历年考研数学三真题及答案解析

合集下载

考研数学三(线性代数)历年真题试卷汇编3(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编3(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编3(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(14年)行列式【】A.(ad-bc)2B.-(ad-bc)2C.a2d2-b2c2D.b2c2-a2d2正确答案:B解析:按第1列展开,得所求行列式D等于D==-ad(ad-bc)+bc(ad-bc)=-(ad-bc)2 知识模块:线性代数2.(89年)设A和B都是n×n矩阵,则必有【】A.|A+B|=|A|+|B|B.AB=BAC.|AB|=|BA|D.(A+B)-1=A-1+B-1正确答案:C 涉及知识点:线性代数3.(94年)设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则【】A.r>r1.B.r<r1.C.r=r1.D.r与r1的关系依C而定.正确答案:C解析:因为,用可逆矩阵C右乘矩阵A相当于对A施行若干次初等列变换,而初等变换不改变矩阵的秩,故有r(AC)=r(A).知识模块:线性代数4.(96年)设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则【】A.(A*)*=|A|n-1AB.(A*)*=|A|n+1AC.(A*)*=|A|n-2AD.(A*)*=|A|n+2A正确答案:C解析:由A*=|A|A-1,得(A*)*=|A*|(A*)-1,又|A*|=|A|n-1,故(A*)*=|A|n-1(|A|A-1)-1=|A|n-1A=|A|n-2A.故C正确.知识模块:线性代数5.(97年)设A、B为同阶可逆矩阵,则【】A.AB=BA.B.存在可逆矩阵P,使P-1AP=B.C.存在可逆矩阵C,使CTAC=B.D.存在可逆矩阵P和Q,使PAQ=B.正确答案:D解析:因为,方阵A可逆A与同阶单位阵E行等价,即存在可逆矩阵P,使PA=E.同理,由于B可逆,存在可逆矩阵M,使MB=E.故有PA=MB,PAM-1=B,记M-1=Q,则P、Q可逆,使PAQ=B.于是知D正确.知识模块:线性代数6.(98年)设n(n≥3)阶矩阵A=的秩为n-1,则a必为【】A.1B.C.-1D.正确答案:B解析:因为r(A)=n-1<n,故必有|A|=0,而因此,或者a=,或者a=1.显然,当a=1时,有r(A)=1<n-1,所以,有a=,而且当a=时,A 的左上角的n-1阶子式等于,可知此时确有r(A)=n一1,故选项B正确.知识模块:线性代数7.(01年) 其中A可逆,则B-1等于【】A.A-1P1P2B.P1A-1P2C.P1P2A-1D.P2A-1P1正确答案:C解析:矩阵B是经A的列重排后所得的矩阵,由初等列变换与初等方阵的关系,有B=AP2P1,故B-1=P1-1P2-1A-1,而P1-1=P1,P2-1=P2,故有B-1=P1P2A-1.知识模块:线性代数8.(03年)设三阶矩阵A=,若A的伴随矩阵的秩等于1,则必有【】A.a=b或a+2b=0.B.a=b或a+2b≠0.C.a≠b且a+2b=0.D.a≠b且a+2b≠0.正确答案:C 涉及知识点:线性代数9.(04年)设n阶矩阵A与B等价,则必有【】A.当|A|=a(a≠0)时,|B|=a.B.当|A|=a(a≠0)时,|B|=-a.C.当|A|≠0时,|B|=0.D.当|A|=0时,|B|=0.正确答案:D解析:A与B等价是指A可经若干次初等变换化成B.如果对A分别施行一次第1、2、3种初等变换得到方阵B,则由行列式的性质知,依次有|B|=-|A|,|B|=k|A|(常数k≠0),|B|=|A|.可见,经初等变换后,方阵的行列式等于零或者不等于零的事实不会改变,但在不等于零时,行列式的值可能改变.因此,只有D正确.知识模块:线性代数10.(05年)设矩阵A=(aij)3×3满足A*=AT,其中A*为A的伴随矩阵,A*为A的转置矩阵.若a11,a12,a13为三个相等的正数,则a11为【】A.B.3C.D.正确答案:A解析:由题设条件A*=AT,即其中Aij为|A|中元素aij的代数余子式(i,j=1,2,3),得aij=Aij(i,j=1,2,3),故有再从AT=A*两端取行列式,得|A|=|AT|=|A*|=|A|2,即|A|(1-|A|)=0 由此得|A|=1.所以,有知识模块:线性代数11.(06年)设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记P=,则【】A.C=p-1AP.B.C=PAP-1.C.C=PTAP.D.C=PAPT.正确答案:B解析:将单位矩阵E的第2行加到第1行即得初等矩阵P,由初等变换与初等矩阵的关系,有B=PA.令矩阵则将E的第1列的-1倍加到第2列即得矩阵Q,于是有C=BQ,从而有C=PAQ.由于所以,C=PAQ=PAP-1,只有选项B正确.知识模块:线性代数填空题12.(88年)=_______.正确答案:-3解析:把行列式的各行都加到第1行,得知识模块:线性代数13.(16年)行列式=_______.正确答案:λ4+λ3+2λ2+3λ+4解析:按第1列展开,得行列式为知识模块:线性代数14.(88年)设矩阵A=,则A-1=_______.正确答案:解析:利用初等行变换法:故A-1=A.知识模块:线性代数15.(91年)设A和B为可逆矩阵,X=为分块矩阵,则X-1=_______.正确答案:解析:设A、B分别为m阶、n阶可逆方阵,设其中X12,X21分别为m阶、n阶方阵,则有XX-1=Em+n,即由分块矩阵的乘法,得AX21=Em,AX22=0,BX11=0,BX12=En 因为A、B均为可逆矩阵,所以解得X21=A-1,X22=0,X11=0,X12=B-1 于是得知识模块:线性代数16.(92年)设A为m阶方阵,B为n阶方阵,且|A|=a,|B|=b,C =,则|C|=_______.正确答案:(-1)mnab解析:从[O A]的第m行开始,依次将[O A]的每一行作,z次相邻两行的交换,把它移到[B O]的下边去,则经mn次相邻两行的交换,就将[O A]移到了[B O]的下边,因此有知识模块:线性代数17.(93年)设4阶方阵A的秩为2,则其伴随矩阵A*的秩为_______.正确答案:0解析:因为r(A4×4)=2,即A中非零子式的最高阶数为2,故A的3阶子式全为0,即A的每个元素的余子式全为0,从而每个元素的代数余子式全为0,故A*=O,从而有r(A*)=0.知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三(线性代数)历年真题试卷汇编19(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编19(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编19(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2014年] 行列式A.(ad—bc)2B.一(ad—bc)2C.a2d2一b2c2D.b2c2一a2d2正确答案:B解析:解一令则此为非零元素仅在主、次对角线上的行列式由命题2.1.1.1(1),即得|A|=一(ad—bc)(ad—bc)=一(ad一bc)2.仅(B)入选.解二将|A|按第1行展开,然后可利用命题2.1.1.1(2),即式(2.1.1.5)直接写出结果:解三仅(B)入选.解四仅(B)入选.(注:命题2.1.1.1 设非零元素仅在主、次对角线上的2n阶、2n一1阶行列式分别为D2n,D2n-1,则命题2.1.2.3 设A,B分别是m阶与n阶矩阵,则) 知识模块:线性代数2.[2008年] 设A为n阶非零矩阵,E为n阶单位矩阵.若A3=O,则( ).A.E—A不可逆,E+A不可逆B.E—A不可逆,E+A可逆C.E—A可逆,E+A可逆D.E—A可逆,E+A不可逆正确答案:C解析:解一由A3=O得E=E-A3=(E-A)(E+A+A3),E=E+A3=(E+A)(E -A+A3).由命题2.2.1.2知,E-A,E+A均可逆.仅(C)入选.解二因A3=0,即A为幂零矩阵,其n个特征值全部都等于零,则A的矩阵多项式f1(A)=E-A的n个特征值为f1(λ)|λ=0=(1-λ)|λ=0=1.因而|E-A|=1≠0,故E一A可逆.A的另一个矩阵多项式f2(A)=E+A的n个特征值为f2(λ)|λ=0=(1+λ)|λ=0=1.故|E+A|=1,所以E+A可逆.知识模块:线性代数3.[2017年] 设α为n维单位列向量,E为n阶单位矩阵,则( ).A.E—ααT不可逆B.E+ααT不可逆C.E+2ααT不可逆D.E一2ααT不可逆正确答案:A解析:令A=ααT,则A2=A.又令AX=λX,由(A2-A)X=(λ2-λ)X=0得λ2-λ=0,即λ=0或λ=1.因为tr(A)=αTα=1=λ1+…+λn故得A的特征值为λ1=…=λn-1=0,λn=1.而E-ααT的特征值为λ1=…=λn-1=1,λn=0,从而|E-ααT|=0,E-ααT不可逆.仅(A)入选.知识模块:线性代数4.[2005年] 设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为( ).A.B.3C.1/3D.正确答案:A解析:解一显然矩阵A满足命题2.2.2.1中的三个条件,因而由该命题得|A|=1.将|A|按第1行展开得到1=|A|=a11A11+a12A12+a13A13=a112+a122+a132=3a112,故仅(A)入选.解二由A*=AT,即其中Aij为|A|中元素aij的代数余子式,得aij=Aij(i,j=1,2,3).将|A|按第1行展开,得到|A|=a11A11+a12A12+a13A13=a112+122+a132=3a112>0.又由A*=AT得到|A*|=|A|3-1=|AT|=|A|,即|A|(|A|=1)=0,而|A|>0,故|A|-1=0,即|A|=1,则3a112=1.因a11>0,故仅(A)入选.注:命题2.2.2.1 设A为n(n≥3)阶实矩阵,其元素分别与其代数余子式相等(aij=Aij(i,j=1,2,…,n),即AT-A*或A=(A*)T)且其中一元素不等于0,则其行列式|A|等于1.知识模块:线性代数5.[2009年] 设A,B均为二阶矩阵,A*,B*分别为A,B的伴随矩阵,若|A|=2,|B|=3,则分块矩阵的伴随矩阵为( ).A.B.C.D.正确答案:B解析:解一令则|C|=(-1)2×2|A||B|=2×3=6,即分块矩阵可逆,则由C*=|C|C-1得到解二因对任一四阶矩阵C,有C*C=CC*=|C|4,其中C*为C的伴随矩阵.下面用直接验证法进行选择.对于选项(A),有其中E2,E4分别为二阶、四阶单位矩阵.对于选项(B),有满足伴随矩阵的性质.对选项(C)、(D),分别有由此可知,仅(B)入选.知识模块:线性代数6.[2004年] 设n阶矩阵A与B等价,则必有( ).A.当|A|=a(a≠0)时,|B|=aB.当|A|=a(a≠0)时,|B|=-aC.当|A|≠0时,|B|=0D.当|A|=0时,|B|=0正确答案:D解析:解一因A与B等价,由命题2.2.5.4(1)知,仅(D)入选.(注:命题2.2.5.4 (1)矩阵等价的必要条件是矩阵的行列式同时为零或同时不为零.)解二因A与B等价,其秩必相等.当|A|=0时,秩(A)<n,故秩(B)<n,于是|B|=0.所以选项(D)正确.因秩(A)=秩(B),不一定有|A|=|B|或|A|=-|B|,故(A)、(B)不成立.至于(C),显然有秩(A)>秩(B),故(C)不成立.仅(D)入选.解三因A与B等价,由矩阵等价的必要条件知,存在可逆矩阵P与Q,使得A=PBQ.两边取行列式得|A|=|P||B||Q|,而|P|≠0,|Q|≠0,因而|A|与|B|同时为零或同时不为零.故当|A|=0时,必有|B|=0.仅(D)入选.知识模块:线性代数7.[2013年] 设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ).A.矩阵C的行向量组与矩阵A的行向量组等价B.矩阵C的列向量组与矩阵A的列向量组等价C.矩阵C的行向量组与矩阵B的行向量组等价D.矩阵C的列向量组与矩阵B的列向量组等价正确答案:B解析:解一对矩阵A,C分别按列分块,记A=[α1,α2,…,αn],C=[γ1,γ2,…,γn],又令B=(bγij)γn×n,则由AB=C得到可见,C的列向量组可由A的列向量组线性表出.因B可逆,由A=CB-1类似可证,A的列向量组也可由C的列向量组线性表出.由两向量组等价的定义知,仅(B)入选.解二因可逆矩阵可表示成若干个初等矩阵的乘积,而每个初等矩阵表示一次初等变换,可逆矩阵B左乘矩阵A,于是A经过有限次初等列变换化为C,而初等列变换能保持变换前的矩阵与变换后所得矩阵的列向量组的等价关系(见命题2.3.1.3),因而仅(B)入选.注:命题2.3.1.3 如果矩阵A 经有限次初等行(列)变换化成矩阵B(即A≌B),则A的行(列)向量组与B的行(列)向量组等价.知识模块:线性代数8.[2003年] 设α1,α2,…,α3均为n维向量,下列结论中不正确的是( ).A.若对于任意一组不全为零的数k1,k2,…,ks,都有k1α1+k2α2+…+ksαs≠0,则α1,α2,…,αs线性无关B.若α1,α2,…,αs线性相关,则对于任意一组不全为零的数k1,k2,…,ks,有k1α1+k2α2+…+ksαs=0C.α1,α2,…,αs线性无关的充分必要条件是此向量组的秩为sD.α1,α2,…,α3线性无关的必要条件是其中任意两个向量线性无关正确答案:B解析:解一(A)正确.事实上,若α1,α2,…,α3线性相关,则存在一组不全为零的数k1,k2,…,ks使得k1α1+k2α2+…+ksαs=0.这定义的逆否命题就是选项(A)中的命题.可见(A)成立.若α1,α2,…,αs线性相关,由其定义知,存在一组而不是任意一组不全为零的数k1,k2,…,ks使得k1α1+k2αs+…+ksαs=0.(B)不成立.由“向量组α1,α2,…,αs线性无关的充要条件是秩([α1,α2,…,αs])=s”知,(C)也成立.因α1,α2,…,αn线性无关的必要条件是其任一部分向量组线性无关.当然其中任意两个向量也线性无关,(D)也成立.仅(B)入选.解二可举反例证明(B)不正确:向量组α1=[1,0]T,α2=[4,0]T线性相关,但对于一组不全为零的常数k1=1,k2=0,却有k1α1+k2α2=α1=[1,0]T≠0.知识模块:线性代数9.[2006年] 设α1,α2,…,αs都是n维列向量,A是m×n矩阵,则( )成立.A.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性相关B.若α1,α2,…,αs线性相关,则Aα1,Aα2,…,Aαs线性无关C.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性相关D.若α1,α2,…,αs线性无关,则Aα1,Aα2,…,Aαs线性无关正确答案:A解析:解一由定义知,若α1,α2,…,αs线性相关,则存在不全为零的数c1,c2,…,cs,使得c1α1+c2α2+…+csαs=0.用A左乘等式两边,得c1A α1+c2Aα2+…+csAαs=0,于是Aα1,Aα2,…,Aαs线性相关.仅(A)入选.解二若α1,α2,…,αs线性相关,则秩([α1,α2,…,αs])其中c1,c2,c3,c4为任意常数,则下列向量组线性相关的为( ).A.α1,α2,α3B.α1,α2,α4C.α1,α3,α4D.α2,α3,α4正确答案:C解析:因故α1,α3,α4线性相关.仅(C)入选.知识模块:线性代数11.[2007年] 设向量组α1,α2,α3线性无关,则下列向量组线性相关的是( ).A.α1一α2,α2一α3,α3一α1B.α1+α2,α2+α3,α3+α1C.α1—2α2,α2—2α3,α3—2α1D.α1+2α2,α2+2α3,α3+2α1正确答案:A解析:解一用观察易知,选项(A)中向量有关系(α1-α2)+(α2-α3)+(α3-α1)=0,故(A)中向量线性相关.解二由命题2.3.2.3判别之.s=3为奇数,k=3也为奇数,故(A)中向量线性相关.(注:命题2.3.2.3 已知向量组α1,α2,…,αs(s≥2)线性无关,设β1=α1±α2,β2=α2±α3,…,βs-1=αs-1±αs,βs=αs±α1,其中s为向量组中的向量个数.又设上式中带负号的向量个数为k,则(1)当s与k的奇偶性相同时,向量组β1,β2,…,βs线性相关;(2)当s与k的奇偶性不同时,向量组β1,β2,…,βs线性无关.) 解三用线性相关的定义判定.为此令x1(α1-α2)+x2(α2-α3)+x3(α3-α1)=0,即(x1-x3)α1+(-x1+x2)α2+(-x2+x3)α3=0.因α1,α2,α3线性无关,故因其系数矩阵行列式等于零,故上述方程组有非零解,即α1-α2,α2-α3,α3-α1线性相关.知识模块:线性代数12.[2014年] 设α1,α2,α3是三维向量,则对任意常数k,l,向量α1+kα3,α2+α3线性无关是向量α1,α2,α3线性无关的( ).A.必要非充分条件B.充分非必要条件C.充分必要条件D.既非充分也非必要条件正确答案:A解析:记β1=α1+kα3,β2=α2+lα3,则若α1,α2,α3线性无关,则[α1,α2,α3]为可逆矩阵,故秩即β1=α1+kα3,β2=α2+lα3线性无关.反之,设α1,α2线性无关,α3=0,则对任意常数k,l必有α1+kα3,α2+lα3线性无关,但α1,α2,α3线性相关,故α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的必要但非充分条件.仅(A)入选.知识模块:线性代数填空题13.[2016年] 行列式正确答案:λ4+λ3+2λ2+3λ+4解析:知识模块:线性代数14.[2010年] 设A,B为三阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=________.正确答案:3解析:|A+B-1|=|AE+EB-1|=|ABB-1+AA-1B-1|=|A(B+A-1)B-1|=|A||B+A-1||B-1|=|A||A-1+B ||B|-1=3×2×(1/2)=3.解二|A+B-1|=|EA+B-1E|=|B-1BA+B-1A-1A|=|B-1||B+A-1||A|=|B|-1|B+A-1||A|=(1/2)×2×3=3.知识模块:线性代数15.[2006年] 设矩阵E为二阶单位矩阵,矩阵A满足BA=B+2E,则|B|=____________.正确答案:2解析:解一由BA=B+2E得到B(A-E)=2E,两边取行列式利用命题2.1.2.1(2)和(5)得到|B||A—|=|2E|=22|E|=4.而故|B|=2.解二解一中没有求出矩阵B.但若要求出也不难.由B(A—E)=2E知B==2(A-E)-1而故从而|B|=2.(注:命题2.1.2.1 设A=[aij]n×n,B=[bij]n×n,E为n阶单位矩阵,k为常数.(2)|AB|=|A||B|,|AB|=|BA|,但AB≠BA;(5)|kA|=kn|A|,但[kaij]n ×n=k[aij]n×n=kA;) 知识模块:线性代数16.[2008年] 设三阶矩阵A的特征值为1,2,2,E为三阶单位矩阵,则|4A-1一E|=_________.正确答案:3解析:解一因A的特征值为1,2,2,故A-1的特征值为1,1/2,1/2.因而4A-1一E的特征值为λ1=4×1—1=3,λ2=4×(1/2)一1=1,λ3=4×(1/2)一1=1,故|4A-1一E|=λ1λ2λ3=3×1×1=3.解二所求结果应与A能否与对角矩阵相似无关,现用加强条件法求出此结果.如果A与对角矩阵相似,则存在可逆矩阵P,使得P-1AP—diag(1,2,2)①=Λ,即A=PΛP-1.于是A-1=PΛ-1P-1,4A-1一E=4.PΛ-1P-1一PEP-1=P(4Λ-1-E)P-1,两端取行列式得到|4A-1一E|=|P||4Λ-1一E||P-1|=|4Λ-1一E|=|4diag(1,1/2,l /2)一E|=|diag(3,1,1)|=3.知识模块:线性代数17.[2003年] 设n维向量α=[a,0,…,0,a]T,a<0,E为n阶单位矩阵,矩阵A=E-ααT,B=E+(1/a)ααT,其中A的逆矩阵为B,则a=____________.正确答案:-1解析:解一由题设有A-1=B,故AB=E,注意到αTα=2a2(是一个数),有E=AB-(E-ααT)[E+(1/a)ααT]=E+(1/a)ααT-ααT-(1/a)α(αTα)αT =E+[1/a-1-(1/a)·2a2]ααT=E+(1/a-1-2a)ααT,故(1/a-1-2a)ααT=O.因ααT≠O,所以1/a-1-2a=0,即(2a-1)(a+1)=0.因而a=1/2或a=-1.因a<0,故a=-1.解二因(E-A)2=(ααT)2=ααTααT=(αTα)ααT=2a2ααT=2a2(E-A),即A2-2A+2a2A=2a2E-E,亦即A[A-(2-2a2)E]=(2a2-1)E,故A可逆,且由题设有故整理得到而ααT≠O,故(a+1)(2a-1)=0,又因a<0,故a=-1.知识模块:线性代数18.[2012年] 设A为三阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A 的第1行与第2行得矩阵B,则|BA*|=__________.正确答案:-27解析:由题设有B=E12A,两边右乘A*,得到BA*=E12AA*=|A|E12E=|A|E12,则|BA*|=||A|E12|=|A|3|E12|=33×(-1)=-27.知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三历年真题答案与解析-模拟试题

考研数学三历年真题答案与解析-模拟试题

考研数学三历年真题答案与解析|模拟试题展开全文第一部分历年真题及详解2008年全国硕士研究生入学统一考试考研数学三真题及详解2009年全国硕士研究生入学统一考试考研数学三真题及详解2010年全国硕士研究生入学统一考试考研数学三真题及详解2011年全国硕士研究生入学统一考试考研数学三真题及详解详解2013年全国硕士研究生入学统一考试考研数学三真题及详解2014年全国硕士研究生入学统一考试考研数学三真题及详解2015年全国硕士研究生招生考试考研数学三真题及详解2016年全国硕士研究生招生考试考研数学三真题及详解2017年全国硕士研究生招生考试考研数学三真题及详解2018年全国硕士研究生招生考试考研数学三真题及详解2019年全国硕士研究生招生考试考研数学三真题及详解(2)模拟试题及详解部分:精选了3套模拟试题,且附有详尽解析。

考生可通过模拟试题部分的练习,掌握最新考试动态,提前感受考场实战。

第二部分模拟试题及详解全国硕士研究生招生考试考研数学三模拟试题及详解(一)全国硕士研究生招生考试考研数学三模拟试题及详解(二)全国硕士研究生招生考试考研数学三模拟试题及详解(三)第一部分历年真题及详解解一、选择题(1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项符合题目要求。

)1设函数f(x)在区间[-1,1]上连续,则x=0是函数的()。

A.跳跃间断点B.可去间断点C.无穷间断点D.振荡间断点【答案】B查看答案【考点】函数间断点的类型【解析】首先利用间断点的定义确定该点为间断点,然后利用如下的间断点的类型进行判断。

第一类间断点:x=x0为函数f(x)的间断点,且与均存在,则称x=x0为函数f(x)的第一类间断点,其中:①跳跃型间断点:②可去型间断点:第二类间断点:x=x0为函数f(x)的间断点,且与之中至少有一个不存在,则称x=x0为函数f(x)的第二类间断点,其中:①无穷型间断点:与至少有一个为∞;②振荡型间断点:或为振荡型,极限不存在。

考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(03年)将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件【】A.A1,A2,A3相互独立.B.A2,A3,A4相互独立.C.A1,A2,A3两两独立.D.A2,A3,A4两两独立.正确答案:C 涉及知识点:概率论与数理统计2.(07年)某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<P<1),则此人第4次射击恰好第2次命中目标的概率为【】A.3p(1-p)2.B.6p(1-p)2.C.3p2(1-p)2.D.6p2(1-p)2.正确答案:C解析:P{第4次射击恰好第2次命中目标}=P{前3次射击恰中1枪,第4次射击命中目标} =P{前3次射击恰中1枪}.P{第4次射击命中目标}=C31p(1-p)2.P=3p2(1-p)2 知识模块:概率论与数理统计3.(09年)设事件A与事件B互不相容,则【】A.P()=0.B.P(AB)=P(A)P(B).C.P(A)=1-P(B).D.P()-1.正确答案:D 涉及知识点:概率论与数理统计4.(14年)设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=【】A.0.1B.0.2C.0.3D.0.4正确答案:B解析:∵A与B独立,∴P(AB)=P(A)P(B).故0.3=P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B) =P(A)[1-P(B)]=P(A)(1-0.5)=0.5(P(A) 得P(A)==06,P(B-A)=P(B)-P(AB)=P(B)-P(A)P(B)=0.5-0.6×0.5=0.2.知识模块:概率论与数理统计5.(15年)若A,B为任意两个随机事件,则【】A.P(AB)≤P(A)P(B).B.P(AB)≥P(A)P(B).C.P(AB)≤.D.P(AB)≥.正确答案:C解析:由ABA,ABB得P(AB)≤P(A),P(AB)≤P(B),两式相加即得:P(AB)≤.知识模块:概率论与数理统计6.(16年)设A,B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则【】A.P()=1.B.P(A|)=0.C.P(A∪B)=1.D.P(B|A)=1.正确答案:A解析:由1=P(A|B)=,有P(B)=P(AB) 于是知识模块:概率论与数理统计7.(90年)设随机变量X和Y相互独立,其概率分布为则下列式子正确的是:【】A.X-YB.P{X-Y}=0C.P{X-Y}=D.P{X=Y}=1正确答案:C解析:P(X=Y)=P(X=-1,Y=-1)+P(X=1,Y=1) =P(X=-1)P(Y =-1)+P(X=1)P(Y=1) =知识模块:概率论与数理统计8.(93年)设随机变量X的密度函数为φ(χ),且φ(-χ)-φ(χ),F(χ)为X的分布函数,则对任意实数a,有【】A.F(-a)=1-∫0aφ(χ)dχB.F(-a)=-∫0aφ(χ)dχC.F(-a)=F(a)D.F(-a)=2F(a)-1正确答案:B解析:由概率密度的性质和已知,可得故选B.知识模块:概率论与数理统计9.(95年)设随机变量X~N(μ,σ2),则随着σ的增大,概率P(|X-μ|<σ) 【】A.单调增大.B.单调减小.C.保持不变.D.增减不定.正确答案:C解析:由已知X~N(μ,σ),得~N(0,1) 故P{|X-μ|<σ}==(1)Ф-Ф(-1) 故选C.知识模块:概率论与数理统计填空题10.(89年)设随机变量X的分布函数为则A=_______,P{|X|<}=_______.正确答案:1;解析:∵分布函数是右连续的,故得1=Asin ∴A=1 这时,F(χ)在(-∞,+∞)上都连续,于是知识模块:概率论与数理统计11.(91年)设随机变最X的分布函数为则X的概率分布为_______.正确答案:解析:F(χ)为一阶梯状函数,则X可能取的值为F(χ)的跳跃点:-1,1,3.P(X=-1)=F(-1)-F(-1-0)=0.4 P(X=1)=F(1)-F(1-0)=0.8-0.4=0.4 P(X=3)=F(3)-F(3-0)=1-0.8=0.2 知识模块:概率论与数理统计12.(94年)设随机变量X的概率密度为以Y表示对X的三次独立重复观察中事件{X≤}出现的次数P{Y=2}=_______.正确答案:解析:由题意,Y~B(3,p).其中p=故知识模块:概率论与数理统计13.(00年)设随机变量X的概率密度为若k使得P{X≥k}=,则k的取值范围是_______.正确答案:[1,3]解析:∵P(X≥k)=∫k+∞f(χ)dχ.可见:若k≤0,则P(X≥k)=1 若0<k<1,则P(X≥k)=若k>6,则P(X≥k)=0 若3<k≤6,则P(X ≥k)=若1≤k≤3,则P(X≥k)=综上,可知K∈[1,3].知识模块:概率论与数理统计14.(05年)从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P(Y=2}=_______.正确答案:解析:由题意,X的概率分布为而P(Y=2|X=1)=0,P(Y=2|X=2)=,P(Y=2|X=3)=,P(Y=2|X=4)=,故由全概率公式得知识模块:概率论与数理统计15.(05年)设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=_______,b=_______.正确答案:0.4;0.1.解析:由题意知0.4+a+b+0.1=1,∴a+b=0.5 而P{X=0}=0.4+a,P{X+Y=1}=P{X=0,Y=1}+P{X=1,Y=0}=a+b=0.5,P{X =0,X+Y=1}=P{X=0,Y=1}=a 由P{X=0,X+Y=1)=P{X=0)P{X +Y=1} ∴a=(0.4+a)0.5,得a=0.4,从而b=0.1.知识模块:概率论与数理统计16.(06年)设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max(X,Y)≤1}=_______.正确答案:解析:由题意知X与Y的概率密度均为:则P(X≤1}=P{Y≤1}=∫-∞1f(χ)dχ=故P{max(X,Y)≤1}=P{X≤1,y≤1}=P{X≤1}P{y≤1}=知识模块:概率论与数理统计17.(99年)设随机变量Xij(i=1,2,…,n;n≥2)独立同分布,Eij=2,则行列式Y=的数学期望EY=_______.正确答案:0解析:由n阶行列式的定义知Y=,P1,…,Pn为(1,…,n)的排列,τ(p1p2…pn)为排列p1p2…pn的逆序数.而Xij(i,j=1,2,…,n)独立同分布且EXij=2,故知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三(线性代数)历年真题试卷汇编4(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编4(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编4(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(99年)设n阶矩阵A与B相似,E为n阶单位矩阵,则【】A.λE-A=λE-B.B.A与B有相同的特征值和特征向量.C.A和B都相似于一个对角矩阵.D.对任意常数t,tE-A与tE-B相似正确答案:D解析:由已知条件,存在可逆矩阵P,使得P-1AP=B 所以P-1(tE -A)P=tE-P-1AP=tE-B 这说明tE-A与tE-B相似,故D正确.知识模块:线性代数2.(02年)设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P-1AP)T属于特征值λ的特征向量是【】A.P-1αB.PTαC.PαD.(P-1)Tα正确答案:B解析:由条件有AT=A,Aα=λα,故有(P-1AP)T(PTα)=PTA(PT)-1PTα=PTAα=PTλα=λ(PTα) 因为PTa≠0(否则PTα=0,两端左乘(PT)-1,得α=0,这与特征向量必为非零向量矛盾),故由特征值与特征向量的定义,即知非零向量PTα是方阵(PTAP)T的属于特征值λ的特征向量.因此,B正确.知识模块:线性代数3.(05年)设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是【】A.λ1=0B.λ2=0C.λ1≠0D.λ2≠0正确答案:D解析:由条件知α1,α2线性无关.向量组α1,A(α1+α2),即向量组α1,λ1α1+λ2α2,显然等价于向量组α1,λ2α2,当λ2=0时,α1,λ2α2线性相关,当λ2≠0时,α1,λ2α2线性无关,故向量组α1,A(α1+α2)线性无关向量组α1,λ2α2线性无关≠0,只有选项D正确.知识模块:线性代数4.(10年)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A 相似于【】A.B.C.D.正确答案:D解析:设A按列分块为A=[α1 α2 α3 α4],由r(A)=3,知A的列向量组的极大无关组含3个向量,不妨设α1,α2,α3是A的列向量组的极大无关组.由于A2=-A,即A[α1 α2 α3 α4]=-[α1 α2 α3 α4],即[Aα1 Aα2 Aα3 Aα4]=[-α1-α2-α3-α4],得Aαj=-αj,j=2,3,4.由此可知-1是A的特征值值且α1,α2,α3为对应的3个线性无关的特征向量,故-1至少是A的3重特征值.而r(A)=3<4,知0也是A的一个特征值.于是知A的全部特征值为:-1,-1,-1,0,且每个特征值对应的线性无关特征向量个数正好等于该特征值的重数,故A相似于对角矩阵D =diag(-1,-1,-1,0),故选项D正确.知识模块:线性代数5.(13年)矩阵相似的充分必要条件为【】A.a=0,b=2.B.a=0,b为任意常数.C.a=2,b=0.D.a=2,b为任意常数.正确答案:B解析:B为对角矩阵,B的特征值为其主对角线元素2,6,0.若A与B相似,则由相似矩阵有相同的特征值,知2为A的一个特征值,从而有由此得a=0.当a=0时,矩阵A的特征多项式为由此得A的全部特征值为2,b,0.以下可分两种情形:若b为任意实数,则A为实对称矩阵,由于实对称矩阵必相似于对角矩阵,且对角矩阵的主对角线元素为该实对称矩阵的全部特征值,所以此时A必相似于B.综上可知,A与B相似的充分必要条件为a=0,b为任意常数.所以只有选项B正确.知识模块:线性代数6.(16年)设A,B是可逆矩阵,且A与B相似,则下列结论错误的是【】A.AT与BT相似.B.A-1与B-1相似.C.A+AT与B+BT相似.D.A+A-1与B+B-1相似.正确答案:C解析:由已知条件知,存在可逆矩阵P,使得P-1AP=B……(1).由(1)两端取转置,得PTAT(PT)-1=BT,可见AT与BT相似,因此选项A正确;由(1)两端取逆矩阵,得P-1A-1P=B-1……(2),可见A-1与B-1相似,因此选项B 正确;将(1)与(2)相加,得P-1(A+A-1)P=B+B-1,可见A+A-1与B+B-1相似,因此选项D正确.故只有选项C错误.知识模块:线性代数7.(07年)设矩阵,则A与B 【】A.合同,且相似.B.合同,但不相似.C.不合同,但相似.D.既不合同,也不相似.正确答案:B解析:由A的特征方程得A的全部特征值为λ1=λ2=3,λ3=0,由此知A不相似于对角矩阵B(因为A的相似对角矩阵的主对角线元素必是A的全部特征值3,3,0),但由A的特征值知3元二次型f(χ1,χ2,χ3)=χTAχ的秩及正惯性指数均为(二次型f=χTAχ经适当的正交变换可化成标准形f=3y12+3y22,再经可逆线性变换可化成规范形f=z12+z22,而f的矩阵A与f 的规范形的矩阵B=diag(1,1,0)是合同的).知识模块:线性代数8.(08年)设A=则在实数域上与A合同的矩阵为【】A.B.C.D.正确答案:D解析:记(D)中的矩阵为D,则由知A与D有相同的特征值3与-1,它们又都是实对称矩阵,因此存在正交矩阵P与Q,使PTAP==QTDQ,QPTAPQT=D,或(PQT)A(PQT)=D,其中PQT可逆,所以A与D合同.知识模块:线性代数9.(15年)设二次型f(χ1,χ2,χ3)在正交变换χ=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(χ1,χ2,χ3)在正交变换χ=Qy,下的标准形为【】A.2y12-y22+y32.B.2y12+y22-y32.C.2y12-y22-y32.D.2y12+y22+y32.正确答案:A解析:设二次型的矩阵为A,则由题意知矩阵P的列向量e1,e2,e3是矩阵A的标准正交的特征向量.对应的特征值依次是2,1,-1.即有Ae1=2e1,Ae2=2e2,Ae3=2e3 从而有AQ=a(e1,-e3,e2)=(Ae1,-Ae3,Ae2)=(2e1,-(-e3),e2) =(e1,-e3,e2) 矩阵Q的列向量e1,-e3,e2仍是A的标准正交的特征向量,对应的特征值依次是2,-1,1.矩阵Q是正交矩阵,有Q-1=QT,上式两端左乘Q-1,得Q-1AQ=QTAQ=从而知厂在正交变换χ=Py下的标准形为f=2y12-y22+y32.于是选A.知识模块:线性代数10.(16年)设二次型f(χ1,χ2,χ3)=a(χ12+χ22+χ32)+2χ1χ2+2χ2χ3+2χ1χ3的正、负惯性指数分别为1,2,则【】A.a>1B.a<-2C.-2<a<1D.a=1或a=-2正确答案:C解析:先来求二次型的矩阵A的特征值,由得A的全部特征值为λ1=λ2=a-1,λ3=a+2,由题设条件知有两个特征值小于零,有一个特征值大于零,所以a-1<0<a+2,由此得-2<a<1,故只有选项C正确.知识模块:线性代数填空题11.(04年)二次型f(χ1,χ2,χ3)=(χ1+χ2)2+(χ2-χ3)2+(χ3+χ1)2的秩为_______.正确答案:2解析:f的矩阵A=的秩为2,所以f的秩为2.知识模块:线性代数12.(11年)设二次型f(χ1,χ2,χ3)=χTAχ的秩为1,A的各行元素之和为3,则f在正交变换χ=Qy下的标准形为_______.正确答案:3y12解析:由f的秩为1,知f的矩阵A只有一个不为零的特征值,A的另外两个特征值均为零.再由A的各行元素之和都等于3,即,知A的全部特征值为λ1=3,λ2=λ3=0.于是f经正交变换化成的标准形为f=λ1y12+λ2y22+λ3y32=3y12.知识模块:线性代数13.(14年)设二次型f(χ1,χ2,χ3)=χ12-χ22+2aχ1χ3+4χ2χ3的负惯性指数为1,则a的取值范围是_______.正确答案:[-2,2]解析:对f配方,可得f(χ1+aχ3)2-(χ2-2χ3)2+(4-a2)χ32 于是f可经可逆线性变换化成标准形f=z12-z22+(4-a2)z32 若4-a2<0,则f的负惯性指数为2,不合题意;若4-a2≥0,则f的负惯性指数为1.因此,当且仅当4-a2≥0,即|a|≤2时,f的负惯性指数为1.知识模块:线性代数14.(07年)设矩阵A=,则A3的秩为_______.正确答案:1解析:利用矩阵乘法,容易计算得由于A3中非零子式的最高阶数为1,故由矩阵的秩的定义,即知r(A3)=1.知识模块:线性代数15.(09年)设α=(1,1,1)T,β=(1,0,k)T.若矩阵αβT相似于,则k=_______.正确答案:2解析:矩阵A=αβT=由A的特征方程得A的特征值为λ1=λ2=0,λ3=k+1.又由A与对角矩阵相似,知A的特征值为3,0,0.比较得k+1=3,所以k=2.知识模块:线性代数16.(97年)若二次型f(χ1,χ2,χ3)=2χ12+χ22+χ32+2χ1χ2+t χ2χ3是正定的,则t的取值范围是_______.正确答案:解析:f的矩阵为因为,f正定甘A的顺序主子式全为正,显然A的1阶和2阶顺序主子式都大于零,故f正定知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三(概率论与数理统计)历年真题试卷汇编13(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编13(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编13(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设随机变量X~N(0,1),y~N(1,4),且相关系数ρXY=1,则A.P{Y=-2X-1}=1B.P{Y=2X-1}=1C.P{Y=-2X+1}=1D.P{Y=2X+1}=1正确答案:D解析:如果选项A或C成立,则应ρXY=1,矛盾;如果选项B成立,那么EY=2EX-1=-1,与本题中EY=1矛盾.只有选项D成立时,ρXY=1,EY=2EX+1=1,DY=4DX=4,符合题意,故选D.知识模块:概率论与数理统计2.设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=A.6.B.8.C.14.D.15.正确答案:C解析:由题意知:EX=1,DX=2,EY=1,DY=4,于是E(X2)=DX+(EX)2=2+12=3,E(Y2)=DY+(EY)2=4+12=5,注意到X2与y2是独立的,于是D(XY)=E(XY)2-E[(XY)]2 =E(X2Y2)-[EX.EY]2 =E(X2).EY2-(EX)2(EY)2 =3×5-12×12=14 故选C.知识模块:概率论与数理统计3.设”个随机变量X1,X2,…,Xn独立同分布,DX1=σ2,,则A.S是σ的无偏估计量.B.S是σ的最大似然估计量.C.S是σ的相合估计量(即一致估计量).D.S与相互独立.正确答案:C 涉及知识点:概率论与数理统计4.设一批零件的长度服从正态分布N(μ,σ2),其中μ,σ2均未知.现从中随机抽取16个零件,测得样本均值=20(cm),样本标准差s=1(cm),则μ的置信度为0.90的置信区间是A.(20-t0.05(16),20+t0.05(16))B.(20-t0.1(16),20+t0.1(16))C.(20-t0.05(15),20+t0.05(15))D.(20-t0.1(15),20+t0.1(15))正确答案:C 涉及知识点:概率论与数理统计填空题5.设随机变量X的概率分布为P{X=-2}=,P{X=1}=a,P(X=3}=b.若EX=0,则DX=_______.正确答案:解析:由题知:+a+b=1,0=EX=(-2)×+1×a+3×b=a+3b-1 联立得a=b=所以DX=E(X2)-(EX)2=E(X2)=(-2)2×.知识模块:概率论与数理统计6.设X为随机变量且EX=μ,DX=σ2.则由切比雪夫不等式,有P{|X-μ|≥3σ}≤_______.正确答案:解析:由题意及切比雪夫不等式,得:P{|X-μ|≥3σ}≤.知识模块:概率论与数理统计7.在天平上重复称量一重为a的物品.假设各次称量结果相互独立且服从正态分布N(a,0,2*).若以表示n次称量结果的算术平均值,则为使n的最小值应不小于自然数_______.P{|-a|<0.1}≥0.95正确答案:16解析:设第i次称量结果为Xi,i=1,2,…,n.由题意:,且X1,…,Xn独立同分布,X1~N(a,0.22).由题意得2Ф()-1≥0.95,∴Ф()≥0.075 查表得≥1.96,∴n≥4×(1.96)2=15.36 故n的最小值应不小于自然数16.知识模块:概率论与数理统计8.设随机变量X和Y的数学期望分别为一2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有P{|X+Y|≥6}≤_______.正确答案:解析:若记ξ=X+Y,则Eξ=EX+EY=-2+2=0,而Dξ=D(X ×Y)=DX+DY+2cov(X,Y)=DX+DY+2.ρ(χ,y) =1+4+2×(-0.5).=3 其中ρ(χ,y) 知识模块:概率论与数理统计9.设总体X的方差为1,根据来自X的容量为100的简单随机样本,测得样本均值为5.则X的数学期望的置信度近似等于0.95的置信区间为________.正确答案:(4.804,5.196) 涉及知识点:概率论与数理统计10.设由来自正恣总体X~N(μ,0.92)容量为9的简单随机样本,得样本均值=5.则未知参数μ的置信度为0.95的置信区间是_______.正确答案:(4.412,5.588) 涉及知识点:概率论与数理统计11.设总体X的概率密度为而X1,X2,…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_______.正确答案:Xi-1-1解析:知识模块:概率论与数理统计12.设总体X的概率密度为f(χ)=e-|χ|(-∞<χ<+∞),X1,X2,…,Xn为总体X的简单随机样本,其样本方差为S2,则ES2_______.正确答案:2解析:EX=∫-∞+∞χf(χ)dχ=∫-∞+∞χ.e|-χ|dχ=0 DX =E(X2)-(EX)2=E(X2)=∫-∞+∞χ2f(χ)dχ=∫-∞+∞χ2.e|-χ|d χ=∫0+∞χ2e-χdχ=2 而E(S2)=DX,故ES2=2.知识模块:概率论与数理统计13.设X1,…,Xn是来自正态总体N(μ,σ2)的简单随机样本,其中参数μ,σ2未知.记则假设H0:μ=0的t检验使用的统计量t=_______.正确答案:解析:由题意可得:又有~χ2(n-1),且Q2与相互独立,故由t分布的构成得:当H0成立(即μ=0)时,成舍~t(n-1).故填知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三真题及答案

考研数学三真题及答案

6、设二次型 f x , x , x 在正交变换 x Py 下的标准形为 2 y2 y2 y2 ,其中 P e , e , e ,
133
1
2
3
123
若 Q e1, e3, e2 ,则 f x1, x3 , x3 在正交变换 x Qy 下的标准形为( )
(n +1)! nn (n+1)
= limç
n
÷n = 1 <1 ,所以(D)是收敛的。
n (n +1) n! n ç1+ n÷ e
1 1 ç 1÷ 1
1 ç 1÷
对于(B)选项, n1
n
ln
1

n


ln
ç1+
n
÷
,所以
n
n ln ç1+ n÷
11 ,根据 p 级数的
nn

5
f 1 2
11. 若函数 z z(x, y) 由方程 ex2 y3z xyz 1确定,则 dz (0,0)
【答案】 1 dx 2dy
3
zz 【解析】这道题目主要考查的是隐函数求偏导数。对于这道题目求全微分,分别求出 ,
xy
ex2
y3z
1
3
z x
【答案】2
【解析】对于这道题目主要是考查变上限积分求导数。
(1)
1
f (t)dt 1
0
x2
x2
(x) 0 xf (t)dt x0 f (t)dt
(x) x2 f (t)dt xf x 2 2x 0
(1)

1
0f

2020-1987年考研数学三真题及答案

2020-1987年考研数学三真题及答案

历年考研数学三真题解析及复习思路(数学三)2020年-1987年2020全国硕士研究生入学统一考试数学三试题详解一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设()()limx af x f a b x a →-=-,则sin ()sin lim x a f x ax a→-=- ( )(A )sin b a (B )cos b a (C )sin ()b f a (D )cos ()b f a 【答案】(B ) 【解析】由()lim,x a f x ab x a →-=-得(),()f a a f a b '==,则(2)函数11ln 1()(1)(2)x xe xf x e x -+=--的第二类间断点的个数为 ( ) (A )1 (B )2 (C )3 (D )4 【答案】(C )【解析】由题设,函数的可能间断点有1,0,1,2x =-,由此11121111ln 1lim ()limlim ln 1(1)(2)3(1)x x x x x e x ef x x e x e ---→-→-→-+==-+=-∞---; 111000ln 1ln(1)1lim ()lim lim (1)(2)22x x x x x e x e x f x e x x e--→→→++==-=---; 1111111111111ln 1ln 2lim ()lim lim 0;(1)(2)1ln 1ln 2lim lim ;(1)(2)1x x x x x x x x x x x e x f x e e x e e x e e x e ---++--→→→--→→+===---+==-∞---;112222ln 1ln 31lim ()limlim (1)(2)(1)2x x x x x e x e f x e x e x -→→→+===∞---- 故函数的第二类间断点(无穷间断点)有3个,故选项(C )正确。

考研数学三(线性代数)历年真题试卷汇编15(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编15(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编15(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设矩阵Am×n的秩为r(A)=m<n,Im为m阶单位矩阵,则下述结论中正确的是( )A.A的任意m个列向量必线性无关.B.A的任意一个m阶子式不等于零.C.若矩阵B满足BA=O,则B=O.D.A通过初等行变换,必可以化为[ImO]的形式.正确答案:C解析:1 由BA=O知A的每个列向量都是齐次方程组Bx=0的解,由题设知A的列向量中有m个是线性无关的,故Bx=0解集合中至少有m个线性无关的解向量,因而Bx=0的基础解系所含向量个数不小于m,即m-r(B)≥m,所以r(B)≤0,故r(B)=0,即B=O.2 由于r(Am×n)=m,故存在可逆矩阵Pm×n,使得AP=[Im O]用右乘两端,得记n×m矩阵Q=P,则有AQ=Im,于是用Q右乘题设等式BA=O两端,得BAQ=O,即BIm=O,亦即B=O.知识模块:线性代数2.齐次线性方程组的系数矩阵记为A.若存在3阶矩阵B≠O使得AB=O,则( )A.λ=-2且|B|=0B.λ=-2且|B|≠0C.λ=1且|B|=0D.λ=1且|B|≠0正确答案:C解析:1 设B按列分块为B=[β1 β2 β3],则由题设条件,有O=AB=[A β1Aβ2 Aβ3]所以Aβj=0(j=1,2,3),即矩阵B的每一列都是方程组Ax=0的解.又B≠O,故B至少有一列非零,因而方程组Ax=0存在非零解,从而有=(λ-1)2=0得λ=1另一方面,必有|B|=0,否则|B|≠0,则B可逆,于是由给AB=O 两端右乘B-1,得A=O,这与A≠O矛盾,故必有|B|=0.因此C正确.2 同解1一样可说明必有|B|=0,同理有|A|=0,观察可知当λ=1时有|A|==0,故C正确.知识模块:线性代数3.设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A 的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解X=( )A.B.C.D.正确答案:C解析:由于AX=b的通解等于AX=b的特解与AX=0的通解之和,故只要求出AX=0的基础解系,即得AXb的通解.因为r(A)=3,故4元齐次方程组Ax=0的基础解系所含向量个数为4-r(A)=1,所以AX=0的任一非零解就是它的基础解系.由于α1及1/2(α2+α3)都是Ax=b的解.故α1-(α2+α3)=1/2[2α1-(α2+α3)]是AX=0的一个解,从而ξ=(2,3,4,5)T也是AX=0的一个解,由上述分析知考是AX=0的一个基础解系,故Ax=b的通解为X=α1+cξ,因此C正确.知识模块:线性代数4.设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAN=0,必有( )A.(Ⅱ)的解是(Ⅰ)的解,(Ⅰ)的解也是(Ⅱ)的解.B.(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解.C.(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解.D.(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解.正确答案:A解析:若向量X满足方程组AX=0,两端左乘AT,得ATAX=0,即X也满足方程组ATAX=0,故AX=0的解都是ATAX=0的解.反之,若X满足ATAX=0,两端左乘XT,得ATATAX=0,即(AX)T(AX)=0,或‖AX‖2=0,故AX=0,即X也满足方程组AX=0,故ATAX=0的解都是AX=0的解由以上两方面,说明方程组(Ⅰ)与(Ⅱ)是同解的,故A正确.知识模块:线性代数5.设A是n阶矩阵,α是n维列向量,且秩=秩(A),则线性方程组( ) A.AX=α必有无穷多解.B.AX=α必有惟一解.C.=0仅有零解.D.=0必有非零解.正确答案:D解析:方程组=0是λ+1元齐次线性方程组,由条件,其系数矩阵的秩=An ×n的秩≤n<n+1,故该λ+1元齐次线性方程组必有非零解.于是知D正确.知识模块:线性代数6.设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0( )A.当n>m时仅有零解.B.当n>m时必有非零解.C.当m>n时仅有零解.D.当m>n时必有非零解.正确答案:D解析:1 注意AB为m阶方阵,方程组(AB)x=0有非零解(只有零解)(AB)<m(r(AB)=m).当m>n时,有r(AB)≤r(A)≤n<m故当m>n时,方程组(AB)x=0必有非零解.可以举例说明备选项A、B都不对.故只有D正确.2 B为n×m 矩阵,当n<m时,齐次线性方程组Bx=0必有非零解,从而知当n<m时,齐次线性方程组ABx=0(即(AB)x=0)必有非零解.知识模块:线性代数7.设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( )A.不存在.B.仅含一个非零解向量.C.含有两个线性无关的解向量.D.含有三个线性无关的解向量.正确答案:B解析:由A*≠O知A*至少有一个元素Aij=(-1)ijMij≠0,故A的余子式Mij≠0.而Mij为A的n-1阶子式,故r(A)≥n-1,又由Ax=b有解且不唯一知r(A)<n,故r(A)=n-1,因此,Ax=0的基础解系所含向量个数为n-r(A)=n -(n-1)=1,只有B正确.知识模块:线性代数8.设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为( )A.B.C.D.正确答案:C解析:首先,由A[1/2(η2+η3)]=β,知1/2(η2+η3)是Ax=β的一个特解;其次,由解的性质或直接验证,知η2-η1及η3-η1均为方程组Ax=0的解;再次,由η1,η2,η3线性无关,利用线性无关的定义,或由[η2-η1,η3-η1]及矩阵的秩为2,知向量组η2-η1,η3-η1,线性无关,因此,方程组Ax=0至少有2个线性无关的解,但它不可能有3个线性无关的解(否则,3-r(A)=3,r(A)=0.A=O,这与Aη1=β≠0矛盾),于是η2-η1,η3-η1可作为Ax=0的基础解系,Ax=0的通解为k1(η2-η1)+k2(η3-η1),再由非齐次线性方程组解的结构定理即知只有选项C正确.知识模块:线性代数填空题9.设其中ai≠aj(i≠j,i,j=1,2,…,n).则线性方程组ATX=B的解是_______.正确答案:(1,0,…,0)T.解析:因为a1,a2,…,an两两不相等,故范德蒙行列式|A|=(ai-aj)≠0,所以方程组ATX=B的系数行列式|AT|=|A|≠0,故方程组有唯一解,再由观察法或克莱默法则可得此唯一解为X=(1,0,…,0)T.知识模块:线性代数解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三历年真题及答案

考研数学三历年真题及答案
七、〔此题总分值9分〕
设F(x)=f(x)g(x),其中函数f(x),g(x)在 内满足以下条件:
, ,且f(0)=0,
(1)求F(x)所满足的一阶微分方程;
(2)求出F(x)的表达式.
八、〔此题总分值8分〕
设函数f(x)在[0,3]上连续,在〔0,3〕内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在 ,使
〔6〕将一枚硬币独立地掷两次,引进事件: ={掷第一次出现正面}, ={掷第二次出现正面}, ={正、反面各出现一次}, ={正面出现两次},那么事件
(A) 相互独立. (B) 相互独立.
(C) 两两独立. (D) 两两独立. [ C ]
【分析】按照相互独立与两两独立的定义进展验算即可,注意应先检查两两独立,假设成立,再检验是否相互独立.
〔5〕设 均为n维向量,以下结论不正确的选项是
(A)假设对于任意一组不全为零的数 ,都有 ,那么 线性无关.
(B)假设 线性相关,那么对于任意一组不全为零的数 ,都有
(C) 线性无关的充分必要条件是此向量组的秩为s.
(D) 线性无关的必要条件是其中任意两个向量线性无关. [ ]
〔6〕将一枚硬币独立地掷两次,引进事件: ={掷第一次出现正面}, ={掷第二次出现正面}, ={正、反面各出现一次}, ={正面出现两次},那么事件
(C) 线性无关,那么此向量组的秩为s;反过来,假设向量组 的秩为s,那么 线性无关,因此(C)成立.
(D) 线性无关,那么其任一局部组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.
综上所述,应选(B).
【评注】原命题与其逆否命题是等价的.例如,原命题:假设存在一组不全为零的数 ,使得 成立,那么 线性相关.其逆否命题为:假设对于任意一组不全为零的数 ,都有 ,那么 线性无关.在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.

2023年全国硕士研究生招生考试《数学三》真题试卷【完整版】(文末含答案解析)

2023年全国硕士研究生招生考试《数学三》真题试卷【完整版】(文末含答案解析)

2023年全国硕士研究生招生考试《数学三》真题试卷【完整版】一、选择题:1~10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

1.已知函数f (x ,y )=ln (y +|xsiny|),则( )。

A .()0,1fx ∂∂不存在,()0,1f y ∂∂存在B .()0,1fx ∂∂存在,()0,1f y ∂∂不存在C .()0,1fx ∂∂,()0,1f y ∂∂均存在 D .()0,1fx ∂∂,()0,1f y ∂∂均不存在2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。

A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩3.已知微分方程式y ′′+ay ′+by =0的解在(-∞,+∞)上有界,则( )。

A .a <0,b >0 B .a >0,b >0 C .a =0,b >0 D .a =0,b <04.已知a n <b n (n =1,2,...),若级数1nn a∞=∑与1nn b∞=∑均收敛,则“级数1nn a∞=∑绝对收敛”是“1nn b∞=∑绝对收敛”的( )。

A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.设A ,B 为n 阶可逆矩阵,E 为n 阶单位矩阵,M *为矩阵M 的伴随矩阵,则*0A E B ⎛⎫⎪⎝⎭=( )。

A .****0A B B A B A ⎛⎫- ⎪ ⎪⎝⎭ B .****0B A A B A B ⎛⎫- ⎪ ⎪⎝⎭ C .****0B A B A A B ⎛⎫- ⎪ ⎪⎝⎭ D .****0A B A B B A ⎛⎫- ⎪ ⎪⎝⎭6.二次型f (x 1,x 2,x 3)=(x 1+x 2)2+(x 1+x 3)2-4(x 2-x 3)2的规范形为( )。

考研数学三(线性代数)历年真题试卷汇编20(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编20(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编20(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2015年]设A,B为n阶矩阵,记r(X)为矩阵X的秩,(X,Y)分别表示分块矩阵,则( ).A.r(A,AB)=r(A)B.r(A,BA)=r(A)C.r(A,B)=max{r(A),r(B)}D.r(A,B)=r(ATBT)正确答案:A解析:解一易知r(A,AB)≥r(A).又由分块矩阵的乘法,可知(A,AB)=A(E,B),因此r(A,AB)≤min{r(A),r(E,B)},从而r(A,AB)≤r(A) 所以r(A,AB)=r(A),故选项(A)正确.解二排除法对选项(B),取则r(A)=1,r(A,BA)=2.对选项(C),取则r(A)=r(B)=1,r(A,B)=2.对选项(D),取则r(A,B)=1,r(AT,BT)=2.知识模块:线性代数2.[2003年] 设三阶矩阵若A的伴随矩阵的秩等于1,则必有( ).A.a=b或a+2b=0B.a=b或a+2b≠0C.a≠b且a+2b=0D.a≠b且a+2b≠0正确答案:C解析:解一因秩(A*)=1,由A与其伴随矩阵A*的秩的关系知,秩(A)=n -1=3-1=2.因为使秩(A)=2,必有|A|=0,且即a≠b,故a≠b且a+2b=0.仅(C)入选.解二由|A|=(a+2b)(a-b)2=0,得到a+2b=0或a=b.但当a=b时,秩(A)=1≠2,故a+2b=0且a≠b.仅(C)入选.知识模块:线性代数3.[2005年] 设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C为( ).A.EB.-EC.AD.-A正确答案:A解析:解一仅(A)入选.由B=E+AB得到(E-A)B=E,两边左乘(E-A)-1得到B=(E-A)-1.由C=A+CA得到C(E-A)=A,两边右乘(E-A)-1,得到C=A(E—A)-1,则B-C=(E-A)-1-A(E-A)-1=(E-A)(E-A)-1=E.解二由B=E+AB,C=A+CA,有B-AB=E,C-CA=A.于是(E-A)B=E,C(E-A)=A,①则E—A与B可逆,且互为逆矩阵.于是有B(E -A)=E,②则由式②一式①,得到B(E-A)-C(E-A)=(B-C)(E-A)=E —A,即B-C=E.仅(A)入选.知识模块:线性代数4.[2006年] 设A为三阶矩阵,将A的第2行加到第1行得B,再将B 的第1列的-1倍加到第2列得C,记则( ).A.C=P-1APB.C=PAP-1C.C=PTAPD.C=PAPT正确答案:B解析:将单位矩阵E的第2行加到第1行即得初等矩阵P,由初等矩阵与初等变换的关系有B=PA.令矩阵则E的第1列的-1倍加到第2列即得矩阵Q.于是有C=BQ,从而有C=PAQ,由于则C=PAQ=PAP-1.仅(B)入选.知识模块:线性代数5.[2011年] 设A为三阶矩阵,将A的第2列加到第1列得到矩阵B,再交换B的第2行与第3行得到单位矩阵,记则A=( ).A.P1P2B.P1-1P2C.P2P1D.P2P1-1正确答案:D解析:解一由题设有B=AP1,P2B=E,即P2B=P2AP1=E.又因P2,P1可逆,且P2-1=P2,故A=P2-1EP1-1=P2EP1-1=P2P1-1.仅(D)入选.解二由命题2.2.5.1知,对A所进行的初等变换可表示为P2AP1而P2AP1=P2(AP1)=P2B=E,故A=P2-1P1-1=P2P1-1.仅(D)入选.注:命题2.2.5.1(初等变换与初等矩阵左、右乘的关系) 每一次初等变换都对应一个初等矩阵,且对矩阵A施行一次初等行(列)变换相当于左(右)乘相应的初等矩阵.知识模块:线性代数6.[2009年] 设A,P为三阶矩阵,PT为P的转置矩阵,且若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则QTAQ为( ).A.&nbspB.&nbspC.&nbspD.&nbsp正确答案:A解析:解一因Q=[α1+α2,α2,α3]=[α1,α2,α3]=PE21(1),利用命题2.2.5.2(1)及题设,得到解二仅(A)入选.故注:命题2.2.5.2 (1)初等矩阵的转置矩阵的性质:EiT(k)=Ei(k),EijT=Eij,EijT(k)=Eij(k).知识模块:线性代数7.[2012年] 设A为三阶矩阵,P为三阶可逆矩阵,且若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=( ).A.&nbspB.&nbspC.&nbspD.&nbsp正确答案:B解析:解一因故于是解二用初等矩阵表示Q得到Q=PE12(1).由E12-1(1)=E12(-1)得到知识模块:线性代数8.[2005年] 设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是( ).A.λ1≠0B.λ2≠0C.λ1=0D.λ2=0正确答案:B解析:解一首先注意α1,α2线性无关.在推导α1,A(α1+α2)线性无关的条件时要用到它.设k1α1+k2A(α1+α2)=0,则k1α1+k2λ1α1+k2λ2α2=0,(k1+k2λ1)α1+k2λ2α2=0.因α1,α2线性无关,故k1+k2λ1=0,k2λ2=0.当λ2≠0时,有k2=0,从而k1=0.于是当λ2≠0时,α1,A(α1+α2)线性无关.反之,若α1,A(α1+α2)=λ1α1+λ2α2线性无关,则必有λ2≠0.因为如果λ2=0,则α1与A(α1+α2)=λ1α1线性相关与题设矛盾.综上所述,仅(B)入选.解二因向量组α1,A(α1+α2)=λ1α1+λ2α2可看成线性无关向量α1,α2的线性组合,且[α1,A(α1+α2)]=[α1,λ1α1+λ2α2]=[α1,α2] 由命题2.3.2.2知,向量组α1,A(α1+α2)线性无关的充分必要条件是的秩等于2,而秩故仅(B)入选.(注:命题2.3.2.2 设向量组α1,α2,…,αs线性无关,β1,β2,…,βs为该向量组的线性组合:即其中A=[aij]s×t称为线性表示的系数矩阵.或则向量组β1,β2,…,βt线性无关线性表示的系数矩阵A=[aij]s×t或矩阵K=AT 的秩为t.) 知识模块:线性代数9.[2010年] 设向量组(I):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示.下列命题中正确的是( ).A.若向量组(I)线性无关,则r≤sB.若向量组(I)线性相关,则r&gt;sC.若向量组(Ⅱ)线性无关,则r≤sD.若向量组(Ⅱ)线性相关,则r&gt;s正确答案:A解析:仅(A)入选.因向量组(I)可由向量组(Ⅱ)线性表示,故秩(I)≤秩(Ⅱ)=秩([β1,β2,…,βs)≤s.若向量组I线性无关,则秩(I)=秩([α1,α2,…,αr])=r,故r=秩([α1,α2,…,αr])≤秩([β1,β2,…,βs])≤s.知识模块:线性代数填空题10.[2013年] 设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij 的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=___________.正确答案:-1解析:因aij=-Aij,则(aij)=(-Aij),(aij)T=(-Aij)T=-(Aij),故AT=-A*,从而|A|=|AT|=|-A*|=(-1)3|A|3-1=-|A|2,即|A|2+|A|=|A|(|A|+1)=0,故|A|=0或|A|=-1.若|A|=0,则由|A|=ai1Ai1+ai2Ai2+ai3Ai3=(ai12+ai22+ai32)=0(i=1,2,3)得到aij=0(i,j=1,2,3),即矩阵A为零矩阵,这与题设矛盾.故|A|=-1.知识模块:线性代数11.[2007年] 设矩阵则A3的秩为__________.正确答案:1解析:解一由矩阵乘法直接计算得到由于A3中非零子式的最高阶数为1,由矩阵的秩的定义知,秩(A3)=1.解二A3的秩等于1.设其中αi(i=1,2,3,4)为A的行向量,则知识模块:线性代数12.[2017年] 矩阵α1,α2,α3为线性无关的三维列向量组,则向量组Aα1,Aα2,Aα3的秩为___________.正确答案:2解析:解(Aα1,Aα2,Aα3)=A(α1,α2,α3),因为α1,α2,α3线性无关,所以(α1,α2,α3)可逆,从而秩[Aα1,Aα2,Aα3]=秩(A).由得,秩(A)=2,故向量组Aα1,Aα2,Aα3的秩为2.知识模块:线性代数13.[2002年] 设三阶矩阵三维列向量α=[a,1,1]T,已知Aα与α线性相关,则a=_______.正确答案:-1解析:解一因α=[a,1,1]T,Aα=[a,2a+3,3a+4]T,故[*]得a=-1.解二两个向量Aα与α线性相关[*]这两个向量中至少有一个向量可由另一个向量线性表出.即存在数k≠0,使Aα=kα(或α=μAα),亦即k为特征值,α为A的属于特征值k的特征向量.由Aα=kα得到[*]得a=-1,k=1.知识模块:线性代数14.[2005年] 设行向量组[2,1,1,1],[2,1,a,a],[3,2,1,a],[4,3,2,1]线性相关,且a≠1,则a=___________.正确答案:1/2解析:解一设所给的4个行向量依次为α1,α2,α3,α4,且令A=[α1T,α2T,α3T,α4T].因4个四维向量线性相关的充要条件是其行列式等于零,故由|A|=|α1T,α2T,α3T,α4T|=(1-a)(1-2a)=0,得到a=1或a=1/2.因a≠1,故a=1/2.解二用初等行变换求之.对AT作初等行变换,化为阶梯形矩阵,得到由于所给向量组线性相关,秩(AT)可经初等列变换化为矩阵15.求a;正确答案:由题设条件可知矩阵A与B等价,则r(A)=r(B).因为所以因此a=2. 涉及知识点:线性代数16.求满足AP=B的可逆矩阵P.正确答案:设矩阵对增广矩阵作初等变换可得解得所以又因P可逆,因此即k2≠k3.故其中k1,k2,k3为任意常数,且k2≠k3.涉及知识点:线性代数[2014年] 设E为三阶单位矩阵.17.求方程组AX=0的一个基础解系;正确答案:为求AX=0的一个基础解系,只需用初等行变换将A化为含最高阶单位矩阵的矩阵:由基础解系的简便求法即可得到AX=0的一个基础解系只含一个解向量α,且α=[-1,2,3,1]T.涉及知识点:线性代数18.求满足AB=E的所有矩阵B.正确答案:因A不可逆,需用元素法求出满足AB=E的所有矩阵.由AB=E,A为3×4矩阵,E为3×3矩阵,则B必为4×3矩阵,设其元素为xij则B=(xij)4×3,即因而得到下述三个线性方程组:对上述三方程组的增广矩阵用初等行变换化为含最高阶单位矩阵的矩阵:由基础解系和特解的简便求法即得方程组①的一个特解η1及对应的齐次线性方程组的一个基础解系α分别为:η1=[2,-1,-1,0]T,α=[-1,2,3,1]T 于是该方程组的通解为X1=[x11,x21,x31,x41]T=Y1+η1=k1α+η1=[-k1+2,2k1-1,3k1-1,k1]T.同样由可得方程组②的通解为X2=[x12,x22,x32,x42]T=Y2+η2=k2α+η2=k2[-1,2,3,1]T+[6,-3,-4,0]T=[-k2+6,2k2-3,3k2-4,k2]T.由可得方程组③的通解为X3=[x13,x23,x33,x43]T=Y3+η3+=k2=k3α+η3=k3[-1,2,3,1]T+[-1,1,1,0]T=[-k3-1,2k3+1,3k3+1,k3]T 综上得到,涉及知识点:线性代数19.[2013年] 设当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有矩阵C.正确答案:设则由AC-CA=B得到四元非齐次线性方程组:存在矩阵C使AC-CA=B成立,上述方程组必有解.为此将上述方程组的增广矩阵用初等行变换化为阶梯形矩阵:当a≠-1或b≠0时,因秩()≠秩(G),方程组无解.当a=-1且b=0时,秩()=秩(G)=2<n=4,方程组有解,且有无穷多解.由基础解系和特解的简便求法得到,其基础解系为:α1=[1,a,1,0]T=[1,-1,1,0]T,α2=[1,0,1,0]T则对应齐次线性方程组的通解为c1α1+c2α2.而方程组①的特解为[1,0,0,0]T,故方程组①的通解为X=c1[1,-1,1,0]T+c2[1,0,0,1]T+[1,0,0,0]T即X=[x1,x2,x3,x4]T=[c1+c2+1,-c1,c1,c2]T,亦即x1=c1+c2+1,x2=-c1,x3=c1,x4=c2(c1,c2为任意常数),故所求的所有矩阵为其中c1,c2任意常数.涉及知识点:线性代数[2004年] 设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时,20.β不能由α1,α2,α3线性表示;正确答案:设有数k1,k2,k3,使得k1α1+k2α2+k3α3=β.①记A=[α1,α2,α3].对矩阵[A|β]施以初等行变换,有由于系数矩阵A 的秩取决于a及a-b是否为零,下面采用如下的二分法,分三种情况讨论.当a=0,b为任意常数时,有可知秩(A)≠秩([A|β]),故方程组①无解,β不能由α1,α2,α3线性表示.涉及知识点:线性代数21.β可由α1,α2,α3唯一地线性表示,并求出表示式;正确答案:当a≠0,且a≠b时,秩(A)=秩([A|β])=3,故方程组①有唯一解.由得到唯一解为k1=1-1/a,k2=1/a,k3=0,且β可由α1,α2,α3唯一地线性表示,其表示式为β=(1-1/a)α1+α2/a.涉及知识点:线性代数22.β可由α1,α2,α3线性表示,但表示式不唯一,并求出表示式.正确答案:当a≠0且a-b=0,即a=b≠0时,对[A|β]施以初等行变换,有可知秩(A)=秩([A|β])=2,故方程组①有无穷多解.其一基础解系只含一个解向量α=[0,1,1]T,其一个特解为η=[1-1/a,1/a,0],故以k1,k2,k3为未知数的方程组①的通解为[k1,k2,k3=η+cα=[1-1/a,1/a,0]T+c[0,1,1]T=[1-1/a,1/a+c,c]T(c为任意常数).于是β可由α1,α2,α3线性表示,其一般表示式为β=k1α1+k2α2+k3α3=(1-1/a)α1+(1/a+c)α2+cα3 (c 为任意常数).由上式易知,由于c为任意常数,β由α1,α2,α3线性表出的一般表达式,常归结为求关于未知数k1,k2,k3的方程组β=k1α1+k2α2+k3β3的通解.涉及知识点:线性代数[2008年] 设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3.23.证明α1,α2,α3线性无关;正确答案:证一用向量组线性无关的定义证明.为利用题设条件Aα3=α2+α3易想到需用A同时左乘定义等式两边.设k1α1+k2α2+k3α3=0.①由题设,有Aα1=一α1,Aα2=α2,Aα3=α2+α3.用A左乘式①两边,得到k1Aα1+k2Aα2+k3Aα3=一k1α1+k2α2+k3α2+k3α3=0.②本题中隐含了α1与α2线性无关,因为它们是属于不同特征值的特征向量.下面利用这一点证明k1=k2=k3=0.由式①一式②得到2k1α1一k2α2=0.因α1,α2为A的属于不同特征值的特征向量,故α1,α2线性无关.因而k1=k3=0,将其代入式①得到k2α2=0,又因α≠0,故k2=0.于是α1,α2,α3线性无关.证二用反证法证之.假设α1,α2,α3线性相关,由证一知,α1与α2线性无关,故α3可由α1,α2线性表出,不妨设α3=l1α1+l2α2,其中l1,l2不全为零(若l1,l2同时为零,则α3=0,由Aα3=α2+α3得到α2=0,这与α2为特征向量矛盾).因Aα1=一α1,Aα2=α2,故Aα3=α2+α3=α2+l1α1+l2α2.又一l1α1+l2α2=α2+l1α1+l2α2,即α2+2l1α1=0,则α1与α2线性相关.这与α1,α2线性无关矛盾.故α1,α2,α3线性无关.涉及知识点:线性代数24.令P=[α1,α2,α3],求P-1AP.正确答案:因α1,α2,α3线性无关,故P可逆.所以涉及知识点:线性代数[2011年] 设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,1,1]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示.25.求a的值;正确答案:解一因α1,α2,α3不能用β1,β2,β3线性表示,故秩([α1,α2,α3])>秩([β1,β2,β3]),而|α1,α2,α3|==1≠0,故秩([α1,α2,α3])=3,秩([β1,β2,β3])<3,所以解二4个三维向量β1,β2,β3,αi(i=1,2,3)必线性相关.若β1,β2,β3线性无关,则αi 必可表示成β1,β2,β3的线性组合.这与题设矛盾,故β1,β2,β3线性相关.于是|β1,β2,β3|=a-5=0,即a=5.解三将下列向量组用初等行变换化为行阶梯形矩阵:易知秩([α1,α2,α3])=3.因α1,α2,α3不能由β1,β2,β3线性表出,故秩([β1,β2,β3])<3.因而所以a=5.涉及知识点:线性代数26.将β1,β2,β3用α1,α2,α3线性表示.正确答案:解一由上题的解三知,当a=5时,经初等行变换得到故β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3.解二设[β1,β2,β3]=[α1,α2,α3]G.则因而即β1=2α1+4α2-α3,β2=α1+2α2,β3=5α1+10α2-2α3.涉及知识点:线性代数27.[2006年] 四维向量组α1=[1+a,1,1,1]T,α2=[2,2+a,2,2]T,α3=[3,3,3+a,3]T,α4=[4,4,4,4+a]T.问a为什么数时,α1,α2,α3,α4线性相关?在α1,α2,α3,α4线性相关时求其一个极大线性无关组,并且把其余向量用该极大线性无关组线性表出.正确答案:解一若α1,α2,α3,α4线性相关,即|α1,α2,α3,α4|=0,而|α1,α2,α3,α4|=a3(a+10),于是当a=0或-10时,α1,α2,α3,α4线性相关.当a=0时,α1是α1,α2,α3,α4的极大无关组,且α2=2α1,α3=3α1,α4=4α1.当a=-10时,用初等行变换求其极大无关组.显然β1,β2,β3为β1,β2,β3,β4的一个极大线性无关组,且β4=-β1-β2-β3.由于矩阵的初等行变换不改变矩阵列向量组之间的线性关系,故α1,α2,α3是α1,α2,α3,α4的一个极大无关组,且α4=-α1-α2-α3.解二设A=[α1,α2,α3,α4],对A进行初等行变换,得到当a=0时,A的秩等于1,因而α1,α2,α3,α4线性相关.此时α1为α1,α2,α3,α4的一个极大线性无关组,且α2=2α1,α3=3α1,α4=4α1.当a≠0时,再对B施以初等行变换,得到如果a≠-10,C的秩为4,从而A的秩也为4,故α1,α2,α3,α4线性无关.如果a=-10,C的秩为3,从而A的秩也为3,故α1,α2,α3,α4线性相关.由于v2,v3,v4为v1,v2,v3,v4的一个极大线性无关组,且v1=-v2-v3-v4,因矩阵的初等行变换不改变矩阵列向量组之间的关系,故α2,α3,α4为α1,α2,α3,α1的一个极大线性无关组,且α1=-α2-α3-α4.涉及知识点:线性代数。

2023年考研数学真题卷及答案(数学三)

2023年考研数学真题卷及答案(数学三)

2023年全国硕士研究生招生考试(数学三)试题及答案解析1.已知函数,ln sin f x y y x y ,则A. 0,1fx 不存在,0,1f y 存在.B. 0,1fx 存在,0,1f y 不存在.C. 0,1fx ,0,1f y均存在.D. 0,1fx ,0,1f y均不存在.x 0,2.函数f (x )(x 1)cos x ,x 0的一个原函数为 x ),x 0,A.F (x )(x 1)cos x sin x ,x 0. x ) 1,x 0,B.F (x )(x 1)cos x sin x ,x 0. x ),x 0,C.F (x )(x 1)sin x cos x ,x 0. x ) 1,x 0,D.F (x )(x 1)sin x cos x ,x 0.上有界,则B.a 0,b 0.D.a 0,b 0.3.若微分方程y ay by 0的解在 ,A.a 0,b 0.C.a 0,b 0.4.已知a n b nn 1n 1,2, ,若级数n 1an与n 1bn均收敛,则“n 1an绝对收敛”是“bn绝B.充分不必要条件.D.既不充分也不必要条件.对收敛”的A.充分必要条件.C.必要不充分条件.5.设,A B 为n 阶可逆矩阵,E 为n 阶单位矩阵, M 为矩阵M 的伴随矩阵,则=A E OB A..A B B A O B A B..B A A B O A B C..B A B A OA B D..A B A B OB A 6二次型f x 1,x 2,x 3 x 1 x 22x 1 x 324 x 2 x 32的规范形为A.y 12y 22B.y 12y 22C.y 12y 224y 32D.y 12y 22y 322311 12 2 15 09 17.已知向量α1 ,α2 ,β1 ,β2 ,若γ既可由α1,α2线性表示,也可由β1,β2线性表示,则γ 34 3A.k,k R50 3 B.k1 ,k R1 2 1 C.k,k R1 D.k 58,k R8.设随机变量X 服从参数为1的泊松分布,则EA.1eB.12C.X EX2eD.19.设X 1,X 2, ,X n 为来自总体N1,2的简单随机样本,Y 1,Y 2, ,Ym为来自总体N 2,2 2 的简单随机样本,且两样本相互独立,记111111n m n m i i n m n m i 1i 1X X i ,Y Y i ,S 12 X i X 2,S 22Y i Y1 1 2,则A. 2122,S F n m S B. 21221,1S F n m S C. 21222,S F n m S D. 212221,1S F n m S 10.设X 1,X 2为来自总体N,2的简单随机样本,其中 0 是未知参数.记a X 1 X 2,若E,则aA.2B.2二、填空题1111.l x x x i mx 22 x sin cos _______.2πx d y y d x x y 12.已知函数f (x ,y )满足d f (x ,y ),f 1,1 24则f .!=2nx 2nn 013. .14.设某公司在t 时刻的资产为f (t ),从0时刻到t 时刻的平均资产等于f (t )tt ,假设f (t )连续且f (0)=0,则f (t )=1231230,20x ax x x ax 15.已知线性方程组 x ax 1 bx 2 2,有解,其中a ,b 为常数,若a110a211a 4,则1a 112aa b 0.16.设随机变量X 与Y 相互独立,且X B 1,p ,Y B 2,p ,p 0,1 ,则X +Y 与X Y .的相关系数为三、解答题17.已知可导函数y =y (x )满足ae x y 2 y ln(1 x )cos y b 0,且y (0) 0,y '(0) 0.(1)求a ,b 的值;(2)判断x 0是否为y (x )的极值点.18.已知平面区域D ={(x,y )|0 y x 1}.(1)求D 的面积;(2)求D 绕x 轴旋转所成旋转体的体积.D1|d x d y .19.已知平面区域D {(x ,y )|(x 1)2 y 2 1}.计算二重积分 |20.(12分)设函数f (x )在[-a ,a ]上具有2阶连续导数,证明:1a(1)若f (0)=0,则存在 a ,a ,使得f ''( )2[f (a ) f ( a )];(2)若f(x )在(-a ,a )内取得极值,则存在 a ,a 使得1.2f ''a2f (a ) f ( a )12x 1x 2x 3x 1x 2x 3x21.设矩阵A 满足对任意x 1,x 2,x 3均有A2 . x x3 x 2 x 3(1)求A ;(2)求可逆矩阵P 与对角矩阵 ,使得P 1AP Λ.xx22.设随机变量变量X 的概率密度为f x 1 e e 2, x ,令Y e x.(1)求X 的分布函数;(2)求Y 的概率密度;(3)Y的期望是否存在?2023年全国硕士研究生入学统一考试数学三答案一、选择题1.A2.D3.C4.A5.D6.B7.D8.C9.D10.A空题11、二、填23π12、113、e x2+2e −x14、f (t )=2(1-t )-2e t 15、816、p (p-1)将y (0) 0代入ae x2yy y1 1xcos y ln(1 x )(sin y )y 0得a 0 1 0,所以a 1b 1 1xcos y ln(1 x )sin y y 0(2)由e x2yy y1两边对x 求导,得:(1)将(0,0)代入得a b 01e x 2 y 22yy y(1 1x )2cos y 11xsin ysin y y ln(1 x ) 2sin yy cos y y 01 x代入,得1 y (0) 1 0,y (0) 2 0,x 0为极大值.17【解析】2141tan ttan t xsec t (1)24se tan c tsec 2tdt 4t dt2csc tdt1)21(2)11 1x 2 x 2dx 112 1 1x 2 x dx 4)dx (1 18【解析】D 1 {(x ,y ∣)x 2 y 2 1,(x 1)2 y 2 1 )x 2 y 2 1,(x 1)2 y 2 1D 2 (x ,y∣D 1D 2d x d y1 1d x d y原式=161310829D 12cos2d 1 1 r r d r 1πd x d y 2 6d 1 r r d r 2其中 19【解析】π2π022259182D 2DD 1D 1d x d y 2cos1 1 1 r 1 r d r1 π d x d yd x d yd x d y d所以4439π原式=.1 x 22f【解析】(1)f (x ) f (0) f (0)x 1 22f 112f a 2,f ( a ) f (0)( a ) a 2,其中 1 a ,0 ,则f (a ) f(0)a2 0,a .12 1 2 f ( a ) f (a )ff a 212 1 2 ff 2f (a )a f ( a ) f , 1, 2 a ,a ,由介值定理可知平均值 即证(2)x 0 0设f (x )在x =x 0处取得极值即x 0 ( a a ),f22x 0( )ff (x ) f x 0 f x x 0 x x 020代入x a ,x a21f f ( a ) f x 0 a x 02(1), 1 a ,x 02n 1f f (a ) f x 0a x 02(2), 2 x 0,a(2)-(1)得222100()()22f f f a f a a x a x222100|()()|22f f f a f a a x a x2200()()22f f a x a x 2200()2f a x a x 220()222f a x220()f a x2()2f a ,12 ()max f f f 其中,,a a 21()|()()|2f f a f a a. 21.【解析】12123311111011x x x xx x2(1)由题可知,A 11.2011 111A (2)|A E | (2 )(2)( 1) 01232,1,2A 中1 A 中对应的线性无关特征向量1(4,3,1).T 2 A 中对应的线性无关特征向量21,0,12T3 A 中对应的线性无关特征向量3(0,1,1)123,,p 1212P AP22.【解析】xf (t )dt ( x )(1)F (x ) txt e 2dte121 1xt d e te1t x1 e 11 1e x(2) 当0y 时22111()(ln )(1)(1)Y X y f y f y y y y y 210(1)()0 Y y y f y其它 (3) 20d (1)EY y y y,2(1)y y 1y ,所以期望不存在.。

考研数学三(概率论与数理统计)历年真题试卷汇编16(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编16(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编16(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2007年] 设随机变量(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下X的条件密度fX|Y(x|y)为( ).A.fX(x)B.fY(y)C.fX(x)fY(y)D.fX(x)/fY(y)正确答案:A解析:解一仅(A)入选.因(X,Y)服从二维正态分布,且X与Y不相关,故X与Y相互独立.设f(X,Y)为(X,Y)的联合概率密度,则f(X,Y)=fX(x)fY(y).因Y服从正态分布,则对任意y有fY(y)>0.故解二设(X,Y)服从二维正态分布N(μ1,μ2;σ12,σ22;ρ),则概率密度为且X~N(μ1,σ12),Y~N(μ2,σ22),即又因X,Y不相关,则ρ=0,于是知识模块:概率论与数理统计2.[2009年] 设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布P(Y=0)=P(Y=1)=1/2.记FZ(z)为随机变量Z=XY的分布函数,则函数FZ(z)的间断点的个数为( ).A.0B.1C.2D.3正确答案:B解析:又X,Y相互独立,故当z<0时,当z≥0时,综上所述,所以FZ(z)只有一个间断点z=0.仅(B)入选.知识模块:概率论与数理统计3.[2012年] 设随机变量X与Y相互独立,且都服从区间(0,1)内的均匀分布,则P{X2+Y2≤1}=( ).A.1/4B.1/2C.π/8D.π/4正确答案:D解析:由题设有因X与Y相互独立,故从而或知识模块:概率论与数理统计4.[2016年] 设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=( ).A.6B.8C.14D.15正确答案:C解析:解一直接利用命题3.4.1.1(1)求之.由X~N(1,2)得到E(X)=1,D(X)=2;由Y~N(1,4)得到E(Y)=1,D(Y)=4.故D(XY)=D(X)D(Y)+[E(X)]2D(Y)+[E(Y)]2D(X)=2×4+12×4+12×2=14.仅(C)入选.解二利用方差和期望的性质求之.D(XY)=E(XY)2-[E(XY)]2=E(X2Y2)=[E(XY)]2因X,Y相互独立,则E(X2Y2)=E(X2)E(Y2),而E(X2)=D(X)+[E(X)]2=3,E(Y2)=D(Y)+[E(Y)]2=1+4=5,即E(X2Y2)=15,又E(XY)=E(X)E(Y)=1×1=1,故D(XY)=E(X2Y2)-[E(XY)]2=15-1=14.仅(C)入选.注:命题3.4.1.1 (1)设随机变量X,Y相互独立,则D(XY)=D(X)D(Y)+[E(X)]2D(Y)+[E(Y)]2D(X)≥D(X)D(Y);知识模块:概率论与数理统计5.[2008年] 设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则( ).A.P(Y=-2X-1)=1B.P(Y=2X-1)=1C.P(Y=-2X+1)=1D.P(Y=2X+1)=1正确答案:D解析:解一因X~N(0,1),Y~N(1,4),故E(X)=0,D(X)=1,E(Y)=1,D(Y)=4.于是有又由ρXY=P(Y=aX+b)=1及命题3.4.2.3(4)得a>0,故a=2.于是a=2,b=1.仅(D)入选.解二设Y=aX+b(a≠0).由ρXY=1得a/|a|=1,因而a>0.排除(A)、(C).又因E(Y)=E(aX+b)=aE(X)+b=a·0+b=b=1.排除(B).仅(D)入选.注:命题3.4.2.3 相关系数的常用性质有(4)当Y 与X有线性关系Y=aX+b(a≠0,b为常数)时,则X和Y的相关系数ρXY=a/|a|.因而当a>0时,ρXY=1;当a<0时,ρXY=-1;知识模块:概率论与数理统计6.[2002年] 设随机变量X和Y都服从标准正态分布,则( ).A.X+Y服从正态分布B.X2+Y2服从χ2分布C.X2和Y2都服从χ2分布D.X2/Y2服从F分布正确答案:C解析:解一因X~N(0,1),Y~N(0,1),故X2~χ2(1),Y2~χ2(1).仅(C)入选.解二由于(X,Y)的联合分布是否为二维正态分布未知,又不知道X与Y是否相互独立,因而不能确定X+Y服从正态分布.(A)不对.因X与Y是否独立未知,故X2+Y2是否相互独立也未知,所以也不能确定X2+Y2服从χ2分布,也不能确定X2/Y2服从F分布.(B)、(D)也不对.仅(C)入选.知识模块:概率论与数理统计填空题7.[2015年]设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY-Y<0)=___________.正确答案:解析:因(X,Y)~N(1,1;0,1;0),ρ=0,由命题(3.3.5.1(4))知,X,Y相互独立,则P{XY-Y<0}=P{(X-1)Y<0} =P{X-1<0,Y>0}+P{X -1>0,Y<0} =P{X<1}P{Y>0}+P{X>1}P{Y<0}.因X~N(1,1),故P{X<1)=P{X>1}=因Y~N(0,1),故所以注:命题3.3.5.1 (4)若X与Y相互独立,则X与Y一定不相关,但反之不成立.只有当X与Y的联合分布为正态分布时,X与Y相互独立与Y不相关ρXY=0.知识模块:概率论与数理统计8.[2005年] 设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=__________,b=___________.正确答案:a=0.4,b=0.1解析:解一由知,a+b=0.5.又由事件{X=0)与{X+Y=1}相互独立,有P(X=0,X+Y=1)=P(X=0)P(X+Y=1),而P(X=0,X+Y=1)=P(X=0,Y=1)=a,P(X=0)=a+0.4,P(X+Y=1)=P(X=0,Y=1)+P(X=1,Y=0)=a+b,故a=(a+0.4)(a+b)=(a+0.4)×0.5.①所以a=0.4,从而b=0.5-a=0.1.解二由解一知a+b=0.5.又由命题3.3.5.2知,秩于是即ab=0.04=0.1×0.4.解二次方程x2-0.5x+0.1×0.4=0,即解(x-0.1)(x-0.4)=0,得x1=0.1,x2=0.4.因而a=0.1或0.4,b=0.4或0.1.为满足独立性,式①应成立.当a=0.1,b=0.4时,式①不成立;当a=0.4,b=0.1时,式①成立.故所求的常数为a=0.4,b=0.1.注:命题3.3.5.2 X与Y相互独立的充分必要条件是联合概率矩阵的秩等于1,这里联合概率矩阵是指由x与y的联合分布律中的概率元素依次所组成的矩阵.知识模块:概率论与数理统计9.[2013年] 设随机变量X服从标准正态分布N(0,1),则E(Xe2x)=_________.正确答案:2e2解析:解一因X~N(0,1),故则解二对式①作变量代换x-2=t,则知识模块:概率论与数理统计10.[2011年] 设二维随机变量(X,Y)服从N(μ,μ;σ2,σ2;0),则E(XY2)=_____________.正确答案:μ(σ2+μ2)解析:N(X,Y)服从二维正态分布,且其相关系数ρ=0,由命题3.3.5.1(4)知X,Y相互独立.由题设知E(X)=μ,E(Y2)=D(y)+[E(y)]2=σ2+μ2,故E(XY2)=E(X)E(Y2)=μ(σ2+μ2).注:命题3.3.5.1 (4)若X与Y相互独立,则X与Y一定不相关,但反之不成立.只有当X与Y的联合分布为正态分布时,X与Y相互独立与Y不相关ρXY=0.知识模块:概率论与数理统计11.[2002年] 设随机变量X和y的联合概率分布为则X2和Y2的协方差cov(X2,Y2)=___________.正确答案:-0.02解析:解一由cov(X2,Y2)=E(X2Y2)-E(X2)E(Y2)知,需先求出X2,Y2及X2Y2的分布,然后再求其期望值.可用同一表格法一并解决.A则故E(X2)=0.6,E(Y2)=0.5,E(X2Y2)=0.28,因而cov(X2,Y2)=E(X2Y2)-E(X2)E(Y2)=0.28-0.6×0.5=-0.02.解二利用下述公式求之.设X 的分布律为P(X=xi)=pi(i=1,2,…),则X的函数g(X)的期望若(X,Y)的联合分布律为P(X=xi,Y=yj)=pij(i,j=1,2,…),N(X,Y)的函数g(X,Y)的期望由式(3.4.2.1)得到于是不用求出X2Y2的分布,直接由定义求得,即E(X2Y2)=02×(-1)2×0.07+02×02×0.18+02×12×0.15+12×(-1)2×0.08+12×02×0.32+12×12×0.20=0.28.又由联合分布律易求得边缘分布律为由式(3.4.1.1)有E(X2)=02×0.4+12×0.6=0.6,E(Y2)=02×0.5+12×0.5=0.5.故cov(X2,Y2)=E(X2Y2)-E(X2)E(Y2)=0.28-0.6×0.5=-0.02.注:公式知识模块:概率论与数理统计12.[2003年] 设随机变量X和Y的相关系数为0.9,若Z=X-0.4,则Y和Z的相关系数为_________.正确答案:0.9解析:解一由Z=X-0.4得到D(Z)=D(X-0.4)=D(X).解二直接利用公式cov(aX+b,cY+d)=accov(X,Y)(a,b,c,d为常数),得到解三因Z=X-0.4,故D(Z)=D(X-0.4)=D(X),且E(Z)=E(X-0.4)=E(X)-0.4,所以cov(Y,Z)=E(YZ)-E(Y)E(Z)=E[Y(X-0.4)]-E(Y)E(X-0.4) =E(XY)-0.4E(Y)-E(Y)[E(X)-0.4] =E(XY)-0.4E(Y)-E(X)E(Y)+0.4E(Y) =E(XY)-E(X)E(Y)=cov(X,Y).因而知识模块:概率论与数理统计13.[2001年] 设随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式P(|X+Y|≥6)≤_________.正确答案:1/12解析:由题设有D(X)=1,D(Y)=4.且ρXY=-0.5,E(X)=2,E(Y)=-2,则注意到E(X+Y)=E(X)+E(Y)=0,由切比雪夫不等式得到P(|X+Y|≥6)=P(|X+Y-0|≥6)=P|X+Y-E(X+Y)|≥6≤D(X+Y)/62,所以P(|X+Y|≥6)≤D(X+Y)/62=3/36=1/12.知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析)

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析)

考研数学三(线性方程组)历年真题试卷汇编1(题后含答案及解析) 题型有:1. 选择题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2002年] 设A是m×n矩阵,B是n×m的矩阵,则线性方程组(AB)X=0( ).A.当n>m时,仅有零解B.当n>m时,必有非零解C.当m>n时,仅有零解D.当m>n时,必有非零解正确答案:D解析:解一显然AB为m阶矩阵,因而(AB)X=0是含m个未知数的齐次方程组,而当m>n时,有秩(AB)≤秩(A)≤n<m.因而(AB)X=0有非零解.仅(D)入选.解二因秩(A)≤min(m,n),秩(B)≤min(m,n),而秩(AB)≤min(秩(A),秩(B)),于是当n>m时,有秩(A)≤m,秩(B)≤m,秩(AB)≤m,而AB为m阶矩阵.由于秩(AB)可能小于等于m,只能说当n>m时,如果秩(AB)=m,则(AB)X=0只有零解,如果秩(AB)<m,(AB)X=0必有非零解,因而(A)、(B)都不对.又当n<m时,秩(AB)≤n<m,而AB为m阶矩阵,因而矩阵AB 的秩小于未知数的个数,齐次方程(AB)X=0必有非零解,于是(C)也不对.仅(D)入选.知识模块:线性方程组2.[2004年] 设n阶矩阵A的伴随矩阵A*≠O.若考ξ1,ξ2,ξ3,ξ4是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系( ).A.不存在B.仅含一个非零解向量C.含有两个线性无关的解向量D.含有三个线性无关的解向量正确答案:B解析:解一当A*≠O时,秩(A*)≠0.因而秩(A*)=n或秩(A*)=1.于是秩(A)=n或秩(A)=n-1.由题设知AX=b有四个互不相等的解,因而解不唯一,于是秩(A)=n-1.因而其基础解系仅含一个解向量.仅(B)入选.解二因A*≠O,故秩(A*)≥1,则秩(A)≥n-1.又因AX=0有解且不唯一,故秩(A)≤n-1.因而秩(A)=n-1.其基础解系仅含一个解向量.仅(B)入选.解三因A*≠o,故A*中至少有一个元素Aij=(-1)i+jMij≠0,即A的元素aij的余子式Mij≠0,而Mij为A的n一1阶子行列式,故秩(A)≥n一1.又由AX=b有解且不唯一,有秩(A)≤n-1<n,故秩(A)=n-1,于是AX=0的一个基础解系所含解向量的个数为n-秩(A)=n-(n-1)=1.仅(B)入选.知识模块:线性方程组3.[2000年] 设α1,α2,α3是四元非齐次线性方程组AX=b的3个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=( ).A.[1,2,3,4]T+c[1,1,1,1]TB.[1,2,3,4]T+c[0,1,2,3]TC.[1,2,3,4]T+c[2,3,4,5]TD.[1,2,3,4]T+c[3,4,5,6]T正确答案:C解析:解一仅(C)入选.AX=b为四元非齐次方程组,秩(A)=3,AX=0的一个基础解系只含n-秩(A)=4-3=1个解向量.将特解的线性组合2α1,α2+α3写成特解之差的线性组合,即2α1-(α2+α3)=(α1-α2)+(α1-α3).因2一(1+1)=0,由命题2.4.4.1知,2α1-(α2+α3)=[2,3,4,5]T≠0仍为AX=0的一个解向量,且为其一个基础解系,故AX=b的通解为X=α1+k[2α1-(α2+α3)]=[1,2,3,4]T+k[2,3,4,5]T.解二仅(C)入选.因秩(A)=3,故四元齐次方程组AX=0的基础解系所含向量的个数为4一秩(A)=1,所以AX=0的任一个非零解都是它的基础解系.由于α1及(α2+α3)/2都是AX=b的解(因1/2+1/2=1),故α1-(α2+α3)=[2α1-(α2+α3)]=[2,3,4,5]T是AX=0的一个解,从而2×[2,3,4,5]T=[2,3,4,5]T=η也是AX=0的一个解,且因η≠0,故η为Ax=0的一个基础解系,所以AX=b的通解为X=α1+cη=[1,2,3,4]T+c[2,3,4,5]T,c为任意常数.知识模块:线性方程组4.[2011年] 设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( ).A.(η2+η3)/2+k1(η2-η1)B.(η2-η3)/2+k1(η2-η1)C.(η2+η3)/2+k1(η2-η1)+k2(η3-η1)D.(η2-η3)/2+k1(η2-η1)+k2(η3-η1)正确答案:C解析:解一仅(C)入选.因n元非齐次线性方程组AX=b的线性无关的解向量最多的个数为n-秩(A)+1,故3-秩(A)+1≥3,即秩(A)≤1.又秩(A)≥1(如秩(A)=0,则A=0与AX=β≠0矛盾),故秩(A)=1,所以AX=0的一个基础解系含n-秩(A)=3=1-2个解向量,而η3-η1,η2-η1均为AX=0的非零解,因而它们为AX=0的基础解系.又(η2+η3)/2中的系数1/2+1/2=1.由命题2.4.4.1知,(η2+η3)/1为AX=β的一特解.于是AX=β的通解为(η2+η3)/2+k1(η2-η1)+k2(η3-η1).解二由非齐次线性方程组AX=B 通解的结构(该方程组的一特解加上对应齐次线性方程组AX=0的基础解系)可分别排除选项(A)、(B)、(D).事实上,(B)、(D)中的为AX=0的解,不是AX=B的特解,可排除(B)、(D).又因AX=0的解η2-η1,η3-η1线性无关,故AX=0的基础解系至少包含2个解向量,从而排除(A).仅(C)入选.知识模块:线性方程组解答题解答应写出文字说明、证明过程或演算步骤。

-历年考研数学三真题及答案解析

-历年考研数学三真题及答案解析

是c+等价无穷小,则(C) R = 3,c = 4已知 f(x)在 X = O 处可导,且 /(0) = 0,则 Iim x ~f M~2 / CV)Λ→0设{冷}是数列,则下列命题正确的是OOX若£心收敛’则∑(∕G H -I +U 2π)收敛/1-1n-1X OC若£(%如)收敛,则收敛“■]/1-1OO X若X ©收敛,则X(∕Y 2^1 T6)收敛 ∕ι≡lπ-! 若X("2-1 Tf 2』收敛‘则X ©收敛π-l ∕ι≡lπ JT π设/ =JJIn(Sin x)dx , J = JJ In(COt x)dx, K = U In(COS x)dx 贝IJ 八 J , K的大 小关系是解,k lt k 2为任意常数.则Ax = β的通解为(A) k = l,c = 4(B) IC = ^C =-4⑷-2/(0)(B) -/'(O) (C) /(O) (D) 0(C) (D)(A) I<J<K (B) I<K<J (C) J <I<K (D) K<J<I⑸ 设A 为3阶矩阵・将A 的第2列加到第1列得矩阵3.再交换B 的第2行与第31 O OU O 0,行得单位矩阵记为片=1 1 O,£ = O O 1,0 0 1’O 1 O 丿(C) P 2P 1 (D) P['P ∖(6)设人为4x3矩阵,7,J Il > “3 是非齐次线性方程组AX = 0的3个线性无关的(B) P^P I (A)砒 ,则4 =(B)t h∑211 + k2{η2-η^(C)T h;+ & (% - 帀)+ £(“2 - 7)(D)+ «2(〃2 一〃1)+ 鸟3(〃3一帀)(7)设F i(x), F2(X)为两个分布函数,其相应的概率密度f l(x), /I(X)是连续函数, 则必为概率密度的是(A)∕1U)Λ(x)(B) If2(X)FM(C) ∕1(X)F2(X)(D) f l(x)F2(x) + f2(x)F i(x)(8)设总体X服从参数2(Λ>0)的泊松分布,X P X l,..∙X,1(∕z≥2)为来自总体的简1" IilZil单随即样本,贝IJ对应的统iiS7;=-yx(., T l =——Vx1-+-X,,刃台^ H-I ⅛r IJ '(A) ET i > ET2i DT l > DT2(B) ETl > ET^DT i < DT2(C) ET x < ET2.DT x > DT1(D) ET x < ET1,DT x < DT1二、填空题:旷14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.X(9)设/(x) = IimX(I+ 3r)7,则 / (X) = __ ・∕→0X(10)设函数2 = (1 +丄)匚则^I(II= _______ ・y(11)曲线tan(x + y + -)="在点(0,0)处的切线方程为_______ ・4(12)曲线y = 直线X = I及X轴所囤成的平面图形绕X轴旋转所成的旋转体的体积 _____ .(13)设二次型/(X P X2,X3)= XΓAΛ-的秩为1, A中行元素之和为3,则/在正交变换下X = Qy的标准型为 ____ •(14)设二维随机变⅛(X,K)服从N(“,“;bSb?;。

考研数学三(线性代数)历年真题试卷汇编8(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编8(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编8(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.行列式=( )A.(ad一bc)2。

B.一(ad一bc)2。

C.a2d2一b2c2。

D.一a2d2+b2c2。

正确答案:B解析:由行列式的展开定理展开第一列。

=一ad(ad一bc)+bc(ad—bc)=一(ad一bc)2。

故选B。

知识模块:线性代数2.设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则( )A.E一A不可逆,E+A不可逆。

B.E—A不可逆,E+A可逆。

C.E—A可逆,E+A可逆。

D.E—A可逆,E+A不可逆。

正确答案:C解析:(E—A)(E+A+A2)=E一A3=E,(E+A)(E—A+A2)=E+A3=E。

故E—A,E+A均可逆。

知识模块:线性代数3.设α是n维单位列向量,E为n阶单位矩阵,则( )A.E一ααT不可逆。

B.E+ααT不可逆。

C.E+2ααT不可逆。

D.E一2ααT不可逆。

正确答案:A解析:由α是n维单位列向量可知(ααT)α=α(αTα)=α,且1≤r(ααT)≤r(α)=1,即1是矩阵ααT的特征值,且r(ααT)=1,所以ααT的特征值为0(n一1重)和1。

矩阵E一ααT的特征值为1(n一1重)和0,则E一ααT不可逆。

E+ααT的特征值为1(n一1重)和2,E+2ααT的特征值为1(n 一1重)和3,E一2ααT的特征值为1(n一1重)和一1,三者的矩阵行列式均不为零,因此均可逆。

不可逆的只有A选项。

知识模块:线性代数4.设矩阵A=(aij)3×3满足A*=AT,其中A*是A的伴随矩阵,AT为A 的转置矩阵。

若a11,a12,a13为三个相等的正数,则a11为( ) A.。

B.3。

C.。

D.。

正确答案:A解析:由A*=AT及AA*=A*A=|A|E,有aij=Aij,i,j=1,2,3,其中Aij,为aij的代数余子式,且AAT=|A|E→|A|2=|A|3→|A|=0或|A|=1。

考研数学三(线性代数)历年真题试卷汇编11(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编11(题后含答案及解析)

考研数学三(线性代数)历年真题试卷汇编11(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设A为四阶实对称矩阵,且A2+A=O,若A的秩为3,则A相似于( )正确答案:D解析:设A的特征值为λ,因为A2+A=O,所以λ2+λ=0,即λ(λ+1)=0→λ=0或λ=一1。

又因为r(A)=3,A必可相似对角化,对角阵的秩也是3。

所以λ=一1是三重特征根,则A~,正确答案为D。

知识模块:线性代数2.设二次型f(x1,x2,x3)在正交变换x=Py下的标准形为2y12+y22-y32,其中P=(e1,e2,e3),若Q=(e1,-e3,e2),f(x1,x2,x3)在正交变换x=Qy下的标准形为( )A.2y12-y22+y32。

B.2y12+y22-y32。

C.2y12-y22-y32。

D.2y12+y22+y32。

正确答案:A解析:方法一:由题设可知f=XTAx—YT(PTAP)=2y12+y22-y32。

且所以f=xTAx=yT(QTAQ)y=2y12-y22+y32。

答案选A。

方法二:由题意可知,二次型f(x1,x2,x3)的矩阵A的特征值为2,1,一1,对应的特征向量分别为e1,e2,e3。

由特征向量的性质可知,e1,e2,-e3仍然分别是属于特征值2,1,一1的特征向量,同时e1,e2,-e3仍为单位正交向量组,故QTaQ=diag{2,一1,1}。

所以二次型f(x1,x2,x3)在正交变换x=Qy下的标准形为2y12-y22-y32。

故选A。

知识模块:线性代数3.设矩阵A=,则A与B( )A.合同,且相似。

B.合同,但不相似。

C.不合同,但相似。

D.既不合同,也不相似。

正确答案:B解析:方法一:由|λE一A|=0得A的特征值为0,3,3,而B的特征值为0,1,1.从而A与B不相似。

又r(A)=r(B)=2,且A,B有相同的正惯性指数,因此A与B合同。

数学三考研题目答案及解析

数学三考研题目答案及解析

数学三考研题目答案及解析数学三考研题目答案及解析:题目:设函数\( f(x) \)在区间\( [a, b] \)上连续,且\( f(a) =f(b) \),证明至少存在一点\( c \)在区间\( (a, b) \)内,使得\( f(c) = f(a) \)。

答案:根据罗尔定理(Rolle's Theorem),如果一个函数在闭区间\( [a, b] \)上连续,在开区间\( (a, b) \)内可导,并且两端的函数值相等,即\( f(a) = f(b) \),那么至少存在一点\( c \)在开区间\( (a, b) \)内,使得\( f'(c) = 0 \)。

首先,我们构造一个新的函数\( g(x) = f(x) - f(a) \)。

显然,\( g(x) \)在\( [a, b] \)上连续,并且在\( (a, b) \)内可导,因为\( f(x) \)在这些区间上具有相应的性质。

由于\( f(a) = f(b) \),我们有\( g(a) = g(b) = 0 \)。

现在,我们可以应用罗尔定理于函数\( g(x) \)在\( [a, b] \)上。

根据定理,存在至少一点\( c \)在\( (a, b) \)内,使得\( g'(c) = 0 \)。

计算\( g'(x) \),我们得到\( g'(x) = f'(x) - 0 = f'(x) \)。

因此,\( g'(c) = f'(c) = 0 \)。

由于\( g(c) = f(c) - f(a) \),并且我们已经知道\( g'(c) = 0 \),我们可以得出\( g(c) = 0 \)。

这意味着\( f(c) - f(a) = 0 \),即\( f(c) = f(a) \)。

这就证明了至少存在一点\( c \)在区间\( (a, b) \)内,满足\( f(c) = f(a) \)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年全国硕士研究生入学统一考试数学三试题选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)曲线221x xyx+=-渐近线的条数为()(A)0 (B)1 (C)2 (D)3(2)设函数2()(1)(2)x x nxf x e e e n=--…(-),其中n为正整数,则(0)f'=()(A)1(1)(1)!n n---(B)(1)(1)!n n--(C)1(1)!n n--(D)(1)!n n-(3)设函数()f t连续,则二次积分22202cos()d f r rdrπθθ⎰⎰=()(A)222 0() dx x y dy+⎰(B)222 0() dx f x y dy+⎰(C)222 01() dx x y dy+⎰⎰(D)222 01() dx f x y dy++⎰⎰(4)已知级数11(1)ninα∞=-∑绝对收敛,21(1)ninα∞-=-∑条件收敛,则α范围为()(A)0<α12≤(B)12< α≤1(C)1<α≤32(D)32<α<2(5)设1234123400110,1,1,1c c c c αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪===-= ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭其中1234c c c c ,,,为任意常数,则下列向量组线性相关的是() (A )123ααα,, (B )124ααα,,(C )134ααα,,(D )234ααα,,(6)设A 为3阶矩阵,P 为3阶可逆矩阵,且P-1AP=112⎛⎫⎪ ⎪⎪⎝⎭,123=P ααα(,,),1223=Q αααα(+,,)则1=Q AQ -()(A )121⎛⎫ ⎪ ⎪ ⎪⎝⎭(B )112⎛⎫ ⎪ ⎪ ⎪⎝⎭ (C )212⎛⎫ ⎪ ⎪ ⎪⎝⎭(D )221⎛⎫ ⎪ ⎪ ⎪⎝⎭(7)设随机变量X 与Y 相互独立,且都服从区间(0,1)上的均匀分布,则+PX Y ≤22{1}()(A )14(B )12(C )8π(D )4π(8)设1234X X X X ,,,为来自总体N σσ>2(1,)(0)的简单随机样本,则统计量1234|+-2|X X X X -的分布( ) (A )N (0,1)(B )(1)t(C )2(1)χ(D )(1,1)F二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9)1cos sin 4lim (tan )x xx x π-→(10)设函数0ln1(),(()),21,1xdyxf x y f f xdxx x=⎧≥⎪=⎨-<⎪⎩求___________.(11)函数(,)z f x y=满足1(,)22lim0,xyf x y x y→→-+-=则(0,1)dz=_______.(12)由曲线4yx=和直线y x=及4y x=在第一象限中所围图形的面积为_______.(13)设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第一行与第二行得到矩阵B,则|BA*|=________.(14)设A,B,C是随机事件,A,C互不相容,11 (),(),23P AB P C==则CP AB()=_________.解答题:15~23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)计算222cos4limx x xe ex-→-(16)(本题满分10分)计算二重积分xDe xydxdy⎰⎰,其中D为由曲线y y==所围区域.(17)(本题满分10分)某企业为生产甲、乙两种型号的产品,投入的固定成本为10000(万元),设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且固定两种产品的边际成本分别为20+2x(万元/件)与6+y(万元/件).1)求生产甲乙两种产品的总成本函数(,)C x y(万元)2)当总产量为50件时,甲乙两种的产量各为多少时可以使总成本最小?求最小的成本. 3)求总产量为50件时且总成本最小时甲产品的边际成本,并解释其经济意义.(18)(本题满分10分)证明:21ln cos1,1 1.12x xx x xx++≥+-<< -(19)(本题满分10分)已知函数()f x满足方程()()2()0f x f x f x"'+-=及()()2x f x f x e '+=1)求表达式() f x2)求曲线的拐点22()()xy f x f t dt =-⎰(20)(本题满分10分)设1001010100100010aaA baa⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,(I)求|A|(II)已知线性方程组Ax b=有无穷多解,求a,并求Ax b=的通解.(21)(本题满分10分)已知1010111001Aaa⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦,二次型123(,,)()f x x x x xT T=A A的秩为2,求实数a的值;求正交变换x=Qy将f化为标准型.(22)(本题满分10分)已知随机变量X,Y 以及XY 的分布律如下表所示:求(1)P(X=2Y); (2)cov(,)XYX Y Y -ρ与.(23)(本题满分10分) 设随机变量X和Y相互独立,且均服从参数为1的指数分布,m in(,),=m ax(,).V X Y U X Y =求(1)随机变量V 的概率密度; (2)()E U V +.2011年全国硕士研究生入学统一考试数学三试题一、选择题:1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

请将所选项前的字母填在答题纸指定位置上。

(1) 已知当0x →时,函数()3sin sin 3f x x x =-与是kcx 等价无穷小,则(A) 1,4k c == (B) 1,4k c ==- (C) 3,4k c == (D) 3,4k c ==-(2) 已知()f x 在0x =处可导,且(0)0f =,则233()2()limx x f x f x x→-=(A) '2(0)f - (B) '(0)f - (C) '(0)f (D) 0 (3) 设{}n u 是数列,则下列命题正确的是(A) 若1nn u∞=∑收敛,则2121()n n n uu ∞-=+∑收敛(B) 若2121()n n n uu ∞-=+∑收敛,则1n n u ∞=∑收敛(C) 若1nn u∞=∑收敛,则2121()n n n uu ∞-=-∑收敛(D) 若2121()n n n uu ∞-=-∑收敛,则1n n u ∞=∑收敛(4) 设40ln(sin )I x dx π=⎰,40ln(cot )J x dx π=⎰,40ln(cos )K x dx π=⎰则I ,J ,K 的大小关系是(A) I J K << (B) I K J << (C) J I K << (D) K J I <<(5) 设A 为3阶矩阵,将A 的第2列加到第1列得矩阵B ,再交换B 的第2行与第3行得单位矩阵记为1100110001P ⎛⎫⎪= ⎪ ⎪⎝⎭,2100001010P ⎛⎫⎪= ⎪ ⎪⎝⎭,则A = (A)12P P (B)112P P - (C)21P P (D) 121P P -(6) 设A 为43⨯矩阵,1η, 2η , 3η 是非齐次线性方程组Ax β=的3个线性无关的解,1k ,2k 为任意常数,则Ax β=的通解为(A)23121()2k ηηηη++- (B) 23221()2k ηηηη-+-(C)23131221()()2k k ηηηηηη++-+- (D)23221331()()2k k ηηηηηη-+-+-(7) 设1()F x ,2()F x 为两个分布函数,其相应的概率密度1()f x , 1()f x 是连续函数,则必为概率密度的是(A) 12()()f x f x (B)212()()f x F x(C) 12()()f x F x (D) 1221()()()()f x F x f x F x +(8) 设总体X 服从参数λ(0)λ>的泊松分布,11,,(2)n X X X n ≥ 为来自总体的简单随即样本,则对应的统计量111ni i T X n==∑,121111n i n i T X X n n-==+-∑(A)1212,ET ET DT DT >> (B)1212,ET ET DT DT ><(C)1212,ET ET DT DT <> (D) 1212,ET ET DT DT << 二、填空题:9~14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.(9) 设0()lim (13)xt t f x x t →=+,则'()f x =______.(10) 设函数(1)xyx z y=+,则(1,1)|dz =______.(11) 曲线tan()4yx y e π++=在点(0,0)处的切线方程为______.(12)曲线y =2x =及x 轴所围成的平面图形绕x 轴旋转所成的旋转体的体积______.(13) 设二次型123(,,)Tf X X X x Ax =的秩为1,A 中行元素之和为3,则f 在正交变换下x Q y =的标准型为______.(14) 设二维随机变量(,)X Y 服从22(,;,;0)N μμσσ,则2()E XY =______.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(15) (本题满分10分)求极限01limln(1)x x x x →-+.(16) (本题满分10分)已知函数(,)f u v 具有连续的二阶偏导数,(1,1)2f =是(,)f u v 的极值,[](),(,)z f xy f x y =+。

求2(1,1)|z x y∂∂∂.(17) (本题满分10分)求⎰(18) (本题满分10分)证明44arctan 03x x π-+-=恰有2实根。

(19) (本题满分10分)()f x 在[]0,1有连续的导数,(0)1f =,且'()()ttD D f x y dxdy f t dxdy +=⎰⎰⎰⎰,{(,)|0,0,0}(01)tDx y x t y t x y t t =≤≤≤≤≤+≤<≤,求()f x 的表达式。

相关文档
最新文档