空间向量求角

合集下载

空间向量法求角

空间向量法求角

05
实例分析
பைடு நூலகம்
实例一:求两向量的夹角
总结词
利用点积公式求两向量的夹角
详细描述
已知两个非零向量$vec{a}$和$vec{b}$,可以通过计算它们的点积$vec{a} cdot vec{b}$,再根据点积的性质求 出两向量的夹角。点积为0时,两向量垂直;点积大于0时,两向量夹角为锐角;点积小于0时,两向量夹角为钝 角。
向量的加法与数乘
向量的加法
两个向量相加,按照平行四边形法则 进行,得到的结果向量与原向量共起 点。
数乘
一个数与一个向量相乘,结果是将该 向量按照比例放大或缩小。
向量的数量积
向量的数量积定义
两个向量的数量积等于它们的模长和夹角的 余弦值的乘积。
向量的数量积性质
数量积是一个标量,满足交换律和分配律。
实例三:利用向量积求两向量的夹角
总结词
利用向量积计算两向量的夹角
详细描述
已知两个非零向量$vec{a}$和$vec{b}$,它们的夹角可以通过计算向量积$vec{a} times vec{b}$得到。根据向量积的性质,当两向量夹角为锐角时,向量积为正;当夹
角为钝角时,向量积为负;当夹角为直角时,向量积为0。
空间向量法求角
• 空间向量的基本概念 • 向量的向量积 • 向量的混合积 • 利用空间向量求角 • 实例分析
目录
01
空间向量的基本概念
向量的表示与模
向量的表示
空间向量可以用有向线段表示,起点 为坐标原点,终点为所表示的点。
向量的模
向量的模表示向量的长度,计算公式 为$sqrt{x^2+y^2+z^2}$。
04
利用空间向量求角

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳

利用空间向量求空间角考点与题型归纳一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量.2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).两异面直线所成的角为锐角或直角,而不共线的向量的夹角为(0,π),所以公式中要加绝对值.直线与平面所成角的范围为⎣⎡⎦⎤0,π2,而向量之间的夹角的范围为[0,π],所以公式中要加绝对值.利用公式与二面角的平面角时,要注意〈n 1,n 2〉与二面角大小的关系,是相等还是互补,需要结合图形进行判断.二、常用结论解空间角最值问题时往往会用到最小角定理 cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2. 考点一 异面直线所成的角[典例精析]如图,在三棱锥P ­ABC 中,P A ⊥底面ABC ,∠BAC =90°.点D ,E ,N 分别为棱P A ,PC ,BC 的中点,M 是线段AD 的中点,P A =AC =4,AB =2.(1)求证:MN ∥平面BDE ;(2)已知点H 在棱P A 上,且直线NH 与直线BE 所成角的余弦值为721,求线段AH 的长. [解] 由题意知,AB ,AC ,AP 两两垂直,故以A 为原点,分别以AB ―→,AC ―→,AP ―→方向为x 轴、y 轴、z 轴正方向建立如图所示的空间直角坐标系.依题意可得A (0,0,0),B (2,0,0),C (0,4,0),P (0,0,4),D (0,0,2),E (0,2,2),M (0,0,1),N (1,2,0).(1)证明:DE ―→=(0,2,0),DB ―→=(2,0,-2). 设n =(x ,y ,z )为平面BDE 的法向量, 则⎩⎪⎨⎪⎧n ·DE ―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧2y =0,2x -2z =0.不妨取z =1,可得n =(1,0,1).又MN ―→=(1,2,-1),可得MN ―→·n =0. 因为MN ⊄平面BDE ,所以MN ∥平面BDE . (2)依题意,设AH =h (0≤h ≤4),则H (0,0,h ), 进而可得NH ―→=(-1,-2,h ), BE ―→=(-2,2,2). 由已知,得|cos 〈NH ―→,BE ―→〉|=|NH ―→·BE ―→||NH ―→||BE ―→|=|2h -2|h 2+5×23=721, 整理得10h 2-21h +8=0,解得h =85或h =12.所以线段AH 的长为85或12.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[提醒] 注意向量的夹角与异面直线所成的角的区别:当异面直线的方向向量的夹角为锐角或直角时,此夹角就是异面直线所成的角;当异面直线的方向向量的夹角为钝角时,其补角才是异面直线所成的角.[题组训练]1.如图所示,在三棱柱ABC ­A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )A .30°B .45°C .60°D .90°解析:选C 以B 为坐标原点,以BC 为x 轴,BA 为y 轴,BB 1为z 轴,建立空间直角坐标系如图所示.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1),∴EF ―→=(0,-1,1),BC 1―→=(2,0,2),∴EF ―→·BC 1―→=2,∴cos 〈EF ―→,BC 1―→〉=22×22=12,则EF 和BC 1所成的角是60°,故选C.2.如图,在四棱锥P ­ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面P AC ;(2)若P A =AB ,求PB 与AC 所成角的余弦值. 解:(1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .因为P A ⊥平面ABCD ,BD ⊂平面ABCD , 所以P A ⊥BD .又因为AC ∩P A =A ,所以BD ⊥平面P AC . (2)设AC ∩BD =O .因为∠BAD =60°,P A =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,射线OB ,OC 分别为x 轴,y 轴的正半轴建立空间直角坐标系O ­xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0), 所以PB ―→=(1,3,-2),AC ―→=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=|PB ―→·AC ―→||PB ―→||AC ―→|=622×23=64.即PB 与AC 所成角的余弦值为64. 考点二 直线与平面所成的角[典例精析](2019·合肥一检)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值. [解] (1)证明:连接AC 交BD 于点N ,连接MN , 则N 为AC 的中点,又M 为AE 的中点,∴MN ∥EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴MN ∥平面EFC .∵BF ,DE 都与平面ABCD 垂直,∴BF ∥DE . ∵BF =DE ,∴四边形BDEF 为平行四边形,∴BD ∥EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴BD ∥平面EFC .又MN ∩BD =N ,∴平面BDM ∥平面EFC . (2)∵DE ⊥平面ABCD ,四边形ABCD 是正方形,∴DA ,DC ,DE 两两垂直,如图,建立空间直角坐标系D ­xyz . 设AB =2,则DE =4,从而D (0,0,0),B (2,2,0),M (1,0,2),A (2,0,0),E (0,0,4),∴DB ―→=(2,2,0),DM ―→=(1,0,2), 设平面BDM 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·DM ―→=0,得⎩⎪⎨⎪⎧2x +2y =0,x +2z =0.令x =2,则y =-2,z =-1,从而n =(2,-2,-1)为平面BDM 的一个法向量.∵AE ―→=(-2,0,4),设直线AE 与平面BDM 所成的角为θ, 则sin θ=|cosn ,AE ―→|=|n ·AE ―→||n |·|AE ―→|=4515,∴直线AE 与平面BDM 所成角的正弦值为4515.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.[题组训练]1.在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.解析:建立如图所示的空间直角坐标系D ­xyz ,由于AB =2,BC =AA 1=1,所以A 1(1,0,1),B (1,2,0),C 1(0,2,1),D 1(0,0,1),所以A 1C 1―→=(-1,2,0),BC 1―→=(-1,0,1),D 1C 1―→=(0,2,0).设平面A 1BC 1的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧A 1C 1―→·n =0, BC 1―→·n =0,即⎩⎪⎨⎪⎧-x +2y =0,-x +z =0,令x =2,得y =1,z =2,则n =(2,1,2).设D 1C 1与平面A 1BC 1所成角为θ,则sin θ=|cos 〈D 1C 1―→,n 〉|=|D 1C 1―→·n ||D 1C 1―→||n |=22×3=13,即D 1C 1与平面A 1BC 1所成角的正弦值为13.答案:132.如图,在直三棱柱ABC ­A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.解:(1)证明:∵三棱柱ABC ­A 1B 1C 1是直三棱柱,∴AA 1⊥平面ABC ,又BD ⊂平面ABC ,∴BD ⊥AA 1, ∵BA =BC ,D 为AC 的中点,∴BD ⊥AC ,又AC ∩AA 1=A ,AC ⊂平面ACC 1A 1,AA 1⊂平面ACC 1A 1, ∴BD ⊥平面ACC 1A 1,又A 1D ⊂平面ACC 1A 1,∴BD ⊥A 1D . (2)由(1)知BD ⊥AC ,AA 1⊥平面ABC ,以D 为坐标原点,DB ,DC 所在直线分别为x 轴,y 轴,过点D 且平行于AA 1的直线为z 轴建立如图所示的空间直角坐标系D ­xyz .设AA 1=λ(λ>0),则A 1(0,-4,λ),B (3,0,0),C 1(0,4,λ),D (0,0,0), ∴DA 1―→=(0,-4,λ),DC 1―→=(0,4,λ),DB ―→=(3,0,0), 设平面BC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·DC 1―→=0,n ·DB ―→=0,即⎩⎪⎨⎪⎧4y +λz =0,3x =0,则x =0,令z =4,可得y =-λ,故n =(0,-λ,4)为平面BC 1D 的一个法向量. 设直线A 1D 与平面BC 1D 所成角为θ,则sin θ=|cosn ,DA 1―→|=|n ·DA 1―→||n |·|DA 1―→|=|4λ+4λ|λ2+16·λ2+16=45,解得λ=2或λ=8, 即AA 1=2或AA 1=8.考点三 二面角[典例精析]如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10.(1)证明:D ′H ⊥平面ABCD ; (2)求二面角B ­D ′A ­C 的余弦值.[解] (1)证明:由四边形ABCD 为菱形,得AC ⊥BD . 由AE =CF =54,得AE AD =CFCD ,所以EF ∥AC .因此EF ⊥DH ,从而EF ⊥D ′H . 由AB =5,AC =6,得DO =BO =AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14,所以OH =1,D ′H =DH =3,则OD ′2=OH 2+D ′H 2,所以D ′H ⊥OH . 又OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)以H 为坐标原点,HB ,HF ,HD ′分别为x 轴,y 轴,z 轴建立空间直角坐标系H ­xyz ,如图所示.则B (5,0,0),C (1,3,0),D ′(0,0,3),A (1,-3,0), (由口诀“起点同”,我们先求出起点相同的3个向量.) 所以AB ―→=(4,3,0), AD ′―→=(-1,3,3),AC ―→=(0,6,0). (由口诀“棱排前”,我们用行列式求出两个平面的法向量.) 由⎩⎪⎨⎪⎧ AD ′―→=(-1,3,3), AB ―→=(4,3,0),可得平面ABD ′的法向量n 1=(-3,4,-5),由⎩⎪⎨⎪⎧AD ′―→=(-1,3,3), AC ―→=(0,6,0),可得平面AD ′C 的法向量n 2=(-3,0,-1). 于是cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=7525.所以二面角B ­D ′A ­C 的余弦值为7525.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.[题组训练]如图所示,四棱锥P ­ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ; (2)若BC =2,P A =3,求二面角B ­CP ­D 的余弦值. 解:(1)证明:在△BCD 中,EB =ED =EC =BC , 故∠BCD =90°,∠CBE =∠BEC =60°.∵△DAB ≌△DCB ,∴∠BAD =∠BCD =90°,∠ABE =∠CBE =60°,∴∠FED =∠BEC =∠ABE =60°.∴AB ∥EF ,∴∠EFD =∠BAD =90°, ∴EF ⊥AD ,AF =FD . 又PG =GD ,∴GF ∥P A .又P A ⊥平面ABCD ,∴GF ⊥平面ABCD , ∵AD ⊂平面ABCD ,∴GF ⊥AD . 又GF ∩EF =F ,∴AD ⊥平面CGF .又AD ⊂平面P AD ,∴平面P AD ⊥平面CGF .(2)以A 为坐标原点,射线AB ,AD ,AP 分别为x 轴,y 轴,z 轴的正半轴建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (3,3,0),D (0,23,0),P (0,0,3),故CB ―→=(-1,-3,0), CP ―→=(-3,-3,3),CD ―→=(-3,3,0). 设平面BCP 的一个法向量为n 1=(1,y 1,z 1),则⎩⎪⎨⎪⎧ n 1·CB ―→=0,n 1·CP ―→=0,即⎩⎪⎨⎪⎧ -1-3y 1=0,-3-3y 1+3z 1=0,解得⎩⎨⎧y 1=-33,z 1=23,即n 1=⎝⎛⎭⎫1,-33,23. 设平面DCP 的一个法向量为n 2=(1,y 2,z 2),则⎩⎪⎨⎪⎧n 2·CD ―→=0,n 2·CP ―→=0,即⎩⎪⎨⎪⎧-3+3y 2=0,-3-3y 2+3z 2=0,解得⎩⎪⎨⎪⎧y 2=3,z 2=2,即n 2=(1,3,2). 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=43169×8=24, 由图知二面角B ­CP ­D 为钝角, 所以二面角B ­CP ­D 的余弦值为-24. [课时跟踪检测]A 级1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( )A.3030 B.3015 C.3010D.1515解析:选C 建立如图所示的空间直角坐标系.设正方体的棱长为2,则B 1(2,2,2),M (1,1,0),D 1(0,0,2),N (1,0,0),∴B 1M ―→=(-1,-1,-2), D 1N ―→=(1,0,-2),∴B 1M 与D 1N 所成角的余弦值为|B 1M ―→·D 1N ―→||B 1M ―→|·|D 1N ―→|=|-1+4|1+1+4×1+4=3010. 2.如图,已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.24解析:选A 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0),∴DC 1―→=(0,3,1), D 1E ―→=(1,1,-1), D 1C ―→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E ―→=0,n ·D 1C ―→=0,即⎩⎪⎨⎪⎧x +y -z =0,3y -z =0,取y =1,得n =(2,1,3).∴cosDC 1―→,n=DC 1―→·n |DC 1―→|·|n|=33535, ∴DC 1与平面D 1EC 所成的角的正弦值为33535.3.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5D .2解析:选A 由题意可知,∠BAC =60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,所以在三角形ABC 中,AB =2,AC =4,BC =23,∠ABC =90°,则AB 1―→·BC 1―→=(BB 1―→-BA ―→)·(BB 1―→+BC ―→)=4, |AB 1―→|=22,|BC 1―→|=4, cosAB 1―→,BC 1―→=AB 1―→·BC ―→|AB 1―→|·|BC ―→|=24,故tanAB 1―→,BC 1―→=7.4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35 B.56 C.3310D.3610解析:选A 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB ,分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示,则B 1()0,3,2,F (1,0,1), E ⎝⎛⎭⎫12,32,0,G (0,0,2), B 1F ―→=()1,-3,-1,EF ―→=⎝⎛⎭⎫12,-32,1, GF ―→=(1,0,-1).设平面GEF 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧ EF ―→·n =0,GF ―→·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =()1,3,1为平面GEF 的一个法向量, 所以cos 〈n ,B 1F ―→〉=1-3-15×5=-35,所以B 1F 与平面GEF 所成角的正弦值为35.5.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22解析:选B 以A 为坐标原点建立如图所示的空间直角坐标系A ­xyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0), ∴A 1D ―→=(0,1,-1), A 1E ―→=⎝⎛⎭⎫1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则⎩⎪⎨⎪⎧ n 1·A 1D ―→=0,n 1·A 1E ―→=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2). 又平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23×1=23.即平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为23.6.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.解析:如图,以O 为坐标原点,以OA ,OB 所在直线分别为x 轴,y 轴,以过点O 且平行于CF 的直线为z 轴建立空间直角坐标系.设AE =a ,则B (0,3,0),D (0,-3,0),F (-1,0,3),E (1,0,a ),∴OF ―→=(-1,0,3),DB ―→=(0,23,0), EB ―→=(-1,3,-a ).设平面BED 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DB ―→=0,n ·EB ―→=0,即⎩⎪⎨⎪⎧23y =0,-x +3y -az =0,则y =0,令z =1,得x =-a , ∴n =(-a,0,1),∴cos 〈n ,OF ―→〉=n ·OF ―→|n ||OF ―→|=a +3a 2+1×10.∵直线OF 与平面BED 所成角的大小为45°, ∴|a +3|a 2+1×10=22, 解得a =2或a =-12(舍去),∴AE =2.答案:27.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE ­A 的余弦值为________.解析:以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O ­xyz , 由题知,OA =OB =2,则A (0,-2,0),B (2,0,0),P (0,0,2),E (1,-1,0),F (0,-1,1), OE ―→=(1,-1,0),OF ―→=(0,-1,1),设平面OEF 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·OE ―→=0,m ·OF ―→=0,即⎩⎪⎨⎪⎧x -y =0-y +z =0.令x =1,可得m =(1,1,1).易知平面OAE 的一个法向量为n =(0,0,1),则cos 〈m ,n 〉=m ·n|m ||n |=33.由图知二面角F ­OE ­A 为锐角, 所以二面角F ­OE ­A 的余弦值为33. 答案:338.(2018·全国卷Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值. 解:(1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,所以BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM . 又BC ∩CM =C , 所以DM ⊥平面BMC . 因为DM ⊂平面AMD , 所以平面AMD ⊥平面BMC .(2)以D 为坐标原点, DA ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系D ­xyz .当三棱锥M ­ABC 的体积最大时,M 为CD 的中点.由题设得D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ―→=(-2,1,1),AB ―→=(0,2,0),DA ―→=(2,0,0).设n =(x ,y ,z )是平面MAB 的法向量,又DA ―→是平面MCD 的一个法向量,所以cos 〈n ,DA ―→〉=n ·DA ―→|n ||DA ―→|=55,sin 〈n ,DA ―→〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.9.(2018·全国卷Ⅱ)如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­P A ­C 为30°,求PC 与平面P AM 所成角的正弦值.解:(1)证明:因为P A =PC =AC =4,O 为AC 的中点, 所以PO ⊥AC ,且PO =2 3.连接OB ,因为AB =BC =22AC , 所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.所以PO 2+OB 2=PB 2,所以PO ⊥OB . 又因为OB ∩AC =O , 所以PO ⊥平面ABC .(2)以O 为坐标原点,OB ―→的方向为x 轴正方向,建立如图所示的空间直角坐标系O ­xyz .由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),AP ―→=(0,2,23).取平面P AC 的一个法向量OB ―→=(2,0,0). 设M (a,2-a,0)(0<a ≤2),则AM ―→=(a,4-a,0). 设平面P AM 的法向量为n =(x ,y ,z ),令y =3a ,得z =-a ,x =3(a -4),所以平面P AM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB ―→,n 〉=23(a -4)23(a -4)2+3a 2+a 2.由已知可得|cos 〈OB ―→,n 〉|=cos 30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =43或a =-4(舍去).所以n =⎝⎛⎭⎫-833,433,-43.又PC ―→=(0,2,-23),所以cos 〈PC ―→,n 〉=833+8334+12·643+163+169=34.所以PC 与平面P AM 所成角的正弦值为34. B 级1.如图,四棱柱ABCD ­A 1B 1C 1D 1的底面ABCD 是菱形,AC ∩BD =O ,A 1O ⊥底面ABCD ,AB =2,AA 1=3.(1)证明:平面A 1CO ⊥平面BB 1D 1D ;(2)若∠BAD =60°,求二面角B ­OB 1­C 的余弦值. 解:(1)证明:∵A 1O ⊥平面ABCD ,BD ⊂平面ABCD , ∴A 1O ⊥BD .∵四边形ABCD 是菱形,∴CO ⊥BD . ∵A 1O ∩CO =O ,∴BD ⊥平面A 1CO . ∵BD ⊂平面BB 1D 1D ,∴平面A 1CO ⊥平面BB 1D 1D .(2)∵A 1O ⊥平面ABCD ,CO ⊥BD ,∴OB ,OC ,OA 1两两垂直,以O 为坐标原点,OB ―→,OC ―→, OA 1―→的方向分别为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系.∵AB =2,AA 1=3,∠BAD =60°, ∴OB =OD =1,OA =OC =3, OA 1=AA 21-OA 2= 6.则O (0,0,0),B (1,0,0),C (0,3,0),A (0,-3,0),A 1(0,0,6),∴OB ―→=(1,0,0),BB 1―→=AA 1―→=(0,3,6), OB 1―→=OB ―→+BB 1―→=(1,3,6). 设平面OBB 1的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧OB ―→·n =0,OB 1―→·n =0,即⎩⎪⎨⎪⎧x =0,x +3y +6z =0.令y =2,得z =-1,∴n =(0,2,-1)是平面OBB 1的一个法向量. 同理可求得平面OCB 1的一个法向量m =(6,0,-1), ∴cosn ,m=n ·m|n |·|m |=13×7=2121,由图可知二面角B ­OB 1­C 是锐二面角, ∴二面角B ­OB 1­C 的余弦值为2121. 2.如图,在四棱锥P ­ABCD 中,底面ABCD 是直角梯形,∠ADC =90°,AB ∥CD ,AB =2CD .平面P AD ⊥平面ABCD ,P A =PD ,点E 在PC 上,DE ⊥平面P AC .(1)求证:P A ⊥平面PCD ;(2)设AD =2,若平面PBC 与平面P AD 所成的二面角为45°,求DE 的长.解:(1)证明:由DE ⊥平面P AC ,得DE ⊥P A ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD ,CD ⊥AD ,所以CD ⊥平面P AD ,所以CD ⊥P A , 又CD ∩DE =D ,所以P A ⊥平面PCD . (2)取AD 的中点O ,连接PO , 因为P A =PD ,所以PO ⊥AD ,又平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD ,以O 为坐标原点建立如图所示的空间直角坐标系O ­xyz ,由(1)得P A ⊥PD ,由AD =2得P A =PD =2,PO =1,设CD =a ,则P (0,0,1),D (0,1,0),C (a,1,0),B (2a ,-1,0), 则BC ―→=(-a,2,0),PC ―→=(a,1,-1). 设m =(x ,y ,z )为平面PBC 的法向量,由⎩⎪⎨⎪⎧m ·BC ―→=0,m ·PC ―→=0,得⎩⎪⎨⎪⎧-ax +2y =0,ax +y -z =0,令x =2,则y =a ,z =3a ,故m =(2,a,3a )为平面PBC 的一个法向量,由(1)知n =DC ―→=(a,0,0)为平面P AD 的一个法向量. 由|cosm ,n|=|m ·n ||m ||n |=|2a |a 10a 2+4=22,解得a =105,即CD =105,所以在Rt △PCD 中,PC =2155,由等面积法可得DE =CD ·PD PC =33.3.如图,在三棱锥P ­ABC 中,平面P AB ⊥平面ABC ,AB =6, BC =23,AC =26,D ,E 分别为线段AB ,BC 上的点,且AD =2DB ,CE =2EB ,PD ⊥AC .(1)求证:PD ⊥平面ABC ;(2)若直线P A 与平面ABC 所成的角为45°,求平面P AC 与平面PDE 所成的锐二面角大小.解:(1)证明:∵AC =26,BC =23,AB =6,∴AC 2+BC 2=AB 2,∴∠ACB =90°, ∴cos ∠ABC =236=33.又易知BD =2,∴CD 2=22+(23)2-2×2×23cos ∠ABC =8, ∴CD =22,又AD =4, ∴CD 2+AD 2=AC 2,∴CD ⊥AB .∵平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,CD ⊂平面ABC , ∴CD ⊥平面P AB ,又PD ⊂平面P AB ,∴CD ⊥PD , ∵PD ⊥AC ,AC ∩CD =C , ∴PD ⊥平面ABC .(2)由(1)知PD ,CD ,AB 两两互相垂直,∴可建立如图所示的空间直角坐标系D ­xyz ,∵直线P A 与平面ABC 所成的角为45°,即∠P AD =45°,∴PD =AD =4,则A (0,-4,0),C (22,0,0),B (0,2,0),P (0,0,4),∴CB ―→=(-22,2,0),AC ―→=(22,4,0),P A ―→=(0,-4,-4). ∵AD =2DB ,CE =2EB ,∴DE ∥AC , 由(1)知AC ⊥BC ,∴DE ⊥BC ,又PD ⊥平面ABC ,BC ⊂平面ABC ,∴PD ⊥BC , ∵PD ∩DE =D ,∴CB ⊥平面PDE ,∴CB ―→=(-22,2,0)为平面PDE 的一个法向量. 设平面P AC 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC ―→=0,n ·P A ―→=0,即⎩⎪⎨⎪⎧22x +4y =0,-4y -4z =0,令z =1,得x =2,y =-1, ∴n =(2,-1,1)为平面P AC 的一个法向量. ∴cos n ,CB ―→=-4-24×12=-32, ∴平面P AC 与平面PDE 所成的锐二面角的余弦值为32, 故平面P AC 与平面PDE 所成的锐二面角为30°.。

空间向量求角

空间向量求角
3.2.3立体几何中的向量方法 ——空间“角”问题
空间的角常见的有:线线角、线面角、面面角
一、复习引入
用空间向量解决立体几何问题的“三步曲”。
(1)建立立体图形与空间向量的联系,用空间向 量表示问题中涉及的点、直线、平面,把立体几何 问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的 位置关系以及它们之间距离和夹角等问题;
再次演示课件
法向量法
n1,n2
n2
n1,n2 n2
n1
n1
l
l
cos cos n1, n2 cos cos n1, n2
结论:cos cos n1, n2
注意法向量的方向:同进 同出,二面角等于法向量
夹角的补角;
关键:观察二面角的范围
一进一出,二面角等于法 向量夹角
四3 、实教践学操过作程的设计与实施
问题1:
二面角的平面角AOB 能否转化成向量的夹角?
B
O l
A
AOB OA,OB
二面角 OA,OB
四、教学过程的设计与实施
2 探究方法
二面角 n1, n2
要点梳理
②方向向量法:
将二面角转化为二面角的两个面的方向向量(在 二面角的面内且垂直于二面角的棱)的夹角.
设二面角α-l-β的大小为θ,其中
z
S
O
Cy
B
sin cos OS, n OS n 2 6
OS n 1 6 3
C(0,1,0); O(0,0,0);
S(0,0,1), 于是我们有
SA =(2,0,-1);AB =(-1,1,0);
OB =(1,1,0);OS =(0,0,1);

用空间向量求空间角课件(共22张PPT)

用空间向量求空间角课件(共22张PPT)

向量的加法与数乘
向量的加法满足平行四边形法则或三 角形法则,即$vec{a} + vec{b} = vec{b} + vec{a}$。
数乘是指实数与向量的乘积,满足分 配律,即$k(vec{a} + vec{b}) = kvec{a} + kvec{b}$。
向量的数量积
向量的数量积定义为$vec{a} cdot vec{b} = left| vec{a} right| times left| vec{b} right| times cos theta$,其中$theta$为两 向量的夹角。
数量积满足交换律和分配律,即$vec{a} cdot vec{b} = vec{b} cdot vec{a}$和$(lambdavec{a}) cdot vec{b} = lambda(vec{a} cdot vec{b})$。
03 向量的向量积与混合积
向量的向量积
定义
两个向量a和b的向量积是一个向量,记作a×b,其模长为 |a×b|=|a||b|sinθ,其中θ为a与b之间的夹角。
适用范围
适用于直线与平面不垂直的情况。
利用向量的混合积求二面角
1 2 3
定义
二面角是指两个平面之间的夹角。
计算公式
cosθ=∣∣a×b×c∣∣∣∣a∣∣∣∣b∣∣∣∣c∣∣,其中a、 b和c分别是三个平面的法向量,θ是两个平面之 间的夹角。
适用范围
适用于两个平面不平行的情况。
06 案例分析
案例一:利用空间向量求线线角
定义
线线角是指两条直线之间的夹角。
计算公式
cosθ=∣∣a⋅b∣∣∣∣a∣∣∣∣b∣∣∣, 其中a和b是两条直线的方向向量,

第8讲 向量法求空间角

第8讲 向量法求空间角

30
聚焦必备知识 突破核心命题 限时规范训练
训练 2 (2022·全国甲卷)在四棱锥 P -ABCD 中,PD⊥底面 ABCD,CD ∥AB,AD=DC=CB=1,AB=2,DP= 3.
(1)证明:BD⊥PA; (2)求 PD 与平面 PAB 所成的角的正弦值.
31
聚焦必备知识 突破核心命题 限时规范训练
则cos θ=__□1__|c_o_s__〈__u_,__v_〉__|___=_□_2__||uu_|·|_vv_||__.
2.直线与平面所成的角 如图,直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,
直线AB的方向向量为u,平面α的法向量为n,则sin θ=_□_3_|_co_s__〈__u_,__n_〉__|
∴A→B1=(-2 2, 3, 2), C→B1=(- 2, 3, 2),C→B=(0, 3,0).
28
聚焦必备知识 突破核心命题 限时规范训练
设平面 BCC1B1 的法向量为 n=(x,y,z),
则nn··CC→→BB1==00,,即-3y=2x+0, 3y+ 2z=0,
令 x=1,则 y=0,z=1,∴n=(1,0,1).
AC 所在直线为 y 轴,AA1 所在直线为 z 轴建立空间直角坐标系,如图所示,
则 A(0,0,0),A1(0,0,2),B( 3,1,0),C1(0,2,2),∴A→1B=( 3,1,
-2),A→C1=(0,2,2),
∴|cos〈A→1B,A→C1〉|


3)2+31×2+0+(1-×22)-2×2×202+22+22=14,
12
聚焦必备知识 突破核心命题 限时规范训练
设平面 A′BCD′的法向量为 n=(x,y,z),

空间向量法求空间角图示原理

空间向量法求空间角图示原理
空间“角度”问题
学习目标:
• (1)、理解向量法求空间角的原理 • (2)、熟练掌握向量法求空间角
原理分析
1.异面直线所成角
rr 设直线l, m 的方向向量分别为a, b
若两直线
l
,
m
所成的角为
(0


2
)
,

rr ab
cos r r
ab
l
a
m
l
a
b m
2. 线面角
r
r
设直线l的方向向量为 a,平面 的法向量为 u ,且
直线l 与平面 所成的角为 ( 0≤ ≤ ),则
2
rr
au
u
a
sin r r au
lau来自3、二面角法向量法 将二面角转化为二面角的两个面的法向量的夹角。
如图,向量
n
,m

则二面角
l
的大小
=〈m, n 〉
m, n
m
n
注意法向量的方向:同进 同出,二面角等于法向量 夹角的补角;一进一出, 二面角等于法向量夹角
L
rr
uv
若二面角 l 的大小为 (0 ,) 则 cos r r .
uv

用空间向量求空间角共22张

用空间向量求空间角共22张
立体几何中的向量方法 ——空间“角”问题
空间的角常见的有:线线角、线面角、面面角
复习回顾
• 直线的方向向量:两点 • 平面的法向量:三点两线一方程
• 设a=(a1,a2,a3),b=(b1,b2,b3) 则(1)a·b= a1b1+a2b2+a3b3 .
复习回顾
• 设直线l1、l2的方向向量分别为a、b,平面α、β的
二、线面角:直线和直线在平面内的射影所成的角,
直线与平面所叫成做角这的条范直围线和:这个[0平, 面]所成的角.
Hale Waihona Puke 2An思考:如何用空间向量的夹角
表示线面角呢?
B
O
结论:sin | cos n, AB |
例2、如图,在正方体ABCD-A1B1C1D1 中,
求A1B与平面A1B1CD所成的角
①向量法
三、面面角:
以二面角的棱上任意一点为端点,在两 个面内分别作垂直于棱的两条射线,这两 条射线所成的角叫做二面角的平面角。
二面角的平面角必须满足:
A O
l
B
1)角的顶点在棱上 2)角的两边分别在两个面内 3)角的边都要垂直于二面角的棱
范围:[0, ]
10
三、面面角:
uur uur
向量法
n1,n2
z
AA11
BB11 M
由A1N 5,可得 N (0,4,3)
A
AM (6,2,6), AN (0,4,3).
设平面的法向量n (x, y, z),由
xB
AM • n 0
AN

n
0
即 6x 2y 6z 0
4y 3z 0
D11 N C11
Dy
C

利用空间向量求角

利用空间向量求角

利用空间向量求角1、异面直线所成的角范围:例:求两异面直线直线AB 与直线CD 所成的角步骤:①设异面直线AB 与CD 所成的角为θ ②求出CD AB , ③><=CD AB ,cos cos θ④答:注:两异面直线所成的角与两直线方向向量的夹角是相等或互补关系2、直线与平面所成的角范围:例:求直线AB 与面BCD 所成的角步骤:①设直线与面BCD 所成的角为α②求出直线AB 的方向向量AB③求出平面BCD 的法向量n ④><=n AB ,cos sin α⑤答:注:直线与平面所成的角是直线的方向向量与平面的法向量的夹角的余角或补角的余角 另法向量的求法:(法向量是平面的垂线的方向向量)设面BCD 的法向量为),,(z y x n = ∴BD n BC n ⊥⊥,∴0=⋅BC n ,0=⋅BD n∴⎩⎨⎧∴令x= ,则y= ,z=∴面BCD 的法向量=n3、二面角范围:例:求二面角A-BC-D 的大小步骤:①求出面ABC 的法向量1n 和面BCD 的法向量2n ②求出><21,cos n n③∵二面角A-BC-D 是 (锐角/钝角/直角)④∴二面角A-BC-D 的余弦值是 (锐角为正,钝角为负,直角为0) 注:二面角与两法向量夹角的关系是相等或互补1、已知E,F分别是正方体ABCD-A1B1C1D1的棱BC和CD的中点,求:(Ⅰ)A1D与EF所成角的大小;(II)A1F与平面B1EB所成角的余弦值;(III)二面角C-D1B1-B的余弦值.2、已知PD垂直于正方形ABCD所在平面,且PD=AD,M为AD中点,N为线段PB上一点(1)当N在何处时,MN⊥平面PBC?(2)在(1)的条件下,求MN与DC所成的角?3、如图在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,PA=PD=2,底面ABCD是直角梯形,其中BC//AD,AB⊥AD,AD=2AB=2BC=22,(1)求直线PC与平面PAD所成的角(2)求二面角A-PB-C的大小4、四棱锥P-ABCD中,底面ABCD为矩形,PD⊥底面ABCD,AD=PD=2,AB=22,E,F 分别为CD,PB的中点(1)求四面体P-ABC的体积(2)求AC与平面AEF所成角的大小5、在三棱柱111C B A ABC -中,AC ⊥BC ,AB ⊥1BB ,AC=BC=BB 1=2,D 为AB 的中点,且CD ⊥D 1A ,(1)求证:⊥1BB 平面ABC(2)求二面角11C DA C --的平面角的余弦值6、如图,在直三棱柱111C B A ABC -,∠BAC=90°,AB=AC=a,b AA =1,点E,F 分别在棱11,CC BB 上,且BE=11131,31CC F C BB =,设a b =λ,(1)当3=λ时,求异面直线AE 与F A 1所成的角的大小(2)当平面⊥AEF 平面EF A 1时,求λ的值。

利用向量方法求空间角 知识点+例题+练习

利用向量方法求空间角 知识点+例题+练习

教学内容利用向量方法求空间角教学目标1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.重点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.难点1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别,体会求空间角中的转化思想.教学准备教学过程自主梳理1.两条异面直线的夹角①定义:设a,b是两条异面直线,在直线a上任取一点作直线a′∥b,则a′与a的夹角叫做a与b的夹角.②范围:两异面直线夹角θ的取值范围是_____________________.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos θ=________=_______________.2.直线与平面的夹角①定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角.②范围:直线和平面夹角θ的取值范围是________________________.③向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sin θ=|cos φ|或cos θ=sin φ.3.二面角(1)二面角的取值范围是____________.(2)二面角的向量求法:①若AB、CD分别是二面角α—l—β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB→与CD→的夹角(如图①).②设n1,n2分别是二面角α—l—β的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).自我检测1.已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角为________.2.若直线l1,l2的方向向量分别为a=(2,4,-4),b=(-6,9,6),则l1与l2所成的角等于________.3.若直线l的方向向量与平面α的法向量的夹角等于120°,则直线l与平面α所成的角等于________.4.二面角的棱上有A、B两点,直线AC、BD分别在这个二面角的两个半平面内,且都垂直于AB.已知AB=4,AC=6,BD=8,CD=217,则该二面角的大小为_______________________________________.5.(2010·铁岭一模)已知直线AB、CD是异面直线,AC⊥CD,BD⊥CD,且AB=2,CD=1,则异面直线AB与CD所成的角的大小为________.教学效果分析教学过程探究点一利用向量法求异面直线所成的角例1已知直三棱柱ABC—A1B1C1,∠ACB=90°,CA=CB=CC1,D为B1C1的中点,求异面直线BD和A1C所成角的余弦值.变式迁移1如图所示,在棱长为a的正方体ABCD—A1B1C1D1中,求异面直线BA1和AC所成的角.探究点二利用向量法求直线与平面所成的角例2如图,已知平面ABCD⊥平面DCEF,M,N分别为AB,DF的中点,求直线MN与平面DCEF所成的角的正弦值.变式迁移2如图所示,在几何体ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,点F是AE的中点.求AB与平面BDF所成的角的正弦值.教学效果分析教学过程探究点三利用向量法求二面角例3如图,ABCD是直角梯形,∠BAD=90°,SA⊥平面ABCD,SA=BC=BA=1,AD=12,求面SCD与面SBA所成角的余弦值大小.变式迁移3如图,在三棱锥S—ABC中,侧面SAB与侧面SAC均为等边三角形,∠BAC=90°,O为BC中点.(1)证明:SO⊥平面ABC;(2)求二面角A—SC—B的余弦值.探究点四综合应用例4如图所示,在三棱锥A—BCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD=3,BD=CD=1,另一个侧面ABC是正三角形.(1)求证:AD⊥BC;(2)求二面角B-AC-D的余弦值;(3)在线段AC上是否存在一点E,使ED与面BCD成30°角?若存在,确定点E的位置;若不存在,说明理由.教学效果分析教学过程变式迁移4 (2011·山东,19)在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC,AB=2EF.(1)若M是线段AD的中点,求证:GM∥平面ABFE;(2)若AC=BC=2AE,求二面角A-BF-C的大小.1.求两异面直线a、b的所成的角θ,需求出它们的方向向量a,b的夹角,则cos θ=|cos〈a,b〉|.2.求直线l与平面α所成的角θ.可先求出平面α的法向量n与直线l的方向向量a的夹角.则sin θ=|cos〈n,a〉|.3.求二面角α—l—β的大小θ,可先求出两个平面的法向量n1,n2所成的角.则θ=〈n1,n2〉或π-〈n1,n2〉.)一、填空题(每小题6分,共48分)1.在正方体ABCD—A1B1C1D1中,M是AB的中点,则sin〈DB1→,CM→〉的值等于________.2.已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成的角的大小为________.3.如图,在正四面体ABCD中,E、F分别是BC和AD的中点,则AE与CF所成的角的余弦值为________.教学效果分析教学过程4.(2011·南通模拟) 如图所示,在长方体ABCD—A1B1C1D1中,已知B1C,C1D与上底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的余弦值为________.5.P是二面角α—AB—β棱上的一点,分别在α、β平面上引射线PM、PN,如果∠BPM=∠BPN=45°,∠MPN=60°,那么二面角α—AB—β的大小为________.6.(2011·无锡模拟)已知正四棱锥P—ABCD的棱长都相等,侧棱PB、PD的中点分别为M、N,则截面AMN与底面ABCD所成的二面角的余弦值是________.7.如图,P A⊥平面ABC,∠ACB=90°且P A=AC=BC=a,则异面直线PB与AC所成角的正切值等于________.8.如图,已知正三棱柱ABC—A1B1C1的所有棱长都相等,D是A1C1的中点,则直线AD与平面B1DC所成的角的正弦值为________.二、解答题(共42分)9.(14分) 如图所示,AF、DE分别是⊙O、⊙O1的直径,AD与两圆所在的平面均垂直,AD=8.BC是⊙O的直径,AB=AC=6,OE∥AD.(1)求二面角B-AD-F的大小;(2)求直线BD与EF所成的角的余弦值.10.(14分)(2011·大纲全国,19)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.教学效果分析教学过程11.(14分)(2011·湖北,18)如图,已知正三棱柱ABC-A1B1C1各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tan θ的最小值.自主梳理1.②⎝⎛⎦⎤0,π2③|cos φ|⎪⎪⎪⎪a·b|a|·|b| 2.②⎣⎡⎦⎤0,π2 3.(1)[0,π]教学效果分析自我检测 1.45°或135° 2.90° 3.30° 4.60° 5.60° 课堂活动区例1 解题导引 (1)求异面直线所成的角,用向量法比较简单,若用基向量法求解,则必须选好空间的一组基向量,若用坐标求解,则一定要将每个点的坐标写正确.(2)用异面直线方向向量求两异面直线夹角时,应注意异面直线所成的角的范围是⎝⎛⎦⎤0,π2 解如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.变式迁移1 解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →, ∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a =-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.例2 解题导引 在用向量法求直线OP 与α所成的角(O ∈α)时,一般有两种途径:一是直接求〈OP →,OP ′→〉,其中OP ′为斜线OP 在平面α内的射影;二是通过求〈n ,OP →〉进而转化求解,其中n 为平面α的法向量.解设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2).又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成的角的正弦值为|cos 〈MN →,DA →〉|=63.变式迁移2 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →, ∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23, 即sin θ=23,故AB 与平面BDF 所成的角的正弦值为23.例3 解题导引 图中面SCD 与面SBA 所成的二面角没有明显的公共棱,考虑到易于建系,从而借助平面的法向量来求解.解建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63. 变式迁移3 (1)证明 由题设AB =AC =SB =SC =SA . 连结OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA , 且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC . (2)解以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系O -xyz ,如图.设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.例4 解题导引 立体几何中开放性问题的解决方式往往是通过假设,借助空间向量建立方程,进行求解.(1)证明作AH ⊥面BCD 于H ,连结BH 、CH 、DH ,则四边形BHCD 是正方形,且AH =1,将其补形为如图所示正方体.以D 为原点,建立如图所示空间直角坐标系.则B (1,0,0),C (0,1,0),A (1,1,1). BC →=(-1,1,0),DA →=(1,1,1), ∴BC →·DA →=0,则BC ⊥AD .(2)解 设平面ABC 的法向量为n 1=(x ,y ,z ),则由n 1⊥BC →知:n 1·BC →=-x +y =0,同理由n 1⊥AC →知:n 1·AC →=-x -z =0, 可取n 1=(1,1,-1),同理,可求得平面ACD 的一个法向量为n 2=(1,0,-1). 由图可以看出,二面角B -AC -D 即为〈n 1,n 2〉,∴cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=1+0+13×2=63.即二面角B -AC -D 的余弦值为63. (3)解 设E (x ,y ,z )是线段AC 上一点, 则x =z >0,y =1,平面BCD 的一个法向量为n =(0,0,1),DE →=(x,1,x ),要使ED 与平面BCD 成30°角,由图可知DE →与n 的夹角为60°,所以cos 〈DE →,n 〉=DE →·n |DE →||n |=x 1+2x 2 =cos 60°=12.则2x =1+2x 2,解得x =22,则CE =2x =1.故线段AC 上存在E 点,且CE =1时,ED 与面BCD 成30°. 变式迁移4(1)证明 方法一 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 因此BC =2FG . 连结AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形, 因此GM ∥F A .又F A ⊂平面ABFE ,GM ⊄平面ABFE ,方法二 因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°, 所以∠EGF =90°, △ABC ∽△EFG . 由于AB =2EF , 所以BC =2FG .取BC 的中点N ,连结GN ,因此四边形BNGF 为平行四边形, 所以GN ∥FB .在▱ABCD 中,M 是线段AD 的中点,连结MN , 则MN ∥AB .因为MN ∩GN =N , 所以平面GMN ∥平面ABFE .又GM ⊂平面GMN ,所以GM ∥平面ABFE .(2)解 方法一 因为∠ACB =90°,所以∠CAD =90°. 又EA ⊥平面ABCD ,所以AC ,AD ,AE 两两垂直.分别以AC ,AD ,AE 所在直线为x 轴,y 轴和z 轴,建立如图所示的空间直角坐标系,不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0).又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1,得x 1=1,所以m =(1,0,1).设平面向量ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1.则n =(1,1,0).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.因此二面角A -BF -C 的大小为60°.方法二 由题意知,平面ABFE ⊥平面ABCD . 取AB 的中点H ,连结CH . 因为AC =BC , 所以CH ⊥AB ,过H 向BF 引垂线交BF 于R ,连结CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2,在直角梯形ABFE 中,连结FH ,则FH ⊥AB . 又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63.由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°. 课后练习区 1.21015 2.90°解析 ∵E 是BB 1的中点且AA 1=2,AB =BC =1, ∴∠AEA 1=90°,又在长方体ABCD -A 1B 1C 1D 1中, A 1D 1⊥平面ABB 1A 1,∴A 1D 1⊥AE ,∴AE ⊥平面A 1ED 1. ∴AE 与面A 1ED 1所成的角为90°. 3.23解析 设四面体的棱长为a , AB →=p ,AC →=q ,AD →=r ,则AE →=12(p +q ),CF →=12(r -2q ).∴AE →·CF →=-12a 2.又|AE →|=|CF →|=32a ,∴cos 〈AE →,CF →〉=AE →,CF →|AE →|·|CF →|=-23.即AE 和CF 所成角的余弦值为23.4.64 5.90° 解析不妨设PM =a ,PN =b ,作ME ⊥AB 于E ,NF ⊥AB 于F , 如图:∵∠EPM =∠FPN =45°,∴PE =22a ,PF =22b ,∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF →=ab cos 60°-a ×22b cos 45°-22ab cos 45°+22a ×22b=ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α—AB —β的大小为90°. 6.255解析 如图建立空间直角坐标系,设正四棱锥的棱长为2,则PB =2,OB =1,OP =1. ∴B (1,0,0),D (-1,0,0), A (0,1,0),P (0,0,1), M ⎝⎛⎭⎫12,0,12, N ⎝⎛⎭⎫-12,0,12, AM →=⎝⎛⎭⎫12,-1,12, AN →=⎝⎛⎭⎫-12,-1,12, 设平面AMN 的法向量为n 1=(x ,y ,z ),由⎩⎨⎧n ·AM →=12x -y +12z =0,n ·AN →=-12x -y +12z =0,解得x =0,z =2y ,不妨令z =2,则y =1.∴n 1=(0,1,2),平面ABCD 的法向量n 2=(0,0,1),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=25=255.7. 2解析 PB →=P A →+AB →,故PB →·AC →=(P A →+AB →)·AC →=P A →·AC →+AB →·AC →=0+a ×2a ×cos 45°=a 2.又|PB →|=3a ,|AC →|=a .∴cos 〈PB →,AC →〉=33,sin 〈PB →,AC →〉=63,∴tan 〈PB →,AC →〉= 2. 8.45解析 不妨设正三棱柱ABC —A 1B 1C 1的棱长为2,建立如图所示的空间直角坐标系,则C (0,0,0),A (3,-1,0),B 1(3,1,2),D ⎝⎛⎭⎫32,-12,2.则CD →=⎝⎛⎭⎫32,-12,2,CB 1→=(3,1,2),设平面B 1DC 的法向量为 n =(x ,y,1),由⎩⎪⎨⎪⎧n ·CD →=0,n ·CB 1→=0,解得n =(-3,1,1).又∵DA →=⎝⎛⎭⎫32,-12,-2,∴sin θ=|cos 〈DA →,n 〉|=45.9.解 (1)∵AD 与两圆所在的平面均垂直, ∴AD ⊥AB ,AD ⊥AF ,故∠BAF 是二面角B —AD —F 的平面角.(2分) 依题意可知,ABFC 是正方形,∴∠BAF =45°. 即二面角B —AD —F 的大小为45°.(5分)(2)以O 为原点,CB 、AF 、OE 所在直线为坐标轴,建立空间直角坐标系(如图所示),则O (0,0,0),A (0,-3 2,0),B (3 2,0,0),D (0,-3 2,8),E (0,0,8),F (0,3 2,0),(8分)∴BD →=(-3 2,-3 2,8), EF →=(0,3 2,-8).cos 〈BD →,EF →〉=BD →·EF →|BD →||EF →|=0-18-64100×82=-8210.(12分)设异面直线BD 与EF 所成角为α,则cos α=|cos 〈BD →,EF →〉|=8210.即直线BD 与EF 所成的角的余弦值为8210.(14分) 10.方法一 (1)证明 取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2,连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2,所以∠DSE 为直角,即SD ⊥SE .(4分) 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E , 得AB ⊥平面SDE , 所以AB ⊥SD .由SD 与两条相交直线AB 、SE 都垂直,所以SD ⊥平面SAB .(7分)(2)解 由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE .(10分)作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ·SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,又BC ⊥FG ,BC ⊥SF ,SF ∩FG =F , 故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ·FG SG =37,则F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,E 到平面SBC 的距离d 为217.(12分)设AB 与平面SBC 所成的角为α,则sin α=d EB =217,即AB 与平面SBC 所成的角的正弦值为217.(14分)方法二 以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C -xyz .设D (1,0,0),则A (2,2,0)、B (0,2,0).(2分) 又设S (x ,y ,z ),则x >0,y >0,z >0.(1)证明 AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ), DS →=(x -1,y ,z ), 由|AS →|=|BS →|得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2, 故x =1. 由|DS →|=1得y 2+z 2=1.①又由|BS →|=2得x 2+(y -2)2+z 2=4, 即y 2+z 2-4y +1=0.②联立①②得⎩⎨⎧y =12,z =32.(4分)于是S (1,12,32),AS →=(-1,-32,32),BS →=(1,-32,32),DS →=(0,12,32).因为DS →·AS →=0,DS →·BS →=0, 故DS ⊥AS ,DS ⊥BS .又AS ∩BS =S ,所以SD ⊥平面SAB .(7分) (2)解 设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=(1,-32,32),CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).(10分) 又AB →=(-2,0,0),cos 〈AB →,a 〉=|AB →·a ||AB →||a |=217,所以AB 与平面SBC 所成角的正弦值为217.(14分) 11.(1)证明 建立如图所示的空间直角坐标系,则由已知可得A (0,0,0),B (23,2,0),C (0,4,0),A 1(0,0,4),E (3,3,0),F (0,4,1).(2分)于是CA 1→=(0,-4,4), EF →=(-3,1,1). 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0, 故EF ⊥A 1C .(8分)(2)解 设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ), 则由(1)得F (0,4,λ).(8分) AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0.取m =(3λ,-λ,4).又由直三棱柱的性质可取侧面AC 1的一个法向量为n =(1,0,0),于是由θ的锐角可得cos θ=|m ·n ||m |·|n |=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2.(10分) 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63. 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.(14分)。

高中数学利用空间向量求空间角

高中数学利用空间向量求空间角

答案:13
突破点一
突破点二
课时达标检测
利用空间向量求空间角 结 束
3.[考点三]在正方体ABCD-A1B1C1D1中,点E为BB1的中点,则平 面A1ED与平面ABCD所成的锐二面角的余弦值为________. 解析:以A为原点建立如图所示的空间直角
坐标系,设棱长为1,
则A1(0,0,1),E 1,0,12 ,D(0,1,0),所以
OD,OB1,OC 所在直线为 x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系 O-xyz,

A0


2
3
3

0

B

2 3
6

0,0

C
0,0,2
3
3
,D
36,0,0 ,
AB =-236,233,0,
AC

0,233,233,CD= 36,0,-233,
设平面 ABC 的法向量为 n=(x,y,z),
课时达标检测
利用空间向量求空间角 结 束
3.求二面角的大小 (1)如图①,AB,CD是二面角α -l-β的两个面内与棱l垂直的直 线,则二面角的大小θ=〈__A_B_,__C__D_〉_.
(2)如图②和图③,n1,n2分别是二面角α-l-β的两个半平面α, β的法向量,则二面角的大小θ=〈__n_1_,__n_2〉__或__π_-__〈__n__1,__n_2_〉_.
突破点一
突破点二
课时达标检测
利用空间向量求空间角 结 束
A1C1 ·n=0, BC1 ·n=0,

-x+2y=0, -x+z=0,
令x=2,则y=1,z

向量法求空间角(含解析)

向量法求空间角(含解析)

高中数学 ︵ 向量法求空间角︶培优篇考点1:异面直线所成的角若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u·v||u||v|.考点2:直线与平面所成的角如图,直线AB 与平面α相交于点B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向高中数学 ︵ 向量法求空间角︶培优篇量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|= u ·n |u ||n |=|u·n||u||n|.考点3:平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|.【常用结论总结】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|. 2.二面角的范围是[0,π],两个平面夹角的范围是0,2.【例1】 直三棱柱ABC -A 1B 1C 1如图所示,AB =4,BC=3,AC =5,D 为棱AB 的中点,三棱柱的各顶点在同一球面上,且球的表面积为61π,则异面直线A 1D 和B 1C 所成的角的余弦值为( )高中数学 ︵ 向量法求空间角︶培优篇A .5B .25C .5D .25【例2】 如图,四棱锥P −ABCD 中,底面ABCD 为正方形,△PAD 是正三角形,AB =2,平面PAD ⊥平面ABCD ,则PC 与BD 所成角的余弦值为( )A .14B .4C .13D 【例3】 如图四棱锥P -ABCD 中,底面ABCD 为正方形,各棱长均相等,E 是PB 的中点,则异面直线AE 与PC 所成角的余弦值为()A 6B C .13D .12学霸笔记用向量法求异面直线所成的角的一般步骤(1)建立空间直角坐标系;(2)用坐标表示两异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)注意两异面直线所成角的范围是(0,],即两异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.高中数学 ︵ 向量法求空间角︶培优篇【对点训练1】 如图,在三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均相等,∠BAA 1=∠CAA 1=60°,则异面直线AB 1与BC 1所成角的余弦值为()AB .13C .4D 【对点训练2】 “曲池”是《九章算术》记载的一种几何体,该几何体是上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,AA ⊥面ABCD ,AA 1=4,底面扇环所对的圆心角为π2,AD 的长度是BC 长度的2倍,CD =1,则异面直线A 1D 1与BC 1所成角的正弦值为()A .3B .13C .3D .4【对点训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,AA 1=AC=AB=2,BC =2√2,Q 为A 1B 1的中点,E 为AQ 的中点,F 为BC 1的中点,则异面直线BE 与AF所成角的余弦值为( )A. BC .D高中数学 ︵ 向量法求空间角︶培优篇【例4】 在正方体ABCD −A B C D 中,如图E 、F 分别是BB 1、CD 的中点. (1)求证:平面AD F ⊥平面ADE ; (2)求直线EF 与AD F 所成角的正弦值.【例5】 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,P A ⊥平面ABCD ,P A=AD=2AB=8,点M 在棱PD 上,且PA =PM ⋅PD ,AM ⊥MC.(1)求证:CD ⊥平面P AD ;(2)求BM 与平面ACM 所成角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 学霸笔记利用空间向量求线面角的解题步骤【对点训练4】 如图,正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱BC 、CD 的中点. (1)求证:D 1 F ∥平面A 1EC1;(2)求直线AC 1与平面A 1EC 1所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练5】 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 为菱形,∠ABC =60°,AB =2,AA 1=2√3,E 为线段DD 1上一点.(1)求证:AC ⊥B 1D ;(2)若平面AB 1E 与平面ABCD 的夹角的余弦值为25,求直线BE与平面AB 1E 所成角的正弦值.高中数学 ︵ 向量法求空间角︶培优篇【例6】 在如图所示的空间几何体中,△ACD 与△ACB 均是等边三角形,直线ED ⊥平面ACD ,直线EB ⊥平面ABC ,DE ⊥BE . (1)求证:平面ABC ⊥平面ADC ;(2)求平面ACE 与平面BCE 夹角的余弦值.【例7】 如图,三棱锥A −BCD 中,DA =DB =DC ,BD ⊥CD ,∠ADB =∠ADC =60∘,E 为BC 的中点. (1)证明:BC ⊥DA ;(2)点F满足EF⃗=DA ⃗,求二面角D −AB −F 的正弦值.高中数学 ︵ 向量法求空间角︶培优篇学霸笔记利用空间向量求平面与平面夹角的解题步骤【对点训练6】 直三棱柱ABC −A B C 中,AA =AB =AC =2,AA ⊥AB,AC ⊥AB ,D 为A B 的中点,E 为AA 的中点,F 为CD 的中点. (1)求证:EF ∥平面ABC ;(2)求直线BE 与平面CCD所成角的正弦值; (3)求平面A CD 与平面CC D 夹角的余弦值.高中数学 ︵ 向量法求空间角︶培优篇 【对点训练7】 如图,在棱长为2的正方体ABCD −A B C D 中,E 为棱BC 的中点,F 为棱CD 的中点.(1)求证:D 1F ∥平面A EC ;(2)求直线AC 与平面A EC 所成角的正弦值. (3)求二面角A −A C −E 的正弦值.【对点训练8】 如图,PO 是三棱锥P −ABC 的高,PA =PB ,AB ⊥AC ,E 是PB 的中点. (1)证明:OE ∥平面PAC ;(2)若∠ABO=∠CBO =30°,PO =3,PA =5,求二面角C −AE −B 的正弦值.。

7.6.1向量法求空间角课件高三数学一轮复习

7.6.1向量法求空间角课件高三数学一轮复习

考点二 直线与平面所成的角 【例 2】 如图,在四棱锥 P-ABCD 中,底面 ABCD 是平行四边形,∠ABC=120°, AB=1,BC=4,PA= 15,M,N 分别为 BC,PC 的中点,PD⊥DC,PM⊥MD.
(1)证明:AB⊥PM; (2)求直线 AN 与平面 PDM 所成角的正弦值.
【解】 (1)证明:因为 AB=AD,O 为 BD 的中点,所以 OA⊥BD. 因为平面 ABD⊥平面 BCD,平面 ABD∩平面 BCD=BD,OA⊂平面 ABD,所以 OA ⊥平面 BCD. 因为 CD⊂平面 BCD,所以 OA⊥CD. (2)以 O 为坐标原点,OD,OA 所在的直线分别为 y 轴,z 轴,过点 O 且垂直于 BD 的 直线为 x 轴,建立如图所示空间直角坐标系.
(2)由(1)知,A( 2,0,0),B( 2,1,0),C(0,1,0),P(0,0,1),M 22,1,0, 则A→M=- 22,1,0,P→M= 22,1,-1, B→C=(- 2,0,0),P→B=( 2,1,-1). 设 n1=(x1,y1,z1)为平面 PAM 的法向量,
则nn11··PA→ →MM= =00, ,
以 D 为坐标原点,DA,DC,DP 所在直线分别为 x 轴、y 轴、z 轴建立空间直角坐标 系.
设 BC=2x,则 D(0,0,0),A(2x,0,0),P(0,0,1),B(2x,1,0),M(x,1,0).所以A→M=(-x,1,0), P→B=(2x,1,-1),
所以(-x,1,0)·(2x,1,-1)=0,解得 x= 22(负值舍去).所以 BC= 2.
(2)以 A 为原点,AD 所在直线为 x 轴,AB 所在直线为 y 轴,AA1 所在直线为 z 轴建立 空间直角坐标系.设正方体 ABCD-A1B1C1D1 的棱长为 2,则 A(0,0,0),A1(0,0,2),D1(2,0,2), E(0,2,1),∴A→A1=(0,0,2),A→D1=(2,0,2),A→E=(0,2,1).

高考数学一轮复习---利用空间向量求空间角

高考数学一轮复习---利用空间向量求空间角

利用空间向量求空间角一、基础知识1.异面直线所成角设异面直线a ,b 所成的角为θ,则cos θ=|a ·b ||a ||b |❶, 其中a ,b 分别是直线a ,b 的方向向量. 2.直线与平面所成角如图所示,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |❷.3.二面角(1)若AB ,CD 分别是二面角α­l ­β的两个平面内与棱l 垂直的异面直线,则二面角(或其补角)的大小就是向量AB ―→与CD ―→的夹角,如图(1).(2)平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,〈n 1,n 2〉=θ,则二面角α ­l ­β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1||n 2|❸,如图(2)(3).二、常用结论解空间角最值问题时往往会用到最小角定理cos θ=cos θ1cos θ2.如图,若OA 为平面α的一条斜线,O 为斜足,OB 为OA 在平面α内的射影,OC 为平面α内的一条直线,其中θ为OA 与OC 所成的角,θ1为OA 与OB 所成的角,即线面角,θ2为OB 与OC 所成的角,那么cos θ=cos θ1cos θ2.三、考点解析考点一异面直线所成的角例、如图,在三棱锥P­ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为721,求线段AH的长.[解题技法]用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.[跟踪训练1.如图所示,在三棱柱ABC­A1B1C1中,AA1⊥底面ABC,AB=BC=AA1,∠ABC=90°,点E,F分别是棱AB,BB1的中点,则直线EF和BC1所成的角是()A.30°B.45°C.60°D.90°2.如图,在四棱锥P­ABCD中,P A⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面P AC;(2)若P A=AB,求PB与AC所成角的余弦值.考点二 直线与平面所成的角例、如图,在多面体ABCDEF 中,四边形ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF =DE ,M 为棱AE 的中点.(1)求证:平面BDM ∥平面EFC ;(2)若DE =2AB ,求直线AE 与平面BDM 所成角的正弦值.[解题技法]利用向量求线面角的2种方法(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角).(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线与平面所成的角.跟踪训练1.在长方体ABCD ­A 1B 1C 1D 1中,AB =2,BC =AA 1=1,则D 1C 1与平面A 1BC 1所成角的正弦值为________.2.如图,在直三棱柱ABC ­A 1B 1C 1中,BA =BC =5,AC =8,D 为线段AC 的中点.(1)求证:BD ⊥A 1D ;(2)若直线A 1D 与平面BC 1D 所成角的正弦值为45,求AA 1的长.考点三 二面角例、如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE=CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ;(2)求二面角B ­D ′A ­C 的余弦值.[解题技法](1)利用法向量求二面角的大小时,由于法向量的方向不同,两个法向量的夹角与二面角的大小可能相等,也可能互补.所以,两个法向量的夹角的余弦值与二面角的余弦值可能存在正负号的差异.(2)有时用观察法难以判定二面角是钝角还是锐角,为了保证解题结果准确无误,我们给出一种万无一失的方法:就是在两个半平面和二面角的棱上各取1个向量,要求这三个向量必须起点相同,在利用行列式计算法向量时,棱对应的向量必须排前面,即口诀“起点同,棱排前”,这样求出的两个法向量的夹角一定与二面角的大小相等.跟踪训练如图所示,四棱锥P ­ABCD 中,P A ⊥平面ABCD ,△DAB ≌△DCB ,E 为线段BD 上的一点,且EB =ED =EC =BC ,连接CE 并延长交AD 于F .(1)若G 为PD 的中点,求证:平面P AD ⊥平面CGF ;(2)若BC =2,P A =3,求二面角B ­CP ­D 的余弦值.课后作业1.如图所示,在正方体ABCD ­A 1B 1C 1D 1中,已知M ,N 分别是BD 和AD 的中点,则B 1M 与D 1N 所成角的余弦值为( ) A.3030 B.3015 C.3010 D.15152、已知长方体ABCD ­A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535B.277C.33D.243.在直三棱柱ABC ­A 1B 1C 1中,AA 1=2,二面角B ­AA 1­C 1的大小为60°,点B 到平面ACC 1A 1的距离为3,点C 到平面ABB 1A 1的距离为23,则直线BC 1与直线AB 1所成角的正切值为( )A.7B.6C.5 D .2 4.如图,正三棱柱ABC ­A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为( )A.35B.56C.3310D.36105.在正方体ABCD ­A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.226.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.7.如图,已知四棱锥P ­ABCD 的底面ABCD 是等腰梯形,AB ∥CD ,且AC ⊥BD ,AC 与BD 交于O ,PO ⊥底面ABCD ,PO =2,AB =22,E ,F 分别是AB ,AP 的中点,则二面角F ­OE ­A 的余弦值为________.8.如图,边长为2的正方形ABCD 所在的平面与半圆弧C D 所在平面垂直,M 是C D 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ­ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.9.如图,在三棱锥P ­ABC 中,AB =BC =22,P A =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M ­P A ­C 为30°,求PC 与平面P AM 所成角的正弦值提高练习1.如图,四棱柱ABCD­A1B1C1D1的底面ABCD是菱形,AC∩BD=O,A1O⊥底面ABCD,AB=2,AA1=3.(1)证明:平面A1CO⊥平面BB1D1D;(2)若∠BAD=60°,求二面角B­OB1­C的余弦值.2.如图,在四棱锥P­ABCD中,底面ABCD是直角梯形,∠ADC=90°,AB∥CD,AB=2CD.平面P AD⊥平面ABCD,P A=PD,点E在PC上,DE⊥平面P AC.(1)求证:P A⊥平面PCD;(2)设AD=2,若平面PBC与平面P AD所成的二面角为45°,求DE的长.3.如图,在三棱锥P­ABC中,平面P AB⊥平面ABC,AB=6,BC=23,AC=26,D,E分别为线段AB,BC上的点,且AD=2DB,CE=2EB,PD⊥AC.(1)求证:PD⊥平面ABC;(2)若直线P A与平面ABC所成的角为45°,求平面P AC与平面PDE所成的锐二面角大小.。

空间向量求角度

空间向量求角度

【模块标题】空间向量求角度 【模块目标】★★★★☆☆ 识别【模块讲解】在高考立体几何中,我们经常遇到求角度问题,解答题必考一题,空间立体复杂而抽象,很多空间想象力比较差的孩子,往往面临不知如何找角的问题,因此空间向量的代数角度处理方法就变得至关重要,因此学好空间向量求夹角问题很有必要. 知识回顾:一.空间向量的基础知识:1.已知111(,,)a x y z =,111(,,)b x y z =,则:()121212,,a b x x y y z z ±=±±±,()111,,a x y z λλλλ=,121212a b x x y y z z ⋅=++,2a x =+,a b a b a b⋅=;//a b a b λ⇔=,0a b a b ⊥⇔⋅=.2.直线的方向向量与平面的法向量 直线的方向向量:空间已直线l ,,A B 是直线l 上两点,则向量AB 为直线l 的方向向量. (方向向量不唯一,只要与直线平行的向量即可) 法向量:若直线l α⊥,则直线l 的方向向量叫作α的法向量. 求法向量l :(1)找出平面内的两条相交直线; (2)求出直线的方向向量,n m (3)00l n l l m ⎧⋅=⎪⇒⎨⋅=⎪⎩要点提炼:1.求面的法向量,因为与面垂直的向量不唯一,所以法向量只是满足与面垂直,模长和正反方向没有要求;2.在求解过程中,对其中一个不定坐标可任意赋值,进而求解法向量 ; 3.在面求法向量时,还有一种行列式的求法,以实例来讲解: 若(,AB x y =,(,AC x y =的法向量n 为11,(y z 二.空间向量求角度: 1.空间向量求线线角找平行平移直线,转移到同一个平面.的方向向量分别为,a b ,因为异面直线所成角为锐角或直角,所以有,a b . 2.空间向量求线面角的方向向量分别为(,,a x y z =的法向量分别是(,u m n p =,a u . 3.空间向量求二面角平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形,叫做二面角(这条直线叫做二面角的棱,每个半平面叫做二面角的面),二面角θ大小范围为[0,]π.设直线12,l l 的方向向量分别为()()111222,,,,,a x y z b x y z ==,平面αβ,的法向量分别是()()111222,,,,u m n p v m n p ==, 则: ,u v ; ,u v . 看钝角锐角,通过实际图像观察.【教材内容1】空间向量求线线角(3星)<讲解指南>求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解。

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题—立体几何(空间向量求空间角与空间距离)

高考数学专题——立体几何(空间向量求角与距离)一、空间向量常考形式与计算方法设直线l,m 的方向向量分别为l ⃗,m ⃗⃗⃗⃗,平面α,β的法向量分别为n ⃗⃗1,n 2⃗⃗⃗⃗⃗. (1)线线角:(正负问题):用向量算取绝对值(因为线线角只能是锐角)直线l,m 所成的角为θ,则0≤θ≤π2,计算方法:cos θ=l⃗⋅m ⃗⃗⃗⃗|l⃗|⋅|m ⃗⃗⃗⃗|; (2)线面角:正常考你正弦值,因为算出来的是角的余角的余弦值 非正常考你余弦值,需要再算一步。

直线l 与平面α所成的角为θ,则0≤θ≤π2,计算方法:sin θ=|l ⃗⋅n 1⃗⃗⃗⃗⃗⃗||l⃗|⋅|n ⃗⃗|; (3)二面角:同进同出为补角;一进一出为原角。

注意:考试从图中观察,若为钝角就取负值,若为锐角就取正值。

平面α,β所成的二面角为θ,则0≤θ≤π,如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=⟨AB⃗⃗⃗⃗⃗⃗,CD ⃗⃗⃗⃗⃗⃗⟩.如图②③,n ⃗⃗1,n 2⃗⃗⃗⃗⃗分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|n⃗⃗1⋅n 2⃗⃗⃗⃗⃗⃗|n⃗⃗1|⋅|n2⃗⃗⃗⃗⃗⃗||,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). (4)空间距离额计算:通常包含点到平面距离,异面直线间距离。

二、空间向量基本步骤空间向量求余弦值或正弦值四步法(1)建系:三垂直,尽量多点在轴上;左右下建系,建成墙角系;锥体顶点在轴上;对称面建系。

一定要注明怎样建成的坐标系(2)写点坐标(3)写向量:向量最好在面上或者轴上(可简化计算量) (4)法向量的简化计算直线的方向向量和平面的法向量(1)直线的方向向量就是指和这条直线平行(或共线)的向量,记作,显然一条直线的方向向量可以有无数个.(2)若直线l ⊥α,则该直线的方向向量即为该平面的法向量,平面的法向量记作,有无数多个,任意两个都是共线向量.平面法向量的求法:设平面的法向量为α⃗=(x,y,z ).在平面内找出(或求出)两个不共线的向量a ⃗=(x 1,y 1,z 1),b ⃗⃗=(x 2,y 2,z 2),根据定义建立方程组,得到{α⃗×a ⃗=0α⃗×b ⃗⃗=0,通过赋值,取其中一组解,得到平面的法向量.三、空间向量求距离向量方法求异面直线距离:先求两异面直线的公共法向量,再求两异面直线上任意两点的连结线段在公共法向量上的射影长。

第八章 8.8空间向量在立体几何中的应用(二)——求空间角和距离

第八章 8.8空间向量在立体几何中的应用(二)——求空间角和距离

1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θa 与b 的夹角β范围 (0,π2][0,π] 求法cos θ=|a ·b ||a ||b |cos β=a ·b|a ||b |2.斜线和平面所成的角(1)斜线和它在平面内的射影的所成的角叫做斜线和平面所成的角(或斜线和平面的夹角). (2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成角中最小的角. 3.二面角(1)从一条直线出发的两个半平面所组成的图形叫做二面角.(2)在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角. 4.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 5.(选用)点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d=|AB →·n ||n |.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π2],二面角的范围是[0,π].( √ )(5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°.( √ )(6)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )1.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱CD ,CC 1的中点,则异面直线A 1M 与DN 所成的角的大小是( ) A.30° B.45° C.60° D.90°答案 D解析 以A 为原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,AA 1所在直线为z 轴,建立空间直角坐标系,设棱长为1,则A 1(0,0,1),M (12,1,0),D (0,1,0),N (1,1,12),A 1M →=(12,1,-1),DN →=(1,0,12).cos 〈A 1M →,DN →〉=12-1214+1+1 1+14=0, ∴A 1M 与DN 所成的角的大小是90°.2.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l 与α所成的角为( )A.30°B.60°C.120°D.150° 答案 A解析 设l 与α所成角为θ,∵cos 〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.故选A.3.(教材改编)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为________. 答案 π6解析 以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线为坐标轴(如图)建立空间直角坐标系,设D 为A 1B 1中点,则A (0,0,0),C 1(1,3,22),D (1,0,22), ∴AC 1→=(1,3,22),AD →=(1,0,22). ∠C 1AD 为AC 1与平面ABB 1A 1所成的角 cos ∠C 1AD =AC 1→·AD→|AC 1→||AD →|=(1,3,22)·(1,0,22)12·9=32, 又∵∠C 1AD ∈⎣⎡⎦⎤0,π2,∴∠C 1AD =π6. 4.(教材改编)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为_______. 答案 60°解析 ∵CD →=CA →+AB →+BD →, ∴|CD →|=(CA →+AB →+BD →)2=36+16+64+2CA →·BD →=116+2CA →·BD →=217.∴CA →·BD →=|CA →|·|BD →|·cos 〈CA →,BD →〉=-24. ∴cos 〈CA →,BD →〉=-12.而二面角与〈CA →,BD →〉互补, ∴所求二面角为60°.5.P 是二面角α-AB -β棱上的一点,分别在平面α、β上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为________. 答案 90°解析 不妨设PM =a ,PN =b ,如图, 作ME ⊥AB 于E ,NF ⊥AB 于F , ∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos 60°-a ×22b cos 45°-22a ×b cos 45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0, ∴EM →⊥FN →,∴二面角α-AB -β的大小为90°.题型一 求异面直线所成的角例1 (2015·四川)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E 、F 分别为AB 、BC 的中点.设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________. 答案 25解析 建立空间直角坐标系如图所示,设AB =1,则AF →=⎝⎛⎭⎫1,12,0, E ⎝⎛⎭⎫12,0,0,设M (0,y,1)(0≤y ≤1), 则EM →=⎝⎛⎭⎫-12,y ,1, ∴cos θ=|-12+12y |1+14 14+y 2+1=1-y52·4y 2+5.则cos θ=1-y 52·4y 2+5=255·1-y 4y 2+5,令t =1-y ,则y =1-t ,∵0≤y ≤1,∴0≤t ≤1, 那么cos θ=255·t4t 2-8t +9=255t 24t 2-8t +9=255 14-8t +9t2, 令x =1t ,∵0≤t ≤1,∴x ≥1,那么cos θ=25514-8x +9x 2,又∵z =9x 2-8x +4在[1,+∞)上单调递增, ∴x =1时,z min =5,此时cos θ的最大值为255·15=255·55=25.思维升华 用向量法求异面直线所成角的一般步骤:(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦等于两向量夹角余弦值的绝对值.如右图所示正方体ABCD -A ′B ′C ′D ′,已知点H 在A ′B ′C ′D ′的对角线B ′D ′上,∠HDA =60°.求DH 与CC ′所成的角的大小. 解 如图所示,以D 为原点,DA 为单位长度,建立空间直角坐标系Dxyz , 则DA →=(1,0,0),CC ′→=(0,0,1). 设DH →=(m ,m,1)(m >0), 由已知,〈DH →,DA →〉=60°,由DA →·DH →=|DA →|·|DH →|·cos 〈DH →,DA →〉, 可得2m =2m 2+1,解得m =22,∴DH →=(22,22,1),∵cos 〈DH →,CC ′→〉=22×0+22×0+1×11×2=22,又∵〈DH →,CC ′→〉∈[0°,180°], ∴〈DH →,CC ′→〉=45°, 即DH 与CC ′所成的角为45°. 题型二 求直线与平面所成的角例2 (2015·课标全国Ⅱ)如图,长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的底面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 解 (1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EM =AA 1=8.因为四边形EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE →=(10,0,0),HE →=(0,-6,8).设n =(x ,y ,z )是平面EHGF 的法向量,则⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0,所以可取n =(0,4,3).又AF →=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面EHGF 所成角的正弦值为4515.思维升华 利用向量法求线面角的方法:(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.(1)证明 易知,AB ,AD ,AA 1两两垂直,如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系. 设AB =t ,则相关各点的坐标为A (0,0,0),B (t,0,0), B 1(t,0,3),C (t,1,0),C 1(t,1,3),D (0,3,0),D 1(0,3,3). 从而B 1D →=(-t,3,-3),AC →=(t,1,0),BD →=(-t,3,0), 因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0. 解得t =3或t =-3(舍去).于是B 1D →=(-3,3,-3),A C →=(3,1,0), 因为AC →·B 1D →=-3+3+0=0, 所以AC →⊥B 1D →, 即AC ⊥B 1D .(2)解 由(1)知,AD 1→=(0,3,3),A C →=(3,1,0), B 1C 1→=(0,1,0),设n =(x ,y ,z )是平面ACD 1的一个法向量,则⎩⎪⎨⎪⎧n ·A C →=0,n ·AD 1→=0, 即⎩⎨⎧3x +y =0,3y +3z =0,令x =1,则n =(1,-3,3). 设直线B 1C 1与平面ACD 1所成的角为θ, 则sin θ=|cos 〈n ,B 1C 1→〉|=|n ·B 1C 1→|n |·|B 1C 1→||=37=217.即直线B 1C 1与平面ACD 1所成的角的正弦值为217. 题型三 求二面角例3 (2015·安徽)如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D -B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE .又B 1C ⊂面B 1CD 1.面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝⎛⎭⎫12,12,1.设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝⎛⎭⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D -B 1的余弦值为 |n 1·n 2||n 1|·|n 2|=23×2=63. 思维升华 求二面角最常用的方法就是分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.(2015·重庆)如图,三棱锥P -ABC 中,PC ⊥平面ABC ,PC =3,∠ACB=π2.D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2. (1)证明:DE ⊥平面PCD ; (2)求二面角A -PD -C 的余弦值. (1)证明 由PC ⊥平面ABC , DE ⊂平面ABC ,故PC ⊥DE .由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE . 由PC ∩CD =C ,DE 垂直于平面PCD 内两条相交直线,故DE ⊥平面PCD . (2)解 由(1)知,△CDE 为等腰直角三角形,∠DCE =π4,如图,过D 作DF 垂直CE于F ,易知DF =FC =FE =1,又已知EB =1,故FB =2. 由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.以C 为坐标原点,分别以CA →,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系, 则C (0,0,0),P (0,0,3),A ⎝⎛⎭⎫32,0,0,E (0,2,0),D (1,1,0),ED →=(1,-1,0),DP →=(-1,-1,3),DA →=⎝⎛⎭⎫12,-1,0. 设平面P AD 的法向量为n 1=(x 1,y 1,z 1), 由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0,故可取n 1=(2,1,1).由(1)可知DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED →,即n 2=(1,-1,0). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36,故所求二面角A -PD -C 的余弦值为36. (选用)题型四 求空间距离例4 如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,AB =23,求点A 到平面MBC 的距离.解 如图,取CD 的中点O ,连接OB ,OM ,因为△BCD 与△MCD 均为正三角形,所以OB ⊥CD ,OM ⊥CD ,又平面MCD ⊥平面BCD ,所以MO ⊥平面BCD .以O 为坐标原点,直线OC ,BO ,OM 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .因为△BCD 与△MCD 都是边长为2的正三角形,所以OB =OM =3,则O (0,0,0),C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23), 所以BC →=(1,3,0),BM →=(0,3,3). 设平面MBC 的法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧ n ⊥BC →,n ⊥BM →,得⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎨⎧x +3y =0,3y +3z =0,取x =3,可得平面MBC 的一个法向量为n =(3,-1,1). 又BA →=(0,0,23),所以所求距离为d =|BA →·n ||n |=2155.思维升华 求点面距一般有以下三种方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.如图所示,在直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =AA 1=1,D 是棱CC 1上的一点,P 是AD 的延长线与A 1C 1的延长线的交点,且PB 1∥平面BDA 1. (1)求证:CD =C 1D ;(2)求二面角A -A 1D -B 的平面角的余弦值; (3)求点C 到平面B 1DP 的距离.(1)证明 连接AB 1,交BA 1于点O ,连接OD .∵B 1P ∥平面BDA 1,B 1P ⊂平面AB 1P ,平面AB 1P ∩平面BA 1D =OD ,∴B 1P ∥OD . 又∵O 为B 1A 的中点,∴D 为AP 的中点. ∵C 1D ∥AA 1,∴C 1为A 1P 的中点. ∴DC 1=12AA 1=12CC 1,∴C 1D =CD .(2)解 建立如图所示的空间直角坐标系A 1xyz ,则B 1(1,0,0),B (1,0,1),D (0,1,12),∴A 1B 1→=(1,0,0),A 1B →=(1,0,1),A 1D →=(0,1,12).设平面BA 1D 的一个法向量为n =(x 1,y 1,z 1). 由⎩⎪⎨⎪⎧ A 1B →·n =0,A 1D →·n =0,得⎩⎪⎨⎪⎧x 1+z 1=0,y 1+12z 1=0. 令z 1=2,则x 1=-2,y 1=-1,∴n =(-2,-1,2). 又A 1B 1→=(1,0,0)为平面AA 1D 的一个法向量,∴cos 〈n ,A 1B 1→〉=n ·A 1B 1→|n ||A 1B 1→|=-23×1=-23. 由图形可知二面角A -A 1D -B 为锐角,∴二面角A -A 1D -B 的平面角的余弦值为23. (3)解 ∵C (0,1,1),D (0,1,12),B 1(1,0,0),P (0,2,0), ∴CD →=(0,0,-12),DB 1→=(1,-1,-12),DP →=(0,1,-12). 设平面B 1DP 的一个法向量为m =(x 2,y 2,z 2).由⎩⎪⎨⎪⎧ DB 1→·m =0,DP →·m =0,得⎩⎨⎧ x 2-y 2-12z 2=0,y 2-12z 2=0.令z 2=2,则x 2=2,y 2=1,∴m =(2,1,2).∴点C 到平面B 1DP 的距离d =|CD →·m ||m |=13.6.利用空间向量求解空间角典例 (12分)(2014·天津)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.规范解答(1)证明 依题意,以点A 为原点建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).[1分]由E 为棱PC 的中点,得E (1,1,1).BE →=(0,1,1),DC →=(2,0,0),故BE →·DC →=0,所以BE ⊥DC .[3分](2)解 BD →=(-1,2,0),PB →=(1,0,-2).设n =(x ,y ,z )为平面PBD 的法向量,则⎩⎪⎨⎪⎧ n ·BD →=0,n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0,x -2z =0.不妨令y =1,[5分] 可得n =(2,1,1)为平面PBD 的一个法向量.于是有cos 〈n ,BE →〉=n ·BE →|n |·|BE →|=26×2=33, 所以,直线BE 与平面PBD 所成角的正弦值为33.[7分] (3)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0).由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1,故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ).由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ)=0,解得λ=34, 即BF →=(-12,12,32).[9分] 设n 1=(x ,y ,z )为平面F AB 的法向量,则⎩⎪⎨⎪⎧ n 1·AB →=0,n 1·BF →=0, 即⎩⎪⎨⎪⎧x =0,-12x +12y +32z =0. 不妨令z =1,可得n 1=(0,-3,1)为平面F AB 的一个法向量.取平面ABP 的法向量n 2=(0,1,0), 则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010. 易知,二面角F -AB -P 是锐角,所以其余弦值为31010.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系.第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标.第四步:计算向量的夹角(或函数值).第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.温馨提醒 (1)利用向量求角是高考的热点,几乎每年必考,主要是突出向量的工具性作用.(2)本题易错点是在建立坐标系时不能明确指出坐标原点和坐标轴,导致建系不规范.(3)将向量的夹角转化成空间角时,要注意根据角的概念和图形特征进行转化,否则易失分.[方法与技巧]1.用向量来求空间角,都需将各类角转化成对应向量的夹角来计算,问题的关键在于确定对应线段的向量.2.求点到平面的距离,若用向量知识,则离不开以该点为端点的平面的斜线段.[失误与防范]1.利用向量求角,一定要注意将向量夹角转化为各空间角.因为向量夹角与各空间角的定义、范围不同.2.求点到平面的距离,有时利用等体积法求解可能更方便.3.求二面角要根据图形确定所求角是锐角还是钝角.A 组 专项基础训练(时间:30分钟)1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( )A.120°B.60°C.30°D.60°或30°答案 C解析 设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ.则sin β=|cos γ|=|cos 120°|=12. 又∵β∈[0°,90°],∴β=30°,故选C.2.(2014·课标全国Ⅱ)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( )A.110B.25C.3010D.22答案 C解析 补成正方体,利用向量的方法求异面直线所成的角.由于∠BCA =90°,三棱柱为直三棱柱,且BC =CA =CC 1,可将三棱柱补成正方体. 建立如图所示空间直角坐标系.设正方体棱长为2,则可得A (0,0,0),B (2,2,0),M (1,1,2),N (0,1,2),∴BM →=(-1,-1,2),AN →=(0,1,2).∴cos 〈BM →,AN →〉=BM →·AN →|BM →||AN →| =-1+4(-1)2+(-1)2+22×02+12+22=36×5=3010. 3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )A.12B.23C.33D.22答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1.则A 1(0,0,1),E (1,0,12),D (0,1,0), ∴A 1D →=(0,1,-1),A 1E →=(1,0,-12). 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有⎩⎪⎨⎪⎧ A 1D →·n =0,A 1E →·n 1=0, 即⎩⎪⎨⎪⎧ y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2.∴n 1=(1,2,2). ∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23, 即所成的锐二面角的余弦值为23. 4.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A.52B.-14C.14D.-52答案 B解析 建立如图所示的空间直角坐标系,则D (1,0,2),B 1(0,1,3),设P (0,0,z ),则PD →=(1,0,2-z ),PB 1→=(0,1,3-z ),∴PD →·PB 1→=0+0+(2-z )(3-z )=(z -52)2-14,故当z =52时,PD →·PB 1→取得最小值-14. 5.在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则CD 与平面BDC 1所成角的正弦值等于________.答案 23解析 以D 为坐标原点,建立空间直角坐标系,如图,设AA 1=2AB =2,则D (0,0,0),C (0,1,0),B (1,1,0),C 1(0,1,2),则DC →=(0,1,0),DB →=(1,1,0),DC 1→=(0,1,2).设平面BDC 1的法向量为n =(x ,y ,z ),则n ⊥DB →,n ⊥DC 1→,所以有⎩⎪⎨⎪⎧x +y =0,y +2z =0,令y =-2,得平面BDC 1的一个法向量为n =(2,-2,1). 设CD 与平面BDC 1所成的角为θ,则sin θ=|cos 〈n ,DC →〉|=⎪⎪⎪⎪⎪⎪n ·DC →|n ||DC →|=23. 6.已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的二面角的正切值等于________.答案 23解析 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求二面角的平面角.∵BH =322,EB =1, ∴tan ∠EHB =EB BH =23. 7.(2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.(1)证明 如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC .又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322, 从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,可得EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝⎛⎭⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝⎛⎭⎫-1,-3,22. 故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33. 所以直线AE 与直线CF 所成角的余弦值为33. 8.(2014·课标全国Ⅰ)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,AB ⊥B 1C .(1)证明:AC =AB 1;(2)若AC ⊥AB 1,∠CBB 1=60°,AB =BC ,求二面角A -A 1B 1-C 1的余弦值.(1)证明 如图所示,连接BC 1,交B 1C 于点O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为B 1C 及BC 1的中点.又AB ⊥B 1C ,AB ∩BO =B ,所以B 1C ⊥平面ABO .由于AO ⊂平面ABO ,故B 1C ⊥AO .又B 1O =CO ,故AC =AB 1.(2)解 因为AC ⊥AB 1,且O 为B 1C 的中点,所以AO =CO .又因为AB =BC ,所以△BOA ≌△BOC ,故OA ⊥OB ,从而OA ,OB ,OB 1两两互相垂直.以O 为坐标原点,OB →、OB 1→、OA →的方向为x 轴、y 轴、z 轴的正方向,|OB →|为单位长,建立如图所示的空间直角坐标系Oxyz .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又AB =BC ,OC =OA ,则A (0,0,33),B (1,0,0),B 1(0,33,0),C (0,-33,0),AB 1→=(0,33,-33),A 1B 1→=AB →=(1,0,-33),B 1C 1→=BC →=(-1,-33,0). 设n =(x ,y ,z )是平面AA 1B 1的法向量,则⎩⎪⎨⎪⎧ n ·AB 1→=0,n ·A 1B 1→=0,即⎩⎨⎧ 33y -33z =0,x -33z =0.所以可取n =(1,3,3).设m 是平面A 1B 1C 1的法向量,则⎩⎪⎨⎪⎧ m ·A 1B 1→=0,m ·B 1C 1→=0. 同理可取m =(1,-3,3).则cos 〈n ,m 〉=n ·m |n ||m |=17. 所以二面角A -A 1B 1-C 1的余弦值为17. B 组 专项能力提升(时间:15分钟)9.在正四棱锥S -ABCD 中,O 为顶点在底面上的射影,P 为侧棱SD 的中点,且SO =OD ,则直线BC 与平面P AC 所成的角是( )A.30°B.45°C.60°D.90° 答案 A解析 如图,以O 为原点建立空间直角坐标系Oxyz .设OD =SO =OA =OB =OC =a .则A (a,0,0),B (0,a,0),C (-a,0,0),P ⎝⎛⎭⎫0,-a 2,a 2. 则CA →=(2a,0,0),AP →=⎝⎛⎭⎫-a ,-a 2,a 2,CB →=(a ,a,0), 设平面P AC 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·CA →=0,n ·AP →=0,解得⎩⎪⎨⎪⎧x =0,y =z ,可取n =(0,1,1), 则cos 〈CB →,n 〉=CB →·n |CB →|·|n |=a 2a 2·2=12,又∵〈CB →,n 〉∈(0°,180°),∴〈CB →,n 〉=60°,∴直线BC 与平面P AC 所成的角为90°-60°=30°.10.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE =λ,当实数λ的值为______时,∠AFE 为直角. 答案 916 解析 因为SA ⊥平面ABCD ,∠BAD =90°,故可建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3,∴B (0,4,0),S (0,0,3).设BC =m ,则C (m,4,0),∵SF BF =CE BE=λ, ∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3), ∴F (0,4λ1+λ,31+λ). 同理可得E (m 1+λ,4,0), ∴FE →=(m 1+λ,41+λ,-31+λ). ∵F A →=(0,-4λ1+λ,-31+λ),要使∠AFE 为直角, 即F A →·FE →=0,则0·m 1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0, ∴16λ=9,解得λ=916. 11.(2015·江苏)如图,在四棱锥P -ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1. (1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.解 分别以AB →,AD →,AP →为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面P AB ,所以AD →是平面P AB 的一个法向量,AD →=(0,2,0).因为PC →=(1,1,-2),PD →=(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ),则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧ x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33,所以平面P AB 与平面PCD 所成二面角的余弦值为33.(2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2.设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t25t 2-10t +9=29⎝⎛⎭⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎫0,π2上是减函数,所以此时直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255.12.(2015·北京)如图,在四棱锥A -EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点.(1) 求证:AO ⊥BE ;(2) 求二面角F -AE -B 的余弦值;(3)若BE ⊥平面AOC ,求a 的值.(1)证明 因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF .又因为平面AEF ⊥平面EFCB ,AO ⊂平面AEF , 所以AO ⊥平面EFCB .所以AO ⊥BE .(2)解 取BC 中点G ,连接OG .由题设知四边形EFCB 是等腰梯形,所以OG ⊥EF .由(1)知AO ⊥平面EFCB .又OG ⊂平面EFCB ,所以OA ⊥OG .如图建立空间直角坐标系Oxyz ,则E (a,0,0),A (0,0,3a ), B (2,3(2-a ),0),EA →=(-a,0,3a ),BE →=(a -2,3(a -2),0).设平面AEB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·EA →=0,n ·BE →=0,即⎩⎨⎧ -ax +3az =0,(a -2)x +3(a -2)y =0.令z =1,则x =3,y =-1,于是n =(3,-1,1). 平面AEF 的法向量为p =(0,1,0).所以cos 〈n ,p 〉=n·p |n ||p |=-55.由题知二面角F -AE -B 为钝角,所以它的余弦值为-55.(3)解 因为BE ⊥平面AOC ,所以BE ⊥OC ,即BE →·OC →=0,因为BE →=(a -2,3(a -2),0),OC →=(-2,3(2-a ),0), 所以BE →·OC →=-2(a -2)-3(a -2)2.由BE →·OC →=0且0<a <2,解得a =43.。

第七章 §7.7 向量法求空间角-2025高中数学大一轮复习讲义人教A版

第七章 §7.7 向量法求空间角-2025高中数学大一轮复习讲义人教A版

§7.7向量法求空间角课标要求 1.能用向量法解决异面直线所成角、直线与平面所成角、平面与平面的夹角问题,并能描述解决这一类问题的程序,体会向量法在研究空间角问题中的作用.2.弄清折叠问题中的变量与不变量,掌握折叠问题中线面位置关系的判断和空间角的计算问题.知识梳理1.异面直线所成的角若异面直线l 1,l 2所成的角为θ,其方向向量分别是u ,v ,则cos θ=|cos 〈u ,v 〉|=|u·v ||u||v |.2.直线与平面所成的角如图,直线AB 与平面α相交于点B ,设直线AB 与平面α所成的角为θ,直线AB 的方向向量为u ,平面α的法向量为n ,则sin θ=|cos 〈u ,n 〉|=|u ·n |u ||n ||=|u·n||u||n|.3.平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把这四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n 1和n 2,则平面α与平面β的夹角即为向量n 1和n 2的夹角或其补角.设平面α与平面β的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|.常用结论1.异面直线所成角的范围是,π2;直线与平面所成角的范围是0,π2;二面角的范围是[0,π],两个平面夹角的范围是0,π2.2.若平面α与平面β的夹角为θ1,平面α内的直线l 与平面β所成角为θ2,则θ1≥θ2,当l 与α和β的交线垂直时,取等号.自主诊断1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.(×)(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.(×)(3)二面角的平面角为θ,则两个平面的法向量的夹角也是θ.(×)(4)二面角α-l -β的平面角与平面α,β的夹角相等.(×)2.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则直线l 与平面α所成的角为()A .30°B .60°C .120°D .150°答案A 解析设直线l 与平面α所成的角为θ,则sin θ=|cos 〈m ,n 〉|=12,所以直线l 与平面α所成的角为30°.3.已知直线l 1的方向向量s 1=(1,0,1)与直线l 2的方向向量s 2=(-1,2,-2),则直线l 1和l 2所成角的余弦值为()A.24 B.12 C.22 D.32答案C解析设直线l 1与l 2所成的角为θ,因为s 1=(1,0,1),s 2=(-1,2,-2),所以cos θ=|cos 〈s 1,s 2〉|=|s 1·s 2||s 1||s 2|=|-1-2|2×3=22.所以直线l 1和l 2所成角的余弦值为22.4.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为()A.π4B.3π4C.π4或3π4D.π2或3π4答案C 解析∵m =(0,1,0),n =(0,1,1),∴m ·n =1,|m |=1,|n |=2,若两平面所成的二面角为θ,则|cos θ|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=22,∴两平面所成的二面角为π4或3π4.题型一异面直线所成的角例1(1)(2023·武汉模拟)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,底面ABCD 为正方形,PA =BC ,E 为CD 的中点,F 为PC 的中点,则异面直线BF 与PE 所成角的余弦值为()A .-39 B.39C .-539 D.539答案B 解析如图,以点A 为坐标原点,以AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,设AB =2,异面直线BF 与PE 所成的角为θ,则A (0,0,0),B (2,0,0),P (0,0,2),C (2,2,0),D (0,2,0),则E (1,2,0),F (1,1,1),所以BF →=(-1,1,1),PE →=(1,2,-2),所以cos θ=|cos 〈BF →,PE →〉|=|BF →·PE →||BF →||PE →|=|-1+2-2|3×3=39,所以异面直线BF 与PE 所成角的余弦值为39.(2)(2023·开封模拟)在如图所示的圆台中,四边形ABCD 为其轴截面,AB =2CD =4,母线长为3,P 为下底面圆周上一点,异面直线AD 与OP (O 为下底面圆心)所成的角为π3,则CP 2的大小为()A .7-23B .7-23或7+23C .19-43D .19-43或19+43答案B 解析以O 为原点,OB 所在直线为y 轴,过点O 作x 轴⊥OB ,圆台的轴为z 轴,建立如图所示的空间直角坐标系,作DE ⊥AB 于点E ,AE =12AB -12CD =1,在Rt △ADE 中,AD =3,DE =AD 2-AE 2=2,则D (0,-1,2),A (0,-2,0),C (0,1,2),AD →=(0,1,2),设P (2cos θ,2sin θ,0),0≤θ<2π,OP →=(2cos θ,2sin θ,0),由于异面直线AD 与OP (O 为下底面圆心)所成的角为π3,∴cos π3=|OP →·AD →||OP →||AD →|=|2sin θ|2×3=|sin θ|3=12,∴sin θ=±32,CP →=(2cos θ,2sin θ-1,-2),CP 2=|CP →|2=4cos 2θ+4sin 2θ-4sin θ+1+2=7-4sin θ=7±23.思维升华用向量法求异面直线所成的角的一般步骤(1)建立空间直角坐标系.(2)用坐标表示异面直线的方向向量.(3)利用向量的夹角公式求出向量夹角的余弦值.(4),π2,即异面直线所成角的余弦值等于两向量夹角的余弦值的绝对值.跟踪训练1(1)(2023·台州统考)如图,已知菱形ABCD 的边长为3,对角线BD 长为5,将△ABD 沿着对角线BD 翻折至△A ′BD ,使得线段A ′C 长为3,则异面直线A ′B 与CD 所成角的余弦值为()A.34B.54C.49D.89答案D 解析因为A ′C =A ′D =CD =3.所以2A ′C ——→·CD →=(A ′C ——→+CD →)2-A ′C ——→2-CD →2=A ′D ——→2-A ′C ——→2-CD →2=9-9-9=-9.因为CB =CD =3,BD =5.所以2CB →·CD →=CB →2+CD →2-(CB →-CD →)2=CB →2+CD →2-DB →2=9+9-25=-7.所以A ′B ——→·CD →=(A ′C ——→+CB →)·CD →=A ′C ——→·CD →+CB →·CD →=-92-72=-8.若异面直线A ′B 与CD 所成的角为θ,则cos θ=|cos 〈A ′B ——→,CD →〉|=|A ′B ——→·CD →||A ′B ——→||CD →|=|-8|3×3=89.所以异面直线A ′B 与CD 所成角的余弦值为89.(2)如图所示,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是棱CC 1的中点,AF →=λAD →(0<λ<1),若异面直线D 1E 和A 1F 所成角的余弦值为3210,则λ的值为______.答案13解析以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系(图略),正方体的棱长为2,则A 1(2,0,2),D 1(0,0,2),E (0,2,1),A (2,0,0),∴D 1E —→=(0,2,-1),A 1A =(0,0,-2),AD →=(-2,0,0),A 1F —→=A 1A —→+AF →=A 1A —→+λAD →=(-2λ,0,-2).∴|cos 〈A 1F —→,D 1E —→〉|=|A 1F —→·D 1E —→||A 1F —→||D 1E —→|=22λ2+1×5=3210,解得λ=-13舍去题型二直线与平面所成的角例2(2022·全国甲卷)在四棱锥P -ABCD 中,PD ⊥底面ABCD ,CD ∥AB ,AD =DC =CB =1,AB =2,DP =3.(1)证明:BD ⊥PA ;(2)求PD 与平面PAB 所成的角的正弦值.(1)证明在四边形ABCD 中,作DE ⊥AB 于点E ,CF ⊥AB 于点F ,如图.因为CD ∥AB ,AD =CD =CB =1,AB =2,所以四边形ABCD 为等腰梯形,所以AE =BF =12,故DE =AD 2-AE 2=32,BD =DE 2+BE 2=3,所以AD 2+BD 2=AB 2,所以AD ⊥BD .因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD ⊥BD ,又PD ∩AD =D ,PD ,AD ⊂平面PAD ,所以BD ⊥平面PAD .又因为PA ⊂平面PAD ,所以BD ⊥PA .(2)解由(1)知,DA ,DB ,DP 两两垂直,如图,以D 为原点建立空间直角坐标系,则D (0,0,0),A (1,0,0),B (0,3,0),P (0,0,3),则AP →=(-1,0,3),BP →=(0,-3,3),DP →=(0,0,3).设平面PAB 的法向量为n =(x ,y ,z ),·AP →=0,·BP →=0,x +3z =0,-3y +3z =0,可取n =(3,1,1),则cos 〈n ,DP →〉=n ·DP →|n ||DP →|=35×3=55,所以PD 与平面PAB 所成角的正弦值为55.思维升华利用空间向量求线面角的解题步骤跟踪训练2(2023·开封模拟)如图,四边形ABCD 是圆柱OQ 的轴截面,圆柱OQ 的侧面积为63π,点P 在圆柱OQ 的下底面圆周上,且△OPB 是边长为3的等边三角形.(1)若G 是DP 的中点,求证:AG ⊥BD ;(2)若DG →=2GP →,求GB 与平面ABCD 所成角的正弦值.(1)证明设圆柱OQ 的底面半径为r ,高为h .因为△OPB 是边长为3的等边三角形,所以∠ABP =60°,r = 3.因为圆柱OQ 的侧面积为63π,所以2πrh =63π,解得h =3.在下底面圆O 中,∠APB =90°,∠ABP =60°,所以AP =BP ·tan 60°=3.因为DA ⊥平面APB ,所以DA ⊥BP ,DA ⊥AP .因为∠APB =90°,所以AP ⊥BP ,又AP ∩AD =A ,AP ,AD ⊂平面APD ,所以BP ⊥平面APD .因为AG ⊂平面APD ,所以BP ⊥AG .在△DAP 中,AD =AP =3,G 是DP 的中点,所以DP ⊥AG .又BP ∩DP =P ,BP ,DP ⊂平面BPD ,所以AG ⊥平面BPD .因为BD ⊂平面BPD ,所以AG ⊥BD .(2)解在下底面圆O 内过O 作Ox ⊥AB ,连接OQ .以O 为原点,Ox →,OB →,OQ →分别为x ,y ,z 轴正方向建立如图所示的空间直角坐标系.则B (0,3,0),D (0,-3,3),P 32,32,0因为DG →=2GP →,设G 点坐标为(x 0,y 0,z 0),则(x 0,y 0+3,z 0-3)=x 0,32-y 0,-z0=0+3=y 0-3=-2z 0,0=1,0=0,0=1,所以G (1,0,1),所以GB →=(-1,3,-1).显然,向量n =(1,0,0)是平面ABCD 的一个法向量.设GB 与平面ABCD 所成的角为θ,所以sin θ=|cos 〈GB →,n 〉|=|GB →·n ||GB →||n |=55.所以GB 与平面ABCD 所成角的正弦值为55.题型三平面与平面的夹角例3(12分)(2023·全国乙卷)如图,三棱锥P -ABC 中,AB ⊥BC ,AB =2,BC =22,PB =PC =6,BP ,AP ,BC 的中点分别为D ,E ,O ,AD =5DO ,点F 在AC 上,BF ⊥AO .(1)证明:EF ∥平面ADO ;[切入点:由BF ⊥AO 找F 位置](2)证明:平面ADO ⊥平面BEF ;[切入点:证明AO ⊥平面BEF ](3)求二面角D -AO -C 的正弦值.[关键点:由AO ⊥BE 及PB 长求点P 坐标][思路分析](1)利用向量及BF →⊥AO →→F 为AC 中点→EF ∥OD(2)利用勾股定理→AO ⊥OD →AO ⊥平面BEF(3)建系设点P 坐标→由AO ⊥BE 及PB 长求点P 坐标→求法向量→求角(1)证明设AF =tAC ,则BF →=BA →+AF →=(1-t )BA →+tBC →,AO →=-BA →+12BC →,(1分)①处用BA →,BC →表示BF →,AO→因为BF ⊥AO ,(3分)②处利用⊥找点F 位置BF →⊥AO →找点F 位置又D ,E ,O 分别为PB ,PA ,BC 的中点,于是EF ∥PC ,DO ∥PC ,所以EF ∥DO ,又EF ⊄平面ADO ,DO ⊂平面ADO ,所以EF ∥平面ADO .(4分)(2)证明由(1)可知EF ∥DO ,由题意可得AO =AB 2+OB 2=6,DO =12PC =62,所以AD =5DO =302,因此DO 2+AO 2=AD 2=152,则DO⊥AO ,(6分)③处利用勾股定理证明AO ⊥OD所以EF ⊥AO ,又AO ⊥BF ,BF ∩EF =F ,BF ,EF ⊂平面BEF ,则有AO ⊥平面BEF ,(7分)又AO ⊂平面ADO ,所以平面ADO ⊥平面BEF .(8分)(3)解如图,以B 为坐标原点,BA ,BC 所在直线分别为x ,y 轴,建立空间直角坐标系,则B (0,0,0),A (2,0,0),O (0,2,0),AO →=(-2,2,0).因为PB =PC ,BC =22,所以设P (x ,2,z ),z >0,(9分)则BE →=BA →+AE →=BA →+12AP →=(2,0,0)+12(x -2,2,z )④处求BE →坐标由(2)得AO ⊥BE ,分)⑤处利用AO ⊥BE 及PB 长求点P 坐标由D 为PB 的中点,得-12,22,AD →-52,22,设平面DAO 的法向量为n 1=(a ,b ,c ),1·AD →=0,1·AO →=0,-52a +22b +32c =0,2a +2b =0,得b =2a ,c =3a ,取a =1,则n 1=(1,2,3).易知平面CAO 的一个法向量为n 2=(0,0,1),(11分)设二面角D -AO -C 的大小为θ,则|cos θ|=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=36=22,所以sin θ=1-12=22,⑥处利用向量法求两法向量夹角故二面角D -AO -C 的正弦值为22.(12分)利用法向量的方向判断二面角二面角的大小可以通过这两个面的法向量的夹角求得,它等于两法向量的夹角或其补角,法向量的方向指向内部的称为“进”入半平面;法向量的方向指向外部的称为穿“出”半平面;当法向量m ,n “一进一出”时,m ,n 的夹角就是二面角的大小;当法向量m ,n “同进同出”时,m ,n 的夹角就是二面角的补角.典例在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 为棱AB 的中点,则二面角D 1-EC -D 的余弦值为________.答案63解析建立如图所示的空间直角坐标系,由AD =AA 1=1,AB =2,得E (1,1,1),C (0,2,1),D 1(0,0,0),则D 1E —→=(1,1,1),D 1C —→=(0,2,1),设平面D 1EC 的法向量为n =(x ,y ,z ),1E →·n =0,1C →·n =0,+y +z =0,y +z =0,令z =-2,得n =(1,1,-2),易知平面DEC 的法向量为m =(0,0,1),则cos 〈m ,n 〉=m ·n |m ||n |=-26=-63,由法向量的方向为同出,得二面角D 1-EC -D 的余弦值为63.思维升华利用空间向量计算平面与平面夹角大小的常用方法(1)找法向量:分别求出两个平面的法向量,然后通过两个平面的法向量的夹角得到平面与平面夹角的大小.(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,然后通过这两个向量的夹角可得到平面与平面夹角的大小.跟踪训练3(2023·新高考全国Ⅱ改编)如图,三棱锥A -BCD 中,DA =DB =DC ,BD ⊥CD ,∠ADB =∠ADC =60°,E 为BC 的中点.(1)证明:BC ⊥DA ;(2)点F 满足EF →=DA →,求平面DAB 与平面ABF 夹角的正弦值.(1)证明如图,连接AE ,DE ,因为E 为BC 的中点,DB =DC ,所以DE ⊥BC ,因为DA =DB =DC ,∠ADB =∠ADC =60°,所以△ACD 与△ABD 均为等边三角形,所以AC =AB ,从而AE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,而DA ⊂平面ADE ,所以BC ⊥DA .(2)解不妨设DA =DB =DC =2,因为BD ⊥CD ,所以BC =22,DE =AE = 2.所以AE 2+DE 2=4=AD 2,所以AE ⊥DE ,又AE ⊥BC ,DE ∩BC =E ,DE ,BC ⊂平面BCD ,所以AE ⊥平面BCD .以E 为原点,ED ,EB ,EA 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示,则D (2,0,0),A (0,0,2),B (0,2,0),E (0,0,0),设平面DAB 与平面ABF 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2),平面DAB 与平面ABF 的夹角为θ,而AB →=(0,2,-2),因为EF →=DA →=(-2,0,2),所以F (-2,0,2),则AF →=(-2,0,0).1·DA →=0,1·AB →=0,1+2z 1=0,-2z 1=0,取x 1=1,所以n 1=(1,1,1).2·AB →=0,2·AF →=0,-2z 2=0,2=0,取y 2=1,所以n 2=(0,1,1),所以|cos θ|=|n 1·n 2||n 1||n 2|=23×2=63,从而sin θ=1-69=33.所以平面DAB 与平面ABF 夹角的正弦值为33.课时精练一、单项选择题1.如图,在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,BC =2,点D 为BC 的中点,则异面直线AD 与A 1C 所成的角为()A.π2B.π3C.π4D.π6答案B 解析由题意可知,AB ,AC ,AA 1两两互相垂直,以A 为坐标原点,AB ,AC ,AA 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则A (0,0,0),A 1(0,0,2),C (0,2,0),,22,∴AD →,22,A 1C —→=(0,2,-2),∴|cos 〈AD →,A 1C —→〉|=|AD →·A 1C —→||AD →||A 1C —→|=12,∴异面直线AD 与A 1C 所成的角为π3.2.在正三棱柱ABC -A 1B 1C 1中,AB =AA 1,则AC 1与平面BB 1C 1C 所成角的正弦值为()A.22 B.155 C.64 D.63答案C 解析建立如图所示的坐标系,设AB =2,则C 1(3,1,0),A (0,0,2),AC 1—→=(3,1,-2),易知平面BB 1C 1C 的一个法向量为n =(1,0,0).设AC 1与平面BB 1C 1C 所成的角为θ,则sin θ=|cos 〈AC 1—→,n 〉|=|AC 1—→·n ||AC 1—→||n |=322=64.所以AC 1与平面BB 1C 1C 所成角的正弦值为64.3.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1和DD 1的中点,则平面ECF 与平面ABCD 夹角的余弦值为()A.33B.63C.13D.23答案B 解析以点A 为坐标原点,AB →,AD →,AA 1—→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图所示.设正方体的棱长为2,则A (0,0,0),E (2,0,1),F (0,2,1),C (2,2,0),∴CE →=(0,-2,1),CF →=(-2,0,1).设平面ECF 的法向量为n =(x ,y ,z ),·n =0,·n =0,2y +z =0,2x +z =0,取x =1,得n =(1,1,2).易知m =(0,0,1)是平面ABCD 的一个法向量,设平面ECF 与平面ABCD 的夹角为θ.∴cos θ=|cos 〈m ,n 〉|=|m ·n ||m ||n |=21×6=63.∴平面ECF 与平面ABCD 夹角的余弦值为63.4.(2023·沧州模拟)在正方体ABCD -A 1B 1C 1D 1中,P 是C 1D 1的中点,则异面直线AP 与BA 1所成角的余弦值为()A.26 B.36 C.13 D.23答案A解析方法一设正方体的棱长为2,取CC 1的中点Q ,连接PQ ,AD 1,AC ,AQ ,∵P 是C 1D 1的中点,∴PQ ∥CD 1∥A 1B ,故∠APQ 就是AP 与BA 1所成的角(或其补角),由勾股定理得AP =AQ =8+1=3,PQ =2,由余弦定理得cos ∠APQ =AP 2+PQ 2-AQ 22AP ·PQ =9+2-92×3×2=26,故异面直线AP 与BA 1所成角的余弦值为26.方法二设正方体的棱长为2,以点D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,如图所示,则A (2,0,0),P (0,1,2),A 1(2,0,2),B (2,2,0),AP →=(-2,1,2),BA 1—→=(0,-2,2),|cos 〈AP →,BA 1—→〉|=|AP →·BA 1—→||AP →||BA 1—→|=23×22=26,故异面直线AP 与BA 1所成角的余弦值为26.5.(2024·郑州模拟)如图,已知AB 是圆柱底面圆的一条直径,OP 是圆柱的一条母线,C 为底面圆上一点,且AC ∥OB ,OP =AB =2OA ,则直线PC 与平面PAB 所成角的正弦值为()A.1010B.55C.110D.14答案A 解析∵AB 是圆柱底面圆的一条直径,∴∠AOB =90°,∠ACB =90°,∵OP =AB =2OA ,∴∠BAO =45°,∴OA =OB ,∵AC ∥OB ,∴∠OAC =90°,∴四边形OACB 为正方形,设AB =2,建立如图所示的空间直角坐标系,则A (2,0,0),B (0,2,0),P (0,0,2),C (2,2,0),AB →=(-2,2,0),AP →=(-2,0,2),设平面PAB 的法向量为n =(x ,y ,z ),·AB →=0,·AP →=0,-2x +2y =0,-2x +2z =0,取x =2,则n =(2,2,1),又PC →=(2,2,-2),设直线PC 与平面PAB 所成的角为θ,∴sin θ=|cos 〈n ,PC →〉|=|n ·PC →||n ||PC →|=25×22=1010,∴直线PC 与平面PAB 所成角的正弦值为1010.6.(2023·杭州模拟)若正方形ABCD 的边长为a ,E ,F 分别为CD ,CB 的中点(如图1),沿AE ,AF 将△ADE ,△ABF 折起,使得点B ,D 恰好重合于点P (如图2),则直线PA 与平面PCE 所成角的正弦值为()A.22B.34 C.36 D.32答案A 解析由E ,F 分别是为CD ,CB 的中点,可得EF 2=CE 2+CF 2=DE 2+BF 2=PE 2+PF 2,则PE ⊥PF .由AD ⊥DE ,AB ⊥BF ,可得PA ⊥PE ,PA ⊥PF ,所以PA ,PF ,PE 两两互相垂直,以P 为坐标原点,PE ,PF ,PA 分别为坐标轴建立如图所示的空间直角坐标系,可得P (0,0,0),0,,a 2,A (0,0,a ),设C (x ,y ,z ),由AC =2a ,CE =CF =a 2,+y 2+(z -a )2=2a 2,+z 2=a 24,+y 2+z 2=a 24,=a 3,=a 3,=-a 3,即得,a 3,-所以可得PE →0,PC →,a 3,-设平面PCE 的法向量为n =(x ′,y ′,z ′),·PC →=ax ′3+ay ′3-az ′3=0,·PE →=ax ′2=0,令y ′=1,则x ′=0,z ′=1,所以平面PCE 的一个法向量为n =(0,1,1),又PA →=(0,0,a ),设PA 与平面PCE 所成的角为θ,所以sin θ=|cos 〈PA →,n 〉|=|PA →·n ||PA →||n |=a 2a =22.二、多项选择题7.三棱锥A -BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2,若n 1=(1,0,0),n 2=(-3,0,1),则二面角A -BD -C 的大小可能为()A.π6B.π3C.2π3D.5π6答案AD 解析由已知可得|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=32,因此二面角A -BD -C 的大小为π6或5π6.8.(2023·深圳模拟)如图,在矩形AEFC 中,AE =23,EF =4,B 为EF 中点,现分别沿AB ,BC 将△ABE ,△BCF 翻折,使点E ,F 重合,记为点P ,翻折后得到三棱锥P -ABC ,则()A .三棱锥P -ABC 的体积为423B .直线PA 与直线BC 所成角的余弦值为36C .直线PA 与平面PBC 所成角的正弦值为13D .三棱锥P -ABC 外接球的半径为222答案BD 解析由题意可得BP ⊥AP ,BP ⊥CP ,又AP ∩CP =P ,AP ,CP ⊂平面PAC ,所以BP ⊥平面PAC ,在△PAC 中,PA =PC =23,AC 边上的高为(23)2-22=22,所以V 三棱锥P -ABC =V 三棱锥B -P AC =13×12×4×22×2=823,故A 错误;在△PAC 中,cos ∠APC =12+12-162×23×23=13,BC =12+4=4,|cos 〈PA →,BC →〉|=|PA →·BC →||PA →||BC →|=|PA →·(PC →-PB →)|23×4=|PA →·PC →-PA →·PB →|83=||PA →||PC →|cos ∠APC -0|83=23×23×1383=36,所以直线PA 与直线BC 所成角的余弦值为36,故B 正确;S △PBC =12PB ·PC =12×2×23=23,设点A 到平面PBC 的距离为d ,由V 三棱锥B -P AC =V 三棱锥A -PBC ,得13×23d =823,解得d =463,所以直线PA 与平面PBC 所成角的正弦值为d PA =46323=223,故C 错误;由B 知,cos ∠APC =13,则sin ∠APC =223,所以△PAC 的外接圆的半径r =12·AC sin ∠APC =322,设三棱锥P -ABC 外接球的半径为R ,又因为BP ⊥平面PAC ,则R 2=r 2=92+1=112,所以R =222,即三棱锥P -ABC 外接球的半径为222,故D 正确.三、填空题9.(2023·天津统考)在长方体ABCD -A 1B 1C 1D 1中,AB =2,AD =1,AA 1=3,则异面直线A 1C 1与AD 1所成角的余弦值为________.答案210解析如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则A (1,0,0),D 1(0,0,3),A 1(1,0,3),C 1(0,2,3),则AD 1—→=(-1,0,3),A 1C 1—→=(-1,2,0),|cos 〈AD 1—→,A 1C 1—→〉|=|AD 1—→·A 1C 1—→||AD 1—→||A 1C 1—→|=110×5=210因此,异面直线A 1C 1与AD 1所成角的余弦值为210.10.在三棱柱ABC -A 1B 1C 1中,侧棱A 1A ⊥底面ABC ,AC =1,AA 1=2,∠BAC =90°,若直线AB 1与直线A 1C 所成角的余弦值是45,则棱AB 的长度是________.答案1解析建立如图所示的空间直角坐标系,设AB =a (a >0),则A (0,0,0),B 1(a ,0,2),A 1(0,0,2),C (0,1,0),所以AB 1—→=(a ,0,2),A 1C —→=(0,1,-2),所以|cos 〈AB 1—→,A 1C —→〉|=|AB 1—→·A 1C —→||AB 1—→||A 1C —→|=4a 2+4×5=45,解得a =1,所以棱AB 的长度是1.11.(2023·洛阳模拟)二面角α-l -β的棱上有两个点A ,B ,线段BD 与AC 分别在这个二面角的两个半平面内,并且垂直于棱l ,若AB =4,AC =6,BD =8,CD =217,则平面α与平面β的夹角为________.答案60°解析设二面角α-l -β的大小为θ,因为AC ⊥AB ,BD ⊥AB ,所以CA →·AB →=0,BD →·AB →=0,由题意得CD →=CA →+AB →+BD →,所以|CD →|2=|CA →+AB →+BD →|2=|CA →|2+|AB →|2+|BD →|2+2CA →·AB →+2CA →·BD →+2AB →·BD→=|CA →|2+|AB →|2+|BD →|2+2CA →·BD→=36+16+64+2×6×8×cos(180°-θ)=(217)2,所以cos(180°-θ)=-12,即cos θ=12,所以θ=60°,则平面α与平面β的夹角为60°.12.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H ,K ,L 分别是棱AB ,BB 1,B 1C 1,C 1D 1,D 1D ,DA 的中点,则直线A 1C 与平面EFGHKL 所成角的大小为________;若P ,Q 是六边形EFGHKL 边上两个不同的动点,设直线D 1B 与直线PQ 所成的最小角为θ,则sin θ的值为________.答案90°13解析如图,以点D 为坐标原点,以DA →,DC →,DD 1—→的方向分别为x ,y ,z 轴的正方向建立空间直角坐标系,设正方体的棱长为2,则A 1(2,0,2),E (2,1,0),C (0,2,0),F (2,2,1),G (1,2,2),∴A 1C —→=(-2,2,-2),EF →=(0,1,1),EG →=(-1,1,2),∴A 1C —→·EF →=0+2-2=0,A 1C —→·EG →=2+2-4=0,∴A 1C ⊥EF ,A 1C ⊥EG ,∵EG ∩EF =E ,EG ,EF ⊂平面EFGHKL ,∴A 1C ⊥平面EFGHKL ,∴直线A 1C 与平面EFGHKL 所成角的大小为90°.又D 1(0,0,2),B (2,2,0),D 1B —→=(2,2,-2),由题意知A 1C —→=(-2,2,-2)为平面EFGHKL 的一个法向量,设直线D 1B 与平面EFGHKL 所成的角为α,则sin α=|cos 〈D 1B —→,A 1C —→〉|=|D 1B —→·A 1C —→||D 1B —→||A 1C —→|=412×12=13,∵直线PQ ⊂平面EFGHKL ,∴直线D 1B 与直线PQ 所成的角最小时即为直线D 1B 与平面EFGHKL 所成的角,∴sin θ=13.四、解答题13.如图,AE ⊥平面ABCD ,CF ∥AE ,AD ∥BC ,AD ⊥AB ,AB =AD =1,AE =BC =2CF =2.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值.(1)证明由CF ∥AE ,CF ⊄平面ADE ,AE ⊂平面ADE ,得CF ∥平面ADE ,由AD ∥BC ,BC ⊄平面ADE ,AD ⊂平面ADE ,得BC ∥平面ADE ,又CF ∩BC =C ,CF ,BC ⊂平面BCF ,所以平面BCF ∥平面ADE ,又BF ⊂平面BCF ,所以BF ∥平面ADE .(2)解因为AE ⊥平面ABCD ,AB ,AD ⊂平面ABCD ,所以AE ⊥AB ,AE ⊥AD ,又AD ⊥AB ,以A 为原点,分别以AB ,AD ,AE 所在直线为x ,y ,z 轴建立空间直角坐标系如图所示,因为AB =AD =1,AE =BC =2CF =2,所以B (1,0,0),C (1,2,0),D (0,1,0),E (0,0,2),则CE →=(-1,-2,2),BE →=(-1,0,2),DE →=(0,-1,2),设平面BDE 的法向量为m =(x ,y ,z ),·BE →=-x +2z =0,·DE →=-y +2z =0,令z =1,则x =2,y =2,即m =(2,2,1),所以|cos 〈m ,CE →〉|=|m ·CE →||m ||CE →|=43×3=49,即直线CE 与平面BDE 所成角的正弦值为49.14.(2024·南昌模拟)如图,在梯形ABCD 中,AB ∥DC ,AD =DC =12AB ,现将△ADC 沿AC 翻至△APC ,使二面角P -AC -B 为直二面角.(1)证明:CB ⊥PA ;(2)若AB =4,二面角B -PA -C 的余弦值为217,求异面直线PC 与AB 所成角的余弦值.(1)证明取AB 的中点E ,连接CE (图略),∵在梯形ABCD 中,AB ∥CD ,AD =DC =12AB ,AE ∥DC ,AE =DC ,∴四边形ADCE 是平行四边形,CE =AD ,CE =AE =EB ,∴∠ACB =90°,即CB ⊥CA ,∵二面角P -AC -B 为直二面角,∴平面PAC ⊥平面ACB ,又平面PAC ∩平面ACB =AC ,CB ⊂平面ABC ,∴CB ⊥平面PAC ,又PA ⊂平面PAC ,∴CB ⊥PA .(2)解由AB =4知PA =PC =2,取AC 的中点O ,则OE ∥CB .∴OE ⊥AC ,且OP ⊥AC ,OC ,OE ,OP 两两互相垂直.以O 为原点,OC →,OE →,OP →的方向为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系.设OC =a (a >0),则C (a ,0,0),P (0,0,4-a 2),A (-a ,0,0),B (a ,24-a 2,0),AB →=(2a ,24-a 2,0),AP →=(a ,0,4-a 2),易得平面PAC 的一个法向量为n 1=(0,1,0),设平面PAB 的法向量为n 2=(x ,y ,z ),2·AB →=2ax +24-a 2y =0,2·AP →=ax +4-a 2z =0,取x =4-a 2,得y =-a ,z =-a ,故n 2=(4-a 2,-a ,-a ),由|cos 〈n 1,n 2〉|=|n 1·n 2||n 1||n 2|=a 4+a 2=217,得a =3,则PC →=(3,0,-1),AB →=(23,2,0),设异面直线PC 与AB 所成的角为θ,则cos θ=|cos 〈PC →,AB →〉|=|PC →·AB →||PC →||AB →|=62×4=34,所以异面直线PC 与AB 所成角的余弦值为34.。

利用空间向量求角

利用空间向量求角

授课主题 利用空间向量求角教学目标1.认识空间角的含义,主要是:两异面直线所成角、二面角、线面角. 2.明确利用向量求各种角的方法.教学内容角的分类 向量求法范围异面直线 所成的角 设两异面直线所成的角为θ,它们的方向向量为a ,b , 则cos θ=|cos 〈a ,b 〉|=|a·b||a|·|b|⎝⎛⎦⎤0,π2直线与平面 所成的角设直线l 与平面α所成的角为θ,l 的方向向量为a ,平面α的法向量为n ,则sin θ=|cos 〈a ,n 〉|=|a·n||a|·|n|⎣⎡⎦⎤0,π2二面角设二面角α-l-β的平面角为θ,平面α、β的法向量为n 1,n 2,则|cos θ|=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|[0,π]题型一 求直线与直线所成的角例1 如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,求直线AM 与CN 所成的角的余弦值.解析:方法一 ∵AM →=AA 1→+A 1M →,CN →=CB →+BN →, ∴AM →·CN →=(AA 1→+A 1M →)·(CB →+BN →)=AA 1→·BN →=12.|AM →|=(AA 1→+A 1M )→2=|AA 1→|2+|A 1M →|2=1+14=52.同理,|CN →|=52. 设直线AM 与CN 所成的角为α. 则cos α=⎪⎪⎪⎪⎪⎪AM →·CN →|AM →||CN →|=1254=25.∴直线AM 与CN 所成的余弦值为25.方法二 如图,分别以DA →、DC →、DD 1→方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系. 则A (1,0,0),M ⎝⎛⎭⎫1,12,1,C (0,1,0),N ⎝⎛⎭⎫1,1,12. ∴AM →=⎝⎛⎭⎫1,12,1-(1,0,0)=⎝⎛⎭⎫0,12,1,CN →=⎝⎛⎭⎫1,1,12-(0,1,0)=⎝⎛⎭⎫1,0,12. 故AM →·CN →=0×1+12×0+1×12=12,|AM →|=02+⎝⎛⎭⎫122+1=52,|CN →|=12+02+⎝⎛⎭⎫122=52.设直线AM 与CN 所成的角为α, 则cos α=AM →·CN →|AM →|·|CN →|=1252×52=25.∴直线AM 与CN 所成的角的余弦值为25.点评:用向量法求两条异面直线所成的角是通过两条直线的方向向量的夹角来求解的,而两条异面直线所成角θ的取值范围是⎣⎡⎦⎤0,π2,两向量的夹角α的取值范围是[0,π],所以cos θ=|cos α|.巩 固 如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.55B.53C.255D.35解析:设CB =1,则A (2,0,0),B 1(0,2,1),C 1(0,2,0),B (0,0,1),BC 1→=(0,2,-1),AB 1→=(-2,2,1). cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→| BC 1→||AB 1→|=35×3=55.故选A.答案:A.题型二 求直线与平面所成的角例2 如图,在棱柱ABCD —A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).(1)求证:CD ⊥平面ADD 1A 1;(2)若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值. (1)证明:取CD 的中点E ,连接BE . 因为AB ∥DE ,AB =DE =3k ,所以四边形ABED 为平行四边形, 所以BE ∥AD 且BE =AD =4k .在△BCE 中,因为BE =4k ,CE =3k ,BC =5k , 所以BE 2+CE 2=BC 2,所以∠BEC =90°,即BE ⊥CD ,又因为BE ∥AD , 所以CD ⊥AD .因为AA 1⊥平面ABCD ,CD ⊂平面ABCD , 所以AA 1⊥CD .又AA 1∩AD =A , 所以CD ⊥平面ADD 1A 1.(2) 解析:以D 为原点,DA →,DC →,DD 1→的方向为x ,y ,z 轴的正方向建立如图 所示的空间直角坐标系,则A (4k,0,0),C (0,6k,0),B 1(4k,3k,1),A 1(4k,0,1), 所以AC →=(-4k,6k,0),AB 1→=(0,3k,1),AA 1→=(0,0,1). 设平面AB 1C 的法向量n =(x ,y ,z ),则由⎩⎪⎨⎪⎧AC →·n =0,AB 1→·n =0,得⎩⎪⎨⎪⎧-4kx +6ky =0,3ky +z =0.取y =2,得n =(3,2,-6k ). 设AA 1与平面AB 1C 所成角为θ,则sin θ=|cos 〈AA 1→,n 〉|=⎪⎪⎪⎪⎪⎪AA 1→·n |AA 1→|·|n |=6k 36k 2+13=67,解得k =1,故所求k 的值为1.点评:利用法向量求直线与平面的夹角的基本步骤:①建立空间直角坐标系;②求直线的方向向量AB →;③求平面的法向量n ;④计算:设线面角为θ,则sin θ=|n ·AB →||n |·|AB →|.巩 固 正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面AA 1B 1B 所成的角.证明:建立如图所示的空间直角坐标系,则A (0,0,0)、B (0,a,0)、A 1(0,0,2a )、C 1⎝⎛⎭⎫-32a ,a 2,2a ,取A 1B 1中点M ,则M ⎝⎛⎭⎫0,a 2,2a ,连接AM 、MC 1,有MC 1→=⎝⎛⎭⎫-32a ,0,0,AB →=(0,a,0),AA 1→=(0,0,2a ). ∵MC 1→·AB →=0,MC 1→·AA 1→=0,∵AB ∩AA 1=A 且AB ⊂平面AA 1B 1B ,AA 1⊂平面AA 1B 1B , ∴MC 1⊥平面AA 1B 1B ,∴∠C 1AM 是AC 1与侧面AA 1B 1B 所成的角.∵AC 1→=⎝⎛⎭⎫-32a ,a 2,2a ,AM →=⎝⎛⎭⎫0,a 2,2a , ∴AC 1→·AM →=0+a 24+2a 2=9a 24.而|AC 1→|= 3a 24+a 24+2a 2=3a , |AM →|=a 24+2a 2=32a , ∴cos 〈AC 1→,AM →〉=9a 243a ×3a 2=32.∴〈AC 1→,AM →〉=30°,即AC 1与侧面AA 1B 1B 所成的角为30°. 题型三 求二面角的平面角例3 如图,在四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,E 是AB 上一点,PE ⊥EC . 已知PD =2,CD=2,AE =12,求二面角E -PC -D 的大小.解析:以D 为原点,DA →、DC →、DP →分别为x ,y ,z 轴的正方向建立空间直角坐标系,如右图所示.由已知可得D (0,0,0),P (0,0,2),C (0,2,0) 设A (x,0,0)(x >0),则B (x,2,0),E ⎝⎛⎭⎫x ,12,0, 则PE →=⎝⎛⎭⎫x ,12,-2,CE →=⎝⎛⎭⎫x ,-32,0. 由PE ⊥CE 得PE →·CE →=0,即x 2-34=0,故x =32.作DG ⊥PC ,可设G (0,y ,z ).由DG →·PC →=0得(0,y ,z )·(0,2,-2)=0, 即z =2y ,又由G 在PC 上,得z =-22y +2, 故y =23,z =223,DG →=(0,23,223),作EF ⊥PC 于F ,设F (0,m ,n ), 则EF →=⎝⎛⎭⎫-32,m -12,n .由EF →·PC →=0得⎝⎛⎭⎫-32,m -12,n ·(0,2,-2)=0,即2m -1-2n =0, 又由F 在PC 上得n =-22m +2,故m =1,n =22,EF →=⎝⎛⎭⎫-32,12,22. 因EF →⊥PC →,DG →⊥PC →,故E -PC -D 的平面角θ的大小为向量EF →与DG →的夹角. 故cos θ=DG EF DG EF=22,θ=π4, 点评:利用空间向量求二面角的方法:设n 1,n 2分别是平面α,β的法向量,则向量n 1与n 2的夹角(或其补角)就是两个平面夹角的大小,求解步骤如下:①依据题设条件建立适当的空间直角坐标系;②求出两个平面的法向量n 1,n 2;③由cos θ=|n 1·n 2||n 1||n 2|求n 1,n 2所成的锐角θ;④若二面角的平面角为锐角,则θ为所求,若二面角的平面角为钝角,则π-θ为所求.巩 固 如图,AB 是圆的直径,P A 垂直圆所在的平面,C 是圆上的点. (1)求证:平面P AC ⊥平面PBC ;(2)若AB =2,AC =1,P A =1,求二面角CPBA 的余弦值.(1)证明:由AB 是圆的直径,得AC ⊥BC , 由P A ⊥平面ABC ,BC ⊂平面ABC ,得P A ⊥BC . 又P A ∩AC =A ,P A ⊂平面P AC ,AC ⊂平面P AC , 所以BC ⊥平面P AC . 因为BC ⊂平面PBC , 所以平面PBC ⊥平面P AC .(2)解析:过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB 、CA 、CM 为x 轴,y 轴,z 轴建立空间直角坐标系.因为AB =2,AC =1,所以BC = 3.因为P A =1,所以A (0,1,0),B (3,0,0),P (0,1,1). 故CB →=(3,0,0),CP →=(0,1,1). 设平面BCP 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧CB →·n 1=0,CP →·n 1=0,所以⎩⎨⎧3x =0,y +z =0,不妨令y =1,则n 1=(0,1,-1). 因为AP →=(0,0,1),AB →=(3,-1,0), 设平面ABP 的法向量为n 2=(x ,y ,z ),则⎩⎪⎨⎪⎧AP →·n 2=0,AB →·n 2=0,所以⎩⎨⎧z =0,3x -y =0,不妨令x =1,则n 2=(1,3,0). 于是cos 〈n 1,n 2〉=322=64.所以由题意可知二面角CPBA 的余弦值为64.一、选择题1.设n 1,n 2分别为一个二面角的两个半平面的法向量,若〈n 1,n 2〉=23π,则此二面角的大小为______.答案:2π3或π32.正方体ABCD -A 1B 1C 1D 1中,BD 1与AA 1所成角的余弦为( )A.33 B.63 C.22D .1 答案:A3.平面α的斜线l 与它在这个平面上射影l ′的方向向量分别为a =(1,0,1),b =(0,1,1),则斜线l 与平面α所成的角为( )A .30°B .45°C .60°D .90°解析:l 与α所成的角为a 与b 所成的角(或其补角),因为cos 〈a ,b 〉=a ·b |a |·|b |=12, 所以〈a ,b 〉=60°.故选C. 答案:C4.已知线段AB 的两个端点的坐标分别为A (9,-3,4)和B(9,2,1),则线段AB ( )A .与平面xOy 平行B .与平面xOz 平行C .与平面zOy 平行D .与平面xOy 或zOy 平行 答案:C5.从空间一点P 向二面角α-l -β的两个半平面α,β分别作垂线PE ,PF ,垂足分别为E ,F ,若二面角α-l -β的大小为60°,则〈PF →,PE →〉的大小为( )A .30°或150°B .120°C .60°或120°D .60°答案:C6.在一个二面角的两个面内都和二面角的棱垂直的两个向量分别为(0,-1,3),(2,2,4),则这个二面角的余弦值为 ( )A.156 B .-156C.153D .以上都不对解析:因为 (0,-1,3)·(2,2,4)1+9·4+4+16=156,所以这个二面角的余弦值为156或-156.故选D. 答案:D7.正三棱柱ABC -A 1B 1C 1的所有棱长都相等,则AC 1和平面BB 1C 1C 所成角的余弦值为( )A.104B 66C.62D.102解析:设正三棱柱ABCA 1B 1C 1所有棱长均为1,以B 为原点建立空间直角坐标系(如右图), 则C 1(0,1,1),A ⎝⎛⎭⎫32,12,0,AC 1→=⎝⎛⎭⎫-32,12,1, 又平面BB 1C 1C 的法向量n =(1,0,0),所以AC 1与平面BB 1C 1C 所成的角θ的正弦值sin θ=|AC 1→·n ||AC 1→|·|n |=322×1=64,cos θ=1-sin 2θ=104,故选A. 答案:A8.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的二面角的余弦值为( )A.12B.23C.33D.22 答案:B 二、填空题9.已知四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD ,P A =3,AB =2,BC =3,则二面角P -BD -A 的正切值为________.答案:21210.已知两条异面直线l 1,l 2,a =(-2,-2,0)是l 1的方向向量,b =(2,1,2)是l 2的方向向量,则l 1与l 2所成角的大小为________.答案:45°11.如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,点D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为________.解析:取AC 、A 1C 1中点O 、E ,则OB ⊥AC ,OE ⊥平面ABC ,以O 为原点OA 、OB 、OE 为x 轴、y 轴、z 轴建立空间直角坐标系,在正三角形ABC 中,BO =32AB =32, 所以A ⎝⎛⎭⎫12,0,0,B ⎝⎛⎭⎫0,32,0,D ⎝⎛⎭⎫0,32,1,所以AD →=⎝⎛⎭⎫-12,32,1, 又平面AA 1C 1C 的法向量为e =(0,1,0), 设直线AD 与平面AA 1C 1C 所成角为θ, 则sin θ=|cos AD →,e |=|AD →·e ||AD →|·|e |=64.答案:64三、解答题12.如图,在三棱柱ABCA 1B 1C 1中,AA 1C 1C 是边长为4的正方形.平面ABC ⊥平面AA 1C 1C ,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ; (2)求二面角A 1BC 1B 1的余弦值;(3)证明:在线段BC 1上存在点D ,使得AD ⊥A 1B ,并求BDBC 1的值.(1)证明:在正方形AA 1C 1C 中,A 1A ⊥AC .又平面ABC ⊥平面AA 1C 1C ,且平面ABC ∩平面AA 1C 1C =AC , 所以AA 1⊥平面ABC .(2)解析:在△ABC 中,AC =4,AB =3,BC =5, 所以BC 2=AC 2+AB 2,AB ⊥AC所以以A 为坐标原点,建立如图所示空间直角坐标系Axyz . A 1(0,0,4),B (0,3,0),C 1(4,0,4),B 1(0,3,4),A 1C 1→=(4,0,0),A 1B →=(0,3,-4),B 1C 1→=(4,-3,0),BB 1→=(0,0,4).设平面A 1BC 1的法向量n 1=(x 1,y 1,z 1),平面B 1BC 1的法向量n 2=(x 2,y 2,z 2). 所以⎩⎪⎨⎪⎧A 1C 1→·n 1=0,A 1B →·n 1=0⇒⎩⎪⎨⎪⎧4x 1=0,3y 1-4z 1=0,所以取向量n 1=(0,4,3)由⎩⎪⎨⎪⎧B 1C 1→·n 2=0,BB 1→·n 2=0⇒⎩⎪⎨⎪⎧4x 2-3y 2=0,4z 2=0.取向量n 2=(3,4,0)所以cos θ=n 1·n 2|n 1|·|n 2|=165×5=1625.(3)证明:设D (x ,y ,z )是直线BC 1上一点,且BD →=λBC 1→. 所以(x ,y -3,z )=λ(4,-3,4),解得x =4λ,y =3-3λ,z =4λ. 所以AD →=(4λ,3-3λ,4λ)又AD ⊥A 1B ,所以0+3(3-3λ)-16λ=0, 则λ=925,因此BD BC 1=925.1.如图,正三棱柱ABCA 1B 1C 1的所有棱长都相等,则B 1C 与平面A 1B 1BA 所成角的正弦值是( )A.63B.64C.104D.35解析:设棱长为2,取棱A 1B 1、AB 的中点D 、E ,建立如图所示的坐标系, 则E (0,0,0),B 1(1,0,0),C 1(0,3,0),C (0,3,2),所以B 1C →=(-1,3,2),EC 1→=(0,3,0),且EC 1→是平面A 1B 1BA 的法向量, 设所求角为θ,则sin θ=EC 1→·B 1C →|EC 1→|·|B 1C →|=38·3=64.故选B.2. 四棱锥P ABCD 的底面是正方形,P A ⊥底面ABCD ,P A =AD =2,点M ,N 分别在棱PD ,PC 上,且PC ⊥平面AMN .(1)求AM 与PD 所成的角; (2)求二面角P AMN 的余弦值;(3)求直线CD 与平面AMN 所成角的余弦值.分析:建立空间直角坐标系,将所求角转化为空间向量所成的角.解析:建立如图所示的空间直角坐标系,得A (0,0,0),C (2,2,0),P (0,0,2),D (0,2,0), 所以PC →=(2,2,-2),PD →=(0,2,-2). 设M (x 1,y 1,z 1),因为PM →=λPD →,所以(x 1,y 1,z 1-2)=λ(0,2,-2),所以x 1=0,y 1=2λ,z 1=-2λ+2, 所以M (0,2λ,2-2λ).因为PC ⊥平面AMN ,所以PC ⊥AM , 所以 PC →·AM →=0,所以(2,2,-2)·(0,2λ,2-2λ)=0,得4λ-2(2-2λ)=0, 所以λ=12,M (0,1,1).设N (x 2,y 2,z 2),因为PN →=tPC →,所以(x 2,y 2,z 2-2)=t (2,2,-2),所以x 2=2t ,y 2=2t ,z 2=-2t +2,所以N (2t,2t,2-2t ). 因为PC →⊥AN →,所以PC →·AN →=0,所以(2t,2t,2-2t )·(2,2,-2)=0,所以4t +4t -2(2-2t )=0, 所以t =13,所以N ⎝⎛⎭⎫23,23,43. (1)因为cos AM →,PD →=(0,1,1)·(0,2,-2)0+1+1·0+4+4=0,所以AM 与PD 所成的角为90°.(2)因为AB ⊥平面P AD ,PC ⊥平面AMN ,所以AB →,PC →分别是平面P AD ,平面AMN 的法向量. 因为AB →·PC →=(2,0,0)·(2,2,-2)=4,|AB →|=2,|PC →|=23, 所以cos<AB →,PC →>=443=33,所以二面角P AMN 的余弦值为33. (3)因为PC →是平面AMN 的法向量,所以CD 与平面AMN 所成的角即为CD 与PC 所成角的余角.因为CD →·PC →=(-2,0,0)·(2,2,-2)=-4,所以cos<CD →,PC →>=-42×23=-33,所以直线CD 与PC 所成角的余弦值为33, 即直线CD 与平面AMN 所成角的余弦值为63. 3.如下图,已知四棱锥P -ABCD ,底面ABCD 为菱形,P A ⊥平面ABCD ,∠ABC =60°,E ,F 分别是BC, PC 的中点.(1)证明:AE ⊥PD ;(2)若H 为PD 上的动点,EH 与平面P AD 所成最大角的正切值为62,求二面角E -AF -C 的余弦值.(1)证明:由四边形ABCD 为菱形, ∠ABC =60°,可得△ABC 为正三角形. 因为E 为BC 的中点,所以AE ⊥BC . 又 BC ∥AD ,因此AE ⊥AD .因为P A ⊥平面ABCD ,AE ⊂平面ABCD , 所以P A ⊥AE .而P A ⊂平面P AD ,AD ⊂平面P AD 且P A ∩AD =A , 所以 AE ⊥平面P AD ,又PD ⊂平面P AD .所以 AE ⊥PD .(2)解析:如下图,设AB =2,H 为PD 上任意一点,连接AH 、EH .由(1)知AE ⊥平面P AD ,则∠EHA 为EH 与平面P AD 所成的角.在Rt △EAH 中,AE =3,所以当AH 最短时,∠EHA 最大,即当AH ⊥PD 时,∠EHA 最大,此时tan ∠EHA =AE AH =3AH =62,因此AH =2,又AD =2,所以∠ADH =45°,所以P A =2.因为AE ,AD ,AP 两两垂直,以A 为坐标原点,建立如下图所示的空间直角坐标系,又E 、F 分别为BC 、PC 的中点,所以A (0,0,0),B (3,-1,0),C (3,1,0),D (0,2,0),P (0,0,2),E (3,0,0),F ⎝⎛⎭⎫32,12,1. 所以AE →=(3,0,0),AF →=⎝⎛⎭⎫32,12,1.设平面AEF 的一法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧ m ·AE →=0,m ·AF →=0, 因此⎩⎪⎨⎪⎧3x 1=0,32x 1+12y 1+z 1=0. 取z 1=-1,则m =(0,2,-1),因为 BD ⊥AC ,BD ⊥P A ,P A ∩AC =A ,所以BD ⊥平面AFC ,故BD →为平面AFC 的一法向量.又BD →=(-3,3,0),所以 cos 〈m , BD →〉=m ·BD →|m |·|BD →|=2×35×12=155. 因为二面角EAFC 为锐角,所以所求二面角的余弦值为155. 4.如图,三棱柱ABCA 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°.(1)证明:AB ⊥A 1C ;(2)若平面ABC ⊥平面AA 1B 1B ,AB =CB =2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.(1)证明:如图,取AB 的中点O ,连接CO 、A 1O .因为CA =CB ,所以CO ⊥AB ,又因为AA 1=AB ,所以AA 1=2AO ,又∠A 1AO =60°,所以∠AOA 1=90°,即AB ⊥A 1O ,所以AB ⊥平面A 1OC ,所以AB ⊥A 1C .(2) 解析:以O 为原点,OA 所在直线为x 轴,OA 1所在直线为y 轴,OC 所在直线为z 轴,建立如图直角坐标系,则A (1,0,0),A 1(0,3,0),B (-1,0,0),C (0,0,3),B 1(-2,3,0),则BC →=(1,0,3),BB 1→=(-1,3,0),A 1C →=(0,-3,3),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y x 0 2 yz0 2
y x 2 z y 2
S
任取n2 (1,2,1)
n1 n2 6 6 cos n1 , n2 即所求二面角得余弦值是 3 | n1 || n2 | 3
所以B1O 平面MAC
② 由①知 B1O 平面MAC 所以B1O是平面MAC的一个法向量 z 且B1O (1 , 1 , 2) C1 设平面B1MA的一个法向量为n ( x,y,z) D1 由A(2, 0,, 0) M (0, 0,, 1) B1 (2, 2, 2)得 A1 B1 M MA (2, 0, 1), MB1 (2, 21) , 所以n MA 0,n MB1 0
M
B1
C1
D O B
C
y
A(2, 0,, 0) C (0, 2,, 0) M (0, 0,, 1) A B1 (2, 2,, 2) O(11 , ,。 0) x B1O MA 2 0 2 0, B1O MC 0 2 2 0 所以B1O MA , B1O MC 即B1O MA , B1O MC。又MA MC C


n1

3.2.3立体几何中的向量方法 ——空间“角”问题
空间角常见的有:线线角、线面角、面面角
一、线线角: 异面直线所成的锐角或直角
范围:
C
0, 2 D
思考:空间向量的夹角与
D1 异面直线的夹角有什么关系? B 设直线CD的方向向量为a,AB的方向向量为b
系C xyz,如图所示,设CC1 1则: F1
A1
A
C1
D1
C
B1
1 1 1 所以: AF1 ( , 0,1), BD1 ( , ,1) 2 2 2
B
y
1 x 1 AF1 BD1 30 4 cos AF1, BD1 10 | AF1 || BD1 | 5 3
30 所以 BD1与 AF1 所成角的余弦值为 10
4 2
练习:如图,正三棱柱ABC—A1B1C1的底面边长为a,侧棱长为 2a 求AC1和CB1的夹角, C1
Z
3 1 3 1 AC1 ( a, a, 2a) CB1 ( a, a, 2a) A1 2 2 2 2B1来自DCA
B
例4: 在长方体 ABCD A1B1C1D1 中, AB 6, AD 8, AA1 6, M 为B1C1上的一点,且B1M 2, 点N 在线段A1D上, A1 N 5, 求AD与平面ANM 所成的角的正弦值. 解:如图建立坐标系A-xyz,则
A1 1 B1 1 M
z
C
D


A

B
D1
A
O
2.直线与平面所成角: sin | cos n, AB |
n

3.二面角:
cos | cos n1 , n2 | cos | cos n1, n2 |
关键:观察二面角的范围


B
n2
A
a
b
a, b
a, b
a
b
结论:
cos

|
| | cos CD, AB |
例 1. 如图所示的正方体中,已知 F1 与 E1为四等分点,求异面直线DF1与BE1的
夹角余弦值? z
D1 A1 F1 E1 B1 C1
[0, ] 直线与平面所成角的范围:
A

n
2
思考:如何用空间向量的夹角 表示线面角呢?
B


O
结论: sin

| cos n, AB |
例3、如图,在正方体ABCD-A1B1C1D1 中,
求A1B与平面A1B1CD所成的角
①向量法
D1 A1 B1
O
C1
② 传统法
2 x 0 z 0 即 取z =2得x=1,y = - 2 2 x 2 y z 0 A
D O B C
y
所以平面B1MA的一个法向量为 x n (1, 2, 2) 1 2 4 6 由图可知二面角为锐角 cos B1O, n 6 6 9 6 所以二面角B1 MA C的余弦值为 。 6
结论: cos cos n1 , n2
关键:观察二面角的范围
例6.已知正方体 ABCD A1 B1C1 D1 的边长为2, z O为AC和BD的交点,M为 DD1的中点 (1)求证: 直线 B1O 面MAC; D1 (2)求二面角 B1 MA C 的余弦值.
①证明:以 DA 为正交基底, A1 、 DC、 DD1 建立空间直角坐标系如图。则可得 所以MA (2, 0, 1), MC (0, 2, 1), B1O (1, 1, 2)
x
SA =(2,0,-1); AB =(-1,1,0);
OB =(1,1,0); OS =(0,0,1);
z (2)设面SAB的法向量 显然有
n ( x, y, z)
O
S
n AB, n SA
C A B
x y 0 2x z 0
令x=1,则y=1,z=2;从而
0 例 四 : 如所示,A B C D 是一直角梯形, A B C = 90 , 例7 1 SA 平面ABCD, SA AB BC 1, AD , 求面SCD与面SBA z 2 所成二面角的余弦值.
解: 建立空直角坐系A- xyz如所示, 1 B D (0, , 0), S (0, 0,1) 1, 0) , C A( 0, 0, 0) , C (- 1, 2 1 易知面SBA的法向量n1 AD (0, , 0) y A 2 D x 1 1 CD (1, , 0), SD (0, , 1) 2 2 设平面 SCD的法向量n2 ( x, y, z), 由n2 CD, n2 SD, 得:
4 得n (1,1, ) 又 AD (0,8,0), 3 | AD n | sin | cos AD, n |
| AD || n |
| 0 1 8 0 | 3 34 , 34 4 2 2 2 8 1 1 ( ) 3
NC
D1 1
AM (6,2,6), AN (0,4,3). 设平面 的法向量n ( x, y, z),由
AM n 0 AN n 0
A(0,0,0), M (6,2,6) 由A1 N 5, 可得 N (0,4,3)
C1 1
D D
A
y
x
B B
C C

6x 2 y 6z 0 4 y 3z 0
例4: 在长方体 ABCD A1B1C1D1 中, AB 6, AD 8, AA1 6, M 为B1C1上的一点,且B1M 2, 点N 在线段A1D上, A1 N 5, 求AD与平面ANM 所成的角的正弦值.
① 传统法:平移
D
C
y
② 向量法
A
x
B
例2:Rt ABC中,BCA 900 , 现将 ABC沿着平面ABC的法向量
解:如图所示,建立空间直角坐标
1 1 1 A(1, 0, 0), B (0,1, 0), F1 ( , 0,1), D1 ( , ,1) 2 2 2
平移到A1B1C1位置,已知 BC CA CC1, 取A1B1、AC 的中点D1、F1,求BD1与AF1所成的角的余弦值. 1 1 z
SA BC.
(2)求直线SD与平面SAB所成角的正弦值。 z S
10 10
C O B y
D
x
A
三、面面角:
以二面角的棱上任意一点为端点,在 两个面内分别作垂直于棱的两条射线,这 两条射线所成的角叫做二面角的平面角。

二面角的平面角必须满足: l
O B 1)角的顶点在棱上 2)角的两边分别在两个面内 3)角的边都要垂直于二面角的棱
3 2 a AC1 CB1 1 2 cos AC1 , CB1 2 2 | AC1 | | CB1 | 3a
C
∴AC1和CB1的夹角为: 3
A
D
B
x
直线和直线在平面内的射影所成的角, 二、线面角: 叫做这条直线和这个平面所成的角.
O
C A B
则有 cos n1 , n2
y
由于所求二面角的大小等于 n1, n2
∴二面角B-AS-O的余弦值为

6 6
x
⑶ . cos SA, OB
SA OB SA OB

2 10 5 5 2
10 5
所以直线SA与OB所成角余弦值为
课堂小结:
1.异面直线所成角: cos |cos CD, AB |
A1 1 B1 1 M
z
NN
D1 1
C1 1
D D
A
y
x
B B
C C
3 34 AD与平面ANM 所成角的正弦值是 34
例5.如图,在四棱锥S-ABCD中,底面ABCD为平行 四边形,侧面SBC 底面ABCD。已知 ABC 450 AB=2,BC= 2 2 ,SA=SB= 3 . (1)求证
A
范围:[0, ]
10
三、面面角:
向量法
相关文档
最新文档