浙江省嘉兴市2017-2018学年高一上学期期末考试数学试题

合集下载

2022-2023学年浙江省嘉兴市第一中学、湖州中学高一数学第一学期期末学业水平测试试题含解析

2022-2023学年浙江省嘉兴市第一中学、湖州中学高一数学第一学期期末学业水平测试试题含解析

【解析】根据向量的数量积运算以及运算法则,直接计算,即可得出结果.
【详解】因为 a 1, b
3
,且a与bFra bibliotek的夹角为
6

所以 a b a b cos 3 , 62
因此 a b 2a b 2 a 2 a b b 2 2 3 3 1 . 22
故选:A.
5、D
【解析】全称命题的否定是特称命题,把任意改为存在,把结论否定.
A. [0, 2]
B.[0, )
C. (0, 2]
D.[2, )
10.曲线
y
Asin x
a( A
0,
0) 在区间
0,

上截直线
y
2

y
1 所得的弦长相等且不为
0
,则下列对
A , a 的描述正确的是
A. a 1 , A 3
2
2
B. a 1 , A 3
2
2
C. a 1, A 1
D. a 1, A 1
直线(除 a 2 时外)与函数 y f (x) 在 (0, 5) 上的图象最多一个公共点,此时 a 0 或 a 2 或 a 不存在, 将 a 2 时的直线(含 a 2 )绕 A 顺时针旋转到直线 y 2 (不含直线 y 2 )的位置, 旋转过程中的直线与函数 y f (x) 在 (0, 5) 上的图象至少有两个公共点,此时 0 a 2 ,
8.若 x log2 3 1,求 3x 3x ()
A. 5
B. 13
2
6
C. 10
D. 3
3
2
9.定义在 R 上的函数 f (x) 满足 f (x) 2 f (x 2) ,且当 x (1,1] 时, f (x) (1)|x| ,若关于 x 的方程 2

浙江省嘉兴市2022-2023学年高三上学期9月基础测试数学试题含答案

浙江省嘉兴市2022-2023学年高三上学期9月基础测试数学试题含答案

嘉兴市2022-2023学年高三上学期9月基础测试数学试题一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合41A x x ⎧⎫=>⎨⎬⎩⎭,{}2B x x =>,则A B = ()A .{}04x x <<B .{}2x x >C .{}24x x <<D .{}x x >2.若复数3i1iz +=-(i 为虚数单位),则z =()A .5B C .3D 3.在平行四边形ABCD 中,点E ,F 分别在边BC ,CD 上,且2BE EC = ,3CF FD =,记AB a = ,AD b = ,则EF = ()A .3143a b -+B .3143a b +C .3143a b -D .1143a b-+ 4.从圆内接正八边形的8个顶点中任取3个顶点构成三角形,则所得的三角形是直角三角形的概率是()A .114B .314C .720D .375.已知直线:210l x y +-=及圆()()22:124C x y +++=,过直线l 上任意一点P 作圆C 的一条切线P A ,A 为切点,则PA 的最小值是()A .5B .5C .5D .56.已知函数()()π5π2sin sin 011212f x x x ωωω⎛⎫⎛⎫=-+<< ⎪ ⎪⎝⎭⎝⎭的图象关于点π,03⎛⎫ ⎪⎝⎭对称,将函数()f x 的图象向左平移π3个单位长度后得到函数()g x 的图象,则()g x 的一个单调递增区间是()A .3ππ,22⎡⎤-⎢⎥⎣⎦B .[]π,π-C .π3π,22⎡⎤-⎢⎥⎣⎦D .[]0,2π7.已知实数a 满足()()2ln 11ln 21ln 2e a +-<<+,则()A .1e aa>B .1e aa<C .1e 1e a a -->D .1e 1e a a --<8.为庆祝国庆,立德中学将举行全校师生游园活动,其中有一游戏项目是夹弹珠.如图,四个半径都是1cm 的玻璃弹珠放在一个半球面形状的容器中,每颗弹珠的顶端恰好与容器的上沿处于同一水平面,则这个容器的容积是()A .(25πc m3+B .(345πc m 3+C .(325πcm+D .(385πc m 3+二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知函数()32f x x ax bx c =+++在R 上单调递增,()f x '为其导函数,则下列结论正确的是()A .()10f '≥B .()10f ≥C .230a b -≤D .230a b -≥10.如图,在正四面体ABCD 中,E 、F 分别为AB 、CD 的中点,则()A .直线EF 与AB 所成的角为π2B .直线EF 与AD 所成的角为π4C .直线EF 与平面BCD 所成的角的正弦值为3D .直线EF 与平面ABD 所成的角的正弦值为2211.如图,抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线C 交于M ,N 两点,过点M ,N 分别作准线l 的垂线,垂足分别为1M ,1N ,准线l 与x 轴的交点为1F ,则()A .直线1F N 与抛物线C 必相切B .1π2MF N ∠≤C .111F M F N F F MN⋅=⋅D .11111FM FN FF F M N ⋅=⋅12.已知函数()f x ,()g x 的定义域均为R ,且()()13f x g x +-=,()()33g x f x +-=.若()y g x =的图象关于点(1,0)对称,则()A .()()f x f x -=-B .()()g x g x -=C .()202216066k f k ==∑D .()20201k g k ==∑三、填空题:本题共4小题,每小题5分,共20分.13.设函数()()222,0lg 1,0x x x f x x x ⎧+≤⎪=⎨+>⎪⎩若()0f a ≥,则实数a 的取值范围是___________.14.()()6x y x y +-的展开式中34x y 的系数是___________.(用数字作答)15.树人中学进行篮球定点投篮测试,规则为:每人投篮三次,先在A 处投一次三分球,投进得3分,末投进得0分,然后在B 处投两次两分球,每投进一次得2分,末投进得0分,测试者累计得分高于3分即通过测试.甲同学为了通过测试,进行了五轮投篮训练,每轮在A 处和B 处各投10次,根据统计该同学各轮三分球和两分球的投进次数如下图表:若以五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率,则该同学通过测试的概率是___________.16.已知点()5,0M -,点P 在曲线()2210916x y x -=>上运动,点Q 在曲线()2251x y -+=上运动,则2PM PQ的最小值是___________.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)已知等差数列{}n a 的前n 项和为n S ,且4331S a =+,525S =.(1)求数列{}n a 的通项公式;(2)令2n an b =,求数列{}n b 的前n 项和n T .18.(12分)如图,在四棱台1111ABCD A B C D -中,底面ABCD 是正方形,若1124AB A B ==,13BB =,11CC DD ==(1)证明:平面11DCC D ⊥平面ABCD ;(2)求二面角1A CC D --的余弦值.19.(12分)记ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知点D 为AB 的中点,点E 满足2AE EC = ,且()()cos cos cos πsin a A a B C A C +-=-.(1)求A ;(2)若BC =,DE =,求ABC △的面积.20.(12分)某市决定利用两年时间完成全国文明城市创建的准备工作,其中“礼让行人”是交警部门主扲的重点工作之一.“礼让行人”即当机动车行经人行横道时应当减速慢行,遇行人正在通过人行横道,应当停车让行.如表是该市某一主干路口电子监控设备抓拍的今年1-6月份机动车驾驶员不“礼让行人”行为的人数统计数据.月份123456不“礼让行人”333640394553(1)请利用所给的数据求不“礼让行人”人数y 与月份x 之间的经验回归方程()112,y b x a x x '''=+≤≤∈N ,并预测该路口今年11月份不“礼让行人”的机动车驾驶员人数(精确到整数);(2)交警部门为调查机动车驾驶员“礼让行人”行为与驾龄满3年的关系,从这6个月内通过该路口的机动车驾驶员中随机抽查了100人,如表所示:不“礼让行人”礼让行人驾龄不超过3年1842驾龄3年以上436依据小概率值0.05α=的独立性检验,能否据此判断机动车驾驶员“礼让行人”行为与驾龄满3年有关?并说明理由.附:参考公式:()()()121niii ni i x x y y b x x ==--'=-∑∑,()()()()()22n ad bc a c b d a b c d χ-=++++,其中n a b c d =+++.独立性检验临界值表:α0.100.050.0100.0050.001x α2.7063.841 6.6357.87910.82821.(12分)已知椭圆()222:1024x y C b b +=<<,直线1:l y x m =+与椭圆C 交于A ,B 两点,且AB 的最大值为463.(1)求椭圆C 的方程;(2)当463AB =时,斜率为2-的直线2l 交椭圆C 于P ,Q 两点(P ,Q 两点在直线1l 的异侧),若四边形APBQ 的面积为1669,求直线2l 的方程.22.(12分)已知函数()ln f x ax x =和()(()0g x b x b =>有相同的最小值.(1)求1a b+的最小值;(2)设()()()h x f x g x =+,方程()h x m =有两个不相等的实根1x ,2x ,求证:12122x x <+<.2022年高三基础测试数学参考答案(2022.9)一、选择题:本题共8小题,每小愿5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1-8:CBAD ABDB7.答案D 【解折】由()()2ln e 11ln 21ln 2a +-<<+得111e e 2e a ⎛⎫<+<< ⎪⎝⎭,对于选项A 与B ,令函数()1e xg x x =-在()0,+∞上单调递物,则存在012,23x ⎛⎫∈ ⎪⎝⎭,使得()00g x =,即00e 1x x =,又2112e e e 1a <<+且0212e ,e e 1x ⎛⎫∈ ⎪+⎝⎭,所以1e a a >,1e a a <均有可能,即1e a与a 大小不确定.故A 与B 都不正确.对于选项C 与D ,令函数()()ln 11xf x x x =>-得()()211ln 1x x f x x --'=-,令()()11ln 1g x x x x =--≥得()221110xg x x x x-'=-=≤,所以()g x 在[)1,+∞上单调递减所以当1x >时,()()10g x g <=,所以()()()201g x f x x '=<-,所以()f x 在()1,+∞上单调递减,又111e e 2e a ⎛⎫<+<< ⎪⎝⎭,所以()()e f a f >,所以ln ln e 1e 1a a >--,即1e 1e a a --<,故D 正确.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.AC10.ABC11.BD12.BD12.答案BD 【解析】因为()y g x =的图象关于点(1,0)对称,所以()()110g x g x -++=,()g x 的定义域均为R ,故()10g =,由()()13f x g x +-=,得()()13f x g x -++=,所以()()6f x f x +-=,故A 错误;令0x =得,()03f =,因为()()33g x f x +-=,所以()()123g x f x ++-=与()()13f x g x +-=联立得,()()26f x f x +-=,则()()246f x f x -+-=,所以()()4f x f x =-,即()f x 的其中一个周期为4,因为()()33x f x g +-=,所以()()413x f g x +++=.即()()4g x g x +=,所以()g x 的其中一个周期也为4,由()()33g x f x +-=,得()()143g x f x -+-=,与()()13f x g x +-=联立,得()()11g x g x -=-,即()()g x g x =-.所以B 正确;由()()26f x f x +-=,得()()136f f +=,但()1f 与()3f 的值不确定,又()03f =,()23f =,所以()()()()()()2022112505123k f k f f f f f ==++++⎡⎣∑()()460631f f +=+⎤⎦,故C 错误;由()()33g x f x +-=,得()()303g f +=,所以()30g =,又()()123f g -+=,()()143f g +=,两式相加得,()()240g g +=,所以()()()()()20201050512340k g k g g g g ===+++=⎡⎤⎣⎦∑,故D 正确,故选BD .三、填空题:本题共4小题,每小题5分,共20分.13.(][),20,a ∈-∞-+∞ 14.5-15.16125化成小数即为0.50416.20四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)【解析】(1)由4331S a =+,得()114343212a d a d ⨯+=++,即11a =;由525S =,得151025a d +=,则2d =,所以()1121n a a n d n =+-=-.(2)由(1)知214222nna n nb -===,则数列{}n b 是以2为首项,4为公比的等比数列,所以()()()11212142411143n n n n n b q T b b b q---=+++===-- .18.(12分)【解析】(1)方法一:将四棱台1111ABCD A B C D -补形成四棱锥P ABCD -,取CD 中点E ,连结PE ,BE ,则由题意知PC PD =,且1A ,1B ,1C ,1D 分别是棱PA ,PB ,PC ,PD 的中点,所以PE CD ⊥,又126PB BB ==,BE =,4PE =,所以222PB PE BE =+,所以PE BE ⊥又BE CD E = ,BE ⊂平面ABCD ,CD ⊂平面ABCD ,所以PE ⊥平面ABCD ,又PE ⊂平面11DCC D ,所以平面11DCC D ⊥平面ABCD .方法二:在梯形11BCC B 中过1B 作1B M BC ⊥于M ,过1C 作1C N BC ⊥于N ,设BM x =,则2CN x =-,由11B M C N =,得()22952x x -=--,即2x =,所以0CN =,即1BC CC ⊥,又因为CB CD ⊥,1CC CD C = ,所以CB ⊥平面11DCC D ,又因为CB ⊂平面ABCD ,所以平面11DCC D ⊥平面ABCD .方法三:过1C 作1C E CD ⊥于E ,连结BE ,1BC ,则在梯形11CDD C 中,1CE =,12C E ==,在正方形ABCD 中,BE ==,在梯形11BCC B中,4BC =,112B C =,1CC =,13BB =,则梯形11BCC B 为直角梯形,其中1BC CC ⊥,1BC ==,所以22211BE EC BC +=,故1C E BE ⊥,又因为1C E CD ⊥,CD BE E = ,所以1C E ⊥平面ABCD ,又因为1C E ⊂平面11DCC D ,所以平面11DCC D ⊥平面ABCD.方法四:以C 为原点,CD ,CB 所在直线为x ,y 轴如图建系.则()0,0,0C ,D (4,0,0),B (0,4,0),设()1,,C x y z ,由方法二、三知1CC =,1C D =,1C B =,则()()2222222225,413,421,x y z x y z x y z ⎧++=⎪⎪-++=⎨⎪+-+=⎪⎩解得1,0,2,x y z =⎧⎪=⎨⎪=⎩,所以()11,0,2C ,故10CB CC ⋅= ,即1CB CC ⊥,又因为CB CD ⊥,1CC CD C = ,所以CB ⊥平面11DCC D ,又因为CB ⊂平面ABCD ,所以平面11DCC D ⊥平面ABCD.(2)方法一:由第(1)问知AD ⊥平面11DCC D ,过D 作1DG CC ⊥于G ,连结AG ,则可证1AG CC ⊥,因此∠AGD 为二面角1A CC D --的一个平面角,在直角△ADG 中,4AD =,DG ==AG ==,所以2cos 3DG AGD AG ∠==,即二面角1A CC D --的平面角的余弦值为23.方法二:由第(1)问方法四知,()0,1,0m = 为平面11DCC D 的一个法向量:()11,0,2CC =,()4,4,0CA = ,设(),,n x y z = 为平面1ACC 的一个法向量,则1,,n CC n CA ⎧⊥⎪⎨⊥⎪⎩ 即20,440,x z x y +=⎧⎨+=⎩取1z =,则2x =-,2y =,则()2,2,1n =-,设二面角1A CC D --的平面角的大小为π0,2θ⎛⎫∈ ⎪⎝⎭,则2cos cos ,3m n m n m n θ⋅=== ,所以二面角1A CC D --的平面角的余弦值为23.19.(12分)【解析】(1)由()()cos cos cos πsin a A a B C A C +-=-,得()()cos cos cos sin a B C a B C A C-++-=-,即2sin sin cos sin a B C A C=-由正弦定理得sin sin sin cos sin A B C B A C =,因为在△ABC 中sin 0B >,sin 0C >,所以sin A A =,得tan A =,因为()0,πA ∈,所以2π3A =.(2)在△ABC 中由余弦定理2222cos a b c bc A =+-,得2219b c bc ++=,在△ADE 中由余弦定理得2247943b c bc ++=,所以()22224794319b c bc b c bc ++=++,化简得225224810b bc c --=,即()()2326270b c b c -+=,所以32b c =,代入2219b c bc ++=,计算得3b =,2c =,则△ABC的面积1233sin 3sin 232ABC S bc A π===△.20.(12分)【解析】(1)由表中数据可知:123456762x +++++==,333640394553416y +++++==,所以()()()611622116ˆ6n iii ii i ni ii i x x y y x y x ybx x xx ====---==--∑∑∑∑,即616221692486118ˆ14759162iii ii x yxybxx ==--===--∑∑,所以187142ˆˆ41525ay bx =-=-⨯=,所求得经验回归方程为18142ˆ55y x =+.当11x =时,ˆ68y=,所以预测该路口11月份的不“礼让行人”违章驾驶员人数为68人.(2)零假设为0H :“礼让行人”与驾龄满3年无关,由题意知22⨯列联表为不礼让行人礼让行人合计驾龄不超过3年184260驾龄3年以上43640合计2278100由表中数据可得()()()()()()22210018364428005.594 3.84122786040143n ad bc a c b d a b c d χ-⨯-⨯===≈>++++⨯⨯⨯根据小概率值0.05α=的独立性检验,我们推新0H 不成立,即认为“礼让行人”与驾龄满3年有关,且推断犯错误的概率不超过0.05,21.【解析】(1)设()11,A x y ,()22,B x y ,联立直线1l 与椭圆方程得22214x y b y x m ⎧+=⎪⎨⎪=+⎩,消去y 得()()22224840b x mx m b+++-=,又1x ,2x 是这个方程的两个实根,所以()()()222212222122641640,8444m b m b m x x b m b x x b ⎧⎪∆=-+->⎪⎪-+=⎨+⎪⎪-⎪=+⎩由弦长公式得12244AB xb=-=⋅+,所以当0m=时,AB取到最大值,即maxAB==,解得b=.所以椭圆C的方程为22142x y+=.(2)设直线2l方程为2y x n=-+,()33,P x y,()44,Q x y,联立直线2l与椭圆方程221422x yy x n⎧+=⎪⎨⎪=-+⎩消去y得2298240x nx n-+-=,所以()2234234(8)4924089249n nnx xnx x⎧∆=-+⨯⨯->⎪⎪⎪+=⎨⎪⎪-=⎪⎩且(n∈-,记点P,Q到直线1l的距离分别为1d,2d,又1d=,2d=且()()3344x y x y--<,所以12d d+=+====所以()121146||223APBQS AB d d=+=⋅=因为APBQS=,9=,,整理得22n=,所以n=件,综上所述直线的方程为2:2l y x=-±,即为2:20l x y+=.22.(12分)【解析】(1)因为()(21124g x b x b⎡⎤⎫==--⎢⎥⎪⎭⎢⎥⎣⎦,所以()min144bg x g⎛⎫==-⎪⎝⎭;()lnf x ax x=定义域()0,x∈+∞,()()ln1f x a x'=+,令()0f x'=得,1ex=,当0a>时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e⎛⎫+∞ ⎪⎝⎭上单递增;当0a <时,()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递增,在1,e⎛⎫+∞ ⎪⎝⎭上单调递减;当0a =时,()0f x =,要使()f x 与()g x 有相同的最小值,则0a >,()min 1e e 4ab f x f ⎛⎫===- ⎪-⎝⎭,所以e 4b a =,所以1e 14b a b b +=+≥=,当且仅当b =时,取等号.(2)由已知得()()()(eln 4h x f x g x bx x b x =+=+,()()12e1ln 1142h x b x b x -⎛⎫'=++- ⎪⎝⎭,令()()12e 1ln 1142H x b x b x -⎛⎫=++- ⎪⎝⎭,则()32e 11044H x b b x x -'=⋅+⋅>恒成立,则()H x 在()0,+∞上单调递增,即()h x '在()0,+∞单调递增,因为()()2e e 3e e 21110424h b b b -⎛⎫⎛⎫'=-++-=-< ⎪ ⎪⎝⎭⎝⎭,()10h '>,存在()20e ,1x -∈使得()00h x '=,()h x 在()00,x 上单调递减,在()0,x +∞上单调递增,又因为()10h =,当01x <<时,()0h x <,因此若方程()h x m =有两个不相等的实根1x ,2x (不防设12x x <),则必有1201x x <<<,因此122x x +<;下证1212x x +>,由()()12h x h x m ==,得((111222e eln ln 44bx x b x bx x b x m +-=+-=,则((1211mx x b ⎫⎛⎫=-=⎪ ⎪⎪ ⎪⎭⎝⎭,令())01m x x =<<,令()0,1t =,则()2ln 1t t m t t =-,则()()()()()()222ln 112ln 21ln 11t t t t t t m t t t +----'==--,令()()1ln 01n t t t t =--<<,则()110n t t '=-<成立,所以()n t 在(0,1)上单调递减,()()10n t n >=,即当01t <<时,()0m t '>成立,所以()m t 在(0,1)上单调递增,即()m x 在(0,1)上单调递增,故()()120m x m x <<,由于20x x ,因此((1211x x ⎫⎛⎫=-⎪⎪⎪ ⎪⎭⎝⎭(21x ⎫<-⎪⎪⎭,得12x x <->,得1>,所以212122x x +>=⎝⎭,综上12122x x <+<.。

2018高一下学期期末生物试题及答案

2018高一下学期期末生物试题及答案

下关一中2017–2018学年高一年级下学期期末考试生物试卷注意: 考试时间90分钟, 总分100分。

本试卷包含一、二两大题。

第一大题为选择题, 所有答案必须用2B铅笔涂在答题卡相应的位置。

第二大题为非选择题, 所有答案必须填在答题卡的相应的位置, 答案写在试卷均无效, 不予计分。

一、选择题(每题只有一个答案最符合题意, 每题1.5分, 共60分)1. 下列关于孟德尔研究过程的分析正确的是A. 孟德尔提出的假说其核心内容是“性状由位于染色体上的基因控制的”B. 孟德尔依据减数分裂的相关原理进行“演绎推理”的过程C. 为了验证提出的假说是否正确, 孟德尔设计并完成了测交实验D. 测交后代性状分离比为1∶1, 从细胞水平上说明基因分离定律的实质2.对“一对相对性状的杂交实验”中性状分离现象的各项假设性解释, 错误的是A.生物的性状是由细胞中的遗传因子决定的B.体细胞中的遗传因子成对存在, 互不融合C.在配子中只含每对遗传因子的一个D.生物的雌雄配子数量相等, 且随机结合3.大豆的白花和紫花是一对相对性状。

下列四组杂交实验中, 能判断出显性和隐性关系的是①紫花×紫花→紫花②紫花×紫花→301紫花+101白花③紫花×白花→紫花④紫花×白花→98紫花+102白花A. ①②B. ③④C. ②③D. ①③4. 只在减数分裂中发生, 而在有丝分裂中不发生的现象是A.DN.的复..B.纺锤体的形..C.同源染色体的分...D.着丝点的分裂5.采用下列哪一组方法, 可依次解决①—⑤中的遗传学问题①鉴定一只白羊(显性性状)是否纯种②在一对相对性状中区分显隐性③不断提高小麦抗病品种的纯合度④检验杂种F1的基因型⑤鉴别一株高茎豌豆是不是纯合体的最简便方法A. 测交杂交自交测交测交B. 测交杂交自交自交测交C. 测交杂交自交测交自交D. 测交测交杂交测交自交6.某种植物的两个开白花的品系AAbb和aaBB杂交, F1自交得F2中有紫花和白花, 且比例为9∶7。

浙江省嘉兴市第一中学2023-2024学年高一上学期12月月考数学试题

浙江省嘉兴市第一中学2023-2024学年高一上学期12月月考数学试题

(2)求
f
( x)
在闭区间
éêë-
π4π,
4
ù úû
上的最大值和最小值.
21.已知定义域为 R
的函数
f
(x)
=
b - 2x 2x+1 + a
是奇函数.
(1)求实数 a , b 的值; (2)若 f (k × 3x ) + f (3x - 9x + 2) > 0 对任意 x ³ 1 恒成立,求 k 的取值范围.
5 4
,
7 4
ö ø÷
C.
æ çè
7 4
,
9 4
ù úû
D.
é êë
7 4
,
9 4
ö ÷ø
8.已知 f ( x) 为 R 上的奇函数, f (2) = 2 ,若对 "x1 , x2 Î (0, +¥) ,当 x1 > x2 时,都有
( x1
-
x2
)
é ê
ë
f
( x1 )
x2
-
f
( x2 ) ù
x1
ú û
浙江省嘉兴市第一中学 2023-2024 学年高一上学期 12 月
月考数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.设集合
A=
ì í
x
î
2x +1 x-3
£
1üý þ

B
=
ìíx î
3x
³
1 3
ü ý þ
,则
AI B
C.
y

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷

XXX2017-2018学年第一学期期末考试高一数学试卷XXX2017-2018学年第一学期期末考试高一年级数学试卷第I卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知向量a=(2,1),b=(λ−1,2),若a+b与a−b共线,则λ=()A.−2B.−1C.1D.2改写:向量a=(2,1),向量b=(λ-1,2),若a+b和a-b共线,则λ=() A。

-2 B。

-1 C。

1 D。

22.已知3sinα+4cosα=2,则1-sinαcosα-cos2α的值是() A。

- B。

C。

-2 D。

2改写:已知3sinα+4cosα=2,求1-sinαcosα-cos2α的值,答案为() A。

- B。

C。

-2 D。

23.已知在△ABC中,AB=AC=1,BC=3,则AB·AC=() A。

1/33 B。

- C。

-2 D。

-改写:在△ABC中,AB=AC=1,BC=3,求XXX的值,答案为() A。

1/33 B。

- C。

-2 D。

-4.在△ABC中,若AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定改写:在△ABC中,如果AB2=AB·AC+BA·BC+CA·CB,则△ABC是() A.锐角三角形B.钝角三角形C.直角三角形D.不确定5.已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanA-tanB=3,则△ABC的面积为() A。

3/33 B。

- C。

3 D。

33/2改写:已知△ABC中,内角A,B,C所对边的边长分别为a,b,c,且c=7/11,a+b=22/3,XXX-tanB=3,求△ABC的面积,答案为() A。

3/33 B。

- C。

2021-2022学年浙江省嘉兴市高一上学期期末考试数学试题(解析版)

2021-2022学年浙江省嘉兴市高一上学期期末考试数学试题(解析版)

浙江省嘉兴市2021-2022学年高一上学期期末考试数学试题一、选择题I:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|0≤x<2},B={x|﹣1<x<1},则A∪B=()A.(﹣1,0〗B.(﹣1,2)C.〖0,1)D.(0,1)2.在平面直角坐标系xOy中,角θ的顶点与原点O重合,它的始边与x轴的非负半轴重合,终边OP交单位圆O于点P(﹣,),则tanθ的值为()A.﹣B.C.﹣D.﹣3.已知命题p:∃a∈N,a≥100,则¬p为()A.∃a∈N,a≤100B.∃a∈N,a<100C.∀a∈N,a≤100D.∀a∈N,a<1004.设a,b∈R,则“a>b>0”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件5.将函数y=sin2x的图象向左平移个单位,得到函数f(x)的图象,则()A.B.C.D.6.函数f(x)=(﹣1)•sinx的图象大致形状为()A.B.C.D.7.设函数f,若关于x的方程f(x)=t有四个实根x1,x2,x3,x4(x1<x2<x3<x4),则x1+x2+2x3+的最小值为()A.B.16C.D.178.已知a,b,c都是正实数,设,则下列判断正确的是()A.0<M≤1B.C.D.1<M<2二、选择题II:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.下列各组函数中,表示同一函数的是()A.f(t)=t2,g(x)=x2B.f(x)=cosx,g(x)=sin(x+)C.f,g(x)=D.f(x)=log4x,g(x)=log210.血压是指血液在血管内流动时作用单位面积血管壁的侧压力,它是推动血液在血管内流动的动力.血压的最大值、最小值分别称为收缩压和舒张压.在末使用抗高血压药的前提下,18岁以上成人收缩压≥140mmHg或舒张压≥90mmHg,则说明这位成人有高血压.设从末使用过抗高血压药的小王今年26岁,从某天早晨6点开始计算(即早晨6点起,t=0),他的血压p(t)(单位:mmHg)与经过的时间t(单位:h)满足关系式p(t)=116+22sin(t+),则()A.血压p(t)的最小正周期为6B.当天下午3点小王的血压为105mmHgC.当天小王有高血压D.当天小王的收缩压与舒张压之差为44mmHg11.已知函数f(x)=ln(x2﹣ax﹣a﹣1),下列说法正确的有()A.不存在实数a,使f(x)的定义域为RB.函数f(x)一定有最小值C.对任意正实数a,f(x)的值域为RD.若函数f(x)在区间〖2,+∞)上单调递增,则实数a的取值范围是(﹣∞,1)12.已知正实数x,y满足x+2y=2,若不等式3x2﹣2m2xy+6y2+2x+4y>0恒成立,则实数m的值可以为()A.﹣4B.﹣2C.1D.3三、填空题:本大题共4小题,每小题5分,共20分.13.我国古代数学著作《九章算术》中记载了这样一个问题:“今有宛田,下周三十步,径十六步,问为田几何?“意思是:现有扇形田,弧长三十步,直径十六步,问面积多少?书中给出扇形面积计算方法:以径乘周,四而一.意思是:将直径乘以弧长再除以4.则此问题中,扇形的面积是平方步.14.计算:=.15.已知定义在R上的函数f(x)满足f(x+6)+f(x)=0,且函数y=f(x﹣1)的图象关于(1,0)对称,则f(2022)=.16.设函数,若存在实数x1,x2,满足1<x1<x2<2,使f(x1)+ f(x2)≥4成立,则实数a的取值范围为.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣x﹣6≤0},集合B={x|2x﹣1>2a}.(1)若a=1,求A∩B;(2)若A⊆∁R B,求实数a的取值范围.18.(12分)已知.(1)求的值;(2)若,求cosβ的值.19.(12分)已知定义在R上的函数f(x)=a x﹣(k﹣1)a﹣x(a>0且a≠1)是奇函数.(1)求实数k的值;(2)若函数f(x)满足f(1)<0,且对任意x>1,不等式f(log2x+2)+f(log x2﹣t)<0恒成立,求实数t的取值范围.20.(12分)已知函数.(1)求函数f(x)的最小正周期及单调递增区间;(2)当时,求f(x)的最值及取得最值时x的值.21.(12分)我国承诺2030年前达“碳达峰”,2060年实现“碳中和”.“碳达峰”就是我们国家承诺在2030年前,二氧化碳的排放不再增长,达到峰值之后再慢慢减下去;而到2060年,针对排放的二氧化碳,要采取植树、节能减排等各种方式全部抵消掉,这就是“碳中和”﹣嘉兴某企业响应号召,生产上开展节能减排.该企业是用电大户,去年的用电量达到20万度,经预测,在去年基础上,今年该企业若减少用电x万度,今年的受损效益S(x)(万元)满足S.为解决用电问题,今年该企业决定进行技术升级,实现效益增值,今年的增效效益Z(x)(万元)满足Z,政府为鼓励企业节能,补贴节能费n(x)=100x万元.(1)减少用电量多少万度时,今年该企业增效效益达到544万元?(2)减少用电量多少万度时,今年该企业总效益最大?22.(12分)已知函数f(x)=2ax2+bx+c(a,b,c∈R,a≠0).(1)若a+b+2c=0,且f(0)•f(1)>0,求的取值范围;(2)若f(x)在〖﹣1,1〗上有零点,求证:当a≥﹣1时,c≤|b|+|a﹣1|.▁▃▅▇█参*考*答*案█▇▅▃▁一、选择题I:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B〖解析〗∵A={x|0≤x<2},B={x|﹣1<x<1},∴A∪B=(﹣1,2).故选:B.2.C〖解析〗∵平面直角坐标系xOy中,角θ的顶点与原点O重合,它的始边与x轴的非负半轴重合,终边OP交单位圆O于点P(﹣,),则tanθ==﹣,故选:C.3.D〖解析〗命题为特称命题,则命题的否定为∀a∈N,a<100,故选:D.4.A〖解析〗若a>b>0,则﹣=<0,即<出成立.若<则﹣=<0,a>b>0或0>a>b所以“a>b>0是<”的充分不必要条件.故选:A.5.C〖解析〗若函数y=sin2x的图象向左平移个单位得到y=sin2(x+)=sin(2x+).故选:C.6.A〖解析〗∵f(x)=(﹣1)•sin x,∴f(﹣x)=(﹣1)•sin(﹣x)=﹣(﹣1)sin x=(﹣1)•sin x=f(x),∴函数f(x)为偶函数,故排除C,D,当x=2时,f(2)=(﹣1)•sin2<0,故排除B,故选:A.7.B〖解析〗作出函数f的图象如图所示,由图可知,x1+x2=4,由|log2(x﹣4)|=f(2)=4,可得x=或x=20,故5<x4<20,又因为log2(x3﹣4)+log2(x4﹣4)=0,所以(x3﹣4)(x4﹣4)=1,故x3=+4,所以x1+x2+2x3+=4+2(+4)+=4++(x4﹣4)+10=14++(x4﹣4)≥14+2=16,当且仅当=(x4﹣4),即x4=6时取等号,所以x1+x2+2x3+的最小值为16.故选:B.8.D〖解析〗根据题意,<<,①同理:<<,②<<,③①+②+③可得:1<M<2,故选:D.二、选择题II:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分.9.ABD〖解析〗A.两个函数的定义域和对应法则相同,是同一函数,B.g(x)=cos x,两个函数的定义域都是R,对应法则相同,是同一函数,C.f(x)=x(x≥0),两个函数的对应法则不相同,不是同一函数,D.f(x)与g(x)的定义域是(0,+∞),g(x)=log4x,两个函数定义域和对应法则相同,是同一函数,故选:ABD.10.BCD〖解析〗选项A:由函数解析式可得函数的最小正周期为T=,故A错误,选项B:当t=9时,p(t)=116+22sin(+)=116﹣22×=116﹣11=105,故B正确,选项C:当,即t=1时,p(t)max=116+22×1=138<140,当,即t=7时,p(t)min=116﹣22×1=94≥90,所以当天小王有高血压,故C正确,选项D:由选项C可得:138﹣94=44,即当天小王的收缩压与舒张压之差为44mmHg,故D正确,故选:BCD.11.CD〖解析〗若f(x)的定义域为R,则x2﹣ax﹣a﹣1>0对任意x∈R恒成立,即Δ=(﹣a)2﹣4(﹣a﹣1)=a2+4a+4<0,此不等式无解,故A正确;∵x2﹣ax﹣a﹣1=0的判别式≥0恒成立,∴x2﹣ax﹣a﹣1没有大于0的最小值,即函数f(x)无最小值,故B错误;方程x2﹣ax﹣a﹣1=0的两根分别为﹣1,a+1,当x>a+1时,x2﹣ax﹣a﹣1能取到大于0的所有实数,则对任意正实数a,f(x)的值域为R,故C正确;若函数f(x)在区间〖2,+∞)上单调递增,则g(x)=x2﹣ax﹣a﹣1在区间〖2,+∞)上单调递增,且大于0恒成立,即解得a<1.∴实数a的取值范围是(﹣∞,1),故D正确.故选:CD.12.BC〖解析〗由3x2﹣2m2xy+6y2+2x+4y>0得3x2+6y2+2x+4y>2m2xy,∵x>0,y>0,∴m2≤,∵x+2y=2(x>0,y>0),∴(x+2y)2=4,又2(x+2y)=4,∴(x+2y)2=2(x+2y)=2x+4y,即x2+4xy+4y2=2x+4y.则===++2≥2+2=2+2,当且仅当=时取等号,∴m2≤2+2,则m=﹣2或m=1满足不等式,故选:BC.三、填空题:本大题共4小题,每小题5分,共20分.13.120〖解析〗由题意,扇形中,弧长为30,直径为16,面积为S=30×16÷4=120.故答案为:120.14.4〖解析〗=lg2﹣1++lg50=lg(2×50)﹣1+3=2﹣1+3=4,故答案为:4.15.0〖解析〗因为f(x+6)+f(x)=0,所以f(x+6)=﹣f(x),所以f〖(x+6)+6〗=﹣f(x+6)=f(x),即有f(x+12)=f(x),所以f(x)为周期函数且T=12,又因为y=f(x﹣1)的图象是由y=f(x)的图象向右平移1个单位得到的,且y=f(x﹣1)的图象关于(1,0)对称,所以y=f(x)的图象关于(0,0)对称,所以y=f(x)是奇函数,又因为定义域为R,所以f(0)=0,又因为2022=168×12+6,所以f(2022)=f(6)=f(6﹣12)=f(﹣6)=﹣f(6),所以f(6)=0,所以f(2022)=0.故答案为:0.16.(3,+∞)〖解析〗由题知,在(1,2)上单调递增,只需(1)当,即a≥4 时,f(1)>f(2),则a﹣1>2,a>3,所以a≥4;(2)当,即1<a<4时,若f(1)≥f(2),即时,a﹣1>2,a>3,所以3<a<4;若f(1)<f(2),即a<2时,,所以a无解;(3)当,即0<a≤1时,f(1)<f(2),则,所以a无解;综上所述,a>3.故答案为:(3,+∞).四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.解:(1)集合A={x|x2﹣x﹣6≤0}={x|﹣2≤x≤3},a=1,集合B={x|2x﹣1>2a}={x|x>2},∴A∩B={x|2<x≤3};(2)∵集合A={x|﹣2≤x≤3},集合B={x|2x﹣1>2a}={x|x>a+1},∵A⊆∁R B,∁R B={x|x≤a+1},∴a+1≥3,解得a≥2.∴实数a的取值范围是〖2,+∞).18.解:(1)由tanα=,可得sinα=cosα,所以===2;(2)由(1)知得sinα=cosα,又sin2α+cos2α=1,所以cos2α+cos2α=1,所以cos2α=,又α∈(0,),所以cosα=,所以sinα=,由,所以α﹣β的终边可在第四象限或第一象限,当α﹣β的终边在第四象限时,sin(α﹣β)=﹣=﹣,所以cosβ=cos〖α﹣(α﹣β)〗=cosαcos(α﹣β)+sinαsin(α﹣β)=×+×(﹣)=;当α﹣β的终边在第一象限时,sin(α﹣β)==,所以cosβ=cos〖α﹣(α﹣β)〗=cosαcos(α﹣β)+sinαsin(α﹣β)=×+×=,综上所述:cosβ=或cosβ=.19.解:(1)因为f(x)=a x﹣(k﹣1)a﹣x(a>0且a≠1)是奇函数,且f(0)有意义,所以f(0)=1﹣(k﹣1)=0,解得k=2;(2)∵f(1)=a﹣=<0,所以0<a<1,∴y=a x与y=﹣a﹣x均是R上的单调减函数,∴f(x)=a x﹣a﹣x是R上的单调减函数;又∀x>1,不等式f(log2x+2)+f(log x2﹣t)<0恒成立⇔∀x>1,不等式f(log2x+2)<f(t﹣log x2)恒成立⇔∀x>1,不等式log2x+2>t﹣log x2恒成立,①令s=log2x(x>1),则s>0,∴①式可化为s+2>t﹣(s>0)恒成立,∴t﹣2<(s+)min,∵s+≥2=2(当且仅当s=1时取等号),∴t﹣2<2,解得t<4,综上实数t的取值范围为(﹣∞,4).20.解:(1)=2cos(2x+);所以函数的最小正周期为;令(k∈Z),整理得(k∈Z),故函数的单调递增区间为〖〗(k∈Z).(2)由于,所以;故,则f(x)∈〖﹣2,0〗.当x=时,函数取得最大值0,当x=时,函数取得最小值﹣2.21.解:(1)由已知可得Z(x)=,即Z(x)=,当0≤x≤4时,Z(x)=50x≤50×4=200<544,当4<x≤20时,令Z(x)=544,即﹣=544,整理可得:19x2﹣75x﹣100=0,解得x=5或﹣(舍去),所以当减少用电量5万度时,今年该企业增效效益达到544万元;(2)设总效益为W(x),则W(x)=Z(x)﹣S(x)+n(x),即W(x)=,即W(x)=,当0≤x≤4时,W(x)=﹣50(x﹣),当x=时,W(x),当4<x≤20时,W(x)=﹣+120=﹣400(),当,即x=8时,W(x),所以减少用电量8万度时,今年该企业总效益最大,且最大为万元.22.解:(1)f(0)⋅f(1)=c(2a+b+c)>0,由于a+b+2c=0,则c(c﹣a)<0,解得.证明:(2)由条件知,∃x0∈〖﹣1,1〗,满足.①当a>0时,,当且仅当,即a=1,x0=0,b=c=0时取等号;②当﹣1≤a<0 时,.当且仅当时取等号,即时取等号.。

2017-2018高一数学上学期期末考试试题及答案

2017-2018高一数学上学期期末考试试题及答案

2017-2018学年度第一学期期末考试高一数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,满分120分.考试限定用时100分钟.考试结束后,将本试卷和答题纸一并交回.答卷前,考生务必将自己的姓名、座号、考籍号分别填写在试卷和答题纸规定的位置.第Ⅰ卷(选择题 共48分)参考公式:1.锥体的体积公式1,,.3V Sh S h =其中是锥体的底面积是锥体的高 2.球的表面积公式24S R π=,球的体积公式343R V π=,其中R 为球的半径。

一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{0,1,2,3},{1,3}U A ==,则集合U C A = ( )A .{}0B .{}1,2C .{}0,2D .{}0,1,2 2.空间中,垂直于同一直线的两条直线 ( )A .平行B .相交C .异面D .以上均有可能3.已知幂函数()αx x f =的图象经过点错误!,则()4f 的值等于 ( )A .16B 。

错误!C .2D 。

错误!4。

函数()lg(2)f x x =+的定义域为 ( )A 。

(—2,1)B 。

[-2,1]C 。

()+∞-,2 D. (]1,2- 5.动点P 在直线x+y-4=0上,O 为原点,则|OP |的最小值为 ( )AB .CD .26.设m 、n 是两条不同的直线,α、β是两个不同的平面,则下列命题中正确的是 ( )A .若m ∥n ,m ∥α,则n ∥αB .若α⊥β,m ∥α,则m ⊥βC .若α⊥β,m ⊥β,则m ∥αD .若m ⊥n ,m ⊥α, n ⊥β,则α⊥βOOO O1 1117.设()x f 是定义在R 上的奇函数,当0≤x 时,()x x x f -=22,则()1f 等于 ( )A .-3B .-1C .1D .3 8.函数y =2-+212x x⎛⎫⎪⎝⎭的值域是 ( )A .RB .错误!C .(2,+∞)D 。

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案

2020-2021学年高一上学期期末考试数学卷及答案1.集合A和B分别表示y=x+1和y=2两个函数的图像上所有的点,求A和B的交集。

答案:A={(-∞,1]}。

B={2}。

A∩B=A={(-∞,1]}2.已知函数y=(1-x)/(2x^2-3x-2),求函数的定义域。

答案:分母2x^2-3x-2=(2x+1)(x-2),所以函数的定义域为x∈(-∞,-1/2]∪(2,∞)。

3.如果直线mx+y-1=0与直线x-2y+3=0平行,求m的值。

答案:两条直线平行,说明它们的斜率相等,即m=2.4.如果直线ax+by+c=0经过第一、第二,第四象限,求a、b、c应满足的条件。

答案:第一象限中x>0.y>0,所以ax+by+c>0;第二象限中x0,所以ax+by+c0.y<0,所以ax+by+c<0.综上所述,应满足ab<0.bc<0.5.已知两条不同的直线m和n,两个不同的平面α和β,判断下列命题中正确的是哪个。

答案:选项A是正确的。

因为如果m与α垂直,n与β平行,那么m和n的夹角就是α和β的夹角,所以m和n垂直。

6.已知圆锥的表面积为6π,且它的侧面展开图是一个半圆,求这个圆锥的底面半径。

答案:设底面半径为r,侧面的母线长为l,则圆锥的侧面积为πrl。

根据题意,πrl=6π,所以l=6/r。

而侧面展开图是一个半圆,所以底面周长为2πr,即底面直径为2r,所以侧面母线长l=πr。

将上述两个式子代入公式S=πr^2+πrl中,得到r=2.7.已知两条平行线答案:两条平行线的距离等于它们的任意一点到另一条直线的距离。

我们可以先求出l2上的一点,比如(0,7/8),然后带入l1的方程,得到距离为3/5.8.已知函数y=ax-1/(3x^2+5),如果它的图像经过定点P,求点P的坐标。

答案:点P的坐标为(1,2)。

因为当x=1时,y=a-1/8,所以a=17/8.又因为当x=2时,y=1/13,所以17/8×2-1/13=2,解得a=17/8,所以y=17x/8-1/(3x^2+5),当x=1时,y=2.9.已知a=3/5,b=1/3,c=4/3,求a、b、c的大小关系。

2020-202年近三年浙江省嘉兴市高一化学下学期期末考试题汇编4-非选择题含详解

2020-202年近三年浙江省嘉兴市高一化学下学期期末考试题汇编4-非选择题含详解

浙江省嘉兴市2020-2022三年高一化学下学期期末试题汇编4-非选择题1.(2020春·浙江嘉兴·高一统考期末)(1)①写出钡餐的化学式:__________;②写出溴乙烷的结构简式:__________。

(2)写出钢铁发生吸氧腐蚀时,负极的电极反应式:___________。

2.(2021春·浙江嘉兴·高一统考期末)按要求完成下列填空:(1)①写出乙醛的结构简式_______;②写出过氧化钠的化学式_______;(2)写出铝与氢氧化钠溶液反应的化学方程式_______;(3)胆矾晶体遇浓硫酸变白,体现了浓硫酸的_______性。

3.(2022春·浙江嘉兴·高一统考期末)回答下列问题:(1)①胆矾的化学式是_______;②乙醛的结构简式是_______。

(2)过氧化钠与水反应的化学方程式是_______。

Cu(OH)悬浊液中加入葡萄糖溶液,加热,观察到的现象是_______。

(3)向新制的24.(2022春·浙江嘉兴·高一统考期末)浓硫酸与木炭在加热条件下可发生化学反应,为检验反应的部分产物,某同学设计了如下图所示的实验。

请据此回答下列问题:(1)设备I的仪器名称是_______。

(2)设备II中盛放的试剂是_______,该试剂的作用是_______。

(3)浓硫酸与木炭反应的化学方程式是_______。

(4)证明产物中含有CO2的实验现象是_______。

5.(2020春·浙江嘉兴·高一统考期末)称取有机物A6.0 g,在足量氧气中充分燃烧,并使产物依次缓慢通过浓硫酸、碱石灰,两者分别增重7.2 g和13.2 g。

已知有机物A气态时的密度是相同条件下氢气密度的30倍。

请计算:(1)有机物A的分子式______。

(2)另取A 6.0 g,跟足量的金属钠反应生成1.12 L氢气(标准状况),A可能的结构简式为________。

人教版高二第一章三角函数单元测试精选(含答案)1

人教版高二第一章三角函数单元测试精选(含答案)1

人教版高二第一章三角函数单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.tan 600o =( )A .B .-C D .【来源】甘肃省平凉市静宁县第一中学2017-2018学年高一下学期期末考试数学(文)试题 【答案】C2.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( )A .B .C .D .【来源】2008年高考江西卷理科数学试题 【答案】D3.要得到函数y =cos 23x π⎛⎫+ ⎪⎝⎭的图象,只需将函数y =cos2x 的图象( )A .向左平移π个单位长度 B .向左平移π个单位长度C .向右平移6π个单位长度 D .向右平移3π个单位长度 【来源】浙江省金华十校2017-2018学年高一上学期期末调研考试数学试题 【答案】B4.已知0>ω,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( ) A .15[,]24B .13[,]24C .1(0,]2D .(0,2]【来源】2012年全国普通高等学校招生统一考试理科数学(课标卷带解析) 【答案】A5.已知cos cos θθ=,tan tan θθ=-|,则2θ的终边在( ) A .第二、四象限B .第一、三象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上【来源】辽宁省营口市2017-2018学年高一4月月考数学试题 【答案】D6.记0cos(80)k -=,那么0tan100=( )A .B .C D .【来源】2010年普通高等学校招生全国统一考试(全国Ⅰ)理科数学全解全析 【答案】B7.在ABC ∆中,tan tan tan A B A B ++=,则C 等于( )A .6π B .4π C .3π D .23π 【来源】广西宾阳县宾阳中学2017-2018学年高一5月月考数学试题 【答案】C8.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B9.如图,在平面直角坐标系xOy 中,质点M N ,间隔3分钟先后从点P ,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A .37.5分钟B .40.5分钟C .49.5分钟D .52.5分钟【来源】福建省福州格致中学2017-2018学年高一下学期第四学段质量检测数学试题 【答案】A10.函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷) 【答案】D11.函数y =的定义域是( )A .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()22,233k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,266k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【来源】2019年一轮复习讲练测 4.3三角函数的图象与性质 【答案】D12.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关【来源】2019高考备考一轮复习精品资料 专题十八 三角函数的图象和性质 教学案 【答案】B象关于y 轴对称,则m 的最小值是( ) A .6π B .3π C .23π D .56π 【来源】2011届江西省湖口二中高三第一次统考数学试卷 【答案】C14.若tan 3α=,4tan 3β=,则tan()αβ-= A .3B .3-C .13D .13-【来源】北京市清华附中2017-2018学年高三数学十月月考试题(文) 【答案】C 15.若sin cos 1sin cos 2αααα+=-,则tan 2α等于( )A .34-B .34C .43-D .43【来源】2012年全国普通高等学校招生统一考试文科数学(江西卷带解析) 【答案】B16.函数()sin()f x x ωϕ=+(其中2πϕ<)的图象如图所示,为了得到()sin g x xω=的图象,则只要将()f x 的图象A .向右平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向左平移个单位长度【来源】2015届福建省八县(市)一中高三上学期半期联考文科数学试卷(带解析) 【答案】A17.曲线sin (0,0)y A x a A ωω=+>>在区间2π0,ω⎡⎤⎢⎥⎣⎦上截直线2y =及1y =-所得的弦长相等且不为0,则下列对A ,a 的描述正确的是( ). A .12a =,32A >B .12a =,32A ≤ C .1a =,1A ≥ D .1a =,1A ≤【来源】广东省华南师范大学附属中学2016-2017学年高一上学期期末考试数学试题 【答案】A价y (单位:元/平方米)与第x 季度之间近似满足关系式:()()500sin 95000y x ωϕω=++>.已知第一、二季度的平均单价如下表所示:则此楼盘在第三季度的平均单价大约是( ) A .10000B .9500C .9000D .8500【来源】第一章全章训练 【答案】C19.函数5sin(2)2y x π=+的图象的一条对称轴方程是( ) A .2x π=-B .4πx =-C .8x π=D .54x π=【来源】2012-2013学年黑龙江省集贤县第一中学高一上学期期末考试数学试题(带解析) 【答案】A 20.已知-2π<θ<2π,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .-3B .3或13C .-13D .-3或-13【来源】浙江省温州中学2016-2017学年高一下学期期中考试数学试题 【答案】C 21.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D 22.1cos()2πα+=-,322παπ<<,()sin 2πα-的值为( )A .B .12C .±D .2【来源】江西省上饶市“山江湖”协作体2018-2019学年高一下学期统招班第一次月考【答案】D23.若0<α<β<π4,sinα+cosα=a,sinβ+cosβ=b,则( ).A .a <bB .a >bC .ab <1D .ab >2【来源】河北省石家庄市辛集中学2015-2016学年高一下学期综合练习(三)数学试题 【答案】A24.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3a =,7c =,60C =︒,则b = ( ) A .5B .8C .5或-8D .-5或8【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】B25.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7sin()6πα+的值是( )A .5-B .5C .45-D .45【来源】广东省广州市执信中学2018-2019学年度上学期高三测试数学(必修模块)试题 【答案】C26.将函数sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增 B .在区间,04π⎡⎤-⎢⎥⎣⎦ 上单调递减 C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增 D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 【来源】黑龙江省牡丹江市第一高级中学2017-2018学年高二下学期期末考试数学(文)试题 【答案】A27.若α是第三象限的角, 则2απ-是( )A .第一或第二象限的角B .第一或第三象限的角C .第二或第三象限的角D .第二或第四象限的角【来源】浙江省杭州第二中学三角函数 单元测试题28.已知函数()()0,0,2f x Asin x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则函数()f x 的解析式为 ( )A .()sin()84f x x ππ=+B .()sin()84f x x ππ=-C .3()sin()84f x x ππ=+D .3()sin()84f x x ππ=-【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】A29.曲线cos 2y x =与直线y =在y轴右侧的交点按横坐标从小到大依次记为1P ,2P ,3P ,4P ,5P ,…,则15PP 等于 ( )A .πB .2πC .3πD .4π【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B二、填空题30.若sin(+θ)=25,则cos2θ= . 【来源】2017届福建福州外国语学校高三文上学期期中数学试卷(带解析) 【答案】31.已知直线l :mx +y +3m −√3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若|AB|=2√3,则|CD|=__________. 【来源】2016年全国普通高等学校招生统一考试理科数学(全国3卷参考版) 【答案】432.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【答案】二33.设定义在R 上的函数()()0,122f x sin x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭,给出以下四个论断:①()f x 的周期为π; ②()f x 在区间,06π⎛⎫-⎪⎝⎭上是增函数;③()f x 的图象关于点,03π⎛⎫⎪⎝⎭对称;④()f x 的图象关于直线12x π=对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“p q ⇒”的形式)______________.(其中用到的论断都用序号表示) 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】①④⇒②③ 或①③⇒②④ 34.关于下列命题:①若,αβ是第一象限角,且αβ>,则sin sin αβ>; ②函数sin()2y x ππ=-是偶函数;③函数sin(2)3y x π=-的一个对称中心是(,0)6π;④函数5sin(2)3y x π=-+在,]1212π5π[-上是增函数,所有正确命题的序号是_____.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题 【答案】②③ 35.在ABC ∆中,若B a bsin 2=,则A =______.【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】30o 或150o36.若sin()2cos(2),αππα-=-则sin()5cos(2)3cos()sin()παπαπαα-+----的值为____________.【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】35-37.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+ ⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____.【答案】π4三、解答题38.已知函数()3sin(2)3f x x π=-,(1)请用“五点作图法”作出函数()y f x =的图象;(2)()y f x =的图象经过怎样的图象变换,可以得到sin y x =的图象.(请写出具体的变换过程)【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】(1)见解析;(2)变换过程见解析.39.在△ABC 中,222a c b +=(1)求B 的大小;(2)求cos A +cos C 的最大值.【来源】浙江省嘉兴市第一中学2017-2018学年高二10月月考数学试题 【答案】(1)π4(2)140.已知A 、B 、C 是△ABC 的三个内角,向量m =(-1,n =(cos A ,sin A ),且m ·n =1. (1)求角A ; (2)若221sin 2cos sin BB B+-=-3,求tan C . 【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3【答案】(1)3π;(2) . 41.已知函数()()()sin 0,0,02f x A x A ωϕωϕπ=+>><<的部分图象如图所示,且()506f f π⎛⎫=⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)求()f x 的解析式,并写出它的单调递增区间. 【来源】第一章全章训练【答案】(1)π;(2)()22sin 23f x x π⎛⎫=+⎪⎝⎭;单调递增区间为7,,1212k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z .42.已知函数()f x =4tan xsin (2x π-)cos (3x π-)-.(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f (x )在区间[,44ππ-]上的单调性.【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3 【答案】(Ⅰ){|,}2x x k k Z ππ≠+∈,π;(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 43.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷)【答案】(Ⅰ)见解析(Ⅱ)函数()f x 在区间[,]122ππ-上的值域为[ 44.设函数()sin(2)()3f x A x x R π=+∈的图像过点7(,2)12P π-.(2)已知10()21213f απ+=,02πα-<<,求1cos()sin()2sin cos 221sin cos ππαααααα-++-+++的值; (3)若函数()y g x =的图像与()y f x =的图像关于y 轴对称,求函数()y g x =的单调区间.【来源】浙江省杭州第二中学三角函数 单元测试题【答案】(1)()223f x sin x π⎛⎫=+ ⎪⎝⎭;(2)713-;(3)单减区间为15(,)()1212k k k z ππππ-+∈, 单增区间为511(,)()1212k k k z ππππ++∈. 45.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离与y 轴的距离之比为3∶4,求2sin α+cos α的值.【来源】第3章章末检测-2018-2019版数学创新设计课堂讲义同步系列(湘教版必修2)【答案】(1)-25(2)见解析(3)见解析 46.是否存在实数a ,使得函数y =sin 2x +acosx +5a 8−32在闭区间[0,π2]上的最大值是1?若存在,求出对应的a 值;若不存在,请说明理由.【来源】重庆市万州二中0910年高一下学期期末考试【答案】f max (t)=f(a 2)=a 42+58a −12=1, 47.A,B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限,记∠AOB =θ,且sinθ=45.(1)求点B 的坐标;(2)求sin (π+θ)+2sin(π2−θ)2tan (π−θ)的值.【来源】2015-2016学年广西钦州港开发区中学高二上第一次月考理科数学试卷(带解析)【答案】(1)(−35,45);(2)−53. 48.已知函数()sin 214f x x π⎛⎫=++ ⎪⎝⎭(1)用“五点法”作出()f x 在7,88x ππ⎡⎤∈-⎢⎥⎣⎦上的简图; (2)写出()f x 的对称中心以及单调递增区间;(3)求()f x 的最大值以及取得最大值时x 的集合.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题【答案】(1)见解析;(2)k ππ,028⎛⎫+ ⎪⎝⎭,k Z ∈,最大值为2,此时,,8x k k ππ=+∈Z . 49.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,5c =,3cos 5B =. (1)求b 的值;(2)求sin C 的值.【来源】正余弦定理 滚动习题(三) [ 范围 1 ]【答案】(1; (2.50.已知函数f (x )=4sin π-3x ⎛⎫ ⎪⎝⎭cos . (1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 区间在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.【来源】人教A 版2018-2019学年高中数学必修4第三章三角恒等变换测评【答案】(1)T=π,递增区间为π5ππ-,π1212k k ⎡⎤+⎢⎥⎣⎦(k ∈Z).(2) m ∈-3.。

2017-2018学年高一下学期期末考试数学试题(A卷)

2017-2018学年高一下学期期末考试数学试题(A卷)

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 以下程序中,输出时的值是输入时的值的()A. 1倍B. 2倍C. 3倍D. 4倍【答案】D【解析】令初始值A=a,则A=2(a+a)=4a.故选D.2. 已知数列是等比数列,,且,,成等差数列,则()A. 7B. 12C. 14D. 64【答案】C【解析】分析:先根据条件解出公比,再根据等比数列通项公式求结果.详解:因为,,成等差数列,所以所以,选C.点睛:本题考查等比数列与等差数列基本量,考查基本求解能力.3. 将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为()A. 0795B. 0780C. 0810D. 0815【答案】A【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为所以抽取的第40个数为选A.点睛:本题考查系统抽样概念,考查基本求解能力.4. 已知动点满足,则的最大值是()A. 50B. 60C. 70D. 90【答案】D【解析】分析:先作可行域,根据图像确定目标函数所代表直线取最大值时得最优解.详解:作可行域,根据图像知直线过点A(10,20)时取最大值90,选D,点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.5. 若干个人站成一排,其中为互斥事件的是()A. “甲站排头”与“乙站排头”B. “甲站排头”与“乙不站排头”C. “甲站排头”与“乙站排尾”D. “甲不站排头”与“乙不站排尾”【答案】A【解析】试题分析:事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生。

人教版数学高一第三章直线与方程单元测试精选(含答案)3

人教版数学高一第三章直线与方程单元测试精选(含答案)3

d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积


【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

高一数学上学期期末考试试题(含解析)-人教版高一全册数学试题

某某省实验中学2017-2018学年高一数学上学期期末考试试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】则故选2. 直线的倾斜角是()A. B. C. D.【答案】C【解析】直线的斜率为直线的倾斜角为:,可得:故选3. 计算,其结果是()A. B. C. D.【答案】B【解析】原式故选4. 已知四面体中,,分别是,的中点,若,,,则与所成角的度数为()A. B. C. D.【答案】D【解析】如图,取的中点,连接,,则,(或补角)是与所成的角,,,,,而故选5. 直线在轴上的截距是()A. B. C. D.【答案】B【解析】直线在轴上的截距就是在直线方程中,令自变量,直线在轴上的截距为故选6. 已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A. 1B. 2C. 3D. 4【答案】B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选7. 已知梯形是直角梯形,按照斜二测画法画出它的直观图(如图所示),其中,,,则直角梯形边的长度是()A. B. C. D.【答案】B【解析】根据斜二测画法,原来的高变成了方向的线段,且长度是原高的一半,原高为而横向长度不变,且梯形是直角梯形,故选8. 经过点的直线到,两点的距离相等,则直线的方程为()A. B.C. 或D. 都不对【答案】C【解析】当直线的斜率不存在时,直线显然满足题意;当直线的斜率存在时,设直线的斜率为则直线为,即由到直线的距离等于到直线的距离得:,化简得:或(无解),解得直线的方程为综上,直线的方程为或故选9. 已知函数的图象与函数(,)的图象交于点,如果,那么的取值X围是()A. B. C. D.【答案】D【解析】由已知中两函数的图象交于点,由指数函数的性质可知,若,则,即,由于,所以且,解得,故选D.点睛:本题考查了指数函数与对数函数的应用,其中解答中涉及到指数函数的图象与性质、对数函数的图象与性质,以及不等式关系式得求解等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,本题的解答中熟记指数函数与对数函数的图象与性质,构造关于的不等式是解答的关键,试题比较基础,属于基础题.10. 矩形中,,,沿将矩形折成一个直二面角,则四面体的外接球的体积是()A. B. C. D.【答案】B【解析】由题意知,球心到四个顶点的距离相等,球心在对角线上,且其半径为长度的一半为故选11. 若关于的方程在区间上有解,则实数的取值X围是()A. B. C. D.【答案】A【解析】由题意可得:函数在区间上的值域为实数的取值X围是故选点睛:本小题考查的是学生对函数最值的应用的知识点的掌握。

2017-2018学年高中数学专题03破译三角函数图像变换问题特色专题训练新人教A版必修4

2017-2018学年高中数学专题03破译三角函数图像变换问题特色专题训练新人教A版必修4

12专题03破译三角函数图像变换问题、单选题1.【湖北省咸宁市2018届高三重点高中11月联考】若函数f x =cos2x , g x ]=sin j 2x -石【答案】【解析】/(+COS 2JC :+sin I 2x —— =cos2x4JT曲线 严 列乂)向左平移壬个单位长度后的解折式为:6本题选择E 选项.2•【山西省芮城中学 2018届高三期中】函数 f (x ) = Asin (G0x + W )(其中A A O ,申 <:丄)的图象过点2,0 ,—, -1,如图所示,为了得到 g x ;=cos2x 的图象,则只要将 f x 的图象()312曲线B .曲线y 二g x 向左平移 C .曲线 y = f x 向右平移 D .曲线 丄个单位长度后得到曲线6■JT个单位长度后得到曲线6—个单位长度后得到曲线12—个单位长度后得到曲线126丿即/(x )+^(x) =A. 向右平移二个单位长度6B. 向右平移个单位长度1233【答案】D+ 卩= --- 2A H (A:E Z) — +2lac(k e Z) 23It和八、 .K-(P — — > J (x) = SID I 2x4-—C.向左平移'个单位长度 6D.向左平移个单位长度12【解析】12 3TSJD3it71 1C — cos2x — sin 2无+—2 3二肚2 "12点睛:已知函数 y=Asi nicx 」‘LB (A -0,八>0)的图象求解析式 (1)y max — y min y max yminA, B =一 2由函数的周期T 求co ,T = 利用“五点法”中相对应的特殊点求:.【广东省执信中学 2017-2018学年高二上学期期中】将函数 y=Sin j 2x ' 的图象向右平移 一个单位2长度,所得图象对应的函数■: 7 二■: 7 二A 在区间[,]上单调递减B 在区间[,]上单调递增12 12 12 12J [ JEJ [ J [C.在区间^-,-]上单调递减D在区间[wy 上单调递增【答案】B兀【解析】将函数向右平移个单位长度得:((y =sin 2 x 一一J T(二 sin I 2x- 3 ,所以当7 2 二二二时,2x ,—12 3IL 2 24 •【陕西省西安市长安区2018届高三上学期质量检测】把函数.的图象上个点的横坐标缩短到原61 TI来的(纵坐标不变),再将图象向右平移个单位,那么所得图象的一个对称中心为23A B.c D (%)4【答案】D【解析】根据题意函数尸血时勺)的图象上个点的横坐标缩短到原来的k纵坐标不知,可得厂血伍昇6 2I创再将團象向右平移*单位,可得:V J sin|2 (x)+ -] = sin —)- ~cos2x^3 3 6 22K ■- + kn*2可得:x«- + -kn, kE疋"4 2当k・0时,可得对称中点为(:0).4故选ZZf x二cosi2x • 的图象,只需将函数I 6丿g x 二sin2x 的图象()A向左平移一个单位6C. 向左平移二个单位3【答案】A B向右平移一个单位6D向右平移少个单位3,所以函数单调递增,故选 B.125.【山东省莱芜市2018届高三上学期期中】要得到函数f x i = sin 「x ■ ' (其中)的图象如图2所示,为了得到 y 二cos 「x 的图象,只需把 y 二f x 的图象上所有点()【解析】g x 二 sin2x =cos所以向左平移n 二26 个单位,选A2 66 •【辽宁省沈阳市交联体2018届高三上学期期中】函数C.向左平移二个单位长度6【答案】AT 7 7T更jr 【解析】根据函数的^m-=—4 122九"所以:T^JL9<D=——=2>当沪彳时,函数fyr jr即:/ ( —) =sin (2x — +<p) =0.解得所以:f (x) =sin( 2x+ —).要得到y=cos2x的图象只需将函数 f (x) =sin(2x< )向左平移.个单位长度,3 12n 兀即y=sin (2x+ + ) =cos2x.6 3故选:A.点睛:已知函数y=Asi n[cx」‘LB(A 0^ 0)的图象求解析式(1 )2■:人=涯沁,ymin.(2)由函数的周期T求,T =2 2 ⑷利用“五点法”中相对应的特殊点求:.【豫西南部分示范性高中2017-2018年高三年级第一学期联考】已知函数f X =sin 2x,为得到B.向右平移.个单位长度12D.向右平移二个单位长度6A向左平移.个单位长度123A 向左平移二个单位长度 B.向左平移.个单位长度612C.向右平移二个单位长度D.向右平移二个单位长度612【答案】A【解析】函数 g x 二 cosi2x sin ;2xsin 12x —• I 6丿 126丿 J 3丿函数f (x )=s in ”2x +工1= sin |2 " x +丄1+》=sin " 2x +2兀】=g ( x ),是向左平移了工个单位长 2 V 3丿 [16丿3 一 V 3丿“丿 6度。

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)4

人教版数学高三期末测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )(注:2222(1)(21)1236n n n n ++++++=L )A .1624B .1024C .1198D .1560【来源】2020届湖南省高三上学期期末统测数学(文)试题 【答案】B2.在ABC ∆中,若222sin sin sin A B C +<,则ABC ∆的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定【来源】海南省文昌中学2018-2019学年高一下学期段考数学试题 【答案】A3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ﹣b =c cos B ﹣c cos A ,则△ABC 的形状为( ) A .等腰三角形 B .等边三角形C .直角三角形D .等腰三角形或直角三角形【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】D4.已知圆C 1:(x +a )2+(y ﹣2)2=1与圆C 2:(x ﹣b )2+(y ﹣2)2=4相外切,a ,b 为正实数,则ab 的最大值为( )A .B .94C .32D .2【来源】安徽省安庆市五校联盟2018-2019学年高二(上)期中数学(理科)试题 【答案】B5.已知等比数列{}n a 满足122336a a a a +=+=,,则7a =( )【来源】甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题 【答案】A6.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的17是最小的两份之和,则最小的一份的量是 ( ) A .116B .103C .56D .53【来源】湖南省湘南三校联盟2018-2019学年高二10月联考文科数学试卷 【答案】D7.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形【来源】广东省中山市第一中学2019-2020学年高二上学期10月月考数学试题 【答案】C8.若不等式22log (5)0x ax -+>在[4,6]x ∈上恒成立,则a 的取值范围是( )A .(,4)-∞)B .20(,)3-∞ C .(,5)-∞D .29(,)5-∞【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题 【答案】C9.港珠澳大桥通车后,经常往来于珠港澳三地的刘先生采用自驾出行.由于燃油的价格有升也有降,现刘先生有两种加油方案,第一种方案:每次均加30升的燃油;第二种方案,每次加200元的燃油,则下列说法正确的是( ) A .采用第一种方案划算 B .采用第二种方案划算 C .两种方案一样D .无法确定【来源】2020届广东省珠海市高三上学期期末数学(文)试题 【答案】B10.已知正项等比数列{}n a 的前n 项和为n S ,12a =,23434a a a +=,则5S =( )【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】A11.在ABC ∆中3AB =,5BC =,7AC =,则边AB 上的高为( )A B C D 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B12.不等式220ax bx ++>的解集是()1,2-,则a b -=( ) A .3-B .2-C .2D .3【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B13.各项均为正数的数列{}n a ,其前n 项和为n S ,若224n n n a S a -=,则2019S 为( )A .BC .2019D .4038【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A14.设m ,n 为正数,且2m n +=,则2312m n m n +++++的最小值为( ) A .176B .145 C .114D .83【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】B15.已知数列{}n a 的前n 项和为n S ,且314n n S a +=,则使不等式1000成立的n 的最大值为( )A .7B .8C .9D .10【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】C16.ABC ∆中角A ,B ,C 的对边分别是a ,b ,c ,若1a =,b =4B π=,则A =( )A .6π B .56π C .6π或56πD .23π【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题 【答案】A17.等差数列{}n a 前n 项和为n S ,已知46a =,36S =,则( ) A .410n a n =-B .36n a n =-C .2n S n n =-D .224n S n n =-【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】C18.在等差数列{}n a 中,652a a =,则17a a +=( ) A .0B .1C .2-D .3【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题 【答案】A19.若0,0,a b c d >><<则一定有( ) A .a b c d> B .a b c d< C .a b d c> D .a b d c< 【来源】2014年全国普通高等学校招生统一考试理科数学(四川卷带解析) 【答案】D20.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A21.在ABC ∆中,60A =︒,1b =,则sin sin sin a b c A B C ++++的值为( )A .1B .2C D .【来源】辽宁省实验中学分校2016-2017学年高一下学期期末数学(文)试题 【答案】B二、填空题22.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________. 【来源】2018年全国普通高等学校招生统一考试数学(江苏卷) 【答案】923.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知5a =8b ,A =2B ,则sin B =_____.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】3524.如图,为测得河对岸塔AB 的高,先在河岸上选一点C,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D,测得∠BDC =45°,则塔AB 的高是_____.【来源】2014届江西省南昌大学附属中学高三第三次月考理科数学试卷(带解析) 【答案】1025.设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为 . 【来源】智能测评与辅导[文]-等比数列 【答案】6426.设x ,y 满足约束条件20260,0x y x y x y +-≥⎧⎪+≤⎨⎪≥≥⎩,则23z x y =-+的最小值是______.【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题 【答案】9-27.已知数列{}n a 是等差数列,且公差0d <,()11a f x =+,20a =,()31a f x =-,其中()242f x x x =-+,则{}n a 的前10项和10S =________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】70-28.若x ,y 满足约束条件22020x x y x y ≤⎧⎪-+≥⎨⎪+-≥⎩,则3z x y =-的最小值为________.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题 【答案】2-29.已知数列{}n a 满足11a =,()13N n n n a a n *+⋅=∈,那么数列{}n a 的前9项和9S =______.【来源】2020届安徽省芜湖市高三上学期期末数学(理)试题 【答案】24130.设a ,b ,c 分别为ABC ∆内角A ,B ,C 的对边.已知2cos cos a B C=,则222a cb ac+-的取值范围为______.【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】()()0,2U三、解答题31.如图,在平面四边形ABCD 中,BC =3,CD =5,DA 2=,A 4π=,∠DBA 6π=.(1)求BD 的长: (2)求△BCD 的面积.【来源】江苏省常州市2018-2019学年高一下学期期末数学试题 【答案】(1)7;(2 32.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G ,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且 210100,040()100007019450,40x x x R x x x x ⎧+<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(I )求出2020年的利润()W x (万元)关于年产量x (千部)的函数关系式,(利润=销售额—成本);(II)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【来源】湖北省四校(襄州一中、枣阳一中、宜城一中、曾都一中)2018-2019学年高一下学期期中联考数学试题【答案】(Ⅰ)210600250,040()10000()9200,40x x x W x x x x ⎧-+-<<⎪=⎨-++≥⎪⎩(Ⅱ)2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元. 33.设集合A={x|x 2<9},B={x|(x-2)(x+4)<0}. (1)求集合A∩B ;(2)若不等式2x 2+ax+b <0的解集为A ∪B ,求a ,b 的值.【来源】2013-2014学年广东阳东广雅、阳春实验中学高二上期末文数学卷(带解析) 【答案】(1){x |3x 2}-<<(2)2,24a b ==- 34.已知数列{}n a 满足11a =,()111n n n a na n ++-=+. (1)求数列{}n a 的通项公式; (2)n S 为数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和,求证:223n S ≤<. 【来源】2020届山西省吕梁市高三上学期第一次模拟考试数学(文)试题【答案】(1)12n n a +=(2)证明见解析 35.在ABC V 中,a ,b ,c 分别为内角A ,B ,C的对边,且满()(sin sin )sin )b a B A c B C -+=-.(1)求A 的大小;(2)再在①2a =,②4B π=,③=c 这三个条件中,选出两个使ABC V 唯一确定的条件补充在下面的问题中,并解答问题.若________,________,求ABC V 的面积. 【来源】2020届山东省滨州市高三上学期期末考试数学试题 【答案】(1)6A π=;(2)见解析36.设函数()22sin cos 3x x f x π⎛⎫=+⎪⎝⎭. (1)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的单调递增区间;(2)在ABC ∆中,1AB =,2AC =,()2f A =-,且A 为钝角,求sin C 的值. 【来源】2020届浙江省嘉兴市高三上学期期末考试数学试题【答案】(1)5,122ππ⎡⎤⎢⎥⎣⎦(2)1437.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.【来源】2020届宁夏石嘴山市第三中学高三上学期期末考试数学(文)试题【答案】(1) cos 7DAC ∠=,7AC =;(2) 3 38.在ABC V 中,内角A B C ,,所对的边分别为a b c ,,,已知sin cos 2sin cos A B c bB A b-=.(1)求A ;(2)设5b =,ABC S =V 若D 在边AB 上,且3AD DB =,求CD 的长. 【来源】2020届福建省莆田市(第一联盟体)学年上学期高三联考文科数学试题【答案】(1)3π;(239.在ABC ∆中,45,B AC ︒∠==cos C =. (1)求BC 边长;(2)求AB 边上中线CD 的长.【来源】北京101中学2018-2019学年下学期高一年级期中考试数学试卷【答案】(1)(240.已知函数2()2()f x x mx m R =-++∈,()2x g x =. (1)当2m =时,求2()(log )f x g x >的解集;(2)若对任意的1[1,1]x ∈-,存在2[1,1]x ∈-,使不等式12()()f x g x ≥成立,求实数m 的取值范围.【来源】重庆市七校(渝北中学、求精中学)2019-2020学年高一上学期期末联考数学试题【答案】(1)(0,2)(2)11[,]22-41.已知1x =是函数2()21g x ax ax =-+的零点,()()g x f x x=. (Ⅰ)求实数a 的值;(Ⅱ)若不等式(ln )ln 0f x k x -≥在2,x e e ⎡⎤∈⎣⎦上恒成立,求实数k 的取值范围;(Ⅲ)若方程()3213021xxf k k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围.【来源】天津市滨海新区2018-2019学年高一上学期期末检测数学试题【答案】(Ⅰ)1;(Ⅱ)(],0-∞;(Ⅲ)103k -<<.42.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,cos sin C c B =. (1)求角C 的大小(2)若c =ABC ∆的面积为,求ABC ∆的周长.【来源】天津市蓟州等部分区2019届高三上学期期末联考数学(文)试题【答案】(Ⅰ)3C π=.(Ⅱ)10+43.已知等差数列{}n a 中,首项11a =,523a a =.(1)求{}n a 的通项公式;(2)若等比数列{}n b 满足13b =,2123b a a a =++,求{}n b 的前n 项和n S . 【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n a n =-;(2) 1332n n S +-= 44.对于正项数列{}n a ,定义12323nn a a a na G n+++⋅⋅⋅+=为数列{}n a 的“匀称”值.(1)若当数列{}n a 的“匀称”值n G n =,求数列{}n a 的通项公式; (2)若当数列{}n a 的“匀称”值2n G =,设()()128141n n nb n a +=--,求数列{}n b 的前2n 项和2n S 及2n S 的最小值.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1) 21n n a n -=;(2)21141n S n =-+,4545.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且2sin tan c B b C =.(1)求角C 的值;(2)若c =3a b =,求ABC ∆的面积.【来源】重庆市松树桥中学2018-2019学年高一下学期期末数学试题【答案】(1)3C π=,(2)ABC S ∆=46.在ABC V 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足1cos cos a cB C b b-=-. (1)求角C 的大小;(2)若2c =,a b +=ABC V 的面积.【来源】2020届安徽省芜湖市高三上学期期末数学(文)试题【答案】(1)3C π=;(2)447.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos a B A =. (1)求A ;(2)若a =,ABC V 的面积为ABC V 的周长.【来源】2020届福建省三明市高三上学期期末质量检测文科数学试题试卷第11页,总11页 【答案】(1)3A π=(2)7+48.在正项数列{}n a中,11a =,()()2211121n n n n a a a a ++-=-,1n n nb a a =-. (1)求数列{}n a 与{}n b 的通项公式;(2)求数列(){}22n n n a b -的前n 项和nT . 【来源】2020届吉林省通化市梅河口市第五中学高三上学期期末数学(理)试题【答案】(1)22n n a +=,2n n b =,(2)()()13144219n n n T n n +-+=++49.在ABC ∆中,10a b +=,cos C 是方程22320x x --=的一个根,求ABC ∆周长的最小值。

浙江省嘉兴市重点名校2022-2023学年数学高一上期末含解析

浙江省嘉兴市重点名校2022-2023学年数学高一上期末含解析

,即
BP
2PC
,得点
P
为线段
BC
上靠近
C
点的三等分点,又因为 AQ 3 AB 1 AC ,所以 3 ( AQ AB) 1 ( AC AQ) ,即 3BQ QC ,得点 Q 为线段 BC
44
4
4
上靠近 B 点的四等分点,所以 PQ
5
S BC ,所以 APQ 与 ABC 的面积之比为
APQ
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分。
11.设角 的顶点与坐标原点重合,始边与 x 轴的非负半轴重合,若角 的终边上一点 P 的坐标为 (1, 3) ,则 cos
的值为__________
12.在平面直角坐标系中,正三角形 ABC 的边 BC 所在直线的斜率是 0,则 AC,AB 所在直线的斜率之和为________
1.已知函数
f
(x)
3sin
2
x
6
,若函数
y
f
2(x) (m 1) f (x) m 在[0,π ]上有 3 个零点,则 m 的取值范围 2
为( )
A.
3 2
,
3
B.
3 2
,
3
C.
3 2
,
3 2
D.
3 2
,
3
2.已知集合 A {x | x2 x 0},集合 B {x N | 1 x 3} ,则下列结论正确的是
PQ
5
,选择 B
12
S ABC BC 12
【点睛】平面向量的线性运算要注意判断向量是同起点还是收尾相连的关系再使用三角形法则和平行四边形法则进行
加减运算,借助向量的数乘运算可以判断向量共线,及向量模长的关系

2017-2018学年度人教版高一第一学期期末质量检测语文试题含答案

2017-2018学年度人教版高一第一学期期末质量检测语文试题含答案

2017-2018学年度人教版高一第一学期期末质量检测语文试题含答案2017-2018学年高一第一学期期末质量检测语文科试卷考试时间:150分钟;满分:150分;共23小题友情提示:请将答案填涂在答题卡的相应位置上,答在本试卷上一律无效一、现代文阅读(每小题3分,共9分)读下面文字,完成1-3题。

很多人说:什么是意境?意境就是“情”“景”交融。

其实这种解释应该是从近代开始的。

XXX在《人间词话》中所使用的“意境”或“境界”,他的解释就是情景交融。

但是在中国传统美学中,情景交融所规定的是“意象”,而不是“意境”。

中国传统美学认为艺术的本体就是意象,任何艺术作品都要创造意象,都应该情景交融,而意境则不是任何艺术作品都具有的。

意境除了有意象的一般规定性之外,还有自己的特殊规定性,意境的内涵大于意象,意境的外延小于意象。

那么意境的特殊规定性是什么呢?唐代XXX有句话:“境生于象外。

”“境”是对于在时间和空间上有限的“象”的突破,只有这种象外之“境”才能体现作为宇宙的本体和生命的“道”。

从审美活动的角度看,所谓“意境”,就是超越具体的有限的物象、事件、场景,进入无限的时间和空间,从而对整个人生、历史、宇宙获得一种哲理性的感受和领悟。

西方古代艺术家,他们给自己提出的任务是要再现一个具体的物象,所以他们,比如古希腊雕塑家追求“美”,就把人体刻画得非常逼真、非常完美。

而中国艺术家不是局限于刻画单个的人体或物体,把这个有限的对象刻画得很逼真、很完美。

相反,他们追求一种“象外之象”、“景外之景”。

中国园林艺术在审美上的最大特点也是有意境。

中国古典园林中的楼、台、亭、阁,它们的审美价值主要不在于这些建筑本身,而是如同XXX《兰亭集序》所说,在于可使人“仰观宇宙之大,俯察品类之盛。

我们生活的世界是一个成心味的世界。

XXX有两句诗说得好:“此中有真意,欲辩已忘言。

”艺术就是要去寻找、发现、体验生活中的这种意味。

成心境的作品和普通的艺术作品在这一点的区别,就在于它不但揭示了生活中某一个具体事物或具体事件的意味,并且超出了具体的事物和事件,从一个角度揭示了整个人生的意味。

浙江省嘉兴市第一中学2024-2025学年高一上学期10月月考数学试题

浙江省嘉兴市第一中学2024-2025学年高一上学期10月月考数学试题

浙江省嘉兴市第一中学2024-2025学年高一上学期10月月考数学试题一、单选题1.集合{13}A xx =-<≤∣,{}24B x x =<,那么集合A B =I ( ) A .{22}x x -<<∣ B .{12}x x -<<∣ C .{23}x x -<≤∣ D .{13}xx -<<∣ 2.已知命题():1,p x ∀∈+∞,20x x ->,则( )A .命题p 的否定为“()1,x ∃∈+∞,20x x ->”B .命题p 的否定为“(],1x ∃∈-∞,20x x -≤”C .命题p 的否定为“()1,x ∃∈+∞,20x x -≤”D .命题p 的否定为“(],1x ∀∈-∞,20x x ->”3.设命题“2x >”是命题“240x -≤”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设函数()221,036,0x x x f x x x ⎧++<=⎨+≥⎩,则不等式()()1f x f >的解集是( ) A .()(),41,-∞-+∞UB .()(),21,-∞-+∞UC .()(),42,-∞-+∞UD .()(),22,∞∞--⋃+5.设a ,b ,R c ∈,则下列命题正确的是( )A .若a b >,则a b >B .若0a b c >>>,则a a c b b c +<+C .若a b >,则11a b< D .若0a b c >>>,则b c a b a c >-- 6.不等式1122x x x x --->-++的解集为( ) A .{2x x <-或x >1B .{|2}x x <-C .{}1x x > D .{}21x x -<<7.设0m >,若2420mx x -+=有两个不相等的根1x ,2x ,则12x x +的取值范围是( ) A .()0,2 B .(]0,2 C .()2,+∞ D .[)2,+∞8.对于实数a 和b 定义运算“⋅”:⋅a b =22,,a ab a b b ab a b⎧-≤⎨->⎩,设()(21)(2)f x x x =-⋅-,如果关于x 的方程()()f x m m R =∈恰有三个互不相等的实数根123x x x ,,,则m 的取值范围( ) A .9,4⎛⎤-∞ ⎥⎝⎦ B .90,4⎡⎤⎢⎥⎣⎦ C .9(0,)4 D .φ二、多选题9.下列各组函数是同一个函数的是( )A .()221f x x x =--与()221g s s s =--B .()f x ()g x =-C .()x f x x =与()g x =D .()f x x =与()g x =10.已知集合{}22M y y x ==-,{N x y ==,则( )A .M N M ⋂=B .M N M ⋃=C .()N M ⋂=∅R ðD .()M N ⋂=∅R ð11.已知2()2f x x x a =-+.若方程()0f x =有两个根12,x x ,且12x x <,则下列说法正确的有()A .1>0x ,20x >B .1a <C .若120x x ≠,则121211x x x x ++的最小值为D .,R m n ∀∈,都有()()()22f m f n m nf ++≥三、填空题12.设集合{}21,,45A t t t =-+,若2A ∈,则实数t 的值为.13.已知不等式()()22240a x a x -+--≥解集是∅,则实数a 的取值范围是.14.已知a ,b ,0c >满足4a b c ++=,则11ab bc+的最小值为.四、解答题15.已知全集为R ,集合{}22A x x x =+<,{124}B xx a =-<+<∣. (1)当1a =时,求R ()A B ⋃ð;(2)若A B B =I ,求实数a 的取值范围.16.设函数2()(1)2(R)f x ax a x a a =+-+-∈(1)若不等式()2f x ≥-对一切实数x 恒成立,求a 的取值范围;(2)解关于x 的不等式:()1f x a <-.17.设a 为实数,函数()f x =(1)求函数()f x 的定义域;(2)设t ()f x 表示为t 的函数()h t ,并写出定义域;(3)若0a <,求()f x 的最大值18.已知x ,0y >满足6x y +=.(1)求22x y +的最小值;(2)求3yx y +的最小值;(3)若()2244x y m x y +≥+恒成立,求m 的取值范围. 19.已知二次函数()()1f x ax x =-,()0,4a ∈,()0,1x ∈.若有()00f x x =,我们就称0x 为函数()f x 的一阶不动点;若有()()00f f x x =,我们就称0x 为函数()f x 的二阶不动点.(1)求证:()01f x <<;(2)若函数()f x 具有一阶不动点,求a 的取值范围;(3)若函数()f x 具有二阶不动点,求a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档