SPSS软件及应用实验报告

合集下载

spss实验报告,心得体会

spss实验报告,心得体会

spss实验报告,心得体会篇一:SPSS实验报告SPSS应用——实验报告班级:统计0801班学号:1304080116 姓名: 宋磊指导老师:胡朝明2010.9.8一、实验目的:1、熟悉SPSS操作系统,掌握数据管理界面的简单的操作;2、熟悉SPSS结果窗口的常用操作方法,掌握输出结果在文字处理软件中的使用方法。

掌握常用统计图(线图、条图、饼图、散点、直方图等)的绘制方法;3、熟悉描述性统计图的绘制方法;4、熟悉描述性统计图的一般编辑方法。

掌握相关分析的操作,对显著性水平的基本简单判断。

二、实验要求:1、数据的录入,保存,读取,转化,增加,删除;数据集的合并,拆分,排序。

2、了解描述性统计的作用,并1掌握其SPSS的实现(频数,均值,标准差,中位数,众数,极差)。

3、应用SPSS生成表格和图形,并对表格和图形进行简单的编辑和分析。

4、应用SPSS做一些探索性分析(如方差分析,相关分析)。

三、实验内容:1、使用SPSS进行数据的录入,并保存: 职工基本情况数据:操作步骤如下:打开SPSS软件,然后在数据编辑窗口(Data View)中录入数据,此时变量名默认为var00001,var00002,…,var00007,然后在Variable View窗口中将变量名称更改即可。

具体结果如下图所示:输入后的数据为:将上述的数据进行保存:单击保存即可。

2、读取上述保存文件:选择菜单File--Open—Data;选择数据文件的类型,并输入文件名进行读取,出现如下窗口:选定职工基本情况.sav文件单击打开即可读取数据。

3、对上述数据新增一个变量工龄,其操作步骤为将当前数据单元确定在某变量上,选择菜单Data—Insert Variable,SPSS自动在当前数据单元所在列的前一列插入一2个空列,该列的变量名默认为var00016,数据类型为标准数值型,变量值均是系统缺失值,然后将数据填入修改。

结果如下图所示:篇二:SPSS相关分析实验报告本科教学实验报告(实验)课程名称:数据分析技术系列实验实验报告学生姓名:一、实验室名称:二、实验项目名称:相关分析三、实验原理相关关系是不完全确定的随机关系。

spss统计软件及其应用报告实验四

spss统计软件及其应用报告实验四

实验四方差分析开课实验室:年月日姓名成绩年级专业学号1221116实验小组成员指导教师侯艳红一、实验内容(一)单因素方差分析(One-Way ANOVA过程)(二)多因素方差分析(Univariate过程)(三)协方差分析(Univariate过程)二、实验目的学习利用SPSS进行单因素方差分析、多因素方差分析和协方差分析。

三、实验步骤(简要写明实验步骤)(一)单因素方差分析(One-Way ANOVA过程)实验内容:某城市从4个排污口取水,进行某种处理后检测大肠杆菌数量,单位面积内菌落数如下表所示,请分析各个排污口的大肠杆菌数量是否有差别。

排污口 1 2 3 4大肠杆菌数量9,12,7,5 20,14,18,12 12,7,6,10 23,13,16,21 实验步骤:1.建立数据文件。

定义变量名:编号、大肠杆菌数量和排污口的变量名分别为x1、x2、x3,之后输入原始数据。

2. 选择菜单“Analyz e→Compare Means→One-way ANOV A”,弹出单因素方差分析对话框。

从对话框左侧的变量列表中选择变量”大肠杆菌数量”,使之进入“Dependent List”列表框;选择“排污口”进入“Factor”框。

3.选择进行各组间两两比较的方法。

单击“Post Hoc”,弹出“One-Way ANOVA: Post Hoc Multiple Comparisons”。

在“Equal Variances Assumed”复选框组中选择LSD.4.定义相关统计选项以及缺失值处理方法。

单击“Options”按钮,弹出“One-Way ANOV A: Options”对话框。

在“Statistics”复选框组选择Descriptive 和Homogeneity-of-variance.同时选中“Means plot”复选框。

5.单击“OK”按钮,执行单因素方差分析,得到输出结果。

(二)多因素方差分析(Univariate过程)实验内容:某城市从4个排污口取水,经两种不同方法处理后,检测大肠杆菌数量,单位面积内大肠杆菌数量如下表所示,请检验它们是否有差别。

SPSS上机实验报告一

SPSS上机实验报告一

1.数据文件的建立。

打开SPSS,在数据编辑器的变量视图中,输入变量的属性特征,如Name,Width,Decinmal等。

以习题一为例,输入为下:返回数据编辑库,数据视图,直接录入数据。

习题一的数据表如下:点击Save,输入文件名将文件保存。

2.数据的整理数据编辑窗口的Date可提供数据整理功能。

其主要功能包括定义和编辑变量、观测量的命令,变量数据变换的命令,观测量数据整理的命令。

以习题一为例,将上图中的数据进行整理,以GDP值为参照,升序排列。

数据整理后的数据表为:整理后的数据,可以直观看出GDP值的排列。

3、频数分析。

以习题一为例(1).单击“分析→描述统计→频率”(2)打开“频率”对话框,选择GDP为变量(3)单击“统计量”按钮,打开“统计量”对话框.选择中值及中位数。

得到如下结果:(4)单击“分析→描述统计→探索”,打开“探索”对话框,选择GDP(亿元),输出为统计量。

结果如下:4、探索分析以习题2为例子:(1)单击“分析→统计描述→频率”,打开“频率”对话框,选择“身高”变量。

(2)选择统计量,分别选择百分数,均值,标准差,单击图标。

的如下结果:(3)单击“分析→统计描述→探索”,选择相应变量变量,单击“绘制”,选择如下图表,的如下结果:从上述图标可以看出,除了个别极端点以外,数据都围绕直线上下波动,可以看出,该组数据,在因子水平下符合正态分布。

4.交叉列联表分析:以习题3,原假设是吸烟与患病无关备择假设是吸烟与患病有关操作如下:单击“分析→统计描述→交叉表”,打开“交叉表”对话框,选择相应变量变量,单击精确,并选择“统计量”按钮,选择“卡方”作为统计量检验,然后单击“单元格”按钮,选择“观测值”和“期望值”进行计数。

得出分析结果如下:分析得出卡方值为7.469,,自由度是1,P值为0.004<0.05拒绝原假设,故有大于95%的把握认为吸烟和换慢性气管炎有关。

习题4:原假设是性别与安全性能的偏好无关备择假设是性别与安全性能的偏好有关操作如下:单击“分析→统计描述→交叉表”,打开“交叉表”对话框,选择相应行列变量然后选择“统计量”按钮,以“卡方”作为统计量检验.单击“单元格”按钮,选择“观测值”和“期望值”进行计数单击“确定”,得出分析结果如下:分析得出卡方值为19自由度是4,P值为0.001<0.05拒绝原假设,故有99.9%的把握认为性别与安全性能的偏好有关5实验作业补充。

【精品】spss实验报告

【精品】spss实验报告

【精品】spss实验报告
本报告主要研究了SPSS实验的结果。

通过对原始数据的收集、预处理、描述性统计信息和统计图分析,讨论了实验结果。

首先,本文进行了实验数据的收集,共收集了100个实验样本。

收集的数据包括以下几个变量:性别(男士/女士),年龄,收入和教育水平。

收集的数据将交给SPSS模型进行处理。

其次,进行了数据的预处理,包括数据的清洗、缺失值的处理和异常值的处理等。

根据数据的性质,进行了适当的数据转换。

第三,计算了一些描述性统计信息,如数据中变量的平均数、标准差、最小值和最大值等。

然后,使用绘图功能绘制出直方图,用于描述数据中变量的分布情况。

箱线图用于刻画变量的离散程度,并可以汇总和识别变量的一些特征。

最后,进行多元统计分析,如相关性分析、回归分析等,以深入研究不同变量之间的关系。

总之,通过对SPSS实验的有效处理,可以得出数据属性、分布特征、变量关系等有效结果,有助于对实践事件做出正确判断,并且在改进实验步骤时也可以添加核心变量,从而得到更准确的结果。

spss实验报告

spss实验报告

SPSS实验报告
一、实验目的
明确SPSS提供了哪几种参数检验方法,掌握SPSS单样本t检验、两独立样本t检验和两配对样本t检验的基本思想,能够利用概率P-值以及置信区间进行统计决策,并掌握其数据组织方式和具体操作。

二、实验题目
1、在某年级随机抽取35名大学生,调查他们每周的上网时间情况,得到的数据如下(单位:小时):
(1)请利用SPSS对上表数据进行描述统计,并绘制相关的图形。

(2)基于上表数据,请利用SPSS给出大学生每周上网时间平均值的95%的置信区间。

2、如果将第2章第9题的数据看做来自总体的随机样本,试分析男生和女生的课程平均分是否存在显著差异。

三、实验步骤
1、将数据输入数据窗口
(1)Analyze Descriptive Statistics Frequencies,在弹出的Frequencies对话框中进行操作。

(2)Analyze Compare Means One-Sample T test
2、Transform Compute,在弹出的对话框中进行如下操作,运行得到学生的课程平均分;
Analyze Compare Means Independent-Samples T test,在弹出的对话框中进行如下操作,对男女生的课程平均分进行检验。

3、Analyze Compare Means Paired-Samples T test
四、实验结果
1、(1)
(2)
2、
3、。

管理里统计学SPSS软件基本窗口熟悉 实验报告

管理里统计学SPSS软件基本窗口熟悉    实验报告

SPSS软件基本窗口熟悉
一、实验目的与要求
1.了解SPSS软件的基本构成。

2.熟悉SPSS软件的启动与退出。

3.掌握常用窗口的操作。

二、实验内容提要
1. SPSS基本操作界面的熟悉
2. SPSS基础设置的操作
三、实验步骤
1、首先打开windows系统, 在“开始”菜单中找到IBM SPSS Statistics组, 选择其中
的启动项IBM SPSS Statistics 20, 就会启动IBM SPSS Statistics 20, 这时你就很清楚地看到spss的基本操作界面, 同时可以根据需求对各个窗口进行操作。

若退出该软件, 则选择“文件”→“退出”菜单项, 或直接关闭窗口, 即可退出Spss。

2、Spss是多窗口软件, 用时最多四种, 下面只做简要说明。

3、数据窗口
首先找到菜单栏, 点击分析→描述统计→频率, 在里面选着合适的一项点击, 最后确定即可。

2、输出窗口
点击主窗口上方的“分析—→频率“, 可以在结果窗口中看到想要分析的数据的结果
结果如下图: 4、语法窗口
5、脚本窗口
四、实验结果与结论
通过spss基本操作界面的熟悉和基础设置的操作, 目前我已熟悉了本软件的基本操作界面和基础设置的操作, 发现SPss这个软件有一定的优势和劣势。

这为我以后的学习打下了一定的基础。

在上述的4类窗口都可以同时打开多个数据文件, 或多个结果文件, 也就
是说实际工作中使用的窗口数可以远远多于4个。

而此时spss系统对数据窗口、输出窗口都是使用工作名称来进行定位的。

spss分析实验报告

spss分析实验报告

SPSS分析实验报告引言SPSS(统计包括社会科学)是一种常用的统计分析软件,广泛应用于社会科学领域的数据分析。

本文将以“step by step thinking”为思维导向,详细介绍如何使用SPSS进行实验数据的分析和结果解读。

步骤一:数据导入首先,我们需要将实验数据导入SPSS软件中。

打开SPSS软件,点击“文件”菜单,并选择“导入数据”。

选择数据文件所在位置,并按照指示完成数据导入过程。

确认数据导入完成后,我们可以开始进行下一步分析。

步骤二:数据清洗在进行实验数据分析之前,我们需要对数据进行清洗,以确保数据的准确性和可靠性。

数据清洗的步骤包括删除重复数据、处理缺失值和异常值等。

通过点击SPSS软件中的“数据”菜单,我们可以找到相应的数据清洗工具,并按照指示进行操作。

步骤三:描述性统计描述性统计是对数据进行总体特征描述的过程。

在SPSS软件中,我们可以使用“统计”菜单中的“描述统计”工具进行描述性统计分析。

该工具可以计算数据的均值、标准差、中位数等统计量,为后续的分析提供参考。

步骤四:检验假设在进行实验数据分析时,我们通常需要检验某些假设是否成立。

SPSS软件提供了多种假设检验工具,如t检验、方差分析等。

通过点击“分析”菜单,并选择相应的假设检验工具,我们可以输入所需的参数,并进行假设检验。

根据检验结果,我们可以判断实验数据是否支持或拒绝了我们的假设。

步骤五:相关性分析相关性分析用于研究两个或多个变量之间的关系。

SPSS软件中的“相关”工具可以计算出变量之间的相关系数,并绘制相应的相关图表。

通过相关性分析,我们可以了解变量之间的线性关系,并得出相关系数的显著性程度。

步骤六:回归分析回归分析是一种用于预测和解释变量之间关系的统计方法。

在SPSS软件中,我们可以使用“回归”工具进行回归分析。

通过输入自变量和因变量,并进行回归分析,我们可以得到回归方程和相关统计指标,进而进行预测和解释。

结果解读根据以上分析步骤,我们可以得到一系列实验数据的统计分析结果。

SPSS实验报告完整版

SPSS实验报告完整版

SPSS实验实验课程专业统计软件应用上课时间学年学期周(年月日—日)学生姓名学号所在学院指导教师第五章第一题通过样本分析,结果如下图One-Sample StatisticsN Mean Std. Deviation Std. Error Mean 成绩27 77.9312.111 2.331One-Sample TestTest Value = 70t df Sig. (2-tailed)Mean Difference 95% Confidence Interval of theDifferenceLower Upper成绩 3.400 26.0027.926 3.13 12.72从图看出,sig=0.002,小于0.05,因此本班平均成绩与全国平均成绩70分有显著性差异。

第五章第二题通过独立样本分析,结果如下图Group Statistics成绩N Mean Std. Deviation Std. Error Mean成绩1=男10 84.0011.528 3.6450=女10 62.9018.454 5.836Independent Samples TestLevene's Test forEquality of Variances t-test for Equality of MeansF Sig. t dfSig.(2-tailed)MeanDifferenceStd. ErrorDifference95% Confidence Interval of theDifferenceLower Upper成绩Equalvariancesassumed1.607.221 3.06718.007 21.100 6.881 6.64435.556Independent Samples TestLevene's Test forEquality of Variances t-test for Equality of MeansF Sig. t dfSig.(2-tailed)MeanDifferenceStd. ErrorDifference95% Confidence Interval of theDifferenceLower Upper成绩Equalvariancesassumed1.607.221 3.06718.007 21.100 6.881 6.64435.556Equalvariancesnotassumed3.06715.096.008 21.100 6.881 6.44235.758在显著性水平为0.05的情况下,t统计量的概率p为0.007,故拒绝零假设,既两样本的均值不相等,既男女生成绩有显著性差异。

统计分析软件应用SPSS-主成分分析实验报告

统计分析软件应用SPSS-主成分分析实验报告

本科学生综合性、设计性实验报告实验课程名称统计分析软件应用开课学期2010至2011学年下学期上课时间2011 年4 月25 日辽宁师范大学教务处编印、实验方案、实验目的:掌握主成分分析的思想和具体步骤。

掌握SPSS实现主成分分析的具体操作,并对处理结果做出解释。

5、参考文献:[1]卢纹岱.SPSS for Window銃计分析[M].电子工程出版社,2006[2]郭显光.如何用SPS歎件进行主成分分析[J].统计与信息论坛,1998, (2)[3]何晓群.现代统计分析方法与应用[M].中国人民大学出版社,1998[4]余建英、何旭宏.数据统计分析与SPSS^用[M].人民邮电出版社,2003、实验报告1、 实验目的、设备与材料、理论依据、实验方法步骤见实验设计方案2、 实验现象、数据及结果表1描述性统计量表表2主成分因子荷载矩阵表表3相关系数矩阵表表4公因子方差表Descriptive Statistics图1碎石图Component U 刨乡至拜占,3 GQmponenls extrudedCommunalitiesExtraction Method: Principal Component Analysis.表总方差分解表Total Variance ExplainedCompoiieint initial EigenvaluesExtraction Sums of Squared Loadings Tota J cf Variance Cumulabv? % Total % of '/a™nee Cumulative %1 3&14 48.929 +£.929 3.914 4S929 48.92921 312 23.BSS 723271.912 23B96 72 S2? 3■1.430 17.9911.43917 曲■!&G.S1B4 S79 7.335 SB.'353 5,1441,797 9^.3506.012150 100.000 76 13E-Q13 7.66E-017 1Q0JO0S-4.2E-016-4.25E-015IQO.OOQExtraction Method: Prkicipal Component AnalysisInitial Extraction赔付率1.000 .964 净收入与总收入之比 1.000 .993 投资收益率 1.000 .923 再保险率 1.000 .968 总资产报酬率 1.000 .919 两年保费收入收益率 1.000 .659 保费收入变化率 1.000 .961 流动性比率 1.000.879Plolb1= *X1+*X2+**X4+*X5+***X8b2=*X1+**X3+***X6+*X7+*X8 b3=*X1+*X2+*X3+***X6+**X8表7Y1= *x1+*x2+**x4+*x5+***x8 Y2=*xi+*x2- **x4+*x5+***x8 Y3=*x1+*x2+*x3+*x4+**x6+**x8加权:输出结果,并从高到低进行排序:表81:人保2:平安3:太平洋4:大众5:华泰6:永安7:华安 Z 主成分综合得分Num 1 Z 主成分综合得分 | Num华泰1:人保可以如上所述计算主成分得分,还可以通过综合评价函数计算综合得分综合评价函数:Z=%*Y1+%*Y2+%*Y34、结论:表8中,综合得分出现负值,这只表明该保险公司的综合水平处于平均水平之下。

SPSS统计软件实训报告

SPSS统计软件实训报告

SPSS统计软件实训报告第一篇:SPSS统计软件实训报告一、实训目的SPSS统计软件实训课是在我们在学习《统计学》理论课程之后所开设的一门实践课。

其目的在于,通过此次实训,使学生在掌握了理论知识的基础上,能具体的运用所学的统计方法进行统计分析并解决实际问题,做到理论联系实际并掌握统计软件SPSS的使用方法。

,二、实训时间与地点:时间:2012年1月9日至2012年1月13日地点:唐山学院北校区A座502机房三、实训要求:这次实训内容为上机实训,主要学习SPSS软件的操作技能,以及关于此软件的一些理论和它在统计工作中的重要作用。

对我们的主要要求为,运用SPSS软件功能及相关资料来完成SPSS操作,选择有现实意义的课题进行计算和分析,最后递交统计分析报告,加深学生对课程内容的理解的。

我们小组的研究课题是社会消费品零售总额的分析。

四、实训的主要内容与过程:此次实训,我大概明白了SPSS软件的基本操作流程,也掌握了如何排序、分组、计算、合并、增加、删除以及录入数据;学会了如何计算定基发展速度、环比发展速度等动态数列的计算;明白了如何进行频数分析、描述分析、探索分析以及作图分析;最大的收获是学会了如何运用SPSS软件对变量进行相关分析、回归分析和计算平均值、T检验和假设性检验。

通过这次试训,我基本上掌握了SPSS软件的主要操作过程,也学会了运用SPSS软件进行各种数据分析。

这些内容,也就是我们SPSS统计软件实训的主要内容。

四、实训结果与体会五天的SPSS软件实训终于结束了,虽然实训过程充满了酸甜苦辣,但实训结果却是甜的。

看着小组的课题报告,心里有种说不出来的感触。

高老师在对统计理论及SPSS 软件功能模块的讲解的同时更侧重于统计分析在各项工作中的实际应用,使我们不仅掌握SPSS 软件及技术原理而且学会运用统计方法解决工作和学习中的实际问题这个实训。

我真真正正学到了不少知识,另外,也提高了自己分析问题解决问题的能力。

《SPSS》实验报告

《SPSS》实验报告
该数据集包含喝茶前体重(hcq)、喝茶后体重(hch)两个变量的35个观测。每个观测的两个变量下的观测值都是出自同一个被测试者(参见数据。
三、实验结果
《SPSS)》实验报告
开课:年月日
姓名
成绩
年级专业
学号
课程名称
实验名称
实验小组成员
指导教师
教师评语
教师签名:
年月日
为研究某种减肥茶是否具有明显的减肥效果,某健身机构对35名肥胖志愿者进行了减肥效果跟踪调研。首先,将其喝减肥茶以前的体重记录下来,三个月后再依次将这35名志愿者喝茶后的体重记录下来。从而获得了一个配对样本数据集。

最新《SPSS统计软件应用》实验报告册

最新《SPSS统计软件应用》实验报告册

《SPSS统计软件应用》实验报告册20 15 - 20 16 学年第 1 学期班级: T1353-3 学号: 20130530305 姓名:徐云授课教师:薛昌春实验教师:薛昌春实验学时:一周实验组号:目录1.实验一 SPSS的数据管理2.实验二描述性统计分析3.实验三均值检验4.实验四相关分析5.实验五因子分析6.实验六聚类分析7.实验七回归分析8.实验八判别分析实验一 SPSS的数据管理一、实验目的1.熟悉SPSS的菜单和窗口界面,熟悉SPSS各种参数的设置;2.掌握SPSS的数据管理功能。

二、实验内容:1、定义spss数据结构。

下表是某大学的一个问卷调查,要求将问卷调查结果表示成spss可识别的数据文件,利用spss软件进行分析和处理。

练习:创建数据文件的结构,即数据文件的变量和定义变量的属性。

实验步骤:(1)打开SPSS 软件,新建一张date数据表;(2)打开 variable view 界面,对相应的变量数据进行属性设置;(3)打开 date view界面,输入数据,点击保存;实验结果及分析:略2 、高校提前录取名单的确定某高校今年对部分考生采取单独出题、提前录取的招生模式。

现有20名来自国内不同省市的考生报考该校,7个录取名额。

见数据文件compute.sav. 该校制定了如下录取原则:(1)文化课成绩由数学、语文、英语和综合四门成绩组成。

文化课成绩制定最低录取分数线:400分。

(2)个人档案中若有“不良记录”,不予录取。

(3)对西部考生和少数民族考生,给予加分优惠。

少数民族考生加20分,西部考生加10分。

(4)对参加过省以上竞赛并取得三等奖以上名次的考生,每项加10分。

(5)文化课成绩和加分总和构成综合分,录取综合排名为前7名的学生。

练习:利用spss软件,综合利用所学,给出成绩排名的操作步骤。

实验步骤:(1)打开给的原数据文件;(2)执行 date/select case 命令,打开select case对话框,选择 if condiction is satisfatied ,输入“(数学 + 语文 + 英语 + 综合) >= 400 and 不良记录 = 0”,点击continue。

统计分析与spss的应用实验报告

统计分析与spss的应用实验报告

统计分析与spss的应用实验报告统计分析与SPSS的应用实验报告引言:统计分析是一种重要的数据处理和解释工具,它在科学研究、商业决策和社会调查等领域具有广泛的应用。

SPSS是一款功能强大的统计分析软件,它提供了丰富的数据分析功能和友好的用户界面,使得统计分析变得更加简便和高效。

本实验报告将介绍统计分析与SPSS的应用实验,通过实际案例,探讨统计分析在实际问题中的应用和SPSS的使用方法。

实验目的:本实验旨在通过使用SPSS软件,对某公司销售数据进行统计分析,以探究不同因素对销售额的影响,并提出相应的建议。

实验设计:本实验选取了某公司过去一年的销售数据作为研究对象,包括销售额、广告投入、促销活动和竞争对手销售额等变量。

通过对这些变量进行统计分析,我们可以了解它们之间的关系,并找出对销售额影响最大的因素。

实验步骤:1. 数据导入:首先,我们需要将实验所需的数据导入SPSS软件中。

在导入过程中,我们需要注意数据的格式和结构,确保数据的准确性和完整性。

2. 数据清洗:在进行统计分析之前,我们需要对数据进行清洗,包括缺失值处理、异常值处理和数据转换等。

通过清洗数据,我们可以提高数据的质量和可靠性。

3. 描述性统计分析:通过对数据进行描述性统计分析,我们可以了解数据的分布情况和基本统计特征,如均值、标准差和分位数等。

这些统计指标可以帮助我们对数据有一个初步的认识。

4. 相关性分析:在本实验中,我们将进行相关性分析,以探究不同因素之间的相关性。

通过计算相关系数,我们可以判断变量之间的线性关系强度和方向,从而了解它们之间的相互作用。

5. 回归分析:为了进一步研究不同因素对销售额的影响,我们将进行回归分析。

通过建立回归模型,我们可以估计不同因素对销售额的贡献程度,并进行显著性检验,以确定哪些因素对销售额具有统计显著性影响。

实验结果:经过数据分析和统计建模,我们得到了以下结果:1. 广告投入和促销活动对销售额有显著正向影响,说明增加广告投入和促销活动可以提高销售额。

统计分析软件SPSS实验报告

统计分析软件SPSS实验报告

实验报告课程名称:统计分析软件(SPSS)学生实验报告一、实验目的及要求二、实验描述及实验过程(一)、利用SPSS绘制统计图1、打开“职工数据.sav”,调用Graphs 菜单的Bar功能,绘制直条图。

直条图用直条的长短来表示非连续性资料的数量大小。

弹出Bar Chart定义选项。

2、在定义选项框的下方有一数据类型栏,大多数情形下,统计图都是以组为单位的形式来体现数据的。

在定义选项框的上方有3种直条图可选:Simple为单一直条图、Clustered 为复式直条图、Stacked为堆积式直条图,本实验选单一直条图。

3、点击Define钮,弹出Define Clustered Bar: Summaries for groups of cases对话框,在左侧的变量列表中选基本工资点击按钮使之进入Bars Represent栏的Other summary function选项的Variable框,选性别/文化程度/职称点击按钮使之进入Category Axis框。

1.点击analyze中的Descriptive Statistics选择frequencies,弹出一个frequencies对话框,选中基本工资和年龄拖入Variable(s)列2.点击statistics选择相应的统计量(例如:Mean,.median,mode等)3.点击continue ,点击OK。

(三)、用SPSS做回归分析(一元线性回归)1.点击Graphs 选择Scatter/dot2.选择simple scatter 点击Define3.将基本工资这个变量输入Y-Axis ,将年龄输入X-Axise4.点击OK ,结果如图5.点击analyze中的regression选择linear,将这个基本工资变量输入 Dependent ,将年龄输入Independt(s6.点击OK(四)、用SPSS做回归分析(多元线性回归)1、在“Analyze”菜单“Regression”中选择Linear命令2、在弹出的菜单中所示的Linear Regression对话框中,从对话框左侧的变量列表中选择基本工资,将年龄,职称,文化程度添加到Dependent框中,表示该变量是因变量。

SPSS相关分析实验报告_实验报告_

SPSS相关分析实验报告_实验报告_

SPSS相关分析实验报告篇一:spss对数据进行相关性分析实验报告实验一一.实验目的掌握用spss软件对数据进行相关性分析,熟悉其操作过程,并能分析其结果。

二.实验原理相关性分析是考察两个变量之间线性关系的一种统计分析方法。

更精确地说,当一个变量发生变化时,另一个变量如何变化,此时就需要通过计算相关系数来做深入的定量考察。

P值是针对原假设H0:假设两变量无线性相关而言的。

一般假设检验的显著性水平为0.05,你只需要拿p值和0.05进行比较:如果p值小于0.05,就拒绝原假设H0,说明两变量有线性相关的关系,他们无线性相关的可能性小于0.05;如果大于0.05,则一般认为无线性相关关系,至于相关的程度则要看相关系数R值,r越大,说明越相关。

越小,则相关程度越低。

而偏相关分析是指当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析另外两个变量之间相关程度的过程,其检验过程与相关分析相似。

三、实验内容掌握使用spss软件对数据进行相关性分析,从变量之间的相关关系,寻求与人均食品支出密切相关的因素。

(1)检验人均食品支出与粮价和人均收入之间的相关关系。

a.打开spss软件,输入“回归人均食品支出”数据。

b.在spssd的菜单栏中选择点击,弹出一个对话窗口。

C.在对话窗口中点击ok,系统输出结果,如下表。

从表中可以看出,人均食品支出与人均收入之间的相关系数为0.921,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间显著相关。

人均食品支出与粮食平均单价之间的相关系数为0.730,t检验的显著性概率为0.000<0.01,拒绝零假设,表明两个变量之间也显著相关。

(2)研究人均食品支出与人均收入之间的偏相关关系。

读入数据后:A.点击系统弹出一个对话窗口。

B.点击OK,系统输出结果,如下表。

从表中可以看出,人均食品支出与人均收入的偏相关系数为0.8665,显著性概率p=0.000<0.01,说明在剔除了粮食单价的影响后,人均食品支出与人均收入依然有显著性关系,并且0.8665<0.921,说明它们之间的显著性关系稍有减弱。

统计分析与spss的应用实验报告

统计分析与spss的应用实验报告

统计分析与SPSS的应用实验报告1. 简介统计分析是一种通过收集、整理和分析数据来揭示数据背后规律的方法。

SPSS (Statistical Package for the Social Sciences)是一种常用的统计分析软件,它可以快速、准确地进行各种统计分析,并生成相应的报告和图表。

本实验报告旨在介绍统计分析的基本概念和SPSS的应用。

我们将以一个实际案例为例,展示如何使用SPSS进行数据处理和统计分析,并通过Markdown文本格式输出实验报告。

2. 实验目的本实验的主要目的是通过分析某公司员工的工资数据,探究不同因素对工资的影响,并使用SPSS进行相应的统计分析。

通过本实验,我们将学习以下内容: - 数据的描述性统计分析 - 数据的正态性检验 - 不同因素与工资之间的相关性分析 - 因子分析 - 回归分析3. 数据收集与处理我们从某公司的人力资源部门获取了一份员工的工资数据,包括以下变量: - 员工编号(ID) - 性别(Gender) - 年龄(Age) - 受教育程度(Education) - 工作经验(Experience) - 部门(Department) - 工资(Salary)我们首先对数据进行了清理和预处理,包括删除缺失值、处理异常值等。

接下来我们将介绍具体的统计分析过程。

4. 描述性统计分析在进行其他进一步的分析之前,我们首先对数据进行描述性统计分析,以了解数据的基本情况。

我们计算了各个变量的平均值、标准差、最大值、最小值以及分位数,并使用Markdown表格的形式进行展示。

变量平均值标准差最大值最小值25%分位数50%分位数75%分位数年龄35.2 5.6 45 25 30 35 40 工资5000 1000 8000 3000 4000 5000 6000 受教育程度2.5 0.5 3 2 2 3 3工作经验8.2 2.1 12 5 7 8 10从上表中可以看出,样本中的员工年龄平均为35.2岁,工资平均为5000元。

spss实验报告4

spss实验报告4

SPSS实验报告4: “步骤思考”方法研究背景在社会科学研究中,数据分析是至关重要的一步。

SPSS是一种常用的统计分析软件,它提供了许多功能和工具来帮助研究人员分析和解释数据。

本实验报告将介绍一种称为“步骤思考”的方法,以帮助研究人员有效地使用SPSS进行数据分析。

步骤1:问题定义在使用SPSS进行数据分析之前,研究人员需要明确问题的定义。

这包括确定研究的目的、研究的变量以及研究所关注的问题。

通过明确定义问题,研究人员可以更好地选择适当的统计方法。

步骤2:数据准备在进行数据分析之前,研究人员需要对数据进行准备工作。

这包括数据清洗、数据转换和数据编码等步骤。

数据清洗包括去除缺失值和异常值,确保数据的完整性和准确性。

数据转换可以将变量进行归一化或标准化,以便更好地进行比较和分析。

数据编码可以将分类变量进行编码,以便进行定量分析。

步骤3:描述性统计描述性统计是对数据进行初步分析的重要步骤。

通过计算均值、标准差、频数和百分比等统计指标,研究人员可以获得数据的整体情况和分布特征。

这些统计指标可以帮助研究人员更好地理解数据,并为后续的统计分析提供基础。

步骤4:推断统计推断统计是利用样本数据对总体进行推断的过程。

常用的推断统计方法包括假设检验和置信区间估计。

假设检验可以帮助研究人员判断样本数据是否支持某个假设,并进行统计显著性检验。

置信区间估计可以帮助研究人员对总体参数进行估计,并给出一个可信的区间范围。

步骤5:多变量分析多变量分析是研究多个变量之间关系的方法。

常用的多变量分析方法包括相关分析、回归分析和因子分析等。

相关分析可以帮助研究人员理解变量之间的相关性。

回归分析可以帮助研究人员建立变量之间的数量关系,并进行预测。

因子分析可以帮助研究人员进行变量降维和分类。

步骤6:解释和报告在完成数据分析后,研究人员需要将结果进行解释和报告。

解释和报告应该清晰、准确地呈现数据的分析结果和结论。

可以使用表格、图表和文字描述等方式来展示结果,并根据研究问题进行解读和讨论。

SPSS相关分析实验报告

SPSS相关分析实验报告

SPSS相关分析实验报告实验目的:通过SPSS软件进行相关分析,探究两个变量之间的相关性。

实验材料与方法:1. 实验对象:100名高中学生。

2. 实验变量:X变量表示学生课外阅读时间(单位:小时),Y变量表示学生考试成绩(百分制)。

3. 实验工具:SPSS软件。

实验步骤:1. 数据收集:调查100名高中学生的课外阅读时间和考试成绩,并记录在调查表中。

2. 数据录入:将调查表中的数据录入SPSS软件的数据编辑器中。

3. 数据分析:a. 相关性分析:打开SPSS软件,选择"分析"菜单下的"相关"子菜单,然后选择"双变量"选项。

b. 设置变量:将X变量(课外阅读时间)和Y变量(考试成绩)设置为分析变量。

c. 选择统计指标:选择所需统计指标,如相关系数、p值等。

d. 进行分析:点击"确定"按钮,SPSS将自动计算相关系数和p值,并生成相应的结果报告。

4. 数据报告:根据SPSS生成的结果报告,编写实验报告。

实验结果与分析:经过对SPSS软件的分析,得出以下结果:1. 相关系数:X变量(课外阅读时间)和Y变量(考试成绩)的相关系数为0.75,说明两个变量之间存在较强的正相关关系。

2. P值:相关系数的p值为0.001,小于显著性水平(α=0.05),说明相关系数具有统计学意义。

3. 散点图:绘制X变量和Y变量的散点图可以直观地观察到两个变量之间的正相关关系,即随着课外阅读时间的增加,考试成绩也随之提高。

结论:通过SPSS软件的相关分析,我们发现学生的课外阅读时间和考试成绩之间存在较强的正相关关系。

这意味着增加课外阅读时间可以提高学生的考试成绩。

对于教育者来说,可以通过鼓励学生增加课外阅读时间来促进其学术成绩的提升。

实验总结与改进:通过本次实验,我们成功地使用SPSS软件进行了相关分析,研究了课外阅读时间与考试成绩之间的关系。

然而,本实验仅限于高中学生,样本量有限,可能存在一定的局限性。

SPSS软件及应用实验报告

SPSS软件及应用实验报告

SPSS软件及应用实验报告关于男性裤子尺寸影响因素的研究本报告主要是通过搜集了影响男性裤子尺寸的9个因素,分别是腰围、腹围、直档1、直档2、全浪、大腿根围、膝盖围、臀围、裤长,一共测量了250组数据。

旨在通过因子分析,利用降维思想,把多指标转化为少数几个综合指标,并分析得到的主因子的含义。

本报告主要研究的问题如下:(1)对数据进行描述性统计,并按照尺寸换算将厘米换算成尺寸,对数据按照腰围这一指标进行分组,编制频数分布表,并绘制频数分布的直方图;(2)使用单样本K-S检验对腰围换算成尺寸后的数据进行非参数检验,验证是否服从正态分布;(3)对数据进行因子分析,并对因子的含义进行分析。

问题1:根据腰围对所有的样本进行分组,分组结果见附录。

所搜集的腰围数据范围是[62.5,107],根据一尺约为33.3厘米,换算成尺寸范围是一尺九——三尺二,不足的四舍五入。

得到结果如下:尺寸频率百分比有效百分比累积百分比有效 1.9 2 .8 .8 .82.0 13 5.2 5.2 6.02.1 27 10.8 10.8 16.82.2 43 17.2 17.2 34.02.3 52 20.8 20.8 54.82.4 34 13.6 13.6 68.42.5 26 10.4 10.4 78.82.6 27 10.8 10.8 89.62.7 6 2.4 2.4 92.02.8 7 2.8 2.8 94.82.9 10 4.0 4.0 98.83.0 1 .4 .4 99.23.1 1 .4 .4 99.63.2 1 .4 .4 100.0总计250 100.0 100.0表1 尺寸频数分布表图1 频数分布直方图从表1可以看出有82.8%的男性腰围在二尺一和二尺六之间,从表2发现所调查的男性腰围均值为2.37,标准差为0.237,并且近似服从正态分布。

问题2:对腰围换算成尺寸后的数据进行使用单样本K-S检验时,选择方法是正态分布,检验结果如下:单样本 Kolmogorov-Smirnov 检验尺寸数字250正态参数a,b平均值 2.366标准偏差.2368最极端差分绝对.158正.158负-.073检验统计.158渐近显著性(双尾).000ca. 检验分布是正态分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SPSS软件及应用实验报告关于男性裤子尺寸影响因素的研究本报告主要是通过搜集了影响男性裤子尺寸的9个因素,分别是腰围、腹围、直档1、直档2、全浪、大腿根围、膝盖围、臀围、裤长,一共测量了250组数据。

旨在通过因子分析,利用降维思想,把多指标转化为少数几个综合指标,并分析得到的主因子的含义。

本报告主要研究的问题如下:(1)对数据进行描述性统计,并按照尺寸换算将厘米换算成尺寸,对数据按照腰围这一指标进行分组,编制频数分布表,并绘制频数分布的直方图;(2)使用单样本K-S检验对腰围换算成尺寸后的数据进行非参数检验,验证是否服从正态分布;(3)对数据进行因子分析,并对因子的含义进行分析。

问题1:根据腰围对所有的样本进行分组,分组结果见附录。

所搜集的腰围数据范围是[62.5,107],根据一尺约为33.3厘米,换算成尺寸范围是一尺九——三尺二,不足的四舍五入。

得到结果如下:尺寸频率百分比有效百分比累积百分比有效 1.9 2 .8 .8 .82.0 13 5.2 5.2 6.02.1 27 10.8 10.8 16.82.2 43 17.2 17.2 34.02.3 52 20.8 20.8 54.82.4 34 13.6 13.6 68.42.5 26 10.4 10.4 78.82.6 27 10.8 10.8 89.62.7 6 2.4 2.4 92.02.8 7 2.8 2.8 94.82.9 10 4.0 4.0 98.83.0 1 .4 .4 99.23.1 1 .4 .4 99.63.2 1 .4 .4 100.0总计250 100.0 100.0表1 尺寸频数分布表图1 频数分布直方图从表1可以看出有82.8%的男性腰围在二尺一和二尺六之间,从表2发现所调查的男性腰围均值为2.37,标准差为0.237,并且近似服从正态分布。

问题2:对腰围换算成尺寸后的数据进行使用单样本K-S检验时,选择方法是正态分布,检验结果如下:单样本 Kolmogorov-Smirnov 检验尺寸数字250正态参数a,b平均值 2.366标准偏差.2368最极端差分绝对.158正.158负-.073检验统计.158渐近显著性(双尾).000ca. 检验分布是正态分布。

b. 根据数据计算。

c. Lilliefors 显著性校正。

表2 单样本Kolmogorov-Smirnov 检验描述统计数字平均值标准偏差最小值最大值(X)尺寸250 2.366 .2368 1.9 3.2表3 腰围的简单描述统计表2给出了单样本Kolmogorov-Smirnov检验的相关统计量。

从表中可以看出单样本K-S检验z统计量值为0.158,渐进显著性水平为0小于0.05,应该是拒绝原假设,认为男性腰围不服从正态分布。

虽然250个样本可以认为是大样本数据,但是就全国人数来说还是太少了。

该数据是来自2015年燕山大学的部分男生,所以出现这样的结果很可能是样本数据太少。

不过也有可能是男性腰围确实不服从正态分布,因为现在还没人针对这一课题进行研究。

问题3:将数据导入SPSS,在菜单栏中依次单击“分析”—>“降维”—>“因子分析”,得到结果如下:KMO 和巴特利特检验KMO 取样适切性量数。

.850Bartlett 的球形度检验上次读取的卡方1643.806自由度36显著性.000表4 KMO 和巴特利特检验上表给出了KMO 和巴特利特检验的结果,其中KMO的值越接近1表示越适合做因子分析,从该表可以得到KMO的值为0.850,表示适合做因子分析。

Bartlett 的球形度检验的原假设为相关系数矩阵为单位阵,显著性p值为0.000小于显著性水平0.05,因此拒绝原假设,即变量之间存在相关关系,适合做因子分析。

公因子方差初始值提取腰围 1.000 .889腹围 1.000 .813直裆1 1.000 .717直裆2 1.000 .733全浪 1.000 .509大腿根围 1.000 .828膝盖围 1.000 .725臀围 1.000 .880裤长 1.000 .494提取方法:主成份分析。

表5 公因子方差表5给出了每个变量共同度的结果。

该表左侧表示每个变量可以被所有因素所能解释的方差,右侧表示变量的共同度。

从该表可以得出,因子分析的变量共同度都比较高,表示变量中的大部分信息均能够被因子所体现,说明因子分析是有效的。

总方差解释组件初始特征值提取载荷平方和旋转载荷平方和总计方差百分比累积 % 总计方差百分比累积 % 总计方差百分比累积 %1 4.711 52.340 52.340 4.711 52.340 52.340 4.418 49.091 49.0912 1.878 20.864 73.204 1.878 20.864 73.204 2.170 24.112 73.2043 .709 7.880 81.0844 .591 6.569 87.6535 .346 3.840 91.4936 .307 3.410 94.9027 .214 2.382 97.2848 .142 1.582 98.8669 .102 1.134 100.000提取方法:主成份分析。

表6 总方差解释表6给出了因子贡献率的结果。

该表中左侧部分为初始特征值,中间为提取的主因子结果,右侧为旋转后的主因子结果。

“合计”指因子的特征值,其中只有前两个因子的特征值大于1,并且前两个因子的特征值之和占总特征值的73.204%,因此提取前两个因子作为主因子。

成分矩阵a组件1 2腰围.893 -.304腹围.855 -.286直裆1 .565 .631直裆2 .301 .801全浪.623 .347大腿根围.893 -.176膝盖围.845 -.106臀围.927 -.144裤长.118 .693提取方法:主成份分析。

a. 已提取 2 个成分。

表7 成分矩阵旋转后的成分矩阵a组件1 2腰围.943 -.001腹围.902 .004直裆1 .332 .779直裆2 .028 .856全浪.479 .529大腿根围.902 .120膝盖围.834 .171臀围.924 .161裤长-.110 .694提取方法:主成份分析。

旋转方法:Kaiser 标准化最大方差法。

aa. 旋转在 3 次迭代后已收敛。

表8 旋转后的成分矩阵表7给出了未旋转的因子载荷。

从该表可以得到利用主成分方法提取的两个主因子的载荷值。

为了方便解释因子含义,需要进行因子旋转。

表8给出了旋转后的因子载荷值,其中旋转方法是Kaiser标准化的正交旋转法。

通过因子旋转,各个因子有了比较明确的含义。

表9 碎石图表9给出了特征值的碎石图,通常该图显示大因子的陡峭程度和剩余因子平缓的尾部之间明显的中断。

一般选取的主因子在非常陡峭的斜率上,而在平缓斜率上的因子对变异的解释能力非常小。

从该图可以看出前两个因子都处在非常陡峭的斜率上,而从第三个因子开始斜率开始变得平缓,因此选择前两个因子作为主因子。

成分得分系数矩阵组件1 2 腰围 .231 -.092 腹围 .221 -.086 直裆1 .005 .357 直裆2 -.077 .425 全浪 .066 .217 大腿根围 .210 -.028 膝盖围 .188 .004 臀围 .211 -.010 裤长 -.095 .357 提取方法:主成份分析。

旋转方法:Kaiser 标准化最大方差法。

组件评分。

表10 成分得分系数矩阵通过成分得分系数矩阵可以看出,每个因子只有部分指标的因子载荷较大,因此可以根据上表对指标进行分类。

在第一个因子上因子载荷较大的有腰围、腹围、大腿根围、膝盖围和臀围,此类可以命名为胖瘦因子;在第二个因子上因子载荷较大的有直裆1、直裆2、全浪、裤长,此类命名为高矮因子。

由表10可得两个因子f 1、f 2的线性组合如下(腰围、腹围、直档1、直档2、全浪、大腿根围、膝盖围、臀围、裤长分别用x 1、x 2、x 3、x 4、x 5、x 6、x 7、x 8、x 9来表示):11234567890.2310.2210.0050.0770.0660.210.1880.2110.095f x x x x x x x x x =++-++++-21234567890.0920.0860.3570.4250.2170.0280.0040.010.357f x x x x x x x x x =--+++-+-+ 按以上2个线性组合计算因子得分,以各因子的方差贡献率占2个因子总方差贡献率的比重作为权重进行加权汇总,得到各人裤子尺寸的综合得分,即:12(52.3420.864)/73.204f f f =+。

相关文档
最新文档