Fluent多相流模型选择
最新fluent多相流模型选择与设定复习课程
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
FLUENT多相流模型
FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。
2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。
最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。
3、液固两相流动泥浆流:流体中的大量颗粒流动。
颗粒的sto kes数通常小于1。
大于1是成为流化了的液固流动。
水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。
4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。
多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。
2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。
3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。
fluent 多相流 设置 操作流程
fluent 多相流设置操作流程
1.确定多相流模型类型,包括欧拉-欧拉模型、欧拉-拉格朗日模型和欧拉-欧拉-拉格朗日模型。
2. 在定义域上设置多相流边界条件,包括初始条件、边界条件和材料属性等。
3. 在求解器中选择适当的多相流求解器,其中常用的有离散相模型、连续相模型和VOF模型。
4. 配置求解器参数,包括时间步长、残差收敛准则和网格细化策略等。
5. 进行求解,观察结果并判断是否需要调整求解器参数或进行网格优化等。
6. 对结果进行后处理,包括结果可视化、数据提取和分析等。
7. 根据后处理结果对模型进行优化和改进。
8. 最终确定最优的多相流模型并导出结果。
- 1 -。
Fluent多相流模型选择与设定
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
fluent多相流模型选择与设定
fluent多相流模型选择与设定Fluent多相流模型是一种用于模拟多相流动的计算模型。
它可以应用于各种工程领域,如化工、环境工程、能源等,用于预测流体在不同相态下的行为和性质。
在本文中,将介绍Fluent多相流模型的选择和设定,并探讨其在工程应用中的重要性。
选择适当的多相流模型对于准确模拟流体行为至关重要。
Fluent提供了多种多相流模型,包括欧拉-欧拉模型、欧拉-拉格朗日模型和欧拉-欧拉-拉格朗日模型等。
根据实际应用需求,可以选择合适的模型。
例如,在颗粒流动中,欧拉-欧拉模型可以更好地描述流体和颗粒之间的相互作用;而在液滴破裂模拟中,欧拉-拉格朗日模型可以更准确地预测液滴的形变和破裂行为。
设定正确的边界条件和物理参数也是模拟多相流动的关键步骤。
边界条件包括入口速度、出口压力、界面张力等,这些参数对于模拟结果的准确性和稳定性起着重要作用。
在设定物理参数时,需要考虑到流体的性质、颗粒的密度、粘度等因素,并根据实际情况进行合理选择。
在使用Fluent进行多相流模拟时,还需要合理设置网格。
网格的划分应该足够细致,以捕捉流体和颗粒的细微变化。
同时,为了提高计算效率,还需要根据流体和颗粒的运动特性进行网格的划分和调整。
这样可以保证模拟结果的精确性和计算的稳定性。
Fluent多相流模型在工程应用中具有广泛的适用性和重要性。
例如,在化工领域,多相流模型可以用于模拟反应器内的气体-液体反应过程,以优化反应条件和提高反应效率。
在环境工程中,多相流模型可以用于模拟污水处理过程中的气体和颗粒物的分离和去除效果。
在能源领域,多相流模型可以用于模拟燃烧过程中的燃料和空气的混合和燃烧特性,以优化燃烧效率和减少污染物排放。
Fluent多相流模型是一种强大而灵活的工具,可以帮助工程师和科研人员更好地理解和预测多相流动的行为。
通过正确选择和设定模型,并结合实际应用需求,可以获得准确、稳定的模拟结果,为工程设计和优化提供科学依据。
Fluent多相流模型选择与设定
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流 (上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
Fluent 多相流选择原则
Fluent 多相流选择原则分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。
2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。
最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。
3、液固两相流动泥浆流:流体中的大量颗粒流动。
颗粒的stokes数通常小于1。
大于1是成为流化了的液固流动。
水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。
4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。
多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。
2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。
3)对于栓塞流、泡状流,采用VOF模型4)对于分层自由面流动,采用VOF模型5) 对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。
6) 对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。
8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。
Fluent中的多相模型及求解解析
2. Fluent中的多相流动模型
• 欧拉-拉格朗日方法——流体被处理为连续相,直接求解时 均Navier-Stokes方程;计算流场中大量的粒子,气泡或液 滴的运动轨迹,得到离散相的分布规律。离散相和流体相之 间可以有动量、质量和能量的交换。基本假设:作为离散的 第二相的体积比率很低。
• 欧拉-欧拉方法——不同的相被处理成互相贯穿的连续介质 。引入相体积率的概念,各相的体积率之和等于1。不同的 相均满足守恒方程。从实验数据建立一些关系式,使方程组 封闭。在Fluent中,有三种欧拉-欧拉多相流模型:流体体 积模型(VOF),混合物模型,欧拉模型。
4. 压力梯度力,由流场中压力梯度引起的作用力,与惯性 力相比,数量级很小,可忽略不计。
5. 虚假质量力——附加质量(Added Mass),特例:圆球 的附加质量力是惯性力的一半。
——划分的目的:得到颗粒在流场中受到的合力。
18
6. Basset力,发生在粘性流体中,与运动的不稳定性有关
7. Magnus升力,由于颗粒旋转产生, L u Γ
Fluent中的多相模型及求解
《多相流体力学》
1
参考书目
1. 多相流及其应用,车得福 李会雄 编著,西安交通大学出 版社,2007年11月。 2. 液-固两相流基础,岳湘安 著,石油工业出版社,1996年 4月。 3. Fluent培训材料,Fluent 6.1 User’s Guide,Fluent Inc., 2003 4. 计算流体动力学分析——CFD软件原理与应用,王福军 编著,清华大学出版社,2004年9月。
《多相流及其应用》,车得福 李会雄
21
颗粒的尾流
一个颗粒的尾流范围往往比它本身体积大2~3个量级。因此 ,即使颗粒浓度很低,也存在显著的相互作用——通过流体 的间接作用,对颗粒的阻力造成显著影响。
fluent多组分多相流模型_理论说明
fluent多组分多相流模型理论说明1. 引言1.1 概述本文旨在探讨fluent多组分多相流模型的理论说明。
随着科学技术的不断发展,多组分多相流模型在各个领域中得到了广泛应用。
该模型能够考虑多种组分和相态的存在,从而更准确地描述复杂的流体行为。
1.2 文章结构文章共分为五个部分,每个部分都包含了相关的内容。
首先,在引言部分介绍了本文的概述和结构。
接下来,第二部分将详细解释多组分流动模型、多相流动模型以及Fluent软件中的多组分多相流模型。
第三部分将探讨该模型在化工工艺过程、石油与天然气行业以及环境工程领域中的应用场景。
第四部分将评估该模型的优势和挑战,并提出可能面临的问题。
最后,在结论部分总结了主要观点和发现,并提出了对未来研究方向的展望和建议。
1.3 目的本文旨在深入理解fluent多组分多相流模型,并研究其在不同领域中的应用场景。
通过对该模型进行理论说明和分析,我们可以更好地了解其优势、挑战以及潜在问题。
此外,在总结主要观点和发现的同时,本文还将对未来的研究方向提出展望和建议,为该领域的科学研究和工程实践提供指导。
2. 多组分多相流模型理论说明:2.1 多组分流动模型:多组分流动模型是描述在系统中同时存在多个物质组分时的流动行为的数学模型。
在多组分流动模型中,每个物质组分都被视为一个单独的相,并且通过质量守恒方程和动量守恒方程来描述每个组分的运动。
此外,还引入了物质浓度、温度、压力等参数来完整描述系统状态。
2.2 多相流动模型:多相流动模型是用于描述具有不同物理性质的两种或更多相互作用的复杂系统中的流体行为的数学模型。
在传统单相流动模型中,假设介质是均匀连续的,但在实际情况下,往往存在着两种或者更多不同相态之间的界面。
因此,通过引入界面张力、表面张力等参数以及液滴或气泡等微观结构来描述这些不同相态之间的交互关系。
2.3 Fluent中的多组分多相流模型:Fluent是一种常用于计算流体力学仿真软件,在其中提供了丰富有效的多组分多相流建模工具和方法。
【多相流】fluent中如何选择多相流模型?(2)
【多相流】fluent中如何选择多相流模型?(2)“长风破浪会有时,直挂云帆济沧海!”计算流体力学的发展为进一步了解多相流的动力学特性提供了基础。
目前多相流数值计算主要有两种方法:欧拉-拉格朗日法和欧拉-欧拉法。
01—fluent中的多相流模型在欧拉-欧拉方法中,不同的相在数学上被视为相互渗透的连续相。
由于某一相的体积不能被其他相所占据,因此引入了相体积分数的概念。
假设这些体积分数是空间和时间的连续函数,它们的和等于1。
推导出各相的守恒方程,得到各相具有相似结构的方程组。
这些方程通过提供从经验获得的本构关系而封闭,或者,在粒状流动的情况下,通过动力学理论的应用而封闭。
在ANSYS Fluent中,提供了三种欧拉多相流模型: volume of fluid (VOF) 模型, mixture模型, 和 Eulerian 模型。
•VOF模型VOF模型是一种应用于固定欧拉网格的表面跟踪技术。
VOF模型用于两种或多种不混溶的流体,而流体之间的界面位置是我们感兴趣的。
在VOF模型中,流体共享一组动量方程,并且在整个域中跟踪每个计算单元中每种流体的体积分数。
VOF模型可应用于:分层流动、自由表面流动、填充、晃动、大气泡在液体中的运动、溃坝后液体的运动、射流破裂的预测(表面张力)以及任何液-气界面的稳态或瞬态跟踪。
•Mixture模型混合模型可用于两种或两种以上的相(流体或颗粒)。
在欧拉模型中,相被视为相互渗透的连续体。
混合模型求解混合动量方程,用相对速度来描述分散相。
混合模型可应用于:低负荷颗粒流、气泡流、沉降和旋风分离器。
混合模型也可以用于没有相对速度的分散相来模拟均匀多相流。
•Eulerian模型欧拉模型是ANSYS Fluent中最复杂的多相流模型。
它要为每一项求解一系列的动量和连续性方程。
通过压力和相间交换系数实现了耦合。
处理这种耦合的方式取决于所涉及相的类型:颗粒状(流体-固体)流动与非颗粒状(流体-流体)流动的处理方法不同。
Fluent多相流模型选择与设定(优选.)
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
Fluent多相流模型选择及设定
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o 气泡流动:连续流体中的气泡或者液泡。
o 液滴流动:连续气体中的离散流体液滴。
o 活塞流动: 在连续流体中的大的气泡o 分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o 充满粒子的流动:连续气体流动中有离散的固体粒子。
o 气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o 流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o 泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes 数通常小于1。
当Stokes数大于1 时,流动成为流化(fluidization)了的液-固流动。
o 水力运输: 在连续流体中密布着固体颗粒o 沉降运动: 在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流 (上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子: 泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2. 多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
Fluent模型使用技巧
1.多相流动模式我们可以根据下面的原则对多相流分成四类:•气-液或者液-液两相流:o气泡流动:连续流体中的气泡或者液泡。
o液滴流动:连续气体中的离散流体液滴。
o活塞流动:在连续流体中的大的气泡o分层自由面流动:由明显的分界面隔开的非混合流体流动。
•气-固两相流:o充满粒子的流动:连续气体流动中有离散的固体粒子。
o气动输运:流动模式依赖诸如固体载荷、雷诺数和粒子属性等因素。
最典型的模式有沙子的流动,泥浆流,填充床,以及各向同性流。
o流化床:由一个盛有粒子的竖直圆筒构成,气体从一个分散器导入筒内。
从床底不断充入的气体使得颗粒得以悬浮。
改变气体的流量,就会有气泡不断的出现并穿过整个容器,从而使得颗粒在床内得到充分混合。
•液-固两相流o泥浆流:流体中的颗粒输运。
液-固两相流的基本特征不同于液体中固体颗粒的流动。
在泥浆流中,Stokes数通常小于1。
当Stokes数大于1时,流动成为流化(fluidization)了的液-固流动。
o水力运输:在连续流体中密布着固体颗粒o沉降运动:在有一定高度的成有液体的容器内,初始时刻均匀散布着颗粒物质。
随后,流体将会分层,在容器底部因为颗粒的不断沉降并堆积形成了淤积层,在顶部出现了澄清层,里面没有颗粒物质,在中间则是沉降层,那里的粒子仍然在沉降。
在澄清层和沉降层中间,是一个清晰可辨的交界面。
•三相流(上面各种情况的组合)各流动模式对应的例子如下:•气泡流例子:抽吸,通风,空气泵,气穴,蒸发,浮选,洗刷•液滴流例子:抽吸,喷雾,燃烧室,低温泵,干燥机,蒸发,气冷,刷洗•活塞流例子:管道或容器内有大尺度气泡的流动•分层自由面流动例子:分离器中的晃动,核反应装置中的沸腾和冷凝•粒子负载流动例子:旋风分离器,空气分类器,洗尘器,环境尘埃流动•风力输运例子:水泥、谷粒和金属粉末的输运•流化床例子:流化床反应器,循环流化床•泥浆流例子:泥浆输运,矿物处理•水力输运例子:矿物处理,生物医学及物理化学中的流体系统•沉降例子:矿物处理2.多相流模型FLUENT中描述两相流的两种方法:欧拉一欧拉法和欧拉一拉格朗日法,后面分别简称欧拉法和拉格朗日法。
Fluent多相流模型选择
FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。
2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。
最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。
3、液固两相流动泥浆流:流体中的大量颗粒流动。
颗粒的stokes数通常小于1。
大于1是成为流化了的液固流动。
水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。
4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。
多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。
2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。
3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。
6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。
8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。
【多相流】fluent中如何选择多相流模型?(3)
【多相流】fluent中如何选择多相流模型?(3)“长风破浪会有时,直挂云帆济沧海!”对于分层流和段塞流,模型比较表明VOF模型的选择很简单。
为其他类型的流动选择模型就不那么简单了。
作为一般准则,有一些参数可以帮助为这些其他流动确定适当的多相流模型:颗粒载荷β和斯托克斯数st(注意,在本讨论中“颗粒”一词是指颗粒、液滴或气泡)。
1 颗粒载荷的影响颗粒载荷对相的相互作用有很大的影响。
定义颗粒载荷为分散相(d)与载体相(c)的质量密度比:材料密度比为:气-固流动大于1000,液-固流动约为1,气-液流动小于0.001。
通过这些参数,可以估算出颗粒相各颗粒之间的平均距离,Crowe等人已经给出了这个距离的估计。
其中,,有关这些参数的信息对于确定应如何处理分散相是重要的。
例如,对于颗粒载荷为1的气-固流动,颗粒间距离约为8;因此,颗粒可以被视为孤立的(即非常低的颗粒载荷)。
根据颗粒载荷的不同,相间相互作用程度可分为以下三类:•对于非常低的载荷,两相之间的耦合是单向的(即流体通过阻力和湍流影响颗粒,而颗粒对流体没有影响)。
离散相模型、混合模型和欧拉模型都能正确地处理这类问题。
由于欧拉模型是计算量最大的,建议采用离散相或混合模型。
•对于中等载荷,耦合是双向的(即流体通过阻力和湍流影响颗粒相,而颗粒反过来通过平均动量和湍流的降低影响流体)。
离散相、混合和欧拉模型都适用于这种情况,但需要考虑其他因素,以决定哪种模型更合适。
下面是使用Stokes数作为指南的信息。
•对于高载荷,有双向耦合加上颗粒压力和颗粒引起的粘性应力(四向耦合)。
只有欧拉模型才能正确地处理这类问题。
2 斯托克斯数的意义具有中等颗粒载荷的系统,估计Stokes数的值可以帮助选择最合适的模型。
可以将Stokes数定义为粒子响应时间与系统响应时间的关系:其中,,是基于所研究系统的特征长度和特征速度,。
•当,粒子将紧密跟随流动,三种模型(离散相、混合相或欧拉)均适用;因此,可以选择最经济的(大多数情况下是混合模型),或者考虑到其他因素,选择最合适的。
fluent多相计算
fluent多相计算是指利用流体动力学软件fluent进行多相流体的计算和分析。
在自然界和工程实际中,多相流广泛存在,如河流、海洋中的水和沙的流动,油气田中的油、气和水三相流动等。
因此,fluent多相计算在流体动力学、环境科学、石油工程等领域具有广泛的应用前景。
在进行fluent多相计算时,需要建立多相流模型,包括液相、固相和气相的流动模型。
根据不同的流动特性和应用场景,可以选择不同的模型,如欧拉-欧拉模型、欧拉-拉格朗日模型、拉格朗日-拉格朗日模型等。
同时,需要考虑流体之间的相互作用力和作用机理,如浮力、阻力、升力等。
在建立好模型后,需要设定模型的边界条件和初始条件,并进行求解计算。
fluent软件提供了丰富的求解器和后处理功能,可以对多相流场进行详细的分析和可视化。
通过对计算结果的分析,可以深入了解多相流体的流动特性、传热传质规律等,为实际工程提供理论支持和优化方案。
在实际应用中,fluent多相计算可以应用于多种领域。
例如,在石油工程中,可以通过fluent多相计算模拟油、气、水三相在油气田中的流动和分离过程,优化油气田的开发方案和提高采收率。
在环境科学中,可以通过fluent多相计算
模拟河流中泥沙的搬运和沉积过程,预测河道的演变和治理方案。
总之,fluent多相计算是一种强大的流体动力学分析工具,可以广泛应用于多相流体的模拟和分析。
通过深入了解多相流的流动特性和传热传质规律,可以为实际工程提供理论支持和优化方案,推动相关领域的发展和进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FLUENT多相流模型分类1、气液或液液流动气泡流动:连续流体中存在离散的气泡或液泡液滴流动:连续相为气相,其它相为液滴栓塞(泡状)流动:在连续流体中存在尺寸较大的气泡分层自由流动:由明显的分界面隔开的非混合流体流动。
2、气固两相流动粒子负载流动:连续气体流动中有离散的固体粒子气力输运:流动模式依赖,如固体载荷、雷诺数和例子属性等。
最典型的模式有沙子的流动,泥浆流,填充床以及各相同性流流化床:有一个盛有粒子的竖直圆筒构成,气体从一个分散器进入筒内,从床底不断冲入的气体使得颗粒得以悬浮。
3、液固两相流动泥浆流:流体中的大量颗粒流动。
颗粒的stokes数通常小于1。
大于1是成为流化了的液固流动。
水力运输:在连续流体中密布着固体颗粒沉降运动:在有一定高度的盛有液体的容器内,初始时刻均匀散布着颗粒物质,随后,流体会出现分层。
4、三相流以上各种情况的组合多相流动系统的实例气泡流:抽吸、通风、空气泵、气穴、蒸发、浮选、洗刷。
液滴流:抽吸、喷雾、燃烧室、低温泵、干燥机、蒸发、气冷、洗刷。
栓塞流:管道或容器中有大尺度气泡的流动分层流:分离器中的晃动、核反应装置沸腾和冷凝粒子负载流:旋风分离器、空气分类器、洗尘器、环境尘埃流动气力输运:水泥、谷粒和金属粉末的输运流化床:流化床反应器、循环流化床泥浆流:泥浆输运、矿物处理水力输运:矿物处理、生物医学、物理化学中的流体系统沉降流动:矿物处理。
多相流模型的选择原则1、基本原则1)对于体积分数小于10%的气泡、液滴和粒子负载流动,采用离散相模型。
2)对于离散相混合物或者单独的离散相体积率超出10%的气泡、液滴和粒子负载流动,采用混合模型或欧拉模型。
3)对于栓塞流、泡状流,采用VOF模型4)对于分层/自由面流动,采用VOF模型5)对于气动输运,均匀流动采用混合模型,粒子流采用欧拉模型。
6)对于流化床,采用欧拉模型7)泥浆和水力输运,采用混合模型或欧拉模型。
8)沉降采用欧拉模型9)对于更一般的,同时包含多种多相流模式的情况,应根据最感兴趣的流动特种,选择合适的流动模型。
此时由于模型只是对部分流动特征采用了较好的模拟,其精度必然低于只包含单个模式的流动。
2、混合模型和欧拉模型的选择原则VOF模型适合于分层的或自由表面流,而混合模型和欧拉模型适合于流动中有相混合或分离,或者分散相的体积分数超过10%的情况(小于10%可使用离散相模型)。
1)如果分散相有宽广的分布(如颗粒的尺寸分布很宽),最好采用混合模型,反之使用欧拉模型。
2)如果相间曳力规律一直,欧拉模型通常比混合模型更精确;若相间曳力规律不明确,最好选用混合模型。
3)如果希望减小计算了,最好选用混合模型,它比欧拉模型少解一部分方程;如果要求精度而不在意计算量,欧拉模型可能是更好的选择。
但是要注意,复杂的欧拉模型比混合模型的稳定性差,可能会遇到收敛困难。
选用FLUENT多相流模型的几个要点。
多相流的计算,首先是要对要研究的问题要有一个比较详细的了解。
你对模拟过程了解多少,可能的结果是什么。
可以想象一下你模拟的过程,你想要得到的结果侧重点在哪里,等等。
然后根据问题选择不同的多相流模型。
由于不同的模型适合不同的模型,因此首先要对 FLUENT各个多相模型有一明确的概念。
你如何简化问题另外,网格的划分很重要。
尽量采用简单的网格。
网格的疏密程度,那些地方要细,那些地方可以疏些,等等。
好的前处理对获得快速收敛的解非常非常重要!关于FLUENT不同多相流模型的选择和比较:1) 对DPM模型,采用的是Lagraian-Eulerian方法。
粒子的运动是按Lagrarian 方法,连续流体的计算是按Eulerian方法。
DPM可以跟踪单独粒子的运动轨迹。
但该方法不考虑粒子对连续流体运动的影响,所以只适用于粒子体积占总体积不大于10%的情况。
2) VOF模型。
该模型能够比较好的反映多相流之间的界面情况。
比如大的气泡以比较慢的速度在液体中流动,气液界面等。
由于VOF模型采用的方程中的各项物性参数,如密度,粘度等,是各相物性的体积平均值,所以要求各相的速度之间差别不能太大,否则会对计算结果的精度影响很大。
一般情况VOF采用非稳态模拟比较好。
主相的体积值不是从体积守恒方程得到的,而是1减去其他离散相的值。
3)Mixture模型。
此模型考虑了离散相和连续相的速度差,及相互之间的作用。
但相与相之间是不相容的。
动量方程及连续方程等中各物性参数采用的是各相体积平均值。
主相的体积值不是从体积守恒方程得到的,而是1减去其他离散相的值。
4)Eulerian模型。
此模型可以对各相进行单独的计算,每相都有单独的守恒方程。
据有很大的适应性。
但代价是由于要对各相都要进行独自计算迭代,计算机时是很巨大的。
故Mixture是Eulerian模型的一种折衷.FLUENT经典问题[ 2006-4-27 10:12:00 | By: bubujia ]1 对于刚接触到FLUENT新手来说,面对铺天盖地的学习资料和令人难读的FLUE NT help,如何学习才能在最短的时间内入门并掌握基本学习方法呢?2 CFD计算中涉及到的流体及流动的基本概念和术语:理想流体和粘性流体;牛顿流体和非牛顿流体;可压缩流体和不可压缩流体;层流和湍流;定常流动和非定常流动;亚音速与超音速流动;热传导和扩散等。
3 在数值模拟过程中,如何对控制方程进行离散?如何对计算区域进行离散化?离散化的目的是什么?离散化时通常使用哪些网格?离散化常用的方法有哪些?它们有什么不同?4 常见离散格式的性能的对比(稳定性、精度和经济性)。
5 在利用有限体积法建立离散方程时,必须遵守哪几个基本原则?6 流场数值计算的目的是什么?主要方法有哪些?其基本思路是什么?各自的适用范围是什么?7可压缩流动和不可压缩流动,在数值解法上各有何特点?为何不可压缩流动在求解时反而比可压缩流动有更多的困难?8 什么叫边界条件?有何物理意义?它与初始条件有什么关系?9 在一个物理问题的多个边界上,如何协调各边界上的不同边界条件?在边界条件的组合问题上,有什么原则?10 在数值计算中,偏微分方程的双曲型方程、椭圆型方程、抛物型方程有什么区别?GAMBIT的前处理:11 在网格生成技术中,什么叫贴体坐标系?什么叫网格独立解?12 在GAMBIT的foreground和background中,真实体和虚实体、实操作和虚操作四个之间是什么关系?13 在GAMBIT中显示的“check”主要通过哪几种来判断其网格的质量?及其在做网格时大致注意到哪些细节?14 画网格时,网格类型和网格方法如何配合使用?各种方法有什么样的应用范围及做网格时需注意的问题?15 对于自己的模型,大多数人有这样的想法:我的模型如何来画网格?用什么样的方法最简单?这样做网格到底对不对?16 在两个面的交界线上如果出现网格间距不同的情况时,即两块网格不连续时,怎么样克服这种情况呢?17 依据实体在GAMBIT建模之前简化时,必须遵循哪几个原则?18 在设置GAMBIT边界层类型时需要注意的几个问题:a、没有定义的边界线如何处理?b、计算域内的内部边界如何处理(2D)?19 为何在划分网格后,还要指定边界类型和区域类型?常用的边界类型和区域类型有哪些?20 何为流体区域(fluid zone)和固体区域(solid zone)?为什么要使用区域的概念?FLUENT是怎样使用区域的?FLUENT运行问题:21 如何监视FLUENT的计算结果?如何判断计算是否收敛?在FLUENT中收敛准则是如何定义的?分析计算收敛性的各控制参数,并说明如何选择和设置这些参数?解决不收敛问题通常的几个解决方法是什么?22 什么叫松弛因子?松弛因子对计算结果有什么样的影响?它对计算的收敛情况又有什么样的影响?23 在FLUENT运行过程中,经常会出现“turbulence viscous rate”超过了极限值,此时如何解决?而这里的极限值指的是什么值?修正后它对计算结果有何影响?24 在FLUENT运行计算时,为什么有时候总是出现“reversed flow”?其具体意义是什么?有没有办法避免?如果一直这样显示,它对最终的计算结果有什么样的影响?25 燃烧过程中经常遇到一个“头疼”问题是计算后温度场没什么变化?即点火问题,解决计算过程中点火的方法有哪些?什么原因引起点火困难的问题?26 什么叫问题的初始化?在FLUENT中初始化的方法对计算结果有什么样的影响?初始化中的“patch”怎么理解?27 什么叫PDF方法?FLUENT中模拟煤粉燃烧的方法有哪些?28 在利用prePDF计算时出现不稳定性如何解决?即平衡计算失败。
29 在prePDF运行时,报告中会出现提示信息和错误有哪些?并分析错误的原因,提出解决的方法?30 FLUENT运行过程中,出现残差曲线震荡是怎么回事?如何解决残差震荡的问题?残差震荡对计算收敛性和计算结果有什么影响?31 数值模拟过程中,什么情况下出现伪扩散的情况?以及对于伪扩散在数值模拟过程中如何避免?32 FLUENT轮廓(contour)显示过程中,有时候标准轮廓线显示通常不能精确地显示其细节,特别是对于封闭的3D物体(如柱体),其原因是什么?如何解决?33 如果采用非稳态计算完毕后,如何才能更形象地显示出动态的效果图?34 在FLUENT的学习过程中,通常会涉及几个压力的概念,比如压力是相对值还是绝对值?参考压力有何作用?如何设置和利用它?35 在FLUENT结果的后处理过程中,如何将美观漂亮的定性分析的效果图和定量分析示意图插入到论文中来说明问题?36 在DPM模型中,粒子轨迹能表示粒子在计算域内的行程,如何显示单一粒径粒子的轨道(如20微米的粒子)?37 在FLUENT定义速度入口时,速度入口的适用范围是什么?湍流参数的定义方法有哪些?各自有什么不同?38 在计算完成后,如何显示某一断面上的温度值?如何得到速度矢量图?如何得到流线?39 分离式求解器和耦合式求解器的适用场合是什么?分析两种求解器在计算效率与精度方面的区别。
40 在处理高速空气动力学问题时,采用哪种耦合求解器效果更好?为什么?41 近20多年来,用于超音速流动的湍流模型主要有哪些?各之间模型有什么不同?42 超音速燃烧反应的模型有哪些?它们有什么特点?43 FLUENT中常用的文件格式类型:dbs,msh,cas,dat,trn,jou,profile 等有什么用处?44在计算区域内的某一个面(2D)或一个体(3D)内定义体积热源或组分质量源。
如何把这个zone定义出来?而且这个zone仍然是流体流动的。
45 FLUENT进行化学反应计算时模型的选择、求解器的选择以及相关参数的设置需要哪些问题?用FLUENT如何进行化学反应的计算?46 如何选择单、双精度解算器的选择?47 求解器为flunet5/6在设置边界条件时,specify boundary types下的typ es中有三项关于interior,interface,internal设置,在什么情况下设置相应的条件?它们之间的区别是什么?interior好像是把边界设置为内容默认的一部分;interface是两个不同区域的边界区,比如说离心泵的叶轮旋转区和叶轮出口的交界面;internal;请问以上三种每个的功能?最好能举一两个例子说明一下,因为这三个都是内部条件吧,好像用的很多。