐标系
1、如图,正方形ABCD的四个顶点分别在四条平行线l1、l
2、l
3、l4上,这四条直线中相邻两条之间的距离依次为h1、h2、h3(h1>0,h2>0,h3>0)。

(1)求证h1=h3;
(2)设正方形ABCD的面积为S.求证S=(h2+h3)2+h12;
(3)若,当h1变化时,说明正方形ABCD的面积为S随h1的变化情况。

2、已知△ABC为等腰直角三角形,当顶点C坐标是(2,2)时,(1)判断CD与CE的数量关系;(2)求∠COE 的度数;(3)求四边形OECD的面积。

3、如图,已知平面直角坐标系中点A坐标为(2,3),点B坐标为(3,-2)。

判断△AOB的形状,并证明。

4、在平面直角坐标系中,点A、B同时从原点出发,分别沿x轴、y轴的正方向运动,其中点A的速度为每秒2个单位,点B的速度为每秒1个单位,经过t秒后,请在线段OA的对称轴上取一点P,使△PAB是以AB为腰的等腰直角三角形,求出点P的坐标。

(用含t的代数式表示)
5、已知点A(2,3),点C(4,4),若△ABC为等腰直角三角形且∠ACB=90°,AC=BC,求点B的坐标。

6、如图,平面直角坐标系中,点A、B分别在x,y轴上,点B的坐标为(0,1),∠BAO=30°。

(1)求AB的长度;
(2)以AB为一边作等边△ABE,作OA 的垂直平分线MN交AB的垂线AD于点D。

求证:BD=OE;
(3)在(2)的条件下,连接DE交AB于点F,求证:F为DE的中点。

7、如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足(),点C、B关于x轴对称。

(1)求A、C两点坐标;
(2)点M为射线OA上A点右侧一动点,过点M作MN CM交直线AB于N,连接BM,是否存在点M,使
S△AMN=S△AMB?若存在,求出M点的坐标;若不存在,说明理由。

(3)点P为第二象限角平分线上一动点,将射线BP绕B点逆时针旋转30°交x轴于点Q,连PQ,在点P运动过程中,点∠BPQ=45°时,求BQ的长。

相关文档
最新文档