七年级数学上册数轴练习题
【七年级数学】数轴练习题(含答案)
数轴练习题(含答案)§2.2 数轴在线检测1.画一条水平直线,在直线上取一点表示0,叫做_________;•选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.•我们把上述三方向称为数轴的三要素.所有的有理数都可以用数轴上的______表示.2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.3.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________.4.判断下列所画的数轴是否正确,如不正确,请指出.5.在所给的数轴上画出表示下列各数的点2,-3,,0,,5,。
6.指出数轴上A,B,c,D,E,F各点所代表的数字.7.在数轴上画出表示下列各数的点,并回答下列问题.-3,2,-15,-2,0,15,3.(1)哪两个数的点与原点的距离相等?(2)表示-2的点与表示3的点相差几个单位长度?8.将-1所对应的点在数轴上先向右移动4个单位长度,再向左移动5•个单位长度后,得到的点对应的数是什么?基础巩固训练一、选择题1.图1中所画的数轴,正确的是()2.在数轴上,原点及原点左边的点所表示的数是()A.正数 B.负数 c.非负数 D.非正数3.与原点距离是2.5个单位长度的点所表示的有理数是() A.2.5 B.-2.5 c.±2.5 D.这个数无法确定4.关于- 这个数在数轴上点的位置的描述,正确的是()A.在-3的左边 B.在3的右边 c.在原点与-1之间 D.在-1的左边5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是()A.+6 B.-3 c.+3 D.-96.不小于-4的非正整数有()A.5个 B.4个 c.3个 D.2个7.如图所示,是数a,b在数轴上的位置,下列判断正确的是() A.a 0 B.a 1 c.b -1 D.b -1二、填空题1.数轴的三要素是______ _______.2.数轴上表示的两个数,________边的数总比________边的数大.3.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.4.有理数a,b,c在数轴上的位置如图所示,用“ ”将a,b,•c•三个数连接起________.5.大于-3.5小于4.7的整数有_______个.6.用“ ”、“ ”或“=”填空.(1)-10______0;(2) ________- ;(3)- _______- ;(4)-1.26________1 ;(5) ________- ;(6)- _______3.14;(7)-0.25______- ;(8)- ________ .7.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________.三、解答题1.画出数轴并标出表示下列各数的点,并用“〈”把下列各数连接起.-3 ,4,2.5,0,1,7,-5.2.如图所示,根据数轴上各点的位置,写出它们所表示的数.3.一个点从数轴上表示-2的点开始,按下列条移动后,到达终点,•说出终点所表示的数,并画图表示移动过程.(1)先向右移动3个单位,再向右移动2个单位.(2)先向左移动5个单位,再向右移动3个单位.(3)先向左移动3.5个单位,再向右移动1.5个单位.(4)先向右移动2个单位,再向左移动6.5个单位.四、创新题1.初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下A队-50分;B队150分;c队-300分;D队0分;E队100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并将代表该队的字母标上;(3)从数轴上看A队与B队相差多少分?c队与E队呢?2.超市、书店、•玩具店依次坐落在一条东西走向的大街上,•超市在书店西边a的大小.2.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A,B,c,•D对应的数分别是数a,b,c,d,且d-2a=10,那么数轴的原点应是哪一点?中考题回顾六、中考题1.(7℃,把它们从高到低排列正确的是()A.-10℃,-7℃,1℃; B.-7℃,-10℃,1℃c.1℃,-7℃,-10℃; D.1℃,-10℃,-7℃2.(2.3.(.4.(2答案一、1.D 2.D 3.c 4.D 5.c 6.A 7.D二、1.原点、正方向和单位长度 2.右左 3.右 6 左 8 14 4.ca b • 5.86.(1)(2)(3)(4)(5)(6)(7)= (8)7.6或-10三、1.画图(略) -5 -3 -1 0 1 2.5 4 72.A0 B-1 c4 D-2.5 E2 F-43.如图所示(1)(2)(3)(4)四、1.(1)c队 A队 D队 E队 B队;(2)如图所示(3)A队与B队相差a;(3)当a 0时,a -a.2.B为原点.六、1.c 2. 3. 4.-3 2。
初一上册数学《数轴》试题及答案
初⼀上册数学《数轴》试题及答案 进⼊到初⼀后,要如何去学好数学这⻔功课呢?平时要怎样做练习呢?别着急,接下来不妨和店铺⼀起来做份初⼀上册数学《数轴》试题,希望对各位有帮助! 初⼀上册数学《数轴》试题及答案 ⼀、选择题(共24⼩题) 1.﹣5的相反数是( )A.5B.C.﹣5D. 【考点】相反数. 【专题】计算题. 【分析】只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等. 【解答】解:﹣5的相反数是5. 故选A. 【点评】本题主要考查相反数的概念和意义:只有符号不同的两个数叫做互为相反数,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等. 2.﹣6的相反数是( )A.﹣6B.6C.﹣D. 【考点】相反数. 【分析】根据相反数的概念解答即可. 【解答】解:﹣6的相反数是6, 故选:B. 【点评】本题考查了相反数的意义,⼀个数的相反数就是在这个数前⾯添上“﹣”号;⼀个正数的相反数是负数,⼀个负数的相反数是正数,0的相反数是0. 3.﹣5的相反数是( ) A. B.﹣5 C. D.5 【考点】相反数. 【分析】直接根据相反数的定义求解. 【解答】解:﹣5的相反数是5. 故选D. 【点评】本题考查了相反数:a的相反数为﹣a. 4.﹣2是2的( )A.相反数B.倒数C.绝对值D.算术平⽅根 【考点】相反数. 【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可直接得到答案. 【解答】解:﹣2是2的相反数, 故选:A. 【点评】此题主要考查了相反数,关键是掌握相反数的概念. 5.﹣3的相反数是( )A.﹣3B.﹣C.D.3 【考点】相反数. 【专题】常规题型. 【分析】根据只有符号不同的两个数互为相反数解答. 【解答】解:﹣3的相反数是3. 故选:D. 【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键. 6.2014的相反数是( ) A. B.﹣ C.﹣2014 D.2014 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:2014的相反数是﹣2014, 故选:C. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 7.﹣的相反数是( ) A. B.﹣ C.7 D.﹣7 【考点】相反数. 【专题】常规题型. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:﹣的相反数是, 故选:A. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 8.有理数﹣3的相反数是( )A.3B.﹣3C.D.﹣ 【考点】相反数. 【专题】常规题型. 【分析】根据相反数的意义,只有符号不同的数为相反数. 【解答】解:﹣3的相反数是3. 故选:A. 【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0. 9.﹣的相反数是( ) A. B.﹣ C.5 D.﹣5 【考点】相反数. 【分析】求⼀个数的相反数,即在这个数的前⾯加负号. 【解答】解:﹣的相反数是 . 故选:A. 【点评】本题考查了相反数的意义,⼀个数的相反数就是在这个数前⾯添上“﹣”号.⼀个正数的相反数是负数,⼀个负数的相反数是正数,0的相反数是0.学⽣易把相反数的意义与倒数的意义混淆. 10.4的相反数是( )A.4B.﹣4C.D. 【考点】相反数. 【分析】根据相反数的性质,互为相反数的两个数和为0,采⽤逐⼀检验法求解即可. 【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4. 故选:B. 【点评】主要考查相反数的性质. 相反数的定义为:只有符号不同的两个数互为相反数,0的相反数是0. 11.﹣的相反数是( ) A. B.﹣ C.﹣2 D.2 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:﹣的相反数是, 故选:A. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 12.2014的相反数是( )A.2014B.﹣2014C.D. 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:2014的相反数是﹣2014. 故选:B. 【点评】本题考查了相反数的概念,在⼀个数的前⾯加上负号就是这个数的相反数. 13.﹣的相反数是( )A.2B.C.﹣2D.﹣ 【考点】相反数. 【分析】根据相反数的定义,只有符号不同的两个数是互为相反数,﹣的相反数为 . 【解答】解:与﹣符号相反的数是,所以﹣的相反数是 ; 故选:B. 【点评】本题主要相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a. 14.a(a≠0)的相反数是( )A.﹣aB.a2C.|a|D. 【考点】相反数. 【分析】直接根据相反数的定义求解. 【解答】解:a的相反数为﹣a. 故选:A. 【点评】本题考查了相反数:a的相反数为﹣a,正确掌握相反数的定义是解题关键. 15.2的相反数是( )A.1B.C.﹣2D. 【考点】相反数. 【专题】常规题型. 【分析】根据⼀个数的相反数就是在这个数前⾯添上“﹣”号,求解即可. 【解答】解:2的相反数是﹣2. 故选:C. 【点评】本题考查了相反数的意义,⼀个数的相反数就是在这个数前⾯添上“﹣”号:⼀个正数的相反数是负数,⼀个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆. 16.若⼀个数的相反数是3,则这个数是( )A.﹣B.C.﹣3D.3 【考点】相反数. 【分析】两数互为相反数,它们的和为0. 【解答】解:设3的相反数为x. 则x+3=0, x=﹣3. 故选:C. 【点评】本题考查的是相反数的概念,两数互为相反数,它们的和为0. 17.﹣的相反数是( )A.﹣B.C.﹣5D.5 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:﹣的相反数是, 故选:B. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 18.实数﹣的相反数是( )A.﹣2B.C.2D.﹣|﹣0.5| 【考点】相反数. 【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数即可得到答案. 【解答】解:﹣的相反数是, 故选:B. 【点评】此题主要考查了相反数,正确把握相反数的概念即可. 19. 的相反数是( ) A. B. C.﹣ D.﹣ 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:的相反数是﹣, 故选:D. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 20. 的相反数是( ) A. B.﹣2 C. D.2 【考点】相反数. 【专题】计算题. 【分析】根据相反数的定义进⾏解答即可. 【解答】解:由相反数的定义可知,﹣的相反数是﹣(﹣ )= . 故选:C. 【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数. 21.3的相反数是( )A.3B.C.﹣3D.﹣ 【考点】相反数. 【分析】根据相反数的定义,即可解答. 【解答】解:3的相反数是﹣3,故选:C. 【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义. 22.﹣6的相反数是( )A.6B.﹣6C.D. 【考点】相反数. 【分析】根据相反数的定义,即可解答. 【解答】解:﹣6的相反数是6,故选:A. 【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义. 23. 的相反数是( ) A. B.﹣ C.3 D.﹣3 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数求解后选择即可. 【解答】解:﹣的相反数是 . 故选:A. 【点评】本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键. 24. 的相反数是( ) A. B.﹣ C.2 D.﹣2 【考点】相反数. 【专题】计算题. 【分析】根据相反数的概念解答即可. 【解答】解:的相反数是﹣,添加⼀个负号即可. 故选:B. 【点评】本题考查了相反数的意义,⼀个数的相反数就是在这个数前⾯添上“﹣”号;⼀个正数的相反数是负数,⼀个负数的相反数是正数,0的相反数是0. ⼆、填空题(共6⼩题) 25.﹣的相反数是 . 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:﹣的相反数是, 故答案为: . 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 26. a的相反数是﹣9,则a= 9 . 【考点】相反数. 【分析】根据相反数定义解答即可. 【解答】解:∵a的相反数是﹣9, ∴a=9. 故答案为:9. 【点评】此题考查了相反数的定义,只有符号不同的两个数,称为互为相反数,其中的⼀个数是另⼀个的相反数. 27.﹣的相反数是 . 【考点】相反数. 【分析】求⼀个数的相反数就是在这个数前⾯添上“﹣”号. 【解答】解:﹣的相反数是﹣(﹣ )= . 故答案为: . 【点评】本题考查了相反数的意义,⼀个数的相反数就是在这个数前⾯添上“﹣”号; ⼀个正数的相反数是负数,⼀个负数的相反数是正数,0的相反数是0.学⽣易把相反数的意义与倒数的意义混淆. 28. 3的相反数为 ﹣3 . 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:3的相反数为﹣3, 故答案为:﹣3. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 29.﹣2014的相反数 2014 . 【考点】相反数. 【专题】常规题型. 【分析】根据只有符号不同的两个数互为相反数,可得答案. 【解答】解:∵﹣2014的相反数是2014, 故答案为:2014. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数. 30. 2014的相反数是 ﹣2014 . 【考点】相反数. 【分析】根据只有符号不同的两个数互为相反数,可得⼀个数的相反数. 【解答】解:2014的相反数是﹣2014, 故答案为:﹣2014. 【点评】本题考查了相反数,在⼀个数的前⾯加上负号就是这个数的相反数.看了"初⼀上册数学《数轴》试题及答案"的⼈还看:1.2016七年级下册数学第七章检测试题2.2016七年级下册数学练习题3.2016七年级下册数学题4.2016年数学七年级下册配套练习册答案。
七年级数学上册《数轴》同步练习题(附答案)
七年级数学上册《数轴》同步练习题(附答案)一、选择题1、如图所示的图形为四位同学画的数轴,其中正确的是( )A .B .C .D .2、如图,数轴上被墨水遮盖的数可能是( )A . 3.2-B .3-C .2-D .0.5-3、如图,在数轴上有A ,B ,C ,D 四个点,对它们表示的数,叙述正确的是( )A .点D 表示的数为﹣2.5B .点C 表示的数为﹣1.5 C .点B 表示的数为0.5D .点A 表示的数为1.254、如图的数轴被墨迹盖住一部分,被盖住的整数点有( )A .7个B .8个C .9个D .10个5、点123,,,,n A A A A (n 为正整数)都在数轴上,点1A 在原点O 的左边,且11A O =;点2A 在点1A 的右边,且212A A =;点3A 在点2A 的左边,且323A A =;点4A 在点3A 的右边,且434A A =;…,依照上述规律,点20182019,A A 所表示的数分别为 ( )A .2018,-2019B .1009,-1010C .-2018,2019D .-1009,1009二、填空题 6、已知在数轴上,位于原点左边的点A 到原点的距离是8,那么点A 所表示的数是______.7、如图,数轴的单位长度为1,如果点A 表示的数是-1,那么点B 表示的数是______.8、数轴上,到2这个点的距离等于3的点所表示的数是__________.9、正整数、0、负整数统称__________;正分数和负分数统称____________;整数和分数统称_________.10、画一条______,在直线上取一点表示0,并把这个点叫作_______,选取某一长度作为______,规定直线上向右的方向为_______,就得到_______.11、规定了______、______和_______的______叫数轴.12、在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.13、在数轴上到表示-2的点相距8个单位长度的点表示的数为_____.三、解答题,-0.514、已知下列有理数:-4,2,-3.5,0,-2,312(1)在数轴上标出这些有理数表示的点;(2)设表示-0.5的点为A,那么与A点的距离相差4个单位长度的点所表示的数是多少?15、一辆货车从超市出发,向东走了3千米到达A地,继续向东走25千米到达B地,然后向西走了10千米到达C地,最后回到超市。
2022人教版初中数学七年级上册练习题--数轴
初中数学·人教版·七年级上册——第一章有理数1.2.2 数轴测试时间:20分钟一、选择题1.下列数轴画得正确的是()ABCD2.在下面数轴上,点C表示的数是()A.3B.1C.-2D.-43.如图,在数轴上,手掌遮挡住的点表示的数可能是()A.0.5B.-0.5C.-1.5D.-2.54.下列说法正确的是()A.没有最大的正数,却有最大的负数B.数轴上,离原点越远的点表示的数越大C.0大于一切非负数D.在原点的左侧,离原点越远的点表示的数越小5.在数轴上表示-4的点到原点的距离是()A.4B.-4C.±4D.26.(2021河北邯郸育华中学期末)一只蚂蚁沿数轴从点A向右爬15个单位长度到达点B,点B表示的数为-2,则点A表示的数为()A.15B.13C.-13D.-177.如图,数轴的单位长度为1,如果点A表示的数是-5,那么点B表示的数是()A.-2B.-1C.0D.28.在数轴上到表示3的点的距离为5个单位长度的点表示的正数是()A.-2B.8C.-2或8D.59.如图,将一刻度尺放在数轴上.①若刻度尺上0 cm和4 cm处对应数轴上的点表示的数分别为1和5,则1 cm处对应数轴上的点表示的数是2;②若刻度尺上0 cm和4 cm处对应数轴上的点表示的数分别为1和9,则1 cm处对应数轴上的点表示的数是3;③若刻度尺上0 cm和4 cm处对应数轴上的点表示的数分别为-2和2,则1 cm处对应数轴上的点表示的数是-1;④若刻度尺上0 cm和4 cm处对应数轴上的点表示的数分别为-1和1,则1 cm处对应数轴上的点表示的数是-0.5.上述结论中,所有正确结论的序号是 ()A.①②B.②④C.①②③D.①②③④10.(2021广东佛山三水期末)正六边形ABCDEF在数轴上的位置如图,点A、F对应的数分别为0和1,若正六边形ABCDEF绕着顶点按顺时针方向在数轴上连续翻转,翻转1次后,点E所对应的数为2,则连续翻转2 021次后,数轴上2 021这个数所对应的点是 ()A.A点B.B点C.C点D.D点二、填空题11.在数轴上,表示+2的点在原点的侧,距原点个单位长度;表示-7的点在原点的侧,距原点个单位长度;两点之间的距离为个单位长度.12.在数轴上,把表示3的点沿着数轴向负方向移动5个单位长度,则与此位置相对应的数是.13.数轴上动点P从点A先向左移动1个单位长度,再向右移动4个单位长度到达点B,若点B表示的数是1,则点A表示的数是.14.如图,小红在写作业时,不慎将一滴墨水滴在数轴上,则墨迹遮盖住的整数共有 个.15.在数轴上与表示-4的点相距3个单位长度的点有 个,它们表示的数分别是 和 .16.一只蚂蚁从数轴上表示-2的点A 出发,沿着数轴爬行了5个单位长度,到达点B ,则点B 所表示的数是 . 三、解答题17.画一条数轴,把-3,12,0,-32,2在数轴上表示出来.18.(2021西藏拉萨达孜期末)请把下面不完整的数轴画完整,并在数轴上标出下列各数:-3,-12,4.19.(2021宁夏固原原州期末)李老师进行家访,从学校出发,先向西开车行驶4 km 到达A 同学家,继续向西行驶7 km 到达B 同学家,然后又向东行驶15 km 到达C 同学家,最后回到学校.(1)以学校为原点,以向东方向为正方向,用1个单位长度表示1 km,画出数轴,并在数轴上表示出A、B、C三个同学的家的位置;(2)A同学家离C同学家有多远?(3)李老师一共行驶了多少千米?20.根据如图所示的数轴,解答下面的问题:(1)请你根据图中A、B两点的位置,分别写出它们所表示的有理数;(2)观察数轴,写出与点A的距离为4个单位长度的点表示的数.,那么与M相距1个单位长度的点N所表示的数是多少?21.数轴上的点M表示的数是-22322.已知在纸面上有一数轴(如图),折叠纸面.(1)若1对应的点与-1对应的点重合,则-2对应的点与何数对应的点重合?(2)若-1对应的点与5对应的点重合,则0对应的点与何数对应的点重合?(3)将-1对应的点与5对应的点之间的线段折叠2次,展开后,请写出所有的折叠点表示的数.23.已知数轴上点A在原点的左侧,到原点的距离为6个单位长度,点B在原点的右侧,点A与点B之间的距离是10个单位长度.(1)直接写出A、B两点所表示的数;(2)若点C也是数轴上的点,点C到点B的距离是4个单位长度,求点C所表示的数.一、选择题1.答案C A.没有单位长度;B.没有正方向;C.原点、单位长度、正方向都符合条件,故C正确;D.原点左边的数标注错误,应是从左到右由小到大的顺序.故选C.2.答案C由数轴可知,点C表示的数是-2.故选C.3.答案B由题图可知,手掌遮挡住的点在0与-1之间,结合选项可知表示的数可能是-0.5.故选B.4.答案D在原点的左侧,离原点越远的点表示的数越小;在原点的右侧,离原点越远的点表示的数越大,故选D.5.答案A数轴上表示-4的点到原点的距离为4.故选A.6.答案D由题意知,将点B向左移动15个单位长度到达点A的位置,故点A距离原点17个单位长度,且在原点的左边,故点A表示的数为-17.7.答案B由题中数轴可知点B表示的数是-1.故选B.8.答案B在数轴上到表示3的点的距离为5个单位长度的点有两个,记为A和B,如下图所示:点A表示的数为-2,点B表示的数为8,因为8为正数,所以选B.9.答案D由数轴可知,①②③④结论均正确.故选D.10.答案B当正六边形在转动第一周的过程中,A、F、E、D、C、B对应的数分别为0、1、2、3、4、5,所以6次一循环,因为2 021÷6=336……5,所以数轴上2 021这个数所对应的点是B点.故选B.二、填空题11.答案右;2;左;7;9解析原点左侧的点表示负数,右侧的点表示正数,因此表示+2的点在原点右侧,且距原点2个单位长度,表示-7的点在原点左侧,且距原点7个单位长度.两点之间的距离为2+7=9个单位长度.12.答案-2解析根据题意画出数轴解答.13.答案-2解析由题意可知,点A与点B相距3个单位长度,且点A在点B的左侧,因为点B表示的数是1,所以点A表示的数是-2.14.答案 3解析因为-7和2之间的整数有-1、0、1,共3个,4所以墨迹遮盖住的整数共有3个. 15.答案 2;-1;-7 解析 如图所示:在数轴上与表示-4的点相距3个单位长度的点有2个,它们表示的数分别是-1和-7. 16.答案 3或-7解析 因为蚂蚁从数轴上表示-2的点A 出发,沿着数轴爬行了5个单位长度到达点B , 所以点B 所表示的数为3或-7. 三、解答题 17.解析 如图所示.18.解析 如图所示.19.解析 (1)如图:(2)A 同学家离C 同学家有8 km . (3)4+7+15+4=30(km). 答:李老师一共行驶了30 km .20.解析 (1)点A 表示的数是1,点B 表示的数是-2.5.(2)在点A 的左边,与点A 的距离为4个单位长度的点表示的数是-3; 在点A 的右边,与点A 的距离为4个单位长度的点表示的数是5. 21.解析 当点N 在点M 的左边时,点N 表示的数为-323,当点N 在点M 的右边时,点N 表示的数是-123.所以点N 表示的数是-323或-123.22.解析 (1)若1对应的点与-1对应的点重合,则-2对应的点与2对应的点重合. (2)若-1对应的点与5对应的点重合,则0对应的点与4对应的点重合.(3)将-1对应的点与5对应的点之间的线段折叠2次,展开后,所有的折叠点表示的数为0.5,2,3.5. 23.解析 (1)因为点A 在原点的左侧,到原点的距离为6个单位长度,所以点A所表示的数是-6.因为点B在原点的右侧,点A与点B之间的距离是10个单位长度,所以点B所表示的数是4.(2)当点C在点B左边且到点B的距离为4个单位长度时,点C所表示的数为0; 当点C在点B右边且到点B的距离为4个单位长度时,点C所表示的数为8.所以点C所表示的数为8或0.。
人教版七年级数学上册1.2.2数轴同步练习题含答案
人教版七年级数学上册1.2.2数轴同步练习题1.下列关于数轴的说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的直线B .数轴的正方向一定向右C .数轴上的点只能表示整数D .数轴上的原点表示有理数的起点 2.下列数轴的画法中,正确的是( )3.(1)将有理数-2,1,0,-212,314在数轴上表示出来;(2)写出数轴上点A ,B ,C 表示的数.4.如图所示,数轴上四点M ,N ,P ,Q 中,表示负整数的点是( ) A .点M B .点N C .点P D .点Q5.有下列一组数:1,4,0,-12,-3,这些数在数轴上对应的点中,不在原点右边的点有( )A .2个B .3个C .4个D .5个6.点A 是数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 表示的有理数是( )A .-4B .-6C .2或-4D .2或-67.有理数a ,b ,c 在数轴上的位置如图所示,则下列说法正确的是( )A .a ,b ,c 都为正数B .b ,c 为正数,a 为负数C .a ,b ,c 都为负数D .b ,c 为负数,a 为正数 8.如图,点A 表示的数是________.9.如图,小明在写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有________个.10.点A ,B ,C ,D 分别表示-3,-112,0,4.请解答下列问题:(1)在数轴上描出A ,B ,C ,D 四个点;(2)现在把数轴的原点取在点B 处,其余均不变,那么点A ,B ,C ,D 分别表示什么数?11.如图12,上七年级的小贝在一张纸上画了一条数轴,妹妹不知道它有什么用处,就在上面画了一只小猫和一只小狗,于是数轴上标的数字有的看不到了,请根据数轴回答下列问题:(1)被小猫遮住的是正数还是负数?(2)被小狗遮住的整数有几个?(3)此时小猫和小狗之间(即点A,B之间)的整数有几个?图1212.某公交路线经过一条东西向的大街,从西往东设置有公园、书店、学校、小区四个站点,相邻两个站点之间的距离依次为3 km,2 km,1.5 km.如果以学校为原点,向东为正方向,以图上1 cm长为单位长度表示实际距离1 km,请画出数轴,并将四个站点在数轴上表示出来.13.育才路上依次有八中、新华中学和九中三所中学,八中在新华中学东900米处,新华中学在九中东800米处,现小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在八中的什么方向上?距八中有多远?试用画数轴的方法解决此题.14.在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“全”所对应的数为0,则连续翻滚后与数轴上数重合的字是( )A.合 B.格 C.优 D.秀15.如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数将与圆周上的数字________重合.16.如图,将一刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x,那么x的值为( )A.8 B.7 C.6 D.517.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm,木棒的左端点与数轴上的点A重合,右端点与点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为________cm.(2)图中点A表示的数是________,点B表示的数是________.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.1.A 2.D3.解:(1)如图所示.(2)点A表示-3,点B表示-1,点C表示4.4.A5.B .6.D7.D8.-29.710.解:(1)如图所示:(2)点A 表示-112,点B 表示0,点C 表示112,点D 表示512.11.解:(1)被小猫遮住的是负数.(2)被小狗遮住的整数有12,13,14,15,16,17,18,共7个.(3)小猫和小狗之间的整数有-16,-15,-14,…,-1,0,1,2,…,10,11,共28个. 12.解:如图所示:13.解:数轴画法不唯一,示例如下:由题意得三所中学在数轴上的位置如图所示:通过数轴,能看出小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在新华中学的东边,且距离新华中学200米处,即小明在八中的西边,距离八中有700米.14.C . 15.3 . 16.D17.解:(1)由数轴观察知三根木棒的长是20-5=15(cm),则此木棒的长为15÷3=5(cm).故答案为5.(2)10 15(3)借助数轴,B 表示爷爷的年龄,A 表示小红的年龄,把小红与爷爷的年龄差看作木棒AB . 当爷爷的年龄是小红现在的年龄时,即将B 向左移与A 重合,此时小红的年龄是-40岁;当小红的年龄是爷爷现在的年龄时,即将A 向右移与B 重合,此时爷爷的年龄为125岁,所以可知爷爷比小红大(125+40)÷3=55(岁),所以爷爷现在的年龄为125-55=70(岁).。
人教版初中七年级数学上册《数轴》练习题
人教版初中七年级数学上册《数轴》例题数轴的概念虽简单,但初学者也会因疏忽犯下一些小错误,而数轴作为中学数学的基本工具又是非常重要的,这里通过一些例题来纠正一些容易出现的典型错误一、数轴概念例1 回答问题:下图中哪一个表示数轴?不是数轴的请说出原因.分析:数轴的三要素原点、正方向和单位长度,这三者对于数轴来说是缺一不可.解:根据数轴的三要素:图(1)是数轴,它是具备了原点、正方向和单位长度的直线.图(2)不是数轴,因为单位长度不一致.图(3)不是数轴,因为没有原点和单位长度.图(4)不是数轴,因为它是射线,不是直线.图(5)不是数轴,有两处错误,一是没有标明正方向;二是负数的排序错误,从原点向左依次应是-1,-2,-3,….说明:识别一个图形是否是数轴,方法是第一,这个图形是一条直线;第二,这条直线要满足三要素.即原点、正方向和单位长度,缺一不可.二、数轴及数轴上的点例2在所给的数轴上画出表示下列各数的点:分析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原点右边的一个点来表示,例如2、3.5,可用数轴上分别位于原点右边2个单位,3.5个单位的点表示.每一个负有理数都可用数轴上原点左边的一个点来表示,解:说明:数轴上表示数的点可用大写字母标出,写在数轴上方所对应数的上面,原点用O 标出,它表示数0.数轴上原点的位置要根据需要来确定,不一定要居中.单位长度应根据需要来确定,1 cm 的长度可以表示1个单位长度,也可以表示2个,5个,10个…单位长度,但在同一数轴上,单位长度必须一致,不可随意改变.变式练习:指出数轴上A 、B 、C 、D 、E 各点分别表示什么数.参考答案:O 表示0,A 表示322-,B 表示1,C 表示413,D 表示-4,E 表示-0.5. 三、数轴上的点与原点的关系例3 填空(1)数轴上表示2的点在原点的_____边,与原点的距离是____个单位长度.(2)数轴上表示-2的点在原点的____边,与原点的距离是___个单位长度.(3)数轴上在原点右边距原点3.7个单位长度的点表示数_______.(4)数轴上在原点左边距原点85个单位长度的点表示数______. (5)数轴上距原点2个单位长度的点有_____个,它们分别表示数______. 分析:数轴上,表示正数的点都在原点的右边,表示负数的点都在原点的左边.距离不会是负数.答案:(1)右,2 (2)左,2 (3)3.7 (4)85- (5)2,+2和-2 说明:①可以画数轴来加深认识.②数轴上表示3的点在原点的右边,表示-3的点在原点的左边,它们与原点的距离都是3个单位长度;同样,数轴上表示2 018的点在原点的右边,表示-2 018的点在原点的左边,它们与原点的距离都是2 018个单位长度.即如果a表示一个正数,则数轴上表示数a的点在原点的右边,它与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度.③如果a表示一个正数,数轴上距原点a个单位长度的点有2个,它们分别是数a和-a.。
人教版初一数学上册数轴练习题
数轴练习题(含答案)§2.2 数轴在线检测1.画一条水平直线,在直线上取一点表示0,叫做_________;•选取某一长度作为________;规定直线上向右的方向为_________,这样就得到了数轴.•我们把上述三方向称为数轴的三要素.所有的有理数都可以用数轴上的______来表示.2.数轴上表示负数的点在原点的__________,表示正数的点在原点的_______,原点表示的数是________.3.数轴上表示-2的点离原点的距离是______个单位长度;表示+2•的点离原点的距离是_____个单位长度;数轴上与原点的距离是2个单位长度的点有_______个,它们表示的数分别是________.4.判断下列所画的数轴是否正确,如不正确,请指出.5.在所给的数轴上画出表示下列各数的点:2,-3,,0,,5,。
6.指出数轴上A,B,C,D,E,F各点所代表的数字.7.在数轴上画出表示下列各数的点,并回答下列问题.-3,2,-1.5,-2,0,1.5,3.(1)哪两个数的点与原点的距离相等?(2)表示-2的点与表示3的点相差几个单位长度?8.将-1所对应的点在数轴上先向右移动4个单位长度,再向左移动5•个单位长度后,得到的点对应的数是什么?基础巩固训练一、选择题1.图1中所画的数轴,正确的是()2.在数轴上,原点及原点左边的点所表示的数是()A.正数B.负数C.非负数D.非正数3.与原点距离是2.5个单位长度的点所表示的有理数是()A.2.5 B.-2.5 C.±2.5 D.这个数无法确定4.关于- 这个数在数轴上点的位置的描述,正确的是()A.在-3的左边B.在3的右边C.在原点与-1之间D.在-1的左边5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是()A.+6 B.-3 C.+3 D.-96.不小于-4的非正整数有()A.5个B.4个C.3个D.2个7.如图所示,是数a,b在数轴上的位置,下列判断正确的是()A.a<0 B.a>1 C.b>-1 D.b<-1二、填空题1.数轴的三要素是______¬¬¬¬_______.2.数轴上表示的两个数,________边的数总比________边的数大.3.在数轴上表示数6的点在原点_______侧,到原点的距离是_______个单位长度,表示数-8的点在原点的______侧,到原点的距离是________个单位长度.表示数6的点到表示数-8的点的距离是_______个单位长度.4.有理数a,b,c在数轴上的位置如图所示,用“<”将a,b,•c•三个数连接起来________.5.大于-3.5小于4.7的整数有_______个.6.用“>”、“<”或“=”填空.(1)-10______0;(2)________- ;(3)- _______- ;(4)-1.26________1 ;(5)________- ;(6)- _______3.14;(7)-0.25______- ;(8)- ________ .7.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________.三、解答题1.画出数轴并标出表示下列各数的点,并用“〈”把下列各数连接起来.-3 ,4,2.5,0,1,7,-5.2.如图所示,根据数轴上各点的位置,写出它们所表示的数.3.一个点从数轴上表示-2的点开始,按下列条件移动后,到达终点,•说出终点所表示的数,并画图表示移动过程.(1)先向右移动3个单位,再向右移动2个单位.(2)先向左移动5个单位,再向右移动3个单位.(3)先向左移动3.5个单位,再向右移动1.5个单位.(4)先向右移动2个单位,再向左移动6.5个单位.四、创新题1.初一(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并将代表该队的字母标上;(3)从数轴上看A队与B队相差多少分?C队与E队呢?2.超市、书店、•玩具店依次坐落在一条东西走向的大街上,•超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、•玩具店的位置,以及小明最后的位置.五、竞赛题1.比较a与-a的大小.2.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A,B,C,•D对应的数分别是数a,b,c,d,且d-2a=10,那么数轴的原点应是哪一点?中考题回顾六、中考题1.(2010•安徽)冬季某天我国三个城市的最高气温分别是-10℃,1℃,-7℃,把它们从高到低排列正确的是()A.-10℃,-7℃,1℃; B.-7℃,-10℃,1℃C.1℃,-7℃,-10℃; D.1℃,-10℃,-7℃2.(2010•广西)比较大小:-1_______-2.3.(2010内蒙古)比较大小:- _______- .4.(2010•南宁)比较-3与2的大小.。
湘教版七年级上册数学第一章第二节数轴练习题(附答案)
湘教版七年级上册数学第一章第二节数轴练习题(附答案一、单选题1.如图,用数轴上点M表示有理数2,则表示有理数6的点是()A.A B.B C.C D.D2.如图,数轴上4个点表示的数分别为a、b、c、d.若|a﹣d|=10,|a﹣b|=6,|b﹣d|=2|b﹣c|,则|c ﹣d|=()A.1B.1.5C.1.5D.23.点A表示数轴上的一个点,将点A向右移动6个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是()A.−2B.−3C.0D.−14.如图,数轴上的整数a被星星遮挡住了,则﹣a的值是()A.1B.2C.﹣2D.﹣15.下列各图是四位同学所画的数轴,其中正确的是()A.B.C.D.6.数轴上点A表示的数是-2,那么与点A相距5个单位长度的点表示的数是()A.-7B.3C.-7或3D.以上都不对7.已知点O、A、B、C在数轴上的位置如图所示,O为原点,若BC=1,OA=OC,点B所对应的数为m,则点A所对应的数是()A.m﹣1B.m+1C.﹣(m﹣1)D.﹣(m+1)8.一辆货车从超市出发,向东走了3km到达小彬家,继续向东走了1.5km到达小颖家,然后向西走了9.5km到达小明家,最后回到超市.小明家距小彬家()km.A.4.5B.6.5C.8D.13.59.数a、b表示的点在数轴上的位置如图所示,则a+b的值是()A.正数B.0C.负数D.无法确定10.如图,数轴上的点A表示的数可能是()A.-4110B.-412C.-3110D.-312二、填空题11.数轴上,与原点距离为4个单位长度的点有个,它们是.12.数轴上点A表示的有理数是−5,那么到点A的距离为10的点表示的数是. 13.一只蚂蚁从数轴上点A出发向左爬了5个单位长度到了表示-2的点处,则点A所表示的数是.14.已知数轴上A、B两点间的距离为3,点A表示的数为1,则点B表示的数为.15.数轴上A,B两点所表示的数分别是-5,1,那么A,B两点间的距离是.16.数轴上A点表示的数为4,点B与点A位于原点两侧且到原点的距离相等,点C与点B的距离为5,则点C表示的数为.17.在数轴上,到﹣2的距离等于4个单位长度的点所表示的数是.18.在数轴上,与原点的距离是3个单位长度的点表示的数是.19.数轴上点A、B、M表示的数分别是2a、3a、6,且点M为线段AB的中点,则点A表示的数为.20.已知数轴上的点A到原点的距离是2个单位长度,那么数轴上到A点的距离是3个单位长度的点所表示的数有个.三、解答题21.把下面的直线补成条数轴,并在数轴上表示下列各数:﹣3,12,0,−32,2.22.如图,在一条不完整的数轴上从左到右有点A,B,C.其中AB=2,BC=1.设点A,B,C三点所表示的数的和为P,若以点B为原点,写出A,C两点所表示的数并计算出P的值.23.如图,在一条不完整的数轴上有A,B两点,点A在点B的左侧已知点B对应的数为2,点A对应的数为a.若点C到原点的距离为3,且在点A的左侧,AB−AC=3,求a的值.24.甲、乙两队进行拔河比赛,标志物先向乙队方向移动了0.2米,又向甲队方向移动了0.6米.相持一会儿后,标志物向乙队方向移动了0.5米,随后又向甲队方向移动了1.3米,在大家的加油声中,标志物又向甲队方向移动了0.9米.若规定标志物向某队方向移动2米以上该队即可获胜,通过计算说明最后哪队获胜?25.如图,A,B分别为数轴上的两点,点A对应的数是﹣2,点B对应的数是10.现有点P从点A 出发,以4个单位长度/秒的速度向右运动,同时另一点Q从点B出发,以1个单位长度/秒的速度向右运动,设运动时间为t秒.(1)A、B两点之间的距离为;(2)当t=1时,P、B两点之间的距离为;(3)在运动过程中,线段PB、BQ、PQ中是否会有两条线段相等?若有,请求出此时t的值;若没有,请说明理由.答案1.D 2.D 3.A 4.C 5.D 6.C 7.C 8.C 9.A 10.D11.2;4或﹣4 12.-15或5 13.3 14.4或−2 15.6 16.1或−9 17.-6或2 18.±3 19.4.8 20.421.解:画图如下:22.解:∵AB=2,BC=1,点B为原点,∴点A表示的数为−2,点C表示的数为1,则P=(−2)+0+1=−1.23.解:∵点C到原点的距离为3,∴点C表示的数为±3,∵点A在点B的左侧,点C在点A的左侧,且点B表示的数为2,∴点C表示的数为-3,∵BA-AC=3,∴2-a-[a-(-3)]=3,解得a=-2 .24.解:把拔河绳看作数轴,标志物开始在原点,甲在正方向,乙在负方向,标志物最后表示的数=−0.2+0.6−0.5+1.3+0.9=2.1米>2米.即标志物向正方向移了2.1m,而规定标志物向某队方向2米该队即可获胜,所以甲获胜.25.(1)12(2)8(3)解:在运动过程中,线段PB、BQ、PQ中存在两条线段相等.AP=4t,BQ=t,分三种情况:①当PB=BQ时,如图,若B为PQ的中点,则AB﹣AP=BQ,即12﹣4t=t,解得t=2.4;如图,若P,Q重合,则AP﹣AB=BQ,即4t﹣12=t,解得t=4;②当PB=PQ时,如图,若P为BQ的中点,则BQ=2(AP﹣AB),即t=2(4t﹣12),解得t= 24 7;如图,若B,Q重合,则t=0(不合题意);③当BQ=PQ时,如图,若Q为BP的中点,则AP﹣AB=2BQ,即4t﹣12=2t,解得t=6;如图,若B,p重合,则AP=AB,即4t=12,解得t=3;综上所述,当t=2.4或4或247或6或3时,线段PB、BQ、PQ中存在两条线段相等。
七年级上册数学《数轴》的练习题和参考答案
一、选择题1.下列是几个同学画的数轴,请你判断其中正确的是2.下列说法正确的是( )A.没有最大的正数,却有最大的负数B.数轴上离原点越远,表示数越大C.0大于一切非负数D.在原点左边离原点越远,数就越小3.下列说法正确的是( )A.数轴上一个点可以表示两个不同的有理数B.表示-P的点一定在原点的左边C.在数轴上表示-8的点与表示+2的点的距离是6D.数轴上表示- 的点,在原点左边,距原点个单位长度。
4.如图所示,点M表示的数是( )A. 2.5B.C.D. 2.55.下列结论正确的有( )个:① 规定了原点,正方向和单位长度的直线叫数轴② 最小的整数是0 ③ 正数,负数和零统称有理数④ 数轴上的点都表示有理数A.0B.1C.2D.37.在数轴上,A点和B点所表示的数分别为-2和1,若使A点表示的数是B点表示的数的3倍,应把A点 ( )A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位8.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B时,点B所表示的实数是 ( )A.1B.-6C.2或-6D.不同于以上答案二、填空题9 .在数轴上表示的两个数中,的数总比的数大。
10.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。
11.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。
12.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。
初中七年级上册数学122_数轴同步专项练习题含答案
初中七年级上册数学1.2.2 数轴同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 如图,在数轴上点A表示的数最可能是()A.−2B.−2.5C.−3.5D.−2.92. 下列说法正确的是()A.数轴是一条规定了原点、单位长度和正方向的直线B.数轴一定取向右为正方向C.数轴是一条带箭头的线段D.数轴上的原点表示有理数的起点3. A为数轴上表示−1的点,将A点沿数轴向左移动2个单位长度到B点,则B点所表示的数为()A.−3B.3C.1D.1或−34. 如图,在数轴上,点A,B表示的数分别是a,b;原点用点O来表示,则下列说法正确的有( )①线段AB的长度就是A,B两点之间的距离;②|a|等于线段OA的长度;③ab>0;④a−b>a+b;⑤点A到原点O的距离是线段OA.A.2个B.3个C.4个D.5个5. 如图,数轴上相邻刻度间的线段表示一个单位长度,点A、B、C、D对应的数a、b、c、d,且2a+b+d=−2,那么数轴的原点应是( )A.点AB.点BC.点CD.点D6. 如图,数轴上P,Q,S,T四点对应的整数分别是p,q,s,t,且有p+q+s+t=−2,那么,原点应是点()A.PB.QC.SD.T7. 点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:①−a>b;②−b>−a;③|a|>|b|;④|−b|>|−a|,其中正确的是( )A.①②③B.②③④C.①③④D.①②④8. 有理数a,b在数轴上的位置如图所示,则下列结论不正确的是()A.a−(−b)<0B.a−b<0C.−a−b>0D.−a+b<09. 一只小蚂蚁停在数轴上表示2的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为()A.7或−3B.−7C.+3D.–7或310. 如图,在数轴上有a,b两个有理数,则下列结论中,不正确的是())3>0A.a+b<0B.a−b<0C.a⋅b<0D.(−ab二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 在数轴上的点A表示的数为2.5,则与A点相距3个单位长度的点表示的数是________.12. 如图,在数轴上1,√2的对应点分别是A,B,A是线段BC的中点,则点C所表示的数是________.13. P从数轴上的原点开始,向右移动2个单位,再向左移动5个单位,此时P点所表示的数是________.14. 在数轴上与表示−3的点相距4个单位长度的点所表示的数是________.15. 如图,数轴上有A,B,C,D四点,则所表示的数与5−√11最接近的是_________.16. 数轴上A点表示的数为−2,则A点相距3个单位长度的点表示的数为________.17. 已知点A在数轴上原点左侧,距离原点3个单位长度,点B到点A的距离为2个单位长度,则点B对应的数为________.18. 已知在纸面上有一数轴,折叠纸面:(1)若3表示的点与−3表示的点重合,则−4表示的点与数________表示的点重合;(2)若−1表示的点与5表示的点重合,则6表示的点与数________表示的点重合.(3)在(1)的条件之下,重合的两点之间的距离为2016,则这两点表示的数分别为________.19. 数轴上表示6与2的两个点之间的距离是________个单位长度.20. 数轴上与−1距离3个长度的点表示的数是________.三、解答题(本题共计 20 小题,每题 10 分,共计200分,)21. 一辆货车从超市出发,向东走3千米到达小华家,继续走了1.5千米到达小红家,然后向西走了9.5千米到达小明家,最后回到超市.(1)以超市为原点,以向东为正方向,用1个单位长度表示1千米,你能在数轴上表示出小华家、小红家和小明家的位置吗?(2)小明家距小华家多远?(3)若货车耗油量为3升/千米,问共耗油多少升?22. 数轴上的点A 对应的数是−3,一只蚂蚁从点A 出发沿着数轴向右以每秒3个单位长度的速度爬行至B 点.休息2秒后按原路返回A 点,共用了10秒,则蚂蚁爬行了多少个单位长度?点B 对应的有理数是多少?23. 把下面的直线补充成一条数轴,然后在数轴上表示出下列各数:并用"<"把它们连接起来.−3,+1,212,−1.5,6.24. 已知数轴上表示a ,b 两个点的位置,如图所示,试判断下列各式的符号:(1)a +b ,(2)a −b ,(3)b −a ,(4)|a|−b .25. 操作与探究:对数轴上的点P 进行如下操作:先把点P 表示的数乘以2,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.(1)如图,若点A 表示的数是−3,则点A ′表示的数是________;(2)若点B ′表示的数是2,则点B 表示的数是________;(3)已知线段AB 上的点E 经过上述操作后得到的对应点E ′与点E 重合,则点E 表示的数是________.26. 在数轴上表示出下列各有理数:−0.7,−3,−213,0,112,2.27. 一只蚂蚁从原点O 出发,它先向左爬行2个单位长度到达A 点,再向左爬行3个单位长度到达B 点,再向右爬行8个单位长度到达C 点.(1)写出A ,B ,C 三点表示的数,并将它们的位置标注在数轴上;(2)根据C 点在数轴上的位置,请回答该蚂蚁实际上是从原点出发向什么方向爬行了几个单位长度?28. 对数轴上的点P 进行如下操作:先把点P 表示的数乘以m(m ≠0),再把所得数对应的点沿数轴向左平移n(n >0)个单位长度,得到点P ′.称这样的操作为点P 的“倍移”,对数轴上的点A ,B ,C 进行“倍移”操作得到的点分别记为A ′,B ′,C ′.(1)当,n =2时,①若点A 表示的数为−6,则它的对应点A ′表示的数为________. ②若点B ′表示的数是3,则点B 表示的数为________.③数轴上点M 表示的数为1,若点M 到点C 和点C ′的距离相等,求点C 表示的数.(2)若点A ′到点B ′的距离是点A 到点B 距离的3倍,求m 的值.29. 点A 、B 在数轴上的位置如图所示:(1)点A 表示的数是________,点B 表示的数是________;(2)在原图中分别标出表示+3的点C 、表示−1.5的点D ;(3)在上述条件下,B 、C 两点间的距离是________,A 、C 两点间的距离是________.30. 请把下面不完整的数轴画完整,并在数轴上标出下列各数:−3,−12,4.31. 画出数轴,并在数轴上表示下列各数:+5,−3.5,12,−112,−4,0,2.5.32. 观察数轴,仔细思考,回答下列问题.(1)有没有最小的正整数?如果有,是什么?如果没有,说明理由;(2)有没有最大的负整数?如果有,是什么?如果没有,说明理由;(3)不超过2的自然数有哪些?33.操作探究:小明在一张长条形的纸面上画了一条数轴(如图所示),操作一:(1)折叠纸面,使1表示的点与−1表示的点重合,则−3表示的点与________表示的点重合;操作二:(2)折叠纸面,使−1表示的点与5表示的点重合,请你回答以下问题:①−3表示的点与数________表示的点重合;②若数轴上A、B两点之间距离为12,其中A在B的左侧,且A、B两点经折叠后重合,则A表示的数是________,B表示的数是________.③已知在数轴上点M表示的数是m,点M到第②题中的A、B两点的距离之和为14,则m的值的是________.34. 邮递员骑车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行8km,到达C村,最后回到邮局.(1)以邮局为原点,以向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A,B,C三个村庄的位置;(2)C村距离A村有多远?(3)邮递员共骑行了多少km?35. 圆通快递公司员工小明骑车从快递公司出发,先向南骑行4km到达A单位,然后向北骑行2km到达B公司,继续向北骑行5km到达C村,最后回到快递公司.(1)以快递公司为原点,向南方向为正方向,用1cm表示1km,画出数轴,并在数轴上表示出A、B、C三地的位置;(2)C学校离A单位有多远?(3)小明一共骑行了多少千米?36. 根据下面给出的数轴,解答下面的问题:(1)请你根据图中A、B(点B在−2, −3的正中间)两点的位置,分别写出它们所表示的有理数A:________ B:________(2)在数轴上画出与点A的距离为2的点(用不同于A、B、M、N的其他字母表示),并写出这些点表示的数:________________(3)若经过折叠,A点与−3表示的点重合,则B点与数________表示的点重合;(4)若数轴上M、N两点之间的距离为9(M在N的左侧),且M、N两点经过(5)中折叠后重合,M、N两点表示的数分别是:M:________ N:________37. 观察有理数a、b、c在数轴上的位置并化简:|b−c|+|a+c|.38. 如图,数轴上的点A、B、C、D分别表示−4,−3,2.5,5.回答下列问题:2(1)B、C两点之间的距离是多少?(2)A、C两点之间的距离是多少?(3)A、D两点之间的距离是多少?39. (1)借助数轴,回答下列问题.①从−1到l有3个整数,分别是________;②从−2到2有5个整数,分别是________;③从−3到3有个整数,分别是________;④从−200到200有________个整数;⑤从−n到n(n为正整数)有________个整数; 39.(2)根据以上规律,直接写出:从−2.9到2.9有________个整数,从−10.1到10.1有________个整数;39.(3)在单位长度是1厘米的数轴上随意画出一条长为1000厘米的线段AB,求线段AB 盖住的整点的个数.40. 一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续走了1千米到达小红家,又向西走了10千米到达小刚家,最后回到百货大楼.(1)以百货大楼为原点,以向东的方向为正方向,用1个单位长度表示1千米,请你在数轴上表示出小明、小红、小刚家的位置;(2)小明家与小刚家相距多远?参考答案与试题解析初中七年级上册数学1.2.2 数轴同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】数轴【解析】根据数轴上的点表示数的方法得到点A表示的数在−3与−2中间,然后分别进行判断即可.【解答】解:∵点A表示的数在−3与−2中间,∴A、C、D三选项错误,B选项正确.故选:B.2.【答案】A【考点】数轴【解析】根据规定了原点、正方向、单位长度的直线叫做数轴对各选项分析判断后利用排除法求解.【解答】解:A、数轴是一条规定了原点、单位长度和正方向的直线正确,故本选项正确;B、数轴一定取向右为正方向,错误,故本选项错误;C、数轴是一条带箭头的线段,错误,故本选项错误;D、数轴上的原点表示有理数的起点,错误,故本选项错误.故选A.3.【答案】A【考点】数轴【解析】此题借助数轴用数形结合的方法求解.【解答】解:由题意得,把A点向左移动2个单位长度,即是−1−2=−3,故B点所表示的数为−3.故选A.4.【答案】B【考点】数轴【解析】本题考查了数轴、绝对值及数轴上两点间的距离,解题关键是掌握绝对值的几何意义及数轴上两点间的距离等知识.【解答】解:①线段AB的长度就是A,B两点之间的距离,故①正确;②|a|等于线段OA的长度,故②正确;③b<0,a>0,则ab<0,故③错误;④b<0,则−b>0,−b>b,a−b>a+b,故④正确;⑤点A到原点O的距离是线段OA的长度,故⑤错误.即①②④正确,共有3个.故选B.5.【答案】B【考点】数轴【解析】先根据数轴上各点的位置可得到d−c=3,d−b=4,d−a=7,,再分别用d表示出a、b、c,再代入2a+b+d=2,求出d的值即可.【解答】解:由数轴上各点的位置可知d−c=3,d−b=4,d−a=7,故c=d−3,b=d−4,a=d−7,代入2a+b+d=−2得,2(d−7)+d−4+d=−2,解得d=4,故数轴上原点应是B点.故选B.6.【答案】C【考点】数轴【解析】根据数轴可以分别假设原点在P、Q、S、T,然后分别求出p+q+s+t的值,从而可以判断原点在什么位置,本题得以解决.【解答】解:由数轴可得,若原点在P点,则p+q+s+t=10,若原点在Q点,则p+q+s+t=6,若原点在S点,则p+q+s+t=−2,若原点在T点,则p+q+s+t=−14,∵数轴上P,Q,S,T四点对应的整数分别是p,q,s,t,且有p+q+s+t=−2,∴原点应是点S,故选C.7.【考点】数轴【解析】根据a+b<0,a在坐标轴的位置,结合各项结论进行判断即可.【解答】解:①由数轴可得,a>0,|a|<|b|,所以−a>b,故①正确;③错误;②因为a>0,b<0,所以a>b,所以−b>−a,故②正确;④因为|−b|=|b|,|−a|=|a|,|a|<|b|,所以|−b|>|−a|,故④正确,综上可得①②④正确.故选D.8.【答案】B【考点】数轴【解析】观察数轴得:b<0<a|>|a|由此对四个选项依次判断即可.【解答】观察数轴得:b<0<a||b|>|a|选项A,a−(−b)=a+b<0,选项A正确;选项B,a−b>0,选项B错误;选项C,−a−b>0,选项C正确;选项D,−a+b=b−a<0,选项D正确;故选B.9.【答案】A【考点】数轴【解析】分两种情况讨论,分别求出所表示的数,即可解答.【解答】解:向左爬行5个点为,则表示的数为:2+(−5)=−3;向右爬行5个点为,则表示的数为:2+5=7,则表示的数为−3或7.故选A.10.【答案】B【解析】根据a,b在数轴上的位置就可得到a,b的符号,以及绝对值的大小,再根据有理数的运算法则进行判断.【解答】解:根据数轴上的数:右边的数总是大于左边的数,可以得到:b<0<a,且|a|<|b|.∴a<−b,∴a+b<0,故A正确;a−b>0,故B错误;∵a<0,b>0,∴根据有理数的乘法法则得到:a⋅b<0,故C正确;根据有理数除法法则得到(−ab)3>0,故D正确.故选B.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】−0.5或5.5【考点】数轴【解析】根据数轴的特点可知与A点相距3个单位长度的点有两个,一个在点A的左边,一个在右边,从而可以解答本题.【解答】解:∵在数轴上的点A表示的数为2.5,∴与A点相距3个单位长度的点表示的数是:2.5−3=−0.5或2.5+3=5.5.故答案为:−0.5或5.5.12.【答案】2−√2【考点】数轴【解析】设出C点坐标为x,得到x+√22=1,即可求出x的值.【解答】解:设C点坐标为x,根据题意得,x+√2−x2=x+√22=1,解得,x=2−√2.故答案为:2−√2.13.【答案】−3【考点】数轴根据题意(向右为正,向左为负)得出算式0+(+2)+(−5),求出即可.【解答】解:根据题意得:0+(+2)+(−5)=−3,即此时P点所表示的数是−3,故答案为:−3.14.【答案】1或−7【考点】数轴【解析】根据题意得出两种情况:当点在表示−3的点的左边时,当点在表示−3的点的右边时,列出算式求出即可.【解答】解:分为两种情况:①当点在表示−3的点的左边时,数为−3−4=−7;②当点在表示−3的点的右边时,数为−3+4=1;故答案为:1或−7.15.【答案】D点【考点】数轴【解析】此题暂无解析【解答】解:∵9<11<16,∴3<√11<4,∴1<5−√11<2.故答案为:D点.16.【答案】1或−5【考点】数轴【解析】设与A点相距3个单位长度的点表示的数为x,再根据数轴上两点间的距离公式求出x的值即可.【解答】解:设与A点相距3个单位长度的点表示的数为x,则|x+2|=3,解得x=1或x=−5.故答案为:1或−5.17.【答案】−1或−5【考点】数轴【解析】根据在数轴上,点A所表示的数为−3,可以得到到点A的距离等于2个单位长度的点所表示的数是什么,本题得以解决.【解答】解:∵在数轴上,点A所表示的数为−3,∴到点A的距离等于2个单位长度的点所表示的数是:−3+2=−1或−3−2=−5.故答案为:−1或−5.18.【答案】(1)4;(2)−2;(3)−1008;1008【考点】数轴【解析】根据题意,结合数轴确定出所求数字即可.【解答】解:(1)若3表示的点与−3表示的点重合,则−4表示的点与数4表示的点重合;(2)若−1表示的点与5表示的点重合,则6表示的点与数−2表示的点重合.(3)在(1)的条件之下,重合的两点之间的距离为2016,则这两点表示的数分别为−1008;1008,19.【答案】4【考点】数轴【解析】此题暂无解析【解答】解:6−2=4,故答案为:4.20.【答案】−4或2【考点】数轴【解析】此题可借助数轴用数形结合的方法求解.由于点与−1的距离为3,那么应有两个点,记为A1,A2,分别位于−1两侧,且到−1的距离为3,这两个点对应的数分别是−1−3和−1+3,在数轴上画出A1,A2点如图所示.【解答】解:如图,因为点与−1的距离为3,所以这两个点对应的数分别是−1−3和−1+3,即为−4或2.故答案为−4或2.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:(1)如图:.(2)小明家距小华家3−(−5)=8(千米).(3)共耗油3×(|3|+|1.5|+|−9.5|+||−5|)=57(升).【考点】数轴【解析】(1)根据小明,超市,小华,小红的位置画在数轴上即可;(2)列出算式,求出即可;(3)求出共走的距离,再乘以3即可.【解答】解:(1)如图:.(2)小明家距小华家3−(−5)=8(千米).(3)共耗油3×(|3|+|1.5|+|−9.5|+||−5|)=57(升).22.【答案】解:∵从A点到B点共用去的时间(10−2)÷2=4秒,∴从A点到B点共有4×3=12个单位长度,∵数轴上点A表示的数是−3,∴点B表示的数是12−3=9.【考点】数轴【解析】先求出从A点到B点所需的时间,故可得出从A点到B点单位长度的个数,再由A点表示的数是−3即可得出B点表示的数.【解答】解:∵从A点到B点共用去的时间(10−2)÷2=4秒,∴从A点到B点共有4×3=12个单位长度,∵数轴上点A表示的数是−3,∴点B表示的数是12−3=9.23.【答案】解:由分析画图如下:<6.所以−3<−1.5<+1<212【考点】数轴【解析】数轴是规定了原点((0点)、方向和单位长的直线,在数轴上原点(0点)的左边是负数,从原点(0点)向左分别是−1、−2、−3−、−4、−5、−6…,右边是正数,从原点(0点)向右分别是+1、+2、+3−、+4、+5、+6…,−3表示原点左边第3个单位的点,把−1到−2这个单位长平均分成2份,−1.5在表示中间的点,+1表示原点右边第所表示正中间的点,6所表示原点右一个单位的点,把2到3这个单位平均分成2份,212边第六个单位的点.【解答】解:由分析画图如下:<6.所以−3<−1.5<+1<21224.【答案】解:从数轴可知:b<0<a,|b|>|a|,∴(1)a+b<0,(2)a−b=a+(−b)>0,(3)b−a=b+(−a)<0,(4)|a|−b=|a|+(−b)>0.【考点】数轴【解析】先根据数轴得出b<0<a,|b|>|a|,再根据有理数的加减法则判断各个算式的符号即可.【解答】解:从数轴可知:b<0<a,|b|>|a|,∴(1)a+b<0,(2)a−b=a+(−b)>0,(3)b−a=b+(−a)<0,(4)|a|−b=|a|+(−b)>0.25.【答案】−51−1【考点】数轴【解析】①根据题目规定,以及数轴上的数向右平移用加法计算即可求出点A′;②设点B表示的数为a,根据题意列出方程求解即可得到点B表示的数;③设点E表示的数为b,根据题意列出方程计算即可得解.【解答】解:(1)点A′:−3×2+1=−5.故答案为:−5.(2)设点B表示的数为a,则2a+1=2,.解得a=12.故答案为:12(3)设点E表示的数为b,则2b+1=b,解得b=−1.故答案为:−1.26.【答案】解:在数轴上表示出各有理数,如下图所示:【考点】数轴【解析】利用数轴表示数的方法画出数轴进行描点即可.【解答】解:在数轴上表示出各有理数,如下图所示:27.【答案】解:(1)∵0−2=−2,−2−3=−5,−5+8=+3,∴A,B,C三点表示的数分别是−2,−5,+3.(2)∵C点表示的数是3,∴该蚂蚁实际上是从原点出发向右爬行了3个单位长度.【考点】数轴【解析】此题暂无解析【解答】解:(1)∵0−2=−2,−2−3=−5,−5+8=+3,∴A,B,C三点表示的数分别是−2,−5,+3.(2)∵C点表示的数是3,∴该蚂蚁实际上是从原点出发向右爬行了3个单位长度.28.【答案】−5,10【考点】数轴【解析】此题暂无解析【解答】此题暂无解答29.【答案】−4,12,7【考点】数轴【解析】(1)根据数轴上点的位置找出A与B表示的点即可;(2)在数轴上找出表示+3与−1.5的两个点C与D即可;(3)找出B、C之间的距离,以及A,C之间的距离即可.【解答】解:(1)点A表示的数是−4,点B表示的数是1;(2)根据题意得:;(3)根据题意得:BC=|3−1|=2,AC=|3−(−4)|=7.30.【答案】解:【考点】数轴【解析】应有原点,正方向和单位长度,进而根据距离原点的距离和正负数的相关位置标出所给数即可.【解答】解:31.【答案】解:如图所示;【考点】数轴【解析】根据正数在原点的右边,负数在原点的左边以及距离原点的距离可得各数在数轴上的位置.【解答】解:如图所示;32.【答案】解:如图:(1)有最小的正整数,是1;(2)有最大的负整数,是−1;(3)不超过2的自然数有0,1,2.【考点】数轴【解析】(1)最小的正整数是1;(2)最大的负整数是−1;(3)不超过2的自然数有0,1,2.【解答】解:如图:(1)有最小的正整数,是1;(2)有最大的负整数,是−1;(3)不超过2的自然数有0,1,2.33.【答案】(1)3(2)解:①7;②7;−4;8;③−5或9.【考点】数轴【解析】此题主要考查了一元一次方程的应用以及数轴的应用,正确利用分类讨论得出是解题关键.(1)直接利用已知得出中点进而得出答案;(2)①利用−1表示的点与5表示的点重合得出中点,进而得出答案;②利用数轴再结合A、B两点之间距离为12,即可得出两点表示出的数据;③利用②中A,B的位置,利用分类讨论进而得出m的值.【解答】解:(1)折叠纸面,使1表示的点与−1表示的点重合,则对称中心是0,∴−3表示的点与3表示的点重合,故答案为3.(2)∵−1表示的点与5表示的点重合,∴对称中心是数2表示的点,①−3表示的点与数7表示的点重合.故答案为7.②若数轴上A、B两点之间的距离为12(A在B的左侧),则点A表示的数是2−6=−4,点B表示的数是2+6=8;故答案为7;−4;8.③当点M在点A左侧时,则8−m−(−4−m)=14,解得:m=−5;当点M在点B右侧时,则m−(−4)+m−8=14,解得:m=9;综上,m=−5或9.故答案为−5或9.34.【答案】解:(1)画出数轴如下:,A村在原点以西2km,B村在A村以西3km,C村在B村以东8km;(2)由(1)可知,C村离A村的距离为2+3=5(km);(3)邮递员一共行驶了2×8=16(km).【考点】数轴【解析】(1)根据已知条件在数轴上表示出来即可;(2)根据题意列出算式,即可得出答案;(3)根据数轴可得邮递员骑行的路程是BC的2倍,据此即可求解.【解答】解:(1)画出数轴如下:,A村在原点以西2km,B村在A村以西3km,C村在B村以东8km;(2)由(1)可知,C村离A村的距离为2+3=5(km);(3)邮递员一共行驶了2×8=16(km).35.【答案】小明一共骑行了14千米.【考点】数轴【解析】(1)根据运动方向,在数轴上标出即可;(2)可直接算出来,也可从数轴上找出这段距离;(3)数轴上这些点的绝对值之和.【解答】解:(1)如图所示,(2)C离A有7km;(3)4+2+5+3=14km,答:小明一共骑行了14千米.36.【答案】(1)根据下面给出的数轴,解答下面的问题:,(2)A:β:−2.5.(3)−1或3;(4)0.5(5)−5.5,3.5;【考点】数轴【解析】(1)【解31J(2)由数轴易得A:1B:−2.5(3)1+2=3或1−2=−1,则与点A的距离为2的点为−1或3;(4)经过折叠,A点与−3表示的点重合,说明中点时−1,则B:−2.5与0.5重合;(5)−1+4.5=3.5,−1−1−4.5=−5.5,故M:−5.5,N:3.5【解答】此题暂无解答37.【答案】解:根据题意得:b−c<0,a+c>0,则原式=c−b+a+c=a−b+2c.【考点】数轴【解析】根据数轴上点的位置确定出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据题意得:b−c<0,a+c>0,则原式=c−b+a+c=a−b+2c.38.【答案】解:(1)∵点B表示−3,点C表示2.5,2∴BC=|−3−2.5|=4;2(2)∵点A表示−4,点C表示2.5,∴AC=|−4−2.5|=6.5;(3))∵点A表示−4,点D表示5,∴BC=|−4−5|=9.【考点】数轴【解析】(1)、(2)、(3)根据两点间的距离公式求解即可.【解答】,点C表示2.5,解:(1)∵点B表示−32∴BC=|−3−2.5|=4;2(2)∵点A表示−4,点C表示2.5,∴AC=|−4−2.5|=6.5;(3))∵点A表示−4,点D表示5,∴BC=|−4−5|=9.39.【答案】−1,0,1,−2,−1,0,1,2,−3,−2,−1,0,1,2,3,401,2n+15,21(3)当线段AB起点在整点时覆盖1001个数;当线段AB起点不在整点,即在两个整点之间时覆盖1000个数.【考点】数轴【解析】(1)①②③根据题意画出数轴,根据数轴上各数的位置即可得出结论;根据①②③中整数的个数,找出规律即可;(2)、(3)根据(1)中的规律即可得出结论.【解答】解:(1)如图所示:①(2)∵从−n到n(n为正整数)有2n+1个整数,∴−2.9到2.9有2×2+1=5个整数;从−10.1到10.1有2×10+1=21个整数.(3)当线段AB起点在整点时覆盖1001个数;当线段AB起点不在整点,即在两个整点之间时覆盖1000个数.40.【答案】解:(1)如图:(2)根据(1)可得:小明家与小刚家相距4−(−5)=9(千米).【考点】数轴【解析】根据数轴的作法可得(1),进而根据在数轴上确定两点的距离方法求得小明家与小刚家相距多远.【解答】解:(1)如图:(2)根据(1)可得:小明家与小刚家相距4−(−5)=9(千米).。
七年级数学《数轴》练习题精选
七年级数轴基础练习知识来袭:小试牛刀:1.在数轴上表示的两个数中,的数总比的数大。
2.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。
3.在数轴上,离原点距离等于3的数是。
4.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。
5.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是。
6.与原点距离为 2.5个单位长度的点有个,它们表示的有理数是。
7.到原点的距离不大于3的整数有个,它们是:。
若数轴上表示―3的点记为A,表示2的点记为B,那么把A点向____边移动_____个单位长度就得到了B点.8.下列说法错误的是()A.没有最大的正数,却有最大的负数B.数轴上离原点越远,表示数越大C.0大于一切非负数D.在原点左边离原点越远,数就越小9.下列结论正确的有()个:①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0③正数,负数和零统称有理数④数轴上的点都表示有理数 A.0B.1C.2D.310.数轴上A和B点表示的数分别为-2和1,要使A点表示的数是B的3倍,应把A点()A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位11.判断下列所画的数轴是否正确,如不正确,请指出.12.在数轴上,原点及原点左边的点所表示的数是()A.正数 B.负数 C.非负数 D.非正数13.与原点距离是2.5个单位长度的点所表示的有理数是()A.2.5 B.-2.5 C.±2.5 D.这个数无法确定14.关于-这个数在数轴上点的位置的描述,正确的是()A.在-3的左边 B.在3的右边C.在原点与-1之间D.在-1的左边15.不小于-4的非正整数有()A.5个 B.4个 C.3个 D.2个16.用“>”、“<”或“=”填空.(1)-10______0;(2)________-;(3)-1 42312322311_______-;10932(4)-1.26________1;(5)________-;(6)-_______3.14;17.在数轴上到表示-2的点相距8个单位长度的点表示的数为______.18.图1-13中表示数轴的是()《数轴》课后练习1.比较两个有理数大小的两种方法:一、(用数轴来比较):在数轴上表示的两个数中,的数总比的数大;二、(用法则来比较):都大于零,都小于零,正数都负数。
人教版七年级数学用数轴表示数练习题
人教版七年级数学用数轴表示数练习题(一)(1)在数轴上,表示一个数的点到原点的( )叫做这个数的( )(2)式子∣-3.7∣表示的意义是 。
—8的绝对值表示它离开原点的距离是 个单位,记作 ;(3)3.5的相反数是 ,—115和 是互为相反数, 的相反数是2010; (4)a 和 互为相反数,也就是说,—a 是 的相反数。
由上问题可以知道,10到原点的距离是 ,—10到原点的距离也是 到原点的距离等于10的数有 个。
这时我们就说10的绝对值是 ,—10的绝对值也是 ;例如,—3.8的绝对值是 ;7的绝对值是 ;—613的绝对值是 一般地,数轴上表示数a 的点与原点的距离叫做数a 的 ,记作 。
(三)(1) -∣+24∣= . ∣—3.1∣= ,(2)如果a a 22-=-,则a 的取值范围是 …………………………( )A .a >OB .a ≥OC .a ≤OD .a <O(3) 由绝对值的定义可知:一个正数的绝对值是 ;一个负数的绝对值是它的 ;0的绝对值是 。
(4)简化符号:-(+0.75)= ,-(-68)= ,(5)0的相反数是 .(四)(1)+∣—13∣= ,∣0∣= ; (2)7=x ,则______=x ; 7=-x ,则______=x .(3)如果3>a ,则______3=-a ,______3=-a .(4)简化符号:-(-0.5 )= ,-(+3.8)= ;(5)-(-1.6)的相反数是 ,2的相反数是 ,a-b 的相反数是 ;(6)相反数等于它本身的数是 ,相反数大于它本身的数是 ;(7)一个正数的绝对值是 ;一个负数的绝对值是它的 ; 0的绝对值是 。
(8)数轴上表示相反数的两个点和原点的距离 。
(五)1.已知a>0,b<0,且|a|<|b|,则a+b 是( )。A.正数B.负数C.0D.不确定2.仔细思考以下各对量:①胜二局与负三局;②气温升高3︒C 与气温为-3︒C ;③盈利3万元与支出3万元;④两场篮球比赛,甲、乙两队的比分分别为65:60与60:65其中具有相反意义的量的有( )A 、1对B 、2对C 、3对D 、4对3、 -4的相反数是() A. 4 B. 41 C. 41- D.-4。
初一数学数轴与坐标练习题及答案
初一数学数轴与坐标练习题及答案1. 将下列数标在数轴上:a) -3b) 2c) 0d) -5答案:a) 在数轴上标记点-3b) 在数轴上标记点2c) 在数轴上标记点0d) 在数轴上标记点-52. 在数轴上标记以下数的坐标,并写出它们的相反数:a) 4b) -7c) -1答案:a) 在数轴上标记点4,其相反数为-4b) 在数轴上标记点-7,其相反数为7c) 在数轴上标记点-1,其相反数为13. 用数轴表示以下数对的位置,并填写空格中的数字:a) (2, -2)b) (-3, 3)c) (0, 0)答案:a) 在数轴上标记点2和-2,中间有4个格子b) 在数轴上标记点-3和3,中间有6个格子c) 在数轴上标记点0和0,中间有0个格子4. 用数轴表示下列范围,并写出范围内的整数:a) -2 ≤ x ≤ 2b) -5 < x ≤ 3c) -∞ < x < 1答案:a) 在数轴上标记点-2和2,范围内的整数为-2, -1, 0, 1, 2b) 在数轴上标记点-5和3,范围内的整数为-4, -3, -2, -1, 0, 1, 2, 3c) 在数轴上标记点-∞和1,范围内的整数为-∞, -5, -4, -3, -2, -1, 05. 将下列方程在数轴上表示出来,并写出方程的解集:a) x + 3 = 1b) 2x - 5 = -3c) -4x + 6 = 2x + 10答案:a) 在数轴上标记点1和3,方程的解集为{x | x = -2}b) 在数轴上标记点-3和1,方程的解集为{x | -3 ≤ x ≤ 1}c) 在数轴上标记点-2和3,方程的解集为{x | x = 1.6}6. 在数轴上表示以下不等式,并写出其解集:a) x > 2b) x ≤ -1c) -3 < x ≤ 4答案:a) 在数轴上标记点2,并将2之后的部分标记为箭头,不等式的解集为{x | x > 2}b) 在数轴上标记点-1,并将-1及其左侧的部分标记为箭头,不等式的解集为{x | x ≤ -1}c) 在数轴上标记点-3和4,并用实心圆圈标记-3,将-3之后到4的部分标记为箭头,不等式的解集为{x | -3 < x ≤ 4}通过以上习题,我们练习了数轴和坐标系的相关概念,并学会了在数轴上表示数、范围、方程和不等式等内容。
七年级上册数学数轴动点压轴题
七年级上册数学数轴动点压轴题题目:在数轴上,A、B、C、D四个点按照顺序依次分布,且满足以下条件:1.A点的坐标为-4;2.C点的坐标为2.5;3.AB段的长度是1.5;4.AB段与CD段的中点是E,且E的坐标为-0.25;5.AB段与CD段的中点E与C点的连线CE交AB延长线于点F;6.点F到C点的距离是4.5。
请你在数轴上画出A、B、C、D四个点,并找出满足以上条件的点E和F的位置,并求出CD段的长度。
提示:1.首先画出A和C,根据给定的坐标;2.根据AB段的长度和E的坐标,可推断出B的坐标;3.根据E与C的连线,可以找到F的位置;4.使用数轴上两点之间的距离公式求CD段的长度。
答案:根据题目所给的条件,我们可以在数轴上画出A、B、C、D四个点: A: -4 B: -2.5 C: 2.5 D:(未知)根据条件3,AB段的长度是1.5,所以AB段的长度将-4和-2.5之间的距离平均分成3份,每份的长度为0.5。
由此可推断出B的坐标为-4+0.5=-3.5。
根据条件4,AB段与CD段的中点是E,并且E的坐标为-0.25。
所以AE的长度是-0.25-(-4)=3.75。
由于AB段和CD段的中点E的坐标为-0.25,所以CE的长度是2.5-(-0.25)=2.75。
根据条件5,点F是E与C的连线CE延长线上的一个点。
根据条件6,F到C点的距离是4.5。
所以CF的长度是4.5。
现在我们已经知道了CE的长度是2.75,CF的长度是4.5,所以DE的长度是CE-CF=2.75-4.5=(-1.75)。
那么我们可以得到A、B、C、D四个点的坐标:A: -4 B: -3.5 C: 2.5 D: 2.5-(-1.75)=4.25所以CD段的长度为D-C=4.25-2.5=1.75。
七年级数学上册 有理数、数轴练习题1 试题
乏公仓州月氏勿市运河学校有理数数轴根底稳固题:1.在数轴上表示的两个数中,的数总比的数大。
2.在数轴上,表示-5的数在原点的侧,它到原点的距离是个单位长度。
3.在数轴上,表示+2的点在原点的侧,距原点个单位;表示-7的点在原点的侧,距原点个单位;两点之间的距离为个单位长度。
4.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,那么与此位置相对应的数是。
5.与原点距离为个单位长度的点有个,它们表示的有理数是。
6.到原点的距离不大于3的整数有个,它们是:。
7.以下说法错误的选项是〔〕A.没有最大的正数,却有最大的负数B.数轴上离原点越远,表示数越大C.0大于一切非负数D.在原点左边离原点越远,数就越小8.以下结论正确的有〔〕个:①规定了原点,正方向和单位长度的直线叫数轴②最小的整数是0 ③正数,负数和零统称有理数④数轴上的点都表示有理数A.0B.1C.2D.39.在数轴上,A点和B点所表示的数分别为-2和1,假设使A点表示的数是B点表示的数的3倍,应把A点〔〕A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位10.在数轴上画出以下各点,它们分别表示:+3, 0,-314, 112,-3,-5并把它们用“<〞连接起来。
应用与提高11.小明的家〔记为A 〕与他上学的〔记为B 〕,书店〔记为C 〕依次座落在一条东西走向的大街上,小明家位于西边30米处,书店位于东边100米处,小明从沿这条街向东走40米,接着又向西走了70米到达D 处,试用数轴表示上述A 、、B 、C 、D 的位置。
12.(共8分)*观察下面的一列数:21,-32,41,-54,61,76 …… 请你找出其中排列的规律,解答〔1〕第9个数是________,第14个数是________.〔2〕第2021个数是多少?〔3〕如果这一组数据无限排列下去,与哪两个数越来越接近?13. (共8分)#在数轴上有三个点A 、B 、C 如下列图,请答复:〔1〕把点A 向右移动7个单位后,A 、B 、C 三个点表示的数那个最小,是多少?〔2〕把B 点向左移动5个单位后,这是A 点所表示的数比B 所表示的数大多少?〔3〕如果让A 表示的数最大,那么A 点应该怎样移动,至少移动几个单位?中考链接14.如图,数轴上的点A 所表示的数是a ,那么A 点到原点的距离是 。
湘教版 七年级数学上册 第一单元 有理数 数轴 练习题
1.如图,数轴的单位长度为1,若点B和点C所表示的两个数的绝对值相等,则点A表示的数是()A. -4B. -3 C -2 D. -12.在数轴上表示下列各数,并按照从小到大的顺序用“< ”连接起来.+3, —1, 一(一4), 0, —2,—22.3.如图,数轴上表示-2.75的点是( )A.点E B.点F C.点G D.点H4.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是( )5.如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为( )6.大于-2.5而小于3.5的整数共有______个.7.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )8.如图,数轴上的点P表示的数是-1,将点P向右移动3个单位长度得到点P′,则点P′表示的数是。
9.(1) .小明写作业时不慎将墨水滴在数轴上,根据下图,判 定墨迹盖住部分的整数的和是______.(2).在单位长度是1厘米的数轴上随意画出一条长为1000 厘米的线段48,求线段48盖住的整点的个数.10.有理数a,b 在数轴上的位置如图,则下面的关系式中正确的有( )①a - b > 0; ②a + b > 0; ③ab > 0; ④|a| — |b|〉0; ⑤ b 1a 1< ; ⑥ 0a >bA. 2个B. 3个C. 4个 D ・ 5个11.有理数a ,b 在数轴上位置如图,下列结论正确的有________ (填序号).①a + 6 > 0; ②a + b< 0; ③ a 2b > 0; ④b a a < 0;⑤ b 1a 1<12. (1)如图,指出数轴上点A ,B ,C ,D ,E 分别表示什么数;(2)到原点的距离相等的点是哪几个?它们是什么关系?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册数轴练习题( )
1.在数轴上, 一点从原点开始, 先向右移动2个单位, 再向左移动3个单位后到达终点, 这个
终点表示的数是( ) .
A. 5
B. 1
C.-1
D.-5
2.下列一组数: 1, 4, 0, -2
1, -3在数轴上表示的点中, 不在原点右边的点的个数为( ) . A. 2 B. 3 C. 4 D. 5
3.数轴上点A 表示-3, 点B 表示1, 则这两点间的点表示的有理数的个数为( ) .
A. 3
B. 2
C.有限个
D.无数个
4.已知数轴上的点A 到原点的距离是2, 那么在数轴上到点A 的距离是3的点所表示的数有
( ) .
A. 1个
B. 2个
C. 3个
D. 4个
5. 已知实数m, n 在数轴上的对应点的位置如图所示, 则下列判断正确的是( )
A. m>0
B. n<0
C. m n<0
D. m-n>0
6.如 图, 在 数 轴 上 点 A 表 示 的 数 可 能 是( )
A. 1. 5
B.-1. 5
C.-2. 6
D. 2. 6
7.如图, 在数轴上点A 、 B 对应的实数分别为a, b, 则下列关系正确的是( ) .
A. a+ b>0
B. a- b>0
C. a b> 0
D.b
a >0
8.在数轴上, 点 M 表示的数是-2, 将它先向右移动4. 5个单位, 再向左移动5个单位到达点
N, 则点N 表示的数是 ( )
9.在数轴上, 表示数( )的点到表示数-5的点之间的距离是3.
10.一个点从数轴上的原点开始, 先向右移动3个单位长度,再向左移动5个单位长度从图中
可以看出, 终点表示的数是-2, 请同学们参照上图, 完成填空:
( 1) 如果点A 表示数-3, 将点A 向右移动7个单位长度到达点B, 那么终点B 表示的数
是( ) ;
( 2) 如果点A 表示数3, 将点A 向左移动7个单位长度,再向右移动5个单位长度到达点B
表示的数是 ( ).
11.在数轴上的点 M 对应的数是-2
3
2 那么与点 M 相距1个单位长度的点N 所对应的数 是多少?
12.画出数轴, 在数轴上画出表示下列数的点, 并按从小到大的顺序用“ <” 连接起来. -5, 2. 5, 0, -12
1, 4
1 3.中国女足名将韩端在自由走活动训练中, 从出发点向东走了1 0 0m, 然后返回向西走了 30m, 又返回向东走了6 0m,问此时韩端在出发点的哪个方向? 相距多远?
( 试用数轴进行表示)
14.一滴墨水洒在一个数轴上, 如图所示, 试根据图中标出的数值, 求出被墨迹盖住的整数共 有多少个?.
15. .如图所示, 点A 与点B 之间是长3个单位长度的木条,当木条一端A 落在-1 0与-9之间 时, 请问点B 落在哪两个整数之间
1 6.在数轴上, 点A 表示-6, 点B 表示+4, 请你将线段A B 五等分, 分别得点C 、 D 、 E 、 F, 再写出它们各表示什么数?
1 7.一座三层高的楼房不慎起火, 一位消防队员搭梯爬往三楼救人, 当他爬到梯子的正中一 级时, 二楼的窗口喷出火来, 他迅速往下退了5级, 当火过去后, 他又向上爬了9级, 这时有 重物从楼顶掉了下来, 他又往下退了3级,幸好没有砸着他, 他又向上爬了8级, 这时他距梯 子的顶端还有7级, 请利用数轴解答, 这个梯子共有多少级?。