哈尔滨三中高中一年级上学期数学第一次月考试题[含答案解析]

合集下载

黑龙江省哈尔滨市高一上学期数学10月第一次月考试卷

黑龙江省哈尔滨市高一上学期数学10月第一次月考试卷

黑龙江省哈尔滨市高一上学期数学10月第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019高一上·延安期中) 设全集,集合,,则集合()A .B .C .D .2. (2分)设集合,若,则y的值为()A . 1B . 2C . eD .3. (2分) (2016高二上·宣化期中) 下列命题中正确的是()①“若x2+y2≠0,则x,y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x﹣m=0有实根”的逆否命题;④“若x﹣是有理数,则x是无理数”的逆否命题.A . ①②③④B . ①③④C . ②③④D . ①④4. (2分) (2018高一上·旅顺口期中) 已知集合,若中只有一个元素,则的值是()A .B .C . 或D . 或5. (2分) (2020高一下·南昌期末) 设,则下列结论中一定正确的是()A .B .C . 且D .6. (2分)已知集合A={1,2,3}, B A={3},B A={1,2,3,4,5},则集合B的子集的个数为()A . 6B . 7C . 8D . 97. (2分)下列各组函数中,表示同一个函数的是()A . 与B . 与C . 与D . 与(且)8. (2分)(2016·襄阳模拟) “0≤a≤4”是“命题‘∀x∈R,不等式x2+ax+a>0成立’为真命题”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件9. (2分) (2019高二上·水富期中) 设全集,,()A .B .C .D .10. (2分) (2017高三上·綦江期末) 已知函数f(x)是奇函数,当x<0,f(x)=﹣x2+x,若不等式f(x)﹣x≤2logax(a>0且a≠1)对∀x∈(0, ]恒成立,则实数a的取值范围是()A . (0, ]B . [ ,1)C . (0, ]D . [ ,]∪(1,+∞)二、填空题 (共6题;共6分)11. (1分)(2017·南通模拟) 已知集合,,则 ________.12. (1分) (2020高三上·天津月考) 已知集合,,若,,则 ________.13. (1分) (2020高一下·太原期中) 若,则该函数定义域为________14. (1分) (2017高二下·长春期末) 有以下判断:①f(x)= 与g(x)= 表示同一函数;②函数y=f(x)的图象与直线x=1的交点最多有1个;③f(x)=x2﹣2x+1与g(t)=t2﹣2t+1是同一函数;④若f(x)=|x﹣1|﹣|x|,则f(f())=0.其中正确判断的序号是________.15. (1分) (2016高二下·大丰期中) 已知p:﹣4<x﹣a<4,q:(x﹣2)(3﹣x)>0,若¬p是¬q的充分条件,则实数a的取值范围是________.16. (1分) (2019高一上·长春月考) 若函数的定义域为,则实数的取值范围是________.三、解答题 (共4题;共40分)17. (15分) (2019高二上·苏州期中) 已知, .(1)解关于的不等式;(2)若不等式的解集为,求实数,的值.18. (10分) (2017高一上·汪清月考) 设全集为求:(1);(2);19. (5分) (2016高二上·嘉兴期中) 已知a,b是正数,且a≠b,比较a3+b3与a2b+ab2的大小.20. (10分) (2020高一上·重庆月考) 已知函数a∈R.(1)若不等式f(x)<0的解集为求a的值;(2)讨论关于x不等式f(x)>0的解集.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共4题;共40分)答案:17-1、答案:17-2、考点:解析:答案:18-1、答案:18-2、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:。

2024-2025学年黑龙江省哈尔滨市哈尔滨三中高三(上)月考数学试卷(10月份)(含答案)

2024-2025学年黑龙江省哈尔滨市哈尔滨三中高三(上)月考数学试卷(10月份)(含答案)

2024-2025学年黑龙江省哈尔滨三中高三(上)月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设集合A ={y|y =24−x 2},B ={x|y =ln(x 2+2x +3)},则A ∩B =( )A. (0,4]B. [1,4]C. [1,+∞)D. (0,+∞)2.已知3+i 是关于x 的方程2x 2−mx +n =0(m,n ∈R)的一个根,则m +n =( )A. 20B. 22C. 30D. 323.已知x >0,y >0,lg 2x +lg 4y =lg2,则1x +12y 的最小值为( )A. 2B. 22C. 23D. 44.数列{a n }中,若a 1=2,a 2=4,a n +a n +1+a n +2=2,则数列{a n }的前2024项和S 2024=( )A. 1348B. 1350C. 1354D. 26985.在△ABC 中,D 为BC 中点,CP =λCB ,AQ =23AB +13AC ,若AD =25AP +35AQ ,则λ=( )A. 12B. 13C. 14D. 156.在三棱柱ABC−A 1B 1C 1中,点D 在棱BB 1上,且BB 1=4BD ,点M 为A 1C 1的中点,点N 在棱BB 1上,若MN//平面ADC 1,则NBNB 1=( )A. 2B. 3C. 4D. 57.已知偶函数f(x)定义域为R ,且f(3x)=f(2−3x),当x ∈[0,1]时,f(x)=x 2,则函数g(x)=|cos (πx)|−f(x)在区间[−52,12]上所有零点的和为( )A. −7B. −6C. −3D. −28.已知平面向量a ,b ,c ,满足|a |=|b |=1,且cos 〈a ,b〉=−12,|c−a +b |=1,则b ⋅(a−c )的最小值为( )A. −1B. 0C. 1D. 2二、多选题:本题共3小题,共18分。

黑龙江省哈尔滨三中高一数学上学期期中试卷(含解析)-人教版高一全册数学试题

黑龙江省哈尔滨三中高一数学上学期期中试卷(含解析)-人教版高一全册数学试题

2015-2016学年某某省某某三中高一(上)期中数学试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={2,4,5},则A∪B=()A.{2} B.{2,4} C.{2,4,5} D.{1,2,3,4,5}2.函数y=+的定义域是()A.{x|x≥﹣} B.{x|x≥﹣且x≠0}C.{x|x≤} D.{x|x≤且x≠0}3.已知函数f(x)满足f(x+1)=x2﹣1,则()A.f(x)=x2﹣2x B.f(x)=x2+2x C.f(x)=x2﹣4x D.f(x)=x2+4x4.已知a=(),b=2,c=(),则下列关系式中正确的是()A.c<a<b B.b<a<c C.a<c<b D.a<b<c5.函数f(x)=的单调递增区间为()A.[2,+∞)B.(﹣∞,] C.[,+∞)D.(﹣∞,﹣1]6.设集合A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值X围是()A.﹣1<a≤2B.a>2 C.a≥﹣1 D.a>﹣17.若函数y=(a2+4a﹣5)x2﹣4(a﹣1)x+3的图象恒在x轴上方,则a的取值X围是()A.{a|1≤a≤19} B.{a|<a<19} C.{a|1≤a<19} D.{a|1<a≤19}8.下列函数是偶函数且值域为[0,+∞)的是()①y=|x|;②y=x3;③y=2|x|;④y=x2+|x|A.①② B.②③ C.①④ D.③④9.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x≤1或x>2} 10.二次函数y=ax2+bx与指数函数y=(﹣)x的图象只可能是()A.B.C.D.11.已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,若f(﹣1)=0,则不等式f(2x﹣1)>0解集为()A.(﹣∞,0)∪(1,+∞)B.(﹣6,0)∪(1,3) C.(﹣∞,1)∪(3,+∞)D.(﹣∞,﹣1)∪(3,+∞)12.设f(x)是定义在[1,+∞)的函数,对任意正实数x,f(3x)=3f(x),且f(x)=1﹣|x﹣2|,1≤x≤3,则使得f(x)=f(2015)的最小实数x为()A.172 B.415 C.557 D.89二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.化简:(2)(﹣6)÷(﹣3)=.14.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2+x,则当x<0时,f (x)的解析式为.15.若函数f(x)=是(﹣∞,+∞)上的减函数,则实数a的取值X围是.16.下列四个说法:(1)y=x+1与y=是相同的函数;(2)若函数f(x)的定义域为[﹣1,1],则f(x+1)的定义域为[0,2];(3)函数f(x)在[0,+∞)时是增函数,在(﹣∞,0)时也是增函数,所以f(x)是(﹣∞,+∞)上的增函数;(4)函数f(x)=()在区间[3,+∞)上单调递减.其中正确的说法是(填序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知集合A={x|(x﹣1)(x+2)>0},B={x|2﹣3x≤0},C={y|y=x2},求:①A∪C;②(∁U A)∩B.18.用单调性定义证明函数f(x)=在区间(1,+∞)上是减函数.19.已知函数,求(1)的值;(2)若f(a)>2,则a的取值X围.20.要建造一个容量为1200m3,深为6m的长方体无盖蓄水池,池壁的造价为95元/m2,池底的造价为135元/m2,求当水池的长在什么X围时,才能使水池的总造价不超过61200元(规定长大于等于宽).21.设x1,x2是方程x2﹣2mx+4m2﹣4m+1=0的两个不等实根,(Ⅰ)将x12+x22表示为m的函数g(m),并求其定义域;(Ⅱ)设f(m)=,求f(m)的值域.22.已知函数f(x)=2x﹣2﹣x,定义域为R;函数g(x)=2x+1﹣22x,定义域为[﹣1,1].(Ⅰ)判断函数f(x)的单调性(不必证明)并证明其奇偶性;(Ⅱ)若方程g(x)=t有解,某某数t的取值X围;(Ⅲ)若不等式f(g(x))+f(3am﹣m2﹣1)≤0对一切x∈[﹣1,1],a∈[﹣2,2]恒成立,求m的取值X围.2015-2016学年某某省某某三中高一(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={1,2,3,4},B={2,4,5},则A∪B=()A.{2} B.{2,4} C.{2,4,5} D.{1,2,3,4,5}【考点】并集及其运算.【专题】计算题.【分析】根据并集的定义可知,A与B的并集为属于A或属于B的所有元素组成的集合,求出两集合的并集即可.【解答】解:因为集合A={1,2,3,4},B={2,4,5},所以A∪B={1,2,3,4,5}.故选D【点评】此题考查学生掌握并集的定义并会进行并集的运算,是一道基础题.2.函数y=+的定义域是()A.{x|x≥﹣} B.{x|x≥﹣且x≠0}C.{x|x≤} D.{x|x≤且x≠0}【考点】函数的定义域及其求法.【专题】函数思想;综合法;函数的性质及应用.【分析】根据二次根式的性质得到关于x的不等式组,解出即可.【解答】解:由题意得:,解得:x≥﹣且x≠0,故选:B.【点评】本题考查了求函数的定义域问题,考查二次个数的性质,是一道基础题.3.已知函数f(x)满足f(x+1)=x2﹣1,则()A.f(x)=x2﹣2x B.f(x)=x2+2x C.f(x)=x2﹣4x D.f(x)=x2+4x【考点】函数解析式的求解及常用方法.【专题】函数思想;综合法;函数的性质及应用.【分析】可由f(x+1)=x2﹣1得到f(x+1)=(x+1)2﹣2(x+1),这样将x+1换上x便可得出f(x).【解答】解:f(x+1)=x2﹣1=(x+1)2﹣2(x+1);∴f(x)=x2﹣2x.故选:A.【点评】考查函数解析式的概念及求法,本题还可用换元法求f(x):令x+1=t,然后求出f(t),从而得出f(x).4.已知a=(),b=2,c=(),则下列关系式中正确的是()A.c<a<b B.b<a<c C.a<c<b D.a<b<c【考点】指数函数单调性的应用.【专题】函数思想;分析法;函数的性质及应用.【分析】将b改写成利用指数函数的单调性即可得出答案.【解答】解:b=,∵y=()x是减函数,∴<()<().故选:B.【点评】本题考查了函数单调性的应用,是基础题.5.函数f(x)=的单调递增区间为()A.[2,+∞)B.(﹣∞,] C.[,+∞)D.(﹣∞,﹣1]【考点】复合函数的单调性;函数的单调性及单调区间.【专题】转化思想;换元法;函数的性质及应用.【分析】利用换元法结合复合函数单调性之间的关系进行求解即可.【解答】解:设t=x2﹣x﹣2,则y=为增函数,由t=x2﹣x﹣2≥0得x≥2或x≤﹣1,要求函数f(x)的单调递增区间,则等价为求函数t=x2﹣x﹣2的单调递增区间,当x≥2时,函数t=x2﹣x﹣2为增函数,故函数t=x2﹣x﹣2的单调递增区间为[2,+∞),故函数f(x)的单调递增区间为[2,+∞),故选:A.【点评】本题主要考查函数单调区间的求解,利用换元法结合复合函数单调性的关系是解决本题的关键.6.设集合A={x|﹣1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值X围是()A.﹣1<a≤2B.a>2 C.a≥﹣1 D.a>﹣1【考点】集合关系中的参数取值问题.【专题】计算题.【分析】根据A∩B≠∅,可知A,B有公共元素,利用集合A,B即可确定a的取值X围【解答】解:∵A∩B≠∅,∴A,B有公共元素∵集合A={x|﹣1≤x<2},B={x|x<a},∴a>﹣1故选D.【点评】本题考查了集合的运算,考查求参数问题,属于基础题.7.若函数y=(a2+4a﹣5)x2﹣4(a﹣1)x+3的图象恒在x轴上方,则a的取值X围是()A.{a|1≤a≤19} B.{a|<a<19} C.{a|1≤a<19} D.{a|1<a≤19}【考点】函数恒成立问题;函数的图象.【专题】计算题;函数思想;判别式法;函数的性质及应用.【分析】分二次项系数为0和不为0讨论,当二次项系数为0时,求得a=1满足题意;当二次项系数不为0时,由二次函数的开口方向及判别式联立不等式组求解.【解答】解:当a2+4a﹣5=0时,解得a=﹣5或a=1,若a=1,则原函数化为y=3,满足题意;当a2+4a﹣5≠0时,要使函数y=(a2+4a﹣5)x2﹣4(a﹣1)x+3的图象恒在x轴上方,则,即,解①得a<﹣5或a>1;解②得1<a<19.取交集得:1<a<19.综上,a的取值X围是{a|1≤a<19}.故选:C.【点评】本题考查函数恒成立问题,考查了二次函数的图象和性质,是基础题.8.下列函数是偶函数且值域为[0,+∞)的是()①y=|x|;②y=x3;③y=2|x|;④y=x2+|x|A.①② B.②③ C.①④ D.③④【考点】函数的值域.【专题】函数思想;分析法;函数的性质及应用;不等式的解法及应用.【分析】由函数的奇偶性逐一判断,找出正确选项.【解答】解:①函数y=f(x)=|x|,可得f(﹣x)=|﹣x|=f(x),故函数为偶函数且|x|≥0,故①正确;②函数y=f(x)=x3,可得f(﹣x)=(﹣x)3=﹣x3=﹣f(x),故函数为奇函数;③y=2|x|是非奇非偶函数;④y=x2+|x|,可得f(﹣x)=(﹣x)2+|﹣x|=f(x),故函数为偶函数且y=x2+|x|≥0,故④正确.故选:C.【点评】本题考查了函数的值域,考查了函数的奇偶性,是基础题.9.如图所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分表示的集合.若x,y∈R,A={x|y=},B={y|y=3x,x>0},则A#B=()A.{x|0<x<2} B.{x|1<x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x≤1或x>2} 【考点】Venn图表达集合的关系及运算.【专题】计算题;新定义.【分析】利用函数的定义域、值域的思想确定出集合A,B是解决本题的关键.弄清新定义的集合与我们所学知识的联系:所求的集合是指将A∪B除去A∩B后剩余的元素所构成的集合.【解答】解:依据定义,A#B就是指将A∪B除去A∩B后剩余的元素所构成的集合;对于集合A,求的是函数的定义域,解得:A={x|0≤x≤2};对于集合B,求的是函数y=3x(x>0)的值域,解得B={y|y>1};依据定义,借助数轴得:A#B={x|0≤x≤1或x>2},故选D.【点评】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确定.10.二次函数y=ax2+bx与指数函数y=(﹣)x的图象只可能是()A.B.C.D.【考点】指数函数的图像变换.【专题】综合题;函数的性质及应用.【分析】根据二次函数的对称轴首先排除A与C选项,再根据a﹣b的值的正负,结合二次函数和指数函数的性质检验即可得出答案.【解答】解:根据指数函数y=(﹣)x可知a,b异号且不相等则二次函数y=ax2+bx的对称轴﹣>0可排除A与C选项D,a﹣b>0,a<0,∴﹣>1,则指数函数单调递增,故D不正确故选:B.【点评】本题考查了同一坐标系中指数函数图象与二次函数图象的关系,根据指数函数图象确定出a、b的正负情况是求解的关键.11.已知函数f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,若f(﹣1)=0,则不等式f(2x﹣1)>0解集为()A.(﹣∞,0)∪(1,+∞)B.(﹣6,0)∪(1,3) C.(﹣∞,1)∪(3,+∞)D.(﹣∞,﹣1)∪(3,+∞)【考点】奇偶性与单调性的综合.【专题】转化思想;数形结合法;函数的性质及应用;不等式的解法及应用.【分析】根据函数奇偶性和单调性的关系进行转化即可.【解答】解:∵f(﹣1)=0,∴不等式f(2x﹣1)>0等价为f(2x﹣1)>f(﹣1),∵f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,∴不等式等价为f(|2x﹣1|)>f(1),即|2x﹣1|>1,即2x﹣1>1或2x﹣1<﹣1,即x>1或x<0,则不等式的解集为(﹣∞,0)∪(1,+∞),故选:A.【点评】本题主要考查不等式的求解,利用函数奇偶性和单调性的性质进行转化是解决本题的关键.12.设f(x)是定义在[1,+∞)的函数,对任意正实数x,f(3x)=3f(x),且f(x)=1﹣|x﹣2|,1≤x≤3,则使得f(x)=f(2015)的最小实数x为()A.172 B.415 C.557 D.89【考点】抽象函数及其应用.【专题】数形结合;转化思想;综合法;函数的性质及应用.【分析】根据条件先求出f(2015)=172,然后根据条件求出分段函数在每一段上的最大值,然后只需找到相应的那个区间即可求出来.【解答】解:因为f(x)对于所有的正实数x均有f(3x)=3f(x),所以f(x)=3f(),所以f(2015)=3f()=32f()=…=3n f(),当n=6时,∈(1,3),所以f(2015)=36[1﹣+2]=37﹣2015=172,同理f(x)=3n f()==,(n∈N*)∵f(2)=1,∴f(6)=3f(2)=3,f(18)=3f(6)=32=9,f(54)=3f(18)=33=27,f(162)=3f(54)=34=81,f(486)=3f(162)=35=243,即此时由f(x)=35f()=35(﹣1)=x﹣35=172得x=35+172=243+172=415,即使得f(x)=f(2015)的最小实数x为415,故选:B.【点评】本题应属于选择题中的压轴题,对学生的能力要求较高,解决问题的关键在于如何将f(2015)转化到[1,3]上求出它的函数值,二是如何利用方程思想构造方程,按要求求出x的值.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.化简:(2)(﹣6)÷(﹣3)= 4a .【考点】有理数指数幂的化简求值.【专题】函数的性质及应用.【分析】利用指数幂的运算性质即可得出.【解答】解:原式==4a.故答案为:4a.【点评】本题考查了指数幂的运算性质,属于基础题.14.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2+x,则当x<0时,f (x)的解析式为f(x)=x2﹣x .【考点】函数奇偶性的性质;函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】根据函数奇偶性的性质,进行转化即可求f(x)的解析式.【解答】解:若x<0,则﹣x>0,∵当x≥0时,f(x)=x2+x,∴当﹣x>0时,f(﹣x)=x2﹣x,∵函数f(x)是定义在R上的偶函数,∴f(﹣x)=f(x),即f(﹣x)=x2﹣x=f(x),解得f(x)=x2﹣x,x<0,故答案为:f(x)=x2﹣x,【点评】本题主要考查函数解析式,根据函数的奇偶性的性质是解决本题的关键.15.若函数f(x)=是(﹣∞,+∞)上的减函数,则实数a的取值X围是[﹣2,0).【考点】函数单调性的性质.【专题】函数的性质及应用.【分析】若函数f(x)=是(﹣∞,+∞)上的减函数,则函数在每一段上均为减函数,且在x=1时,前一段的函数值不小于后一段的函数值,进而构造关于a的不等式,解得实数a的取值X围【解答】解:若函数f(x)=是(﹣∞,+∞)上的减函数,则,解得:a∈[﹣2,0),故答案为:[﹣2,0)【点评】本题考查的知识点是函数单调性的性质,熟练掌握分段函数单调性的特征是解答的关键.16.下列四个说法:(1)y=x+1与y=是相同的函数;(2)若函数f(x)的定义域为[﹣1,1],则f(x+1)的定义域为[0,2];(3)函数f(x)在[0,+∞)时是增函数,在(﹣∞,0)时也是增函数,所以f(x)是(﹣∞,+∞)上的增函数;(4)函数f(x)=()在区间[3,+∞)上单调递减.其中正确的说法是(4)(填序号).【考点】命题的真假判断与应用.【专题】转化思想;数学模型法;函数的性质及应用;简易逻辑.【分析】根据同一函数的定义,可判断(1);根据抽象函数的定义域,可判断(2),根据函数单调性的定义,可判断(3);根据复合函数的单调性,可判断(4).【解答】解:y==|x+1|,两函数的解析式不一致,故不是相同的函数,故(1)错误;则x+1∈[﹣1,1]得x∈[﹣2,0],即f(x+1)的定义域为[﹣2,0],故(2)错误;函数f(x)在[0,+∞)时是增函数,在(﹣∞,0)时也是增函数,但f(x)是(﹣∞,+∞)上可能不具单调性,故(3)错误;当x∈[3,+∞)时,t=x2﹣2x+3为增函数,y=为减函数,故函数f(x)=()在区间[3,+∞)上单调递减,故(4)正确;故答案为:(4)【点评】本题以命题的真假判断为载体,考查了同一函数,抽象函数的定义域,函数单调性的定义,复合函数的单调性等知识点,难度中档.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.已知集合A={x|(x﹣1)(x+2)>0},B={x|2﹣3x≤0},C={y|y=x2},求:①A∪C;②(∁U A)∩B.【考点】交、并、补集的混合运算.【专题】计算题;集合.【分析】先化简集合A,B,C,再进行集合的运算即可.【解答】解:由集合A={x|(x﹣1)(x+2)>0},B={x|2﹣3x≤0},C={y|y=x2},解得:A={x|x<﹣2或x>1}=(﹣∞,﹣2)∪(1,+∞),,C=[0,+∞)①A∪C=(﹣∞,﹣2)∪[0,+∞);②∁U A=[﹣2,1],∴(∁U A)∩B=[,1].【点评】本题考查交、并、补集的混合运算,可查学生的计算能力,比较基础.18.用单调性定义证明函数f(x)=在区间(1,+∞)上是减函数.【考点】函数单调性的判断与证明.【专题】证明题;函数思想;定义法;函数的性质及应用.【分析】在定义域上任取x1<x2,只需证明f(x1)>f(x2)即可.【解答】解:在(1,+∞)内任取两数x1,x2,且x1<x2,则f(x1)﹣f(x2)==,∵1<x1<x2,∴x2﹣x1>0,x1﹣1>0,x2﹣1>0,∴f(x1)﹣f(x2)>0,∴f(x1)>f(x2),∴f(x)在(1,+∞)上为单调递减函数.【点评】本题考查了函数单调性的证明,属于基础题.19.已知函数,求(1)的值;(2)若f(a)>2,则a的取值X围.【考点】分段函数的解析式求法及其图象的作法;函数的值;其他不等式的解法.【专题】计算题.【分析】(1)根据已知中函数的解析式,将,﹣1,代入解析式,即可得到函数的值;(2)根据已知中的函数解析式,结合f(a)>2,分别在a≤0时,0<a≤1时,a>1时,构造关于a的不等式,解不等式即可得到a的取值X围.【解答】解:(1);f(f(﹣1))=f(﹣3+5)=f(2)=﹣4+8=4;(2)由知f(x)的值域情况为:,由题意知f(a)>2,当a≤0时,3a+5>2⇒a>1,无解;当0<a≤1时,a+5>2⇒a>3,此时也无解;当a>1时,﹣2a+8>2⇒a<3,此时1<a<3.故所求a的取值X围是1<a<3【点评】本题考查的知识点是分段函数的解析式,函数的值,分段型不等式的解法,分段函数分段处理,是解答分段函数及相应方程及不等式的最常用的方法.20.要建造一个容量为1200m3,深为6m的长方体无盖蓄水池,池壁的造价为95元/m2,池底的造价为135元/m2,求当水池的长在什么X围时,才能使水池的总造价不超过61200元(规定长大于等于宽).【考点】函数模型的选择与应用.【专题】转化思想;综合法;函数的性质及应用.【分析】设池底的长为x米,泳池的造价为y元,则由长大于等于宽可得x≥,求得x≥10.再根据y≤61200求得x的X围,综合可得x的X围.【解答】解:设池底的长为x米,泳池的造价为y元,则由长大于等于宽可得x≥,∴x≥10.由题意可得总造价y=135×+95×(6x+6x+×6×2)=27000+95•12x+95•≤61200,即 57x+≤1710,即 x﹣30+≤0,求得10≤x≤20,答:水池长在[10,20]米X围内,满足题意.【点评】本题主要考查函数的模型的选择应用,属于中档题.21.设x1,x2是方程x2﹣2mx+4m2﹣4m+1=0的两个不等实根,(Ⅰ)将x12+x22表示为m的函数g(m),并求其定义域;(Ⅱ)设f(m)=,求f(m)的值域.【考点】函数的值域;函数的定义域及其求法.【专题】计算题;函数思想;判别式法;函数的性质及应用.【分析】(Ⅰ)由x1,x2是方程x2﹣2mx+4m2﹣4m+1=0的两个不等实根,得到△>0,则可求出m的取值X围.(Ⅱ)把g(m)=﹣4m2+8m﹣2代入f(m)=,再令,则f(m)的值域可求.【解答】解:(I)对于x2﹣2mx+4m2﹣4m+1=0,△>0得(﹣2m)2﹣4×(4m2﹣4m+1)>0即=,其定义域为.(II),令则,则f(m)的值域为.【点评】本题考查了函数的定义域及其值域的求法,是基础题.22.已知函数f(x)=2x﹣2﹣x,定义域为R;函数g(x)=2x+1﹣22x,定义域为[﹣1,1].(Ⅰ)判断函数f(x)的单调性(不必证明)并证明其奇偶性;(Ⅱ)若方程g(x)=t有解,某某数t的取值X围;(Ⅲ)若不等式f(g(x))+f(3am﹣m2﹣1)≤0对一切x∈[﹣1,1],a∈[﹣2,2]恒成立,求m的取值X围.【考点】函数恒成立问题;函数的零点.【专题】转化思想;分类法;函数的性质及应用.【分析】(I)f(x)在R上为增函数;在R上为奇函数;(II)可知t的X围与g(x)的值域相同,由指数函数的单调性和二次函数的值域求法,即可得到所求X围;(III)由f(x)的单调性和奇偶性可得,f(g(x))≤f(﹣3am+m2+1),即有g(x)≤﹣3am+m2+1对一切x∈[﹣1,1],a∈[﹣2,2]恒成立,(g(x))max≤(﹣3am+m2+1)min,运用单调性求得最值,即可得到m的X围.【解答】解:(I)f(x)=2x﹣2﹣x在R上单调递增,因为f(﹣x)=2﹣x﹣2x=﹣f(x),所以f(x)为奇函数;(II)可知t的X围与g(x)的值域相同,g(x)=2x+1﹣22x,令t=2x∈[,2],则g(x)=﹣t2+2t的值域为[0,1];(III)由f(g(x))+f(3am﹣m2﹣1)≤0得f(g(x))≤﹣f(3am﹣m2﹣1),由(I)得f(g(x))≤f(﹣3am+m2+1),即有g(x)≤﹣3am+m2+1对一切x∈[﹣1,1],a∈[﹣2,2]恒成立,则(g(x))max≤(﹣3am+m2+1)min,设h(a)=﹣3am+m2+1,则h(a)≥1对一切a∈[﹣2,2]恒成立,若m=0则恒成立;若m≠0则,即,解得m∈(﹣∞,﹣6]∪[6,+∞).综上所述m的取值X围是(﹣∞,﹣6]∪[6,+∞)∪{0}.【点评】本题考查函数的单调性和奇偶性的判断和应用,考查方程有解和不等式恒成立问题的解法,注意运用函数的单调性,考查运算能力,属于中档题.。

2023-2024学年黑龙江哈尔滨高一上册第一次月考数学试题(含解析)

2023-2024学年黑龙江哈尔滨高一上册第一次月考数学试题(含解析)

2023-2024学年黑龙江哈尔滨高一上册第一次月考数学试题一、单选题1.已知集合2{|10}A x x =-=,下列式子错误的是()A .1A ∈B .{1}A-∈C .A∅⊆D .{}1,1A-⊆【正确答案】B【分析】求出集合A ,即可依次判断.对A :利用元素与集合关系判断;对B :“∈”表示元素与集合之间的关系;对C :∅是任何集合的子集;对D :判断{}1,1-与A 是否为包含关系.【详解】{}2{|10}1,1A x x =-==- ,{}{}1,1,,1,1A A A A ∴∈-⊆∅⊆-⊆.{}1-与A 是两个集合,不能用“∈”表示它们之间的关系,故B 错误.故选:B2.设全集U =R ,若集合{}1,0,1,2,3,4,5A =-,{}21B x x =->,则集合A B = ()A .{}1,0-B .{}4,5C .{}1,0,4,5-D .{}2【正确答案】C【分析】计算绝对值不等式求出集合B ,进而求出交集.【详解】21x ->,解得:3x >或1x <,所以集合{3B x x =>或}1x <,所以{}1,0,4,5A B ⋂=-.故选:C.3.已知集合{}212,4,2A a a a =+-,3A -∈,则=a ()A .-1B .-3或-1C .3D .-3【正确答案】D【分析】根据集合的定义即可求解.【详解】由题意,243a a +=- ①或23a -=- ②,由①得,1a =-,或3a =-,由②1a =-;当1a =-时,243,23a a a +=--=-,不符合集合描述规则,舍去,3a =-;故选:D.4.下列结论正确的是()A .若a b >,则ac bc >B .若a b >,则11a b>C .若a b >,则a c b c +>+D .若a b >,则22a b >【正确答案】C【分析】根据不等式的性质即可逐一求解.【详解】对于A;若a b >,0c ≤时,则ac bc ≤,故A 错;对于B;若取1,0a b ==,则1b无意义,故B 错;对于C ;根据不等式的可加性可知:若a b >,则a c b c +>+,故C 正确;对于D;若取1,2a b ==-,但22a b <,故D 错;故选:C5.已知函数()2,12,1x x f x x x +<-⎧=⎨-+≥-⎩,则92f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭的值为()A .52-B .12-C .52D .132【正确答案】B【分析】根据分段函数的定义域分别代入求值.【详解】由题意可得:9952222f ⎛⎫=-+=-⎪⎝⎭∴955122222f f f ⎛⎫⎛⎫⎛⎫=-=-+=-⎪⎪⎝⎭⎝⎭⎝⎭故选:B.6.下列各组函数表示同一函数的是()A .()f x()2g x =B .()1f x =,()0g x x=C .(),0,0x x f x x x ≥⎧=⎨-<⎩,()g t t=D .()1f x x =+,()211x g x x -=-【正确答案】C【分析】根据函数定义域与函数解析式是否相同,可得答案.【详解】对于A ,由函数()f x =(),-∞+∞,且函数()2g x =的定义域为[)0,∞+,则不是同一函数,故A 错误;对于B ,由函数()1f x =的定义域为(),-∞+∞,且函数()0g x x =的定义域为{}0x x ≠,则不是同一函数,故B 错误;对于C ,由函数(),0,0x x f x x x x ≥⎧==⎨-<⎩的定义域为(),-∞+∞,且()g t t =的定义域为(),-∞+∞,则是同一函数,故C 正确;对于D ,由函数()1f x x =+的定义域为(),-∞+∞,且函数()211x g x x -=-的定义域为{}1x x ≠,则不是同一函数,故D 错误.故选:C.7.已知函数()y f x =的定义域为[]8,1-,则函数()()212f xg x x +=+的定义域()A .(]9,22,02⎡⎫---⎪⎢⎣⎭U B .[)(]8,22,1---U C .()(],22,3-∞-- D .9,22⎡⎤--⎢⎥⎣⎦【正确答案】A【分析】根据抽象函数和具体函数的定义域可得出关于x 的不等式组,由此可解得函数()g x 的定义域.【详解】因为函数()y f x =的定义域为[]8,1-,对于函数()()212f xg x x +=+,则有821120x x -≤+≤⎧⎨+≠⎩,解得922x -≤<-或20x -<≤.因此,函数()g x 的定义域为(]9,22,02⎡⎫---⎪⎢⎣⎭U .故选:A.8.命题“2R,(2)2(2)40x a x a x ∃∈-+--≥”为假命题,则实数a 的取值范围是()A .{2|a a <-或2}a ≥B .{}22a a -<<C .{}22a a -<≤D .{}2a a <【正确答案】C【分析】先得出2R,(2)2(2)40x a x a x ∀∈-+--<为真命题,再分2a =与2a ≠两种情况,得到不等式,求出实数a 的取值范围.【详解】由题意得:2R,(2)2(2)40x a x a x ∀∈-+--<为真命题,当2a =时,4<0-,满足要求,当2a ≠时,要满足()()()220Δ424240a a a -<⎧⎪⎨=---⨯-<⎪⎩,解得:22a -<<,综上:实数a 的取值范围是{}22a a -<≤故选:C二、多选题9.下列各图中,可能是函数图象的是()A .B .C .D .【正确答案】ACD【分析】利用函数的概念选出正确答案.【详解】B 选项,0x >时每一个x 的值都有两个y 值与之对应,不是函数图象,B 错误,其他选项均满足函数的概念,是函数的图象.故选:ACD .10.若p :511xx -≤+,则p 成立的一个充分不必要条件是()A .12x -≤≤B .21x -<≤-C .25x <<D .25x ≤≤【正确答案】CD【分析】解出不等式,然后根据条件p 成立的一个充分不必要条件,转化为子集关系,即可得到结果.【详解】()()4210542101110x x x xx x x ⎧-+≤--≤⇒≤⇒⎨+++≠⎩,解得1x <-或2x ≥又 ()()[)2,5,12,⊆-∞-⋃+∞[]()[)2,5,12,⊆-∞-⋃+∞则p 成立的一个充分不必要条件是()2,5和[]2,5故选:CD.11.下列说法正确的是()A .命题:1p x ∀>,215x +>的否定为01x ∃>,0215x +≤B .“0x >且0y >”是“2x yy x+≥”的充要条件C .y =2D .已知54x <,则14245x x -+-的最大值为1【正确答案】AD【分析】利用全称量词命题的否定可判断A 选项;利用充分条件、必要条件的定义可判断B 选项;根据基本不等式取等号的条件可判断C 选项;利用基本不等式可判断D 选项.【详解】对于A 选项,命题:1p x ∀>,215x +>的否定为“01x ∃>,0215x +≤”,A 对;对于B 选项,令0y t x =≠,由12t t +≥可得()210t t-≥,所以,0t >,即0y x >,而000x yy x >⎧>⇔⎨>⎩或00x y <⎧⎨<⎩,故“0x >且0y >”是“2x yy x+≥”的充分不必要条件,B 错;对于C 选项,2y =,取等号的条件是=231x +=,而此式不成立,所以取不到最小值2,故C 错;对于D 选项,当54x <时,450x -<,则()()11142453354454554x x x x x x ⎡⎤-+=-++=--+⎢⎥---⎣⎦31≤-=,当且仅当1x =时,等号成立,故当54x <时,14245x x -+-的最大值为1,D 对.故选:AD.12.已知Z a ∈,{(,)|3}A x y ax y =-≤且,(2,1)A ∈,(1,4)A -∉,则a 取值可能为()A .1-B .0C .1D .2【正确答案】BCD【分析】分别将各选项代入集合A ,利用元素与集合之间的关系判断即可得到答案.【详解】选项A :当1a =-时,213--≤,143--≤,故(2,1),(1,4)A A ∈-∈,A 错误;选项B :当0a =时,13-≤,(4)3-->,故(2,1),(1,4)A A ∈-∉,B 正确;选项C :当1a =时,213-≤,1(4)3-->,故(2,1),(1,4)A A ∈-∉,C 正确;选项D :当2a =时,2213⨯-≤,21(4)3⨯-->,故(2,1),(1,4)A A ∈-∉,D 正确.故BCD.三、填空题13.已知函数()21252f x x x +=++,求函数()f x 的解析式为______.【正确答案】()221f x x x =+-【分析】换元法求函数的解析式.【详解】因为()2212422(1)(1)1f x x x x x x +=+++=+++-,所以()221f x x x =+-,故答案为:()221f x x x =+-.14.已知函数()y f x =的对应关系如下表,函数()y g x =的图象是如图的曲线ABC ,其中()1,3A ,()2,1B ,()3,2C ,则()()2f g 的值为______.【正确答案】2先根据函数()g x 的图象可判断出()2g 的值,再根据表格中函数()f x 的取值得出()()2f g .【详解】由函数()g x 的图象可知()21g =,所以()()()212f g f ==.故答案为.2本题考查函数的表示方法,考查列表法与图像法的运用,属于基础题.15.已知集合{}0M x x a =-=,{}10N x ax =-=,若M N N ⋂=,则实数a 的值为___________.【正确答案】0或1±【分析】讨论0a =与0a ≠时两种情况求解即可.【详解】{}{}0M x x a a =-==,当0a =时,{}10N x ax =-=为∅,满足M N N ⋂=;当0a ≠时,{}110N x ax a ⎧⎫=-==⎨⎬⎩⎭,若M N N ⋂=则1a a =,即21a =,解得1a =±.综上所述,0a =或1a =±故0或1±16.已知函数()[]f x x x =-,[1,2)x ∈-,其中[]x 表示不超过x 的最大整数,例[ 3.05]4-=-,[2.1]2=.则函数()f x 的值域是___________.【正确答案】[0,1)【分析】根据题意,分别求出10x -≤<,01x ≤<,12x ≤<时的[]x ,作出图象,直接可得到()f x 的值域.【详解】当10x -≤<时,[]1x =-,所以()1f x x =+,当01x ≤<时,[]0x =,所以()f x x =,当12x ≤<时,[]1x =,所以()1f x x =-,综上1,10(),011,12x x f x x x x x +-≤<⎧⎪=≤<⎨⎪-≤<⎩;()f x 图象如图所示:函数()f x 的值域是[0,1).故答案为.[)0,1四、解答题17.已知全集U =R ,集合{}221,20|}|3{A x x B x x x =-≤<=--<.(1)求A B ⋃;(2)如图阴影部分所表示的集合M 可以是(把正确答案序号填到横线处),并求图中阴影部分表示的集合M ;.①()U B A ⋂ð②()U B A ⋃ð③()U A B ∩ð④()U A B ⋃ð【正确答案】(1){|23}x x -≤<(2)③;{|21}x x -≤≤-【分析】(1)根据集合的并集运算求解;(2)根据韦恩图确定阴影部分所表示的集合M 为()U A B ∩ð,再根据集合的交集与补集求解即可.【详解】(1)因为{}{}2|230|13B x x x x x =--<=-<<,2{}1|,A x x =-≤<所以{|3}2,A B x x ⋃=-≤<(2)根据韦恩图确定阴影部分所表示的集合M 为③:()U A B ∩ð,{|1U B x x =≤-ð或3}x ≥,所以(){|}21U A B x x =-≤≤-∩ð.18.求解下列各题:(1)求2340)2x x y x x++=>(的最小值;(2)已知0,0x y >>且191x y+=,求x y +的最小值.【正确答案】(1)72;(2)16.【分析】(1)根据分式的运算性质,结合基本不等式进行求解即可;(2)利用基本不等式进行求解即可.【详解】(1)234140,322x x x y x x x ++⎛⎫>==++ ⎪⎝⎭173)22≥=,当且仅当4x x =即2x =时取等号,此时取得最小值72;(2)190,0,1x y x y >>+= ,199()101061016y x x y x y x y x y ⎛⎫∴+=++=++≥+=+= ⎪⎝⎭,当且仅当9y x x y =,又191x y+=,即412x y ==,时,上式取等号.故当412x y ==,时,min ()16x y +=.19.已知集合{}2120A x x px =+-=∣,{}20B x x qx r =++=∣,且A B ≠,若{3}A B ⋂=-,{3,4}A B ⋃=-.(1)求集合A 、B ;(2)求p ,q ,r .【正确答案】(1){}{}3,4,3A B =-=-;(2)1,6,9p q r =-==.【分析】(1)根据集合交集的性质和并集的性质,结合一元二次方程根与系数的关系进行求解即可;(2)根据一元二次方程根与系数关系,结合(1)的结论进行求解即可.【详解】(1)因为{3}A B ⋂=-,{3,4}A B ⋃=-,所以有3A -∈且3B -∈,4A ∈或4B ∈,当3A -∈且3B -∈且4A ∈时,此时3412-⨯=-,因为A B ≠,所以{}{}3,4,3A B =-=-;当3A -∈且3B -∈且4B ∈时,因为A B ≠,所以{}{}3,3,4A B =-=-,因为3(3)912-⨯-=≠-,所以{}3A =-不存在,综上所述:{}{}3,4,3A B =-=-(2)由(1)可知:{}{}3,4,3A B =-=-,所以有341p p -+=-⇒=-,3(3)6q q -+-=-⇒=,3(3)9r r -⨯-=⇒=,即1,6,9p q r =-==.20.已知函数()f x 的解析式()35,05,0128,1x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩.(1)若()2f a =,求a 的值;(2)画出()f x 的图象,并写出函数的值域(直接写出结果即可).【正确答案】(1)1-或3(2)(],6-∞【分析】(1)根据分段函数的解析式分类讨论求解;(2)根据图象求解值域.【详解】(1)若0,()352a f a a ≤=+=解得1a =-,若01,()52a f a a <≤=+=解得3a =-(舍),若1,()282a f a a >=-+=解得3a =,综上a 的值1-或3.(2)作图如下,由图可得,当1x =时,函数有最大值为6,所以值域为(],6-∞.21.某商品每件成本价80元,售价100元,每天售出100件.若售价降低x 成(1成10%)=,售出商品数量就增加85x 成,要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式()y f x =,并写出定义域;(2)若再要求该商品一天营业额至少10260元,求x 的取值范围.【正确答案】(1)()20(10)(508)y f x x x ==-+,定义域为[]0,2x ∈;(2)1,22⎡⎤⎢⎥⎣⎦.【分析】(1)根据营业额=售价⨯售出商品数量,列出解析式,再利用售价不能低于成本价,列出不等式,求出x 的取值范围;(2)根据题意,列出不等式,求解即可.【详解】解:(1)依题意,8100(1)100(1)1050x y x =-⨯+;又售价不能低于成本价,所以100(1)80010x --,解得02x .所以()20(10)(508)y f x x x ==-+,定义域为[]0,2x ∈.(2)由题意得20(10)(508)10260x x -+,化简得:2830130x x -+,解得11324x .又因为02x 所以122x x ∴的取值范围是1,22⎡⎤⎢⎥⎣⎦.本题考查利用函数知识解决应用题及解不等式的有关知识.如何建模是解决这类问题的关键,属于基础题.22.已知关于x 的不等式2320(R)ax x a ++>∈.(1)若2320ax x ++>的解集为{}1x b x <<,求实数,a b 的值;(2)求关于x 的不等式2321ax x ax -+>-的解集.【正确答案】(1)5a =-,25b =-;(2)答案见解析.【分析】(1)由不等式的解集得相应方程的根,由韦达定理列方程组求解;(2)先根据0,0,0a a a <=>分类讨论,在0a >时,再根据两根的大小分类讨论得结论.【详解】(1)因为2320ax x ++>的解集为{}1x b x <<,所以方程2320ax x ++=的两个根为,1(1)b b <,由根与系数关系得:3121b a b a ⎧+=-⎪⎪⎨⎪⋅=⎪⎩,解得525a b =-⎧⎪⎨=-⎪⎩;(2)22321(3)30(3)(1)0ax x ax ax a x ax x -+>-⇒-++>⇒-->,当a =0,不等式为10x -<,不等式的解集为{}1x x <;当a<0时,不等式化为3(1)0x x a --<,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当0a >时,方程2321ax x ax -+=-的两个根分别为.3,1a当3a =时,两根相等,故不等式的解集为{|1}x x ≠;当3a >时,31a <,不等式的解集为3{|x x a<或1}x >;当0<<3a 时,31a >,不等式的解集为{|1x x <或3}x a >,.综上:当a<0时,不等式的解集为31x x a ⎧⎫<<⎨⎬⎩⎭当a =0,不等式的解集为{}1x x <;当0<<3a 时,不等式的解集为{|1x x <或3}x a>.当3a =时,不等式的解集为{|1}x x ≠;当3a >时,不等式的解集为3{|x x a <或1}x >;。

2024-2025学年黑龙江省高一(上)月考数学试卷(10月份)(含答案)

2024-2025学年黑龙江省高一(上)月考数学试卷(10月份)(含答案)

2024-2025学年黑龙江省哈尔滨三中高一(上)月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列关系中,正确的是( )A. −2∈N ∗B. π∉QC. 0∈⌀D. 12∈Z2.集合A ={x|x ≥0},B ={x|y =2−x },则A ∩B =( )A. ⌀B. RC. [0,2]D. [−∞,2]3.已知命题p :∀x >0,x +1x >2,则¬p 为( )A. ∀x >0,x +1x ≤2 B. ∀x ≤0,x +1x ≤2C. ∃x ≤0,x +1x ≤2D. ∃x >0,x +1x ≤24.下列各组函数是同一个函数的是( )A. f(x)=x 3+xx 2+1与g(x)=xB. f(x)= x +1⋅x−1与g(x)= x 2−1C. f(x)= x 2与g(x)=(x )2D. f(x)=(x +10)2与g(x)=x +105.若ab >0,则a <b 是1a >1b 的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.已知x >2,则函数f(x)=x +12x−4的最小值为( )A. 2+2B. 2+22 C. 2D. 227.已知集合M ={x|x =k4+18,k ∈N},N ={y|y =k2±38,k ∈N},则( )A. M =NB. M ⊇NC. M ⊆ND. M ∩N =⌀8.已知a ,b 为正实数,(4ab +1)(2a +b)=18ab ,则2a +b 的取值范围是( )A. [12,4]B. (0,92)C. [1,2]D. [2,+∞]二、多选题:本题共3小题,共18分。

在每小题给出的选项中,有多项符合题目要求。

9.已知a>b>0,c>d>0,则( )A. a−d>b−cB. ac>bdC. cb >daD. ab>cd10.已知a,b为正实数,ab=a+b,则下列选项正确的是( )A. ab的最小值为2B. 2a+b的最小值为3+22C. a2+b2的最小值为8D. 1a−1+1b−1的最小值为211.已知有限集A={a1,a2,…,a n}(n≥2,n∈N),如果A中的元素a i(i=1,2,…,n)满足a1+a2+…+a n= a1×a2×…×a n,就称A为“W集”,则下列选项正确的是( )A. 集合{4+22,4−22}是“W集”B. 若{a1,a2}是“W集”,则a1,a2至少有一个大于2C. 二元“W集”有有限个D. 若a i为正整数,则“W集”A有且只有一个,且n=3三、填空题:本题共3小题,每小题5分,共15分。

黑龙江省哈尔滨市第三中学高三上学期第一次月考数学(理)试题(解析版).docx

黑龙江省哈尔滨市第三中学高三上学期第一次月考数学(理)试题(解析版).docx

高中数学学习材料鼎尚图文*整理制作黑龙江省哈尔滨三中2015届高三上学期第一次月考数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的有( )①集合A={1,2},集合B={x|x是4的因数},A与B是同一个集合;②集合{y|y=2x2﹣3}与集合{(x,y)|y=2x2﹣3}是同一个集合;③由1,,,|﹣|,0.5这些数组成的集合有5个元素;④集合{(x,y)|xy≤0,x、y∈R}是指第二和第四象限内的点集.A.0个B.1个C.2个D.3个考点:命题的真假判断与应用.专题:集合.分析:①整数的因数是指能被整除的整数,②两集合相等是指两集合中元素完全相同,③集合中元素必需满足互异性,④当x=0,或y=0时也适合不等式xy≤0.解答:解:①B={x|x是4的因数}={﹣4,﹣2,﹣1,1,2,4},所以A≠B,所以①错误;②集合{y|y=2x2﹣3}={y|y≥﹣3}是数集,{(x,y)|y=2x2﹣3}表示曲线y=2x2﹣3上的点,是一个点集,所以两个集合不是同一个集合,所以②错误;③∵=,|﹣|=0.5,∴由1,,,|﹣|,0.5这些数组成的集合有3个元素,所以③错误;④当x=0或y=0也满足xy≤0,所以集合{(x,y)|xy≤0,x、y∈R}是指第二和第四象限内或坐标轴上的点集.所以④错误.故选择:A.点评:本题考查了,集合的有关性质,如集合中元素的互异性,集合的代表元,集合相等,这些都是集合中常考的知识点.属于基础题.2.函数的定义域是( )A.[﹣3,1]B.(﹣3,3)C.(﹣3,2)∪(2,3)D.[﹣3,2)∪(2,3]考点:函数的定义域及其求法.专题:计算题.分析:求出使原函数中根数内部的代数式大于等于0的x的集合,再求出使分母不等于0的x的取值集合,然后取交集.解答:解:要使原函数有意义,则,解得:﹣3≤x≤3且x≠2.所以原函数的定义域为[﹣3,2)∪(2,3].故选D.点评:本题考查了函数的定义域及其求法,求函数的定义域时,开偶次方根要保证被开方数大于等于0.定义域的形式一定是集合或区间,此题是基础题.3.函数y=的值域是( )A.[0,+∞)B.[0,5]C.[0,5)D.(0,5)考点:函数的值域.专题:函数的性质及应用.分析:根据函数的解析式得0<5x≤25,所以﹣25≤﹣5x<0,,这样便求出了函数y的值域:[0,5).解答:解:解25﹣5x≥0得:x≤2;∴0<5x≤52=25,∴﹣25≤﹣5x<0,0≤25﹣5x<25;;∴函数y的值域是[0,5).故选C.点评:考查函数值域的概念,指数函数的值域,被开方数满足大于等于0.4.函数的图象( )A.关于原点对称B.关于直线y=x对称C.关于x轴对称D.关于y轴对称考点:奇偶函数图象的对称性.专题:计算题.分析:题设条件用意不明显,本题解题方法应从选项中突破,由于四个选项中有两个选项是与奇偶性有关的,故先验证奇偶性较好,解答:解:,∴f(x)是偶函数,图象关于y轴对称故选D.点评:考查函数的对称性,宜从奇偶性入手研究.5.给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是( )A.①②B.②③C.③④D.①④考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:本题所给的四个函数分别是幂函数型,对数函数型,指数函数型,含绝对值函数型,在解答时需要熟悉这些函数类型的图象和性质;①为增函数,②为定义域上的减函数,③y=|x﹣1|有两个单调区间,一增区间一个减区间,④y=2x+1为增函数.解答:解:①是幂函数,其在(0,+∞)上即第一象限内为增函数,故此项不符合要求;②中的函数是由函数向左平移1个单位长度得到的,因为原函数在(0,+∞)内为减函数,故此项符合要求;③中的函数图象是由函数y=x﹣1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知该项符合要求;④中的函数图象为指数函数,因其底数大于1,故其在R上单调递增,不合题意.故选B.点评:本题考查了函数的单调性,要注意每类函数中决定单调性的元素所满足的条件.6.设全集U=R,集合E={x|x≤﹣3或x≥2},F={x|﹣1<x<5},则集合{x|﹣1<x<2}等于( ) A.E∩F B.∁U E∩F C.∁U E∪∁U F D.∁U(E∪F)考点:交、并、补集的混合运算.专题:计算题.分析:对选支逐一计算看哪个符合结论的解答:解:选项A 易知E∩F={x|2≤x<5}不合题意选项B C U E={x|﹣3<x<2},C U E∩F={x|﹣1<x<2}符合题意选项C C U E={x|﹣3<x<2},C U F={x|x≤﹣1或x≥5},则C U E∪C U F={x|﹣3<x≤﹣1}不合题意选项D E∪F={x|x≤﹣3或x>﹣1},C U(E∪F)={x|﹣3<x≤﹣1}不合题意,故选B.点评:本题考查了交集、并集、补集的混合运算,解题需注意端点能否取到.7.设,则a,b,c的大小关系是( )A.a>c>b B.a>b>c C.c>a>b D.b>c>a考点:幂函数图象及其与指数的关系.分析:根据幂函数与指数函数的单调性直接可以判断出来.解答:解:∵在x>0时是增函数∴a>c又∵在x>0时是减函数,所以c>b故答案选A点评:本题主要考查幂函数与指数的关系.要充分利用函数图象、函数的单调性来解决问题.8.函数y=a x﹣(a>0,a≠1)的图象可能是( )A.B.C. D.考点:函数的图象.专题:函数的性质及应用.分析:讨论a与1的大小,根据函数的单调性,以及函数恒过的定点进行判定即可.解答:解:函数y=a x﹣(a>0,a≠1)的图象可以看成把函数y=a x的图象向下平移个单位得到的.当a>1时,函数y=a x﹣在R上是增函数,且图象过点(﹣1,0),故排除A,B.当1>a>0时,函数y=a x﹣在R上是减函数,且图象过点(﹣1,0),故排除C,故选D.点评:本题主要考查了指数函数的图象变换,指数函数的单调性和特殊点,体现了分类讨论的数学思想,属于基础题.9.已知函数f(x)=,则f(1+log23)的值为( )A.6 B.12 C.24 D.36考点:分段函数的应用.专题:函数的性质及应用.分析:根据分段函数的表达式,代入即可得到结论.解答:解:∵2<1+log23<3,∴4<2+1+log23<5,即4<log224<5,∵当x<4时,f(x)=f(x+2),∴f(1+log23)=f(2+1+log23)=f(log224)=,故选:C点评:本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性是解决本题的关键.10.函数f(x)=的零点个数为( )A.1个B.2个C.3个D.4个考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用.分析:分段函数的零点要讨论,对第一部分要作图.解答:解:①x≤0时,f(x)=x2﹣2x﹣3=(x﹣1)2﹣4=0,解得,x=﹣1或x=3(舍去).②x>0时,由y=lnx与y=x2﹣2x的图象可知,其有(0,+∞)上有两个交点,故有两个解;则函数f(x)=的零点个数为3.故选C.点评:本题考查了分段函数的零点个数,属于中档题.11.设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f[f(x)﹣e x]=e+1(e是自然对数的底数),则f(ln2)的值等于( )A.1 B.e+l C.3 D.e+3考点:函数单调性的性质.专题:函数的性质及应用.分析:利用换元法将函数转化为f(t)=e+1,根据函数的对应关系求出t的值,即可求出函数f(x)的表达式,即可得到结论.解答:解:设t=f(x)﹣e x,则f(x)=e x+t,则条件等价为f(t)=e+1,令x=t,则f(t)=e t+t=e+1,∵函数f(x)为单调递增函数,∴函数为一对一函数,解得t=1,∴f(x)=e x+1,即f(ln2)=e ln2+1=2+1=3,故选:C.点评:本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.12.已知关于x的不等式0≤x2﹣2x+m≤3(m∈R)有且只有一个实数解,函数f(x)=tx,g(x)=2tx2﹣2(m﹣t)x+1,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数t的取值范围是( ) A.(﹣∞,0)B.(0,2)C.(2,8)D.(0,8)考点:函数的零点与方程根的关系.专题:计算题;压轴题;函数的性质及应用.分析:由关于x的不等式0≤x2﹣2x+m≤3(m∈R)有且只有一个实数解求出m的值,代入函数化简;当t≤0时,显然不成立;当t>0时,因为g(0)=1>0,所以仅对对称轴进行讨论即可.解答:解:∵y=x2﹣2x+m≥m﹣1,又∵关于x的不等式0≤x2﹣2x+m≤3(m∈R)有且只有一个实数解,∴m﹣1=3,∴m=4,则g(x)=2tx2﹣2(4﹣t)x+1.当t≤0时,当x接近+∞时,函数g(x)=2tx2﹣2(4﹣t)x+1与f(x)=tx均为负值,显然不成立,当t=0时,因g(x)=﹣8x+1,f(x)=0,故不成立;当t>0时,若﹣=≥0,即0<t≤4时,结论显然成立;若﹣=<0时,只要△=4(4﹣t)2﹣8t=4(t﹣8)(t﹣2)<0即可,即4<t<8,故0<t<8.故选D.点评:本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣4x,那么当x<0时,f(x)=x2+4x.考点:函数解析式的求解及常用方法.专题:计算题;函数的性质及应用.分析:利用偶函数的定义求函数解析式.解答:解:当x<0时,﹣x>0,∵f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x2﹣4x,∴f(x)=f(﹣x)=x2+4x;故答案为:x2+4x.点评:本题考查了函数奇偶性的应用,属于基础题.14.已知函数f(x)在(﹣∞,+∞)上单调递减,且f(2)=0,若f(x﹣1)>0,则x的取值范围(﹣∞,3).考点:函数单调性的性质.专题:计算题;函数的性质及应用.分析:由f(2)=0,知f(x﹣1)>0化为f(x﹣1)>f(2),再利用函数的单调性可可得x﹣1<2.解答:解:∵f(2)=0,∴f(x﹣1)>0化为f(x﹣1)>f(2),又f(x)在(﹣∞,+∞)上单调递减,∴x﹣1<2,解得x<3,∴x的取值范围是(﹣∞,3),故答案为:(﹣∞,3).点评:该题考查函数的单调性及其应用,属基础题,正确利用函数的单调性去掉不等式中的符号“f”是解题关键.15.若偶函数f(x)对定义域内任意x都有f(x)=f(2﹣x),且当x∈(0,1]时,f(x)=log2x,则f()=﹣1.考点:抽象函数及其应用;函数的值.专题:函数的性质及应用.分析:先判断函数为周期函数,利用周期性和偶函数得到f()=f(),再有条件即可求出值.解答:解:∵偶函数f(x)对定义域内任意x都有f(x)=f(2﹣x),∴f(x)=f(x﹣2),∴函数f(x)是以2为周期的周期函数,∴f()=f(8﹣)=f(),∵x∈(0,1]时,f(x)=log2x,∴f()=log2=﹣1故答案为:﹣1点评:本题考查了函数的奇偶性、周期性、函数值的计算,属于中档题.16.已知f(x)为奇函数,当x∈[0,2]时,f(x)=﹣x2+2x;当x∈(2,+∞)时,f(x)=2x﹣4,若关于x的不等式f(x+a)>f(x)有解,则a的取值范围为(﹣2,0)∪(0,+∞).考点:函数单调性的性质.专题:综合题;函数的性质及应用.分析:根据题意画出函数f(x)的图象,根据图象及函数f(x)的单调性,f(x+a),和f(x)的取值即可找出a的范围.解答:解:由题意作出函数f(x)的图象,如图所示:若a>0,则x≥2时,x+a>2,x+a>x;f(x)在[2,+∞)上单调递增,所以f(x+a)>f(x),即该不等式有解;若a<0,x+a<x,若x≥2,则x+a≥2+a,要使不等式f(x+a)>f(x)有解,需2+a>0,即a>﹣2;若0≤x<2,则a≤x+a<2+a,则需2+a>0,即a>﹣2时,f(x+a)>f(x)有解;若﹣2<x<0,﹣2+a<x+a<a,则需a>﹣2,不等式f(x+a)>f(x)有解;若x≤﹣2,x+a≤a﹣2<﹣2,函数f(x)在(﹣∞,﹣2]为增函数,所以f(x+a)<f(x),即不等式f(x+a)>f(x)无解;综上得a的取值范围是(﹣2,0∪(0,+∞).故答案为:(﹣2,0)∪(0,+∞).点评:考查奇函数的概念,二次函数图象,奇函数图象关于原点的对称性,以及函数单调性的定义.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.全集U={x|x2﹣x+1≥0},A={x||x﹣1|>1},B={x|≥0}.求集合A∩B,A∪(∁U B).考点:交、并、补集的混合运算.专题:集合.分析:求出全集U中不等式的解集确定出U,求出A与B中不等式的解集确定出A与B,进而求出A与B的交集,A与B补集的并集即可.解答:解:由全集U中不等式解得:x≤或x≥2,即全集U=(﹣∞,]∪[2,+∞),由A中不等式变形得:x﹣1<﹣1或x﹣1>1,即x<0或x>2,∴A=(﹣∞,0)∪(2,+∞),由B中不等式解得:x>2或x≤﹣1,即B=(﹣∞,﹣1]∪(2,+∞),∴∁U B=(﹣1,2],则A∩B=(﹣∞,﹣1]∪(2,+∞),A∪(∁U B)=R.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.18.已知函数f(x)=lg(a≠1)是奇函数,(1)求a的值;(2)若g(x)=f(x)+,x∈(﹣1,1),求g()+g(﹣)的值.考点:函数奇偶性的性质;函数的值.专题:综合题;函数的性质及应用.分析:先根据奇函数的定义得到a的值,再结合定义域关于原点对称即可确定实常数a的值.解答:解:(1)因为函数f(x)=lg是奇函数;所以:f(﹣x)+f(x)=0⇒lg+lg=0⇒lg=0⇒=1.∴a=±1,又a≠1,∴a=﹣1.(2)∵g(x)=f(x)+,且f(x)为奇函数,∴g()+g(﹣)=f()+f(﹣)++=2(﹣1)+=2.点评:本题主要考查函数奇偶性的性质.一个函数存在奇偶性的前提是定义域关于原点对称.19.已知二次函数f(x)=ax2+bx+c(a>0,x∈[﹣2,﹣1],且函数f(x)在x=﹣1处取到最大值0.(1)求的取值范围;(2)求的最小值.考点:函数的最值及其几何意义.专题:计算题;函数的性质及应用.分析:(1)因为函数函数f(x)在x=﹣1处取到最大值0,则f(﹣1)=a﹣b+c=0,可得b=a+c且﹣≤﹣,即可求的取值范围;(2)==+,利用函数的单调性求的最小值.解答:解:(1)因为函数函数f(x)在x=﹣1处取到最大值0,则f(﹣1)=a﹣b+c=0,可得b=a+c且﹣≤﹣,∴﹣≤﹣,解得≥2;(2)==+,因为≥2,所以≥,所以的最小值.点评:本题考查函数的最值及其几何意义,考查函数的单调性,属于中档题.20.已知函数f(x)=m•6x﹣4x,m∈R.(1)当m=时,求满足f(x+1)>f(x)的实数x的范围;(2)若f(x)≤9x对任意的x∈R恒成立,求实数m的范围.考点:其他不等式的解法;函数恒成立问题.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:(1)当m=时,f(x+1)>f(x)即可化简得,()x<,由单调性即可得到;(2)f(x)≤9x对任意的x∈R恒成立即m≤=()﹣x+()x对任意的x∈R恒成立,运用基本不等式即可得到最小值,令m不大于最小值即可.解答:解:(1)当m=时,f(x+1)>f(x)即为•6x+1﹣4x+1>6x﹣4x,化简得,()x<,解得x>2.则满足条件的x的范围是(2,+∞);(2)f(x)≤9x对任意的x∈R恒成立即为m•6x﹣4x≤9x,即m≤=()﹣x+()x对任意的x∈R恒成立,由于()﹣x+()x≥2,当且仅当x=0取最小值2.则m≤2.故实数m的范围是(﹣∞,2].点评:本题考查指数不等式的解法,以及指数函数的单调性及运用,考查不等式的恒成立问题,运用分离参数的方法和基本不等式求最值,属于中档题.21.已知定义在(0,+∞)上函数f(x)对任意正数m,n都有f(mn)=f(m)+f(n)﹣,当x >4时,f(x)>,且f()=0.(1)求f(2)的值;(2)解关于x的不等式f(x)+f(x+3)>2.考点:数列的求和.专题:函数的性质及应用.分析:(1)由已知得f(1)=f(1)+f(1)﹣,解得f(1)=,从而f(2×)=f(2)+f()﹣,由此能求出f(2)=1.(2)任取x1,x2∈(0,+∞),且x1<x2,则f(x2)﹣f(x1)=f()﹣=f()﹣=,由此能求出关于x的不等式f(x)+f(x+3)>2的解.解答:解:(1)∵定义在(0,+∞)上函数f(x),对任意正数m,n都有f(mn)=f(m)+f(n)﹣,∴f(1)=f(1)+f(1)﹣,∴f(1)=,∴f(2×)=f(2)+f()﹣,∵f()=0,∴f(2)=1.(2)任取x1,x2∈(0,+∞),且x1<x2,则f(x2)﹣f(x1)=f()﹣=f()﹣=,∵f()=f()+f()﹣,且时,f(x)>,∴,∴,解得x∈(1,+∞).点评:本题考查函数值的求法,考查不等式的解法,是中档题,解题时要认真审题,注意函数性质的合理运用.22.设x=m和x=n是函数的两个极值点,其中m<n,a∈R.(Ⅰ)求f(m)+f(n)的取值范围;(Ⅱ)若,求f(n)﹣f(m)的最大值.注:e是自然对数的底数.考点:函数在某点取得极值的条件;导数在最大值、最小值问题中的应用.专题:综合题;导数的综合应用.分析:(Ⅰ)确定函数f(x)的定义域,求导函数,利用极值的运用,建立方程,结合韦达定理,即可求f(m)+f(n)的取值范围;(Ⅱ)设,确定t的范围,表示出f(n)﹣f(m),构造新函数,利用导数法确定函数的单调性,即可求得结论.解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),.依题意,方程x2﹣(a+2)x+1=0有两个不等的正根m,n(其中m<n).故,∴a>0,并且m+n=a+2,mn=1.所以,=故f(m)+f(n)的取值范围是(﹣∞,﹣3).…(Ⅱ)当时,.若设,则.于是有,∴,∴t≥e∴构造函数(其中t≥e),则.所以g(t)在[e,+∞)上单调递减,.故f(n)﹣f(m)的最大值是.…点评:本题考查导数知识的运用,考查函数的极值与最值,考查学生分析解决问题的能力,属于中档题.。

黑龙江省哈尔滨三中届高三数学上学期第一次月考试卷理(含解析)【含答案】

黑龙江省哈尔滨三中届高三数学上学期第一次月考试卷理(含解析)【含答案】

黑龙江省哈尔滨三中2015届高三上学期第一次月考数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的有( )①集合A={1,2},集合B={x|x是4的因数},A与B是同一个集合;②集合{y|y=2x2﹣3}与集合{(x,y)|y=2x2﹣3}是同一个集合;③由1,,,|﹣|,0.5这些数组成的集合有5个元素;④集合{(x,y)|xy≤0,x、y∈R}是指第二和第四象限内的点集.A.0个B.1个C.2个D.3个考点:命题的真假判断与应用.专题:集合.分析:①整数的因数是指能被整除的整数,②两集合相等是指两集合中元素完全相同,③集合中元素必需满足互异性,④当x=0,或y=0时也适合不等式xy≤0.解答:解:①B={x|x是4的因数}={﹣4,﹣2,﹣1,1,2,4},所以A≠B,所以①错误;②集合{y|y=2x2﹣3}={y|y≥﹣3}是数集,{(x,y)|y=2x2﹣3}表示曲线y=2x2﹣3上的点,是一个点集,所以两个集合不是同一个集合,所以②错误;③∵=,|﹣|=0.5,∴由1,,,|﹣|,0.5这些数组成的集合有3个元素,所以③错误;④当x=0或y=0也满足xy≤0,所以集合{(x,y)|xy≤0,x、y∈R}是指第二和第四象限内或坐标轴上的点集.所以④错误.故选择:A.点评:本题考查了,集合的有关性质,如集合中元素的互异性,集合的代表元,集合相等,这些都是集合中常考的知识点.属于基础题.2.函数的定义域是( )A.B.(﹣3,3)C.(﹣3,2)∪(2,3) D.考点:函数的定义域及其求法.专题:计算题.分析:求出使原函数中根数内部的代数式大于等于0的x的集合,再求出使分母不等于0的x 的取值集合,然后取交集.解答:解:要使原函数有意义,则,解得:﹣3≤x≤3且x≠2.所以原函数的定义域为.故选D.点评:本题考查了函数的定义域及其求法,求函数的定义域时,开偶次方根要保证被开方数大于等于0.定义域的形式一定是集合或区间,此题是基础题.3.函数y=的值域是( )A.C.分析:题设条件用意不明显,本题解题方法应从选项中突破,由于四个选项中有两个选项是与奇偶性有关的,故先验证奇偶性较好,解答:解:,∴f(x)是偶函数,图象关于y轴对称故选D.点评:考查函数的对称性,宜从奇偶性入手研究.5.给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是( )A.①②B.②③C.③④D.①④考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:本题所给的四个函数分别是幂函数型,对数函数型,指数函数型,含绝对值函数型,在解答时需要熟悉这些函数类型的图象和性质;①为增函数,②为定义域上的减函数,③y=|x﹣1|有两个单调区间,一增区间一个减区间,④y=2x+1为增函数.解答:解:①是幂函数,其在(0,+∞)上即第一象限内为增函数,故此项不符合要求;②中的函数是由函数向左平移1个单位长度得到的,因为原函数在(0,+∞)内为减函数,故此项符合要求;③中的函数图象是由函数y=x﹣1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知该项符合要求;④中的函数图象为指数函数,因其底数大于1,故其在R上单调递增,不合题意.故选B.点评:本题考查了函数的单调性,要注意每类函数中决定单调性的元素所满足的条件.6.设全集U=R,集合E={x|x≤﹣3或x≥2},F={x|﹣1<x<5},则集合{x|﹣1<x<2}等于( )A.E∩F B.∁U E∩F C.∁U E∪∁U F D.∁U(E∪F)考点:交、并、补集的混合运算.专题:计算题.分析:对选支逐一计算看哪个符合结论的解答:解:选项A 易知E∩F={x|2≤x<5}不合题意选项B C U E={x|﹣3<x<2},C U E∩F={x|﹣1<x<2}符合题意选项C C U E={x|﹣3<x<2},C U F={x|x≤﹣1或x≥5},则C U E∪C U F={x|﹣3<x≤﹣1}不合题意选项D E∪F={x|x≤﹣3或x>﹣1},C U(E∪F)={x|﹣3<x≤﹣1}不合题意,故选B.点评:本题考查了交集、并集、补集的混合运算,解题需注意端点能否取到.7.设,则a,b,c的大小关系是( ) A.a>c>b B.a>b>c C.c>a>b D.b>c>a考点:幂函数图象及其与指数的关系.分析:根据幂函数与指数函数的单调性直接可以判断出来.解答:解:∵在x>0时是增函数∴a>c又∵在x>0时是减函数,所以c>b故答案选A点评:本题主要考查幂函数与指数的关系.要充分利用函数图象、函数的单调性来解决问题.8.函数y=a x﹣(a>0,a≠1)的图象可能是( )A.B.C. D.考点:函数的图象.专题:函数的性质及应用.分析:讨论a与1的大小,根据函数的单调性,以及函数恒过的定点进行判定即可.解答:解:函数y=a x﹣(a>0,a≠1)的图象可以看成把函数y=a x的图象向下平移个单位得到的.当a>1时,函数y=a x﹣在R上是增函数,且图象过点(﹣1,0),故排除A,B.当1>a>0时,函数y=a x﹣在R上是减函数,且图象过点(﹣1,0),故排除C,故选D.点评:本题主要考查了指数函数的图象变换,指数函数的单调性和特殊点,体现了分类讨论的数学思想,属于基础题.9.已知函数f(x)=,则f(1+log23)的值为( ) A.6 B.12 C.24 D.36考点:分段函数的应用.专题:函数的性质及应用.分析:根据分段函数的表达式,代入即可得到结论.解答:解:∵2<1+log23<3,∴4<2+1+log23<5,即4<log224<5,∵当x<4时,f(x)=f(x+2),∴f(1+log23)=f(2+1+log23)=f(log224)=,故选:C点评:本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性是解决本题的关键.10.函数f(x)=的零点个数为( )A.1个B.2个C.3个D.4个考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用.分析:分段函数的零点要讨论,对第一部分要作图.解答:解:①x≤0时,f(x)=x2﹣2x﹣3=(x﹣1)2﹣4=0,解得,x=﹣1或x=3(舍去).②x>0时,由y=lnx与y=x2﹣2x的图象可知,其有(0,+∞)上有两个交点,故有两个解;则函数f(x)=的零点个数为3.故选C.点评:本题考查了分段函数的零点个数,属于中档题.11.设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f=e+1(e是自然对数的底数),则f(ln2)的值等于( )A.1 B.e+l C.3 D.e+3考点:函数单调性的性质.专题:函数的性质及应用.分析:利用换元法将函数转化为f(t)=e+1,根据函数的对应关系求出t的值,即可求出函数f(x)的表达式,即可得到结论.解答:解:设t=f(x)﹣e x,则f(x)=e x+t,则条件等价为f(t)=e+1,令x=t,则f(t)=e t+t=e+1,∵函数f(x)为单调递增函数,∴函数为一对一函数,解得t=1,∴f(x)=e x+1,即f(ln2)=e ln2+1=2+1=3,故选:C.点评:本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.12.已知关于x的不等式0≤x2﹣2x+m≤3(m∈R)有且只有一个实数解,函数f(x)=tx,g (x)=2tx2﹣2(m﹣t)x+1,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数t的取值范围是( )A.(﹣∞,0)B.(0,2)C.(2,8)D.(0,8)考点:函数的零点与方程根的关系.专题:计算题;压轴题;函数的性质及应用.分析:由关于x的不等式0≤x2﹣2x+m≤3(m∈R)有且只有一个实数解求出m的值,代入函数化简;当t≤0时,显然不成立;当t>0时,因为g(0)=1>0,所以仅对对称轴进行讨论即可.解答:解:∵y=x2﹣2x+m≥m﹣1,又∵关于x的不等式0≤x2﹣2x+m≤3(m∈R)有且只有一个实数解,∴m﹣1=3,∴m=4,则g(x)=2tx2﹣2(4﹣t)x+1.当t≤0时,当x接近+∞时,函数g(x)=2tx2﹣2(4﹣t)x+1与f(x)=tx均为负值,显然不成立,当t=0时,因g(x)=﹣8x+1,f(x)=0,故不成立;当t>0时,若﹣=≥0,即0<t≤4时,结论显然成立;若﹣=<0时,只要△=4(4﹣t)2﹣8t=4(t﹣8)(t﹣2)<0即可,即4<t<8,故0<t<8.故选D.点评:本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣4x,那么当x<0时,f(x)=x2+4x.考点:函数解析式的求解及常用方法.专题:计算题;函数的性质及应用.分析:利用偶函数的定义求函数解析式.解答:解:当x<0时,﹣x>0,∵f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x2﹣4x,∴f(x)=f(﹣x)=x2+4x;故答案为:x2+4x.点评:本题考查了函数奇偶性的应用,属于基础题.14.已知函数f(x)在(﹣∞,+∞)上单调递减,且f(2)=0,若f(x﹣1)>0,则x的取值范围(﹣∞,3).考点:函数单调性的性质.专题:计算题;函数的性质及应用.分析:由f(2)=0,知f(x﹣1)>0化为f(x﹣1)>f(2),再利用函数的单调性可可得x ﹣1<2.解答:解:∵f(2)=0,∴f(x﹣1)>0化为f(x﹣1)>f(2),又f(x)在(﹣∞,+∞)上单调递减,∴x﹣1<2,解得x<3,∴x的取值范围是(﹣∞,3),故答案为:(﹣∞,3).点评:该题考查函数的单调性及其应用,属基础题,正确利用函数的单调性去掉不等式中的符号“f”是解题关键.15.若偶函数f(x)对定义域内任意x都有f(x)=f(2﹣x),且当x∈(0,1]时,f(x)=log2x,则f()=﹣1.考点:抽象函数及其应用;函数的值.专题:函数的性质及应用.分析:先判断函数为周期函数,利用周期性和偶函数得到f()=f(),再有条件即可求出值.解答:解:∵偶函数f(x)对定义域内任意x都有f(x)=f(2﹣x),∴f(x)=f(x﹣2),∴函数f(x)是以2为周期的周期函数,∴f()=f(8﹣)=f(),∵x∈(0,1]时,f(x)=log2x,∴f()=log2=﹣1故答案为:﹣1点评:本题考查了函数的奇偶性、周期性、函数值的计算,属于中档题.16.已知f(x)为奇函数,当x∈时,f(x)=﹣x2+2x;当x∈(2,+∞)时,f(x)=2x﹣4,若关于x的不等式f(x+a)>f(x)有解,则a的取值范围为(﹣2,0)∪(0,+∞).考点:函数单调性的性质.专题:综合题;函数的性质及应用.分析:根据题意画出函数f(x)的图象,根据图象及函数f(x)的单调性,f(x+a),和f(x)的取值即可找出a的范围.解答:解:由题意作出函数f(x)的图象,如图所示:若a>0,则x≥2时,x+a>2,x+a>x;f(x)在为增函数,所以f(x+a)<f(x),即不等式f(x+a)>f(x)无解;综上得a的取值范围是(﹣2,0∪(0,+∞).故答案为:(﹣2,0)∪(0,+∞).点评:考查奇函数的概念,二次函数图象,奇函数图象关于原点的对称性,以及函数单调性的定义.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.全集U={x|x2﹣x+1≥0},A={x||x﹣1|>1},B={x|≥0}.求集合A∩B,A∪(∁U B).考点:交、并、补集的混合运算.专题:集合.分析:求出全集U中不等式的解集确定出U,求出A与B中不等式的解集确定出A与B,进而求出A与B的交集,A与B补集的并集即可.解答:解:由全集U中不等式解得:x≤或x≥2,即全集U=(﹣∞,]∪∴A=(﹣∞,0)∪(2,+∞),由B中不等式解得:x>2或x≤﹣1,即B=(﹣∞,﹣1]∪(2,+∞),∴∁U B=(﹣1,2],则A∩B=(﹣∞,﹣1]∪(2,+∞),A∪(∁U B)=R.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.18.已知函数f(x)=lg(a≠1)是奇函数,(1)求a的值;(2)若g(x)=f(x)+,x∈(﹣1,1),求g()+g(﹣)的值.考点:函数奇偶性的性质;函数的值.专题:综合题;函数的性质及应用.分析:先根据奇函数的定义得到a的值,再结合定义域关于原点对称即可确定实常数a的值.解答:解:(1)因为函数f(x)=lg是奇函数;所以:f(﹣x)+f(x)=0⇒lg+lg=0⇒lg=0⇒=1.∴a=±1,又a≠1,∴a=﹣1.(2)∵g(x)=f(x)+,且f(x)为奇函数,∴g()+g(﹣)=f()+f(﹣)++=2(﹣1)+=2.点评:本题主要考查函数奇偶性的性质.一个函数存在奇偶性的前提是定义域关于原点对称.19.已知二次函数f(x)=ax2+bx+c(a>0,x∈,且函数f(x)在x=﹣1处取到最大值0.(1)求的取值范围;(2)求的最小值.考点:函数的最值及其几何意义.专题:计算题;函数的性质及应用.分析:(1)因为函数函数f(x)在x=﹣1处取到最大值0,则f(﹣1)=a﹣b+c=0,可得b=a+c 且﹣≤﹣,即可求的取值范围;(2)==+,利用函数的单调性求的最小值.解答:解:(1)因为函数函数f(x)在x=﹣1处取到最大值0,则f(﹣1)=a﹣b+c=0,可得b=a+c且﹣≤﹣,∴﹣≤﹣,解得≥2;(2)==+,因为≥2,所以≥,所以的最小值.点评:本题考查函数的最值及其几何意义,考查函数的单调性,属于中档题.20.已知函数f(x)=m•6x﹣4x,m∈R.(1)当m=时,求满足f(x+1)>f(x)的实数x的范围;(2)若f(x)≤9x对任意的x∈R恒成立,求实数m的范围.考点:其他不等式的解法;函数恒成立问题.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:(1)当m=时,f(x+1)>f(x)即可化简得,()x<,由单调性即可得到;(2)f(x)≤9x对任意的x∈R恒成立即m≤=()﹣x+()x对任意的x∈R恒成立,运用基本不等式即可得到最小值,令m不大于最小值即可.解答:解:(1)当m=时,f(x+1)>f(x)即为•6x+1﹣4x+1>6x﹣4x,化简得,()x<,解得x>2.则满足条件的x的范围是(2,+∞);(2)f(x)≤9x对任意的x∈R恒成立即为m•6x﹣4x≤9x,即m≤=()﹣x+()x对任意的x∈R恒成立,由于()﹣x+()x≥2,当且仅当x=0取最小值2.则m≤2.故实数m的范围是(﹣∞,2].点评:本题考查指数不等式的解法,以及指数函数的单调性及运用,考查不等式的恒成立问题,运用分离参数的方法和基本不等式求最值,属于中档题.21.已知定义在(0,+∞)上函数f(x)对任意正数m,n都有f(mn)=f(m)+f(n)﹣,当x>4时,f(x)>,且f()=0.(1)求f(2)的值;(2)解关于x的不等式f(x)+f(x+3)>2.考点:数列的求和.专题:函数的性质及应用.分析:(1)由已知得f(1)=f(1)+f(1)﹣,解得f(1)=,从而f(2×)=f(2)+f()﹣,由此能求出f(2)=1.(2)任取x1,x2∈(0,+∞),且x1<x2,则f(x2)﹣f(x1)=f()﹣=f()﹣=,由此能求出关于x的不等式f(x)+f(x+3)>2的解.解答:解:(1)∵定义在(0,+∞)上函数f(x),对任意正数m,n都有f(mn)=f(m)+f(n)﹣,∴f(1)=f(1)+f(1)﹣,∴f(1)=,∴f(2×)=f(2)+f()﹣,∵f()=0,∴f(2)=1.(2)任取x1,x2∈(0,+∞),且x1<x2,则f(x2)﹣f(x1)=f()﹣=f()﹣=,∵f()=f()+f()﹣,且时,f(x)>,∴,∴,解得x∈(1,+∞).点评:本题考查函数值的求法,考查不等式的解法,是中档题,解题时要认真审题,注意函数性质的合理运用.22.设x=m和x=n是函数的两个极值点,其中m<n,a∈R.(Ⅰ)求f(m)+f(n)的取值范围;(Ⅱ)若,求f(n)﹣f(m)的最大值.注:e是自然对数的底数.考点:函数在某点取得极值的条件;导数在最大值、最小值问题中的应用.专题:综合题;导数的综合应用.分析:(Ⅰ)确定函数f(x)的定义域,求导函数,利用极值的运用,建立方程,结合韦达定理,即可求f(m)+f(n)的取值范围;(Ⅱ)设,确定t的范围,表示出f(n)﹣f(m),构造新函数,利用导数法确定函数的单调性,即可求得结论.解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),.依题意,方程x2﹣(a+2)x+1=0有两个不等的正根m,n(其中m<n).故,∴a>0,并且m+n=a+2,mn=1.所以,=故f(m)+f(n)的取值范围是(﹣∞,﹣3).…(Ⅱ)当时,.若设,则.于是有,∴,∴t≥e∴构造函数(其中t≥e),则.所以g(t)在[e,+∞)上单调递减,.故f(n)﹣f(m)的最大值是.…点评:本题考查导数知识的运用,考查函数的极值与最值,考查学生分析解决问题的能力,属于中档题.。

最新版高一数学上学期第一次月考试题及答案(新人教A版 第275套)

最新版高一数学上学期第一次月考试题及答案(新人教A版 第275套)

哈32中学高二上学期第一次月考数学试题(考试范围:必修一 适用班级:高一学年)一、选择题(每小题只有1个选项符合题意,每小题5分,共60分) 1.考察下列每组对象哪几组能够成集合?( )(1)比较小的数;(2)不大于10的非负偶数;(3)所有三角形;(4)高个子男生; A .(1)(4) B.(2)(3) C.(2) D.(3) 2.设集合{}{}1,2,4,5,3,4,5,7S T ==,则S T =( )A.{}1,2,3,4,5,7B.{}4C.{}4,5D.{}1,2,4,53.已知全集 U={1,2,3,4,5},A={1,5},B C U A,则集合B 的个数是( ) A .5B. 6C. 7D. 84 . 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( ) A .0 B .0 或1 C .1 D .不能确定 5.如图,阴影部分表示的集合是 ( )(A )B ∩[C U (A ∪C)] (B )(A ∪B)∪(B ∪C) (C )(A ∪C)∩( C U B) (D )[C U (A ∩C)]∪B6.函数()1f x x=在[]1,2x ∈上的最大值为( ) A .2 B .1 C .12D .无最大值7.下图中可作为函数y = f (x )的图象是( )8.下列四组中的函数()f x ,()g x 表示同一个函数的是 ( )A .3()f x x =,()g x =B .()f x x =,()||g x x =C .2()f x x =,4()g x =D .()1f x =,0()g x x =9.函数=)(x f 2(1)xx x ⎧⎨+⎩,0,0x x ≥< ,则=-)2(f ( )A. 1 B .2 C. 3 D. 4 10.下列函数中,在区间(0,1)上是增函数的是( ) A. x y =B. x y -=3C. xy 1=42+-=x y 11. 定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 ( )A .9 B. 14 C.18 D.2112. 若函数()y f x =在R 单调递增,且2()()f m f m >-,则实数m 的取值范围是 ( ) A. (),1-∞- B. ()0,+∞ C. ()1,0- D. (),1-∞-()0,+∞二、填空题(每小题5分,共20分)13.已知f (x ) = x 2+ 4x + 5,则f (2) = ,f (–1) = 14.函数()14+-=x xx f 的定义域是 15.若函数y=f(x)的定义域是[0,2],则函数y=f (x+2)的定义域是 16.函数1)(2-+=x x x f 的最小值是______________哈32中2013~2014学年度上学期9月考试数学试题答题卡一、 选择题:(本大题共12小题,每小题5分,共60分。

2021-2022学年黑龙江省哈尔滨市第三中学高一上学期入学考试数学试题(解析版)

2021-2022学年黑龙江省哈尔滨市第三中学高一上学期入学考试数学试题(解析版)

2021-2022学年黑龙江省哈尔滨市第三中学校高一上学期入学考试数学试题一、单选题1.下列运算正确的是( ) A .1644x x x ÷= B .()5210a a =C .224235a a a +=D .3332b b b ⋅=【答案】B【分析】根据指数幂的运算法则即可逐一求解. 【详解】对于A,21641614x x x x -÷==,故A 错, 对于B,()5210a a =,故B 对,对于C,222235a a a +=,故C 错, 对于D,63333b b b b +⋅==,故D 错, 故选:B2.由五个正方体组成的几何体如图所示,则该几何体的俯视图为( )A .B .C .D .【答案】C【分析】根据俯视图是从上往下看即可求解俯视图.【详解】从正上方往下看,底层由3+1个正方体,顶层由一个正方体构成,顶层的正方体在俯视图中与底层右侧的重合, 故选:C3.如图,两个全等的正方形的四种不同摆放中,中心对称图形有()A.1个B.2个C.3个D.4个【答案】B【分析】根据中心对称图形的概念判断即可得答案.【详解】把一个图形绕某一点旋转180,如果旋转后能与原来的图形重合,那么这个图形就叫中心对称图形,由此可知图中第2个和第3个图形为中心对称图形,故选:B4.网上一家电子产品店,今年1﹣4月的电子产品销售总额如图1,其中某一款平板电脑的销售额占当月电子产品销售总额的百分比如图2.根据图中信息,有以下四个结论,推断不合理的是()A.从1月到4月,电子产品销售总额为290万元B.该款平板电脑4月份的销售额比3月份有所下降C.今年1﹣4月中,该款平板电脑售额最低的是3月D.该款平板电脑2至4月的销售额占当月电子产品销售总额的百分比与1月份相比都下降了【答案】B【分析】结合图1、图2即可计算出该款平板电脑1﹣4月份的销售额,即可出答案.+++=万元,A 【详解】由图1可知从1月到4月,电子产品销售总额为85806065290正确;⨯=万元,该款平板电脑3月份的销售额为6018%10.8⨯=万元,4月份的销售额为6517%11.05则该款平板电脑4月份的销售额比3月份多了11.0510.80.25-=万元,B 错误; 该款平板电脑1月份的销售额为8523%19.55⨯=万元, 2月份的销售额为8015%12⨯=万元,所以今年1﹣4月中,该款平板电脑售额最低的是3月10.8万元,C 正确;由图2可知该款平板电脑2至4月的销售额占当月电子产品销售总额的百分比与1月份相比都下降了,D 正确. 故选:B.5.已知关于x 的分式方程322x k x x-=--的解为正数,则k 的取值范围是( ) A .6k >- B .2k >- C .6k >-且2k ≠- D .6k ≥-且2k ≠-【答案】C【分析】求解分数方程的解,利用解为正数即可确定k 的范围. 【详解】由322x k x x -=--得6222x k x x -=--,故6622kx k x +-=-⇒=,根据题意可知:602k x +=>且622k x +=≠,解得6k >-且2k ≠-, 故选:C6.如图,直线l 1与反比例函数3y x=()0x >的图象相交于A 、B 两点,线段AB 的中点为点C ,点C 作x 轴的垂线,垂足为点D .直线l 2过原点O 和点C .若直线l 2上存在点P (m ,n ),满足∠APB =∠ADB ,则m +n 的值可为( )A .35B .3或32C .3535D .3【答案】A【分析】根据同弧所对的圆周角相等可作ABD △的外接圆,根据点的坐标,可计算长度,得ABD △是直角三角形,进而德//OC BD ,进而根据几何图形的关系可求圆心坐标以及OP 的长度,进而可求点P 坐标,即可求解.【详解】如图,作ABD △的外接圆,记为J ,J 交直线2l 于点P ,连接,AP PB ,则APB ADB ∠∠=,建立如图所示的平面直角坐标系,则1,3,()()3,1A B ,由AC BC =,故(2,2)C , 又CD x ⊥轴,()2,0D ∴,故221310AD =+=,222222AB =+=,22112BD =+=, 由于222AD AB BD =+,因此ABD △为直角三角形,故BD AB ⊥,因为,//,JC AB JC BD ⊥∴又,AC CB AJ JD J =⇒=∴是AD 的中点,故33,22J ⎛⎫⎪⎝⎭,OC 直线方程为:y x =,设(,)P m n ,因为10323210235,,,22222PJ JA OJ OP OJ PJ m OP --===∴=-=∴==, 35,352n m m n -==∴+=-, 根据对称性可知,点P 关于点C 的对称点555522P ⎛⎫++' ⎪ ⎪⎝⎭,也满足APB ADB ∠∠=, 故此时55m n +=+, 故选:A7.如图,在ABC 中,延长CA 至点F ,使得AF CA =,延长AB 至点D ,使得2BD AB =,延长BC 至点E ,使得3CE CB =,连接EF FD DE 、、,若36DEFS=,则ABCS为( )A .2B .3C .4D .5【答案】A【分析】如图,连接,AE CD ,设ABC 的面积为m .,利用等高模型的性质,用m 表示出各个三角形的面积,可得DEF 的面积为18m ,构造方程可得结论. 【详解】如图,连接,AE CD ,设ABC 的面积为m .2BD AB =22BCDABCS S m ∴==3ACD BCDABCSSS m ∴=+=AC AF =3ADFACDSSm ∴==3EC BC =33ECAABCS S m ∴== 36EDC BCDSSm ∴==AC AF =3AEFEACS S m ∴== DEF ABCBCDEDCECAAEFADFSSSSSSS∴=+++++26333m m m m m m =+++++ 1836m == 2m ∴=ABC ∴的面积为2,故选:A8.一只小虫子欲从A 点不重复经过图中的点或者线段,而最终到达目的地E ,这只小虫子的不同走法共有( )A .12种B .13种C .14种D .15种【答案】C【分析】根据题意按照一定顺序,将所有的路线列举出来即可.【详解】由题意这只小虫子的不同走法共有:ABCDE,ABCDPE, ABCDPFE,ABPDE ,,,,,,,,,,ABPE ABPFE APBCDE APDE APE APFE AGFBCDE AGFPDE AGFPE AGFE 共14种, 故选:C9.为了开展好“招远市城市卫生专项”行动,某单位需要购买分类垃圾桶8个,市场上有A 型和B 型两种分类垃圾桶,A 型分类垃圾桶50元/个,B 型分类垃圾桶55元/个,总费用不超过415元,则不同的购买方式有( ) A .2种 B .3种 C .4种 D .5种【答案】C【分析】根据题意列不等式,求得未知数的范围,可得答案.【详解】设购买A 型分类垃圾桶x 个,则B 型分类垃圾桶买(8)x -个, 故5055(8)415x x +-≤,解得5x ≥, 又x ,8-x 均为负整数,故x 可以为:5,6,7,8, 则不同的购买方式有4种, 故选:C10.如图,在矩形ABCD 中,AB 32,AD 3AD 沿AE 折叠,使点D 恰好落在AB 边上的D 处,再将AED '△绕点E 顺时针旋转α,得到A ED '''△,使得EA '恰好经过BD '的中点F ,D A '''交AB 于点G ,连接AA '.有如下结论:①A F '62;②弧D D '''53;③7.5A AF '∠︒=;④AA F EGF '.上述结论中,所有正确的序号是( )A .①②④B .①③C .②③④D .①②③④【答案】D【分析】由折叠的性质可证四边形ADED '是正方形,可得AD AD D E DE ''====3,AE =2AD =6,45EAD AED ''∠=∠=︒,由勾股定理可求EF 的长,由旋转的性质可得AE A E '==6,45D ED EA D EAD α'''''''∠=∠=∠=︒,,可求A F '=62-,可判断①;由锐角三角函数可求30FED '∠=︒,由弧长公式可求弧D D '''的长度,可判断②;由等腰三角形的性质可求52.57.5EAA EA A A AF '''∠=∠=︒∠=︒,,可判断③;由D E D E '''=,EG =EG 可证Rt Rt ED G ED G '''≅,可得52.5D GE D GE '''∠=∠=︒,可证AA F EGF ',可判断④,即可求解.【详解】解:∵把AD 沿AE 折叠,使点D 恰好落在AB 边上的D 处, ∴90D AD E DAD AD AD '''∠=∠=︒=∠=,, ∴四边形ADED '是矩形, 又∵AD AD '==3, ∴四边形ADED '是正方形,∴AD AD D E DE ''====3,AE =2AD =6,45EAD AED ''∠=∠=︒, ∴2D B AB AD ''=-=, ∵点F 是D B '中点, ∴1D F '=,∴22312EF D E D F ''=+=+=, ∵将AED '△绕点E 顺时针旋转α,∴AE A E '==6,45D ED EA D EAD α'''''''∠=∠=∠=︒,, ∴A F '=62-,故①正确;∵13tan 33D F FED DE ''∠===', ∴30FED '∠=︒,Rt Rt ED G ED G '''≅, D GE D GE '''=∠,AGD A AG AA G ''''=∠+∠=52.5D GE AA F ''=︒=∠, AFA EFG '∠=∠, ∴AA FEGF ',故④正确,所以所有正确的序号为:故选:D .二、填空题11.据美国媒体报道,截止2021年6月11日,美国累计新冠肺炎确诊病例达到3427万,将数字3427万用科学记数法表示应为 ____________. 【答案】73.42710⨯【分析】根据科学计数法的概念直接得解. 【详解】3427万734270000 3.42710==⨯, 故答案为:73.42710⨯ 12.在函数y =中,自变量x 的取值范围是 _______.13.如图,点D 在ABC 内部,△DAB ≌△EAC ,若添加一个条件:___________,则△ADE 等边三角形.【答案】AD =DE (或∠DAE =60°或∠BAC =60°或AB =BC 等)(答案不唯一) 【分析】根据条件可得AD =AE ,故添加一个条件能保证△ADE 等边三角形即可 【详解】由△DAB ≌△EAC ,可得AD =AE,故要使△ADE 等边三角形,添加条件:AD =DE 即可; 故答案为:AD =DE (答案不唯一)14.若关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数,则k 的取值范围为________. 【答案】13k <<【分析】求出方程组的解,用k 来表示,根据题意列出不等式组,求得答案.【详解】由221x y x y k +=⎧⎨+=+⎩,解得13x k y k =-⎧⎨=-⎩,因为关于x ,y 的二元一次方程组221x y x y k +=⎧⎨+=+⎩的解为正数,故1030k k ->⎧⎨->⎩,解得13k <<,故答案为:13k <<15.在一个不透明的袋中装有材质、大小完全相同的红球和黑球共100个,小明每次摇匀后随机从袋中摸出一个球,记录颜色后放回袋中,通过大量重复摸球试验后发现,摸到红球的频率稳定在0.85左右,估计袋中红球有_____个. 【答案】85【分析】利用频率的计算公式代入即可得出答案. 【详解】因为摸到红球的频率稳定在0.85左右, 估计袋中红球有0.85100=85⨯个. 故答案为:85个.16.如图所示,在扇形OAB 中,∠AOB =90°,半径OA =4,点F 位于弧AB 的13处且靠近点A的位置.点C、D分别在线段OA、OB上,CD=4,E为CD的中点,连接EF、BE.在CD滑动过程中(CD长度始终保持不变),当EF取最小值时,阴影部分的周长为______.【答案】4 2233π++【分析】连接OF,OE,BF,取OF的中点T,连接BT.证明△OBF是等边三角形,利用直角三角形斜边中线的性质求出OE,EF≥OF-OE=2,推出当O,E,F共线时,EF 的值最小,此时点E与点T重合,求出BT,FT,BF的长即可【详解】解:如图,连接OF,OE,BF,取OF的中点T,连接BT.∵∠AOB=90°,13AF AB=,∴∠BOF=60°,∴BF的长=6044 1803ππ︒⨯⋅=︒,∵CE=DE,∴OE=12CD=2,∵OF=4,∴EF≥OF-OE=2,∴当O ,E ,F 共线时,EF 的值最小,此时点E 与点T 重合, ∴此时EF =2,∵OF =OB ,∠BOF =60°, ∴△BOF 是等边三角形, ∵OT =TF , ∴BT ⊥OF ,∴BE =BT =22224223OB OT -=-=, ∴此时阴影部分的周长为42233π++. 故答案为:42233π++17.如图,在△ABC 中,∠A =30°,∠B =45°,AB =72cm ,点O 以2cm/s 的速度在△ABC 边上沿A →B →C →A 的方向运动.以O 为圆心作半径为2cm 的圆,运动过程中⊙O 与△ABC 三边所在直线首次相切和第三次相切的时间间隔为_______秒.【答案】5222+ 【分析】求出从首次相切到第三次相切时,圆心O 移动的距离即可,画出两次相切时的图形,利用直角三角形的边角关系和切线的性质求出答案.【详解】如图,圆O 与△ABC 的边首次相切,切点为D ,第三次相切时,切点为E , 因为,∠A =30°,2cm OD =,所以222cm OA OD ==, 因为∠B =45°,12cm O E =,所以1122cm O B O E ==, 所以从首次相切到第三次相切时,圆心O 移动的距离为: ()172222522cm OB BO +=-+=+,所以从首次相切到第三次相切时的时间间隔为:522s 2+. 故答案为:5222+18.如图,在ABC 中,90ABC ∠=︒,2AB BC ==,点M 在CB 的延长线上(不含点B ),连接AM 并以AM 为直角边作等腰直角AMN ,其中90AMN∠=︒,AM MN =,连接AN 交BC 于点D ,当CDN △为等腰三角形时,BM =________.【答案】222-或2【分析】先根据ABC 与AMN 均为等腰直角三角形可证ABMACN △△,从而又45DCN ACN ACB ∠=∠-∠=︒,再分CD CN =或CD DN =或CN DN =三种情况分别讨论,由等腰对等角、勾股定理计算、三角形外角性质计算即可. 【详解】ABC 、AMN 均为等腰直角三角形,45MAN BAC ∴∠=∠=︒,2AC AB =,2AN AM =, 2AC ANAB AM∴==, ABM ACN ∴,90ACN ABM ∴∠=∠=︒,AMB ANC ∠∠=,45DCN ACN ACB ∴∠=∠-∠=︒, ①当CD CN =时,()1804567.52CDN CND ︒-︒∠=∠==︒,67.5AMB ∴∠=︒,9022.5MAB AMB ∠=︒-∠=︒, 如图,在AB 上截取BE MB =,连接ME ,45MEB EMB ∴∠=∠=︒, 22.5AME MAB ∴∠=︒=∠,ME AE ∴=,设MB x =,BE x =,2ME AE x ==,22AB AE BE x x ∴=+=+=,解得:222x =-, 222BM ∴=-,②当CD DN =时,45DCN DNC ∠=∠=︒,90ABM ∠=︒,45AMB ANC ∠=∠=︒,2BM AB ∴==,③当CN DN =时,45DCN CDN ∠=∠=︒,45ADB ∴∠=︒,这与4545ADB ACB DAC DAC ∠=∠+∠=︒+∠>︒矛盾,综上所述,222=-BM 或2, 故答案为:222-或2.19.如图,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ;把纸片展平后再次折叠,使点A 落在EF 上的点A ′处,得到折痕BM ,BM 与FF 相交于点N .若直线BA ′交直线CD 于点O ,BC =5,EN =1,则OD 的长为 __________.【答案】33【分析】根据对称性质可推得EBN NBA A BC ''∠=∠=∠,即可求得30EBN NBA A BC ''∠=∠=∠=,从而求得AB,OC 的长,即可求得答案. 【详解】由题意知N 为BM 的中点,连接AN ,则AN A N BN '== ,故NBA NA B ''∠=∠ ,又因为EF BC ∥,NA B A BC ''∴∠=∠, 而EBN NBA '∠=∠,故EBN NBA A BC ''∠=∠=∠, 而90ABC ∠=,故30EBN NBA A BC ''∠=∠=∠=, 由EN =1,则2AM =,则223tan 30AB DC === , 在Rt OCB △中,BC =5,故535tan 303OC ==, 故5332333DO DC OC =-=-=, 故答案为:3320.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,1BC =,1CD 为斜边AB 上的中线,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE 交1CD 于点3D ;次作下去,可以得到点4D ,点5D ,,点n D ,分别记11BD E ,22BD E △,33BD E △,,n n BD E △的面积为1S ,2S ,3S ,,n S ,则第n 个三角形n nBD E △的面积n S =_______.【答案】()2321n +【分析】首先由Rt ABC 中,1BC =,90ACB ∠=︒,30A ∠=︒,求得ABC 的面积,然后由1D 是斜边AB 的中点,根据直角三角形的性质以及相似三角形的性质,再利用ACB △中,2D 为其重心可得21113D E BE =,然后从中找出规律即可解答. 【详解】Rt ABC 中,1BC =,90ACB ∠=︒,30A ∠=︒,ABCS=11D E AC ⊥11BD E ∴与11CD E 同底同高,面积相等,以此类推,11114D E AABCS SS ∴==,根据直角三角形的性质以及相似三角形的性质可知:1212ABCS S =,ACB 中,为三角形的中位线,2112D D E CD B ∴,且相似比为21113D E BE ∴=,2213D E BC ∴=,2CE ABCS,3314D E BC ∴=,3CE ABCS ,,ABCS,)231n +三、解答题21.先化简再求值:2222221a b ab b aba ab b a b b ⎛⎫-+-⋅ ⎪-+--⎝⎭,其中2a =,2b =.()()()()21b a b a b ab a b a b b a b ⎡⎤+-=-⋅⎢⎥+---⎢⎥⎣⎦11b ab a b a b b ⎛⎫=-⋅ ⎪---⎝⎭ 11b ab a b b-=⋅-- aba b=-; 又32a =+,32b =-,所以原式()()()()3232143232+-==-+--. 22.在正方形网格中,建立如图所示的平面直角坐标系xOy ,△ABC 的三个顶点都在格点上,点A 的坐标为(4,4),请解答下列问题:(1)画出△ABC 关于y 轴对称的111A B C △ ;(2)将△ABC 绕点C 逆时针旋转90 ,画出旋转后的22A B C ; (3)在(2)的条件下,求AC 扫过的面积. 【答案】(1)作图见解析 (2)作图见解析 (3)5π2【分析】(1)找出△ABC 的各顶点关于y 轴的对称点,连接可得答案; (2)将△ABC 绕点C 逆时针旋转90,即可画出旋转后的图形; (3)根据扇形的面积公式即可求得答案. 【详解】(1)如图,△A 1B 1C 1即为所求.(2)如图,22A B C 即为所求.(3)由图可知AC =221310+=,故AC 扫过的面积为()290π105π3602⋅⋅=. 23.如图,抛物线y =ax 2+bx +c 过点A (﹣1,0)、B (3,0),与y 轴交于点C ,抛物线的顶点D .(1)若点C 的坐标为(0,3),求该抛物线的解析式;(2)E 是线段AB 上一动点(点E 不与A 、B 重合),过点E 作x 轴的垂线交抛物线于点F ,若EF =AE ,在(1)的条件下,试求点F 的坐标;(3)当a <0时,设ACD △的面积为S 1,ABD △的面积为S 2,求12S S 值. 【答案】(1)y =﹣x 2+2x +3;(2)F (2,3);(3)18.【分析】(1)将点代入即可求解;(2)设点F (x ,﹣x 2+2x +3),则点E (x ,0),由EF =AE ,得﹣x 2+2x +3=x +1,解出x 即可求解;(3)设出抛物线方程,表示出C , D 的坐标,表示出12,S S ,即可求解 【详解】(1)将点A (﹣1,0)、B (3,0)、C (0,3),代入y =ax 2+bx +c ,得00933a b c a b c c =-+⎧⎪=++⎨⎪=⎩,解得123a b c =-⎧⎪=⎨⎪=⎩, ∴该抛物线的解析式为y =﹣x 2+2x +3.(2)设点F (x ,﹣x 2+2x +3),则点E (x ,0),∵EF =AE ,∴﹣x 2+2x +3=x +1,解得x =2或x =﹣1,∵点E 不与A 、B 重合,∴x =2,∴yF =﹣x 2+2x +3=﹣22+2×2+3=3, ∴点F (2,3);(3)∵抛物线y =ax 2+bx +c 过点A (﹣1,0)、B (3,0), ∴y =a (x +1)(x ﹣3)=a (x 2﹣2x ﹣3)=a (x ﹣1)2﹣4a , ∴点C 坐标为(0,﹣3a ),D 坐标为(1,﹣4a ),如图连接CD ,AD ,且AD 与y 轴交于点M ,过点D 作DN ⊥x 轴于N ,∴AO MO AN DN =,即124MOa=-,解得MO =﹣2a , ∴CM =CO ﹣OM =﹣3a ﹣(﹣2a )=﹣a , ()()()1111122D S CM AO x a a =⨯⨯+=⨯-⨯+=-,S 2=12×AB ×DN =12×4×(﹣4a )=﹣8a , ∴12S S =188a a -=-. 24.兴趣小组设计了一份“你最喜欢的支付方式”的调查问卷(每人必选且只能选一种支付方式),在某商场随机调查了部分顾客,并将统计结果绘制成如下所示的两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)将条形统计图补充完整;在扇形统计图中,表示“现金”支付的扇形圆心角的度数为 ;(2)若之前统计遗漏了15份问卷,已知这15份问卷都是采用“支付宝”进行支付,问重新统计后的众数所在的分类与之前统计的情况是否相同,并简要说明理由;(3)在一次购物中,嘉嘉和琪琪随机从“微信,支付宝,银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.【答案】(1)作图见解析,90°(2)不同,理由见解析(3)作图见解析,1 3【分析】(1)先根据题意补全条形统计图,再由360︒乘以使用现金人数所占比例即可得其对应的圆心角度数.(2)根据众数的定义求解即可.(3)画出树状图,共有9种可能的结果,其中嘉嘉和琪琪两人恰好选择同一种支付方式有3种,再有古典概率公式代入即可得出答案.【详解】(1)补全统计图如图所示:因为使用银行卡的人数由30人,占15%,所以使用现金人数有50人,应占25%,所以“现金”支付的扇形圆心角的度数为:36025%=90 100%︒⨯︒.(2)重新统计后的众数所在的分类与之前统计的情况不同,理由如下:原数据的众数所在的分类为微信,而加上遗漏的15份问卷后,数据的众数所在的分类为微信、支付宝.(3)将微信记为A、支付宝记为B、银行卡记为C,画树状图如下:∵共有9种等可能的结果,其中两人恰好选择同一种支付方式的有3种,∴两人恰好选择同一种支付方式的概率为31 93 =.25.从甲地到乙地,先是一段上坡路,然后是一段平路,小冲骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小冲骑车在上坡、平路、下坡时分别保持匀速前进,已知小冲骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km ,设小冲出发x h 后,到达离乙地y km 的地方,图中的折线ABCDEF 表示y 与x 之间的函数关系.(1)求小冲在平路上骑车的平均速度以及他在乙地的休息时间; (2)分别求线段AB 、EF 所对应的函数关系式;(3)从甲地到乙地经过丙地,如果小冲两次经过丙地的时间间隔为0.85h ,求丙地与甲地之间的路程.【答案】(1)()()15km /h 0.1h ,; (2)10 6.5(00.2)AB y x x =-+≤≤,()2013.50.91EF y x x ≤≤=-; (3)1千米【分析】(1)先计算出小明骑车上坡的速度,再根据骑车上坡的速度比平路上的速度每小时少5km 求出小明平路上的速度,求出小明下坡的速度,平路上所用的时间,下坡所用的时间,那么就可以求出小明在乙地休息的时间;(2)根据上坡的速度为10km/ h ,下坡的速度为20km/h,再结合图像,即可求出答案; (3)设小明出发a 小时第一次经过丙地,根据题意得到()6.510200.8513.5a a +-=-,求出a 的值,即可解答.【详解】(1)小冲骑车上坡的速度为:()()6.5 4.50.210km /h -÷=, 平路上的速度为:()10515km /h +=, 下坡的速度为: ()15520km /h +=, 平路上所用的时间为:()()2 4.5150.6h ⨯÷=, 下坡所用的时间为:()()6.5 4.5200.1h -÷=, 所以小冲在乙地休息了:()10.10.60.20.1h ---=;(2)由题意可知:上坡的速度为10km/h ,下坡的速度为20km/h , 所以线段AB 所对应的函数关系式为: 6.510y x =-,即()10 6.500.2AB y x x +≤≤=-,线段EF 所对应的函数关系式为()4.5200.20.10.6EF y x +--=-,即()2013.50.91EF y x x ≤≤=-;(3)由题意可知:小冲第一次经过丙地在AB 段,第二次经过丙地在EF 段,设小冲出发a 小时第一次经过丙地,则小冲出发后()0.85a +小时第二次经过丙地,()6.510200.8513.5a a +-=-,得:110a =, 所以110110⨯=(千米), 答:丙地与甲地之间的距离为1千米.26.如图,在四边形ABCD 中,90A C ∠=∠=︒,ADE ∠与EBF ∠互余,在线段BF 上取点M ,N (点M 在BN 之间),使2BM FN =.当点P 从点D 匀速运动到点E 时,点Q恰好从点M 匀速运动到点N .记QN x =,PD y =,已知6125y x =-+,当Q 为BF 中点时,245y =.(1)判断DE 与BF 的位置关系,并说明理由.(2)求DE ,MN 的长.(3)若DE ,BF 分别平分ADC ∠,ABC ∠,并交线段AB ,CD 于点E ,F (点E ,B 不重合).连接EM 并延长交BC 于点H ,如图2所示,若30AED ∠=︒,当DP DF =时,通过计算比较BE 与BQ 的大小关系.【答案】(1)//DE BF ,理由见解析(2)12DE =,10MN =(3)BQ BE >【分析】(1)根据同角的余角相等证AED ABF ∠=∠,即可得出//DE BF ;A C ∠=∠∴∠与ADE∠与ADEAED∴∠= DE BF ∴//x= (2)令0y=,得令0Q是BF FQ QB ∴==2 BM FN ∴+=6 FN解得:FN∴=BM4=FM FN ∴四边形∴=DF EM ∠=AED∴∠=FBE∠=︒90A∴∠=ADEDE平分四边形BF 平面ABC ∴∠=∴在EHB △4BM =,EM BM ∴=∴在MHB 中,12MH BM ∴=EH EM MN ∴=+由勾股定理得:Rt EHB 中,2BE EH =+DP DF =时,BQ BN NQ =-22433>, BQ BE ∴>27.我市在创建全国文明城市过程中,决定购买A ,B 两种树苗对某路段道路进行绿化改造,已知购买A 种树苗8棵,B 种树苗3棵,需要950元;若购买A 种树苗5棵,B 种树苗6棵,则需要800元.(1)求购买A ,B 两种树苗每棵各需多少元?(2)考虑到绿化效果和资金周转,购进A 种树苗不能少于52棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?(3)某包工队承包种植任务,若种好一棵A 种树苗可获工钱30元,种好一棵B 种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?【答案】(1)A 种树苗每棵100元,B 种树苗每棵50元(2)答案见解析(3)购进A 种树苗52棵,B 种树苗48棵所付工钱最少,最少工钱为2520元【分析】(1)设A 种树苗每棵x 元,B 种树苗每棵y 元,列方程组,即可求得答案; (2)设购进A 种树苗m 棵,由题意列出不等式组,求得答案;(3)计算在第(2)问的各种购买方案中每种方案的所付工钱,比较可得结论.【详解】(1)设A 种树苗每棵x 元,B 种树苗每棵y 元,根据题意,得:8395056800x y x y +=⎧⎨+=⎩,解得:10050x y =⎧⎨=⎩, 答:A 种树苗每棵100元,B 种树苗每棵50元;.(2)设购进A 种树苗m 棵,则购进B 种树苗(100﹣m )棵,根据题意,得:()521000100501007650m m m m ⎧≥⎪-≥⎨⎪+-≤⎩解得:52≤m ≤53,所以购买的方案有:1、购进A 种树苗52棵,B 种树苗48棵;2、购进A 种树苗53棵,B 种树苗47棵;(3)方案一的费用为52×30+48×20=2520元,方案二的费用为53×30+47×20=2530元, 所以购进A 种树苗52棵,B 种树苗48棵所付工钱最少,最少工钱为2520元.28.如图1,在平面直角坐标系中,点O 为坐标原点,直线=1y kx﹣交x 轴正半轴于点A ,交y 轴负半轴于点B ,10AB .(1)求k 的值;(2)如图2,P为y轴正半轴上一点,过点P作PD⊥AB于点D,交线段OA于点E,设点P的纵坐标为t,线段AD的长d,求d与t的函数解析式;(3)如图3,在(2)的条件下,d=H在线段OP上,连接AH,AH HP=,点G为第一象限内直线AP上方一点,连接PG、AG,30APG∠︒=,点F为第二象限内一点,连接OF、FH、FG,若FG AG=,2180AHO OHF∠+∠︒=,2APG AGF FOH∠+∠∠=,15AGF FOH∠-∠︒=,求点F的坐标.。

黑龙江省哈尔滨市第三中学校2022-2023学年高三上学期1月月考数学试题(含答案解析)

黑龙江省哈尔滨市第三中学校2022-2023学年高三上学期1月月考数学试题(含答案解析)

黑龙江省哈尔滨市第三中学校2022-2023学年高三上学期1月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .{}0,1,2B .2.已知点()2,22A 在拋物线A .1x =B .3.4m =是直线()2m x -+A .充分不必要条件C .充要条件4.已知角α终边在第四象限A .13-B .5.2022年4月16日9时56二、多选题A .直线1A G 与平面AEFB .直线1DD 与直线AFC .异面直线1A G 与EFD .平面AEF 截正方体所得的截面面积为11.已知抛物线2:2C x py =三、填空题四、双空题五、解答题(1)求证:平面PBC ⊥平面(2)若10,22AE PD ==21.已知椭圆22:x C a +(1)求椭圆C 的标准方程(2)点,M N 在椭圆C 上积的最大值.22.已知函数()e J x =(1)求证:()2cos J x x ≥(2)是否存在实数a ,使得在请说明理由.参考答案:【详解】根据椭圆的性质可得12AF AF a ==,122F F c =,因为四边形12AF ,即22c a =,所以22c a =.【分析】首先求出n S ,即可得到16n b n n=+,再根据对勾函数的单调性判断数列性,即可将12231516b b b b b b -+-++- 化简,再计算可得【详解】解:因为21n a n =+,所以()3212n n n S ++=2162161622n n n n n n+++-=-=+,又因为函数()16f x x x=+在()0,4上单调递减,在(4,23456b b b b b >><<< ,231516b b b b +-++- 2315144b b b b b b b b b b +++-+---++- 61b +1616416184162⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭.因点E ,F 是BC ,CC 1中点,则形,则AD 1//BC 1//EF ,连GF ,因G 是棱BB 1中点,则平行四边形,A 1G//D 1F ,1D F ⊂平面AEF ,1A G ⊄平面因1DD ⊥平面ABCD ,而AE AEFD 1,1DD ⊥AD 1,与∠因EF//AD 1,A 1G//D 1F ,则异面直线作1FM AD ⊥于M ,显然AE 11222AD EF D M -==,cos 2211(FM D F D M =-=AEFD 1,等腰梯形AEFD 1的面积为故选:ACD.11.AD【分析】根据抛物线的图象与几何性质,由于3AF FB =,不妨设AF t =,则BF 由抛物线的定义可知1AA t =,13BB t =则在直角ABH 中,30BAH ∠= ,此时根据抛物线的对称性可知,AB 的倾斜角为对于C ,点1212,22x x y y M ++⎛⎫⎪⎝⎭,由抛物线的定义知,11AF BF y +=++所以有1214y y +=,所以M 到x 轴距离1272y y +=,故C 错误;对于D ,由题可设:1AB y kx =+,由2y x ⎧⎨⎩所以124x x =-,()21212116x x y y ==,所以1111111y AF BF y y y y y ++=+=【详解】如图所示,由题意圆C :()24x -+PB 与圆C 相切时,即P 为切点时,与x 轴平行,()4,1P ,PB 故答案为:4.654158π15根据图形,得出面ABC 外接圆的半径为的外接球半径;结合余弦定理,二倍角公式以及同角关系,进而求出三棱锥-P ABC 的外接球表面积【详解】由题知,取BC 中点D ,连接的外接圆的圆心为E ,PBC ,OF 如图所示,要使三棱锥-P ABC 的体积最大时,即要使得点ABC ⊥平面PBC 时,体积最大,即点此时,四边形OEDF 是正方形,假设则在BDE 中,由勾股定理得:r 解得928r =,所以OE DF =因为22AB AD CD ===所以1322BF CF ==,,所以60ABC ∠= ,在ABC 中,由余弦定理可得22cos 2AB BC ABC AB BC +-∠=⋅⋅即24112212AC +-=⋅⋅,解得:3AC =,因为222AC BC AB +=,所以ABC 为直角三角形故BC AC ⊥,所以()()0,0,0,0,3,0,C A 因为2PD =,所以2221322p ⎛⎫⎛⎫-++ ⎪ ⎪ ⎪⎝⎭⎝⎭解得3p =,即()0,0,3P 所以()1,0,3PB =-,因为E 为棱PD 上一点,设(),,E x y z ,故DE DP λ=,0λ>,即13,,2212y z x λ⎛⎫⎛+= ⎪ ⎪ ⎝⎭⎝-解得()()1121,32E λλ⎛- - ⎝因为10AE =,。

2024-2025学年黑龙江省哈尔滨三中高三(上)月考数学试卷(8月份)(含答案)

2024-2025学年黑龙江省哈尔滨三中高三(上)月考数学试卷(8月份)(含答案)

2024-2025学年黑龙江省哈尔滨三中高三(上)月考数学试卷(8月份)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.集合A ={y|y =x 2,x ∈R},B ={x|y =1−x },则A ∩B =( )A. ⌀B. RC. [0,1]D. [−∞,1]2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =30°,a =1,c =3,则b =( )A. 1B.3 C. 2 D.73.设x ,y ∈R ,且x <y <0,则( )A. yx +xy >2B. y 2>xyC. 1x <1yD. x +y2>xy4.天文学中天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 1−m 2=2.5(lgE 2−lgE 1).其中星等为m i 的星的亮度为E i (i =1,2).已知“河鼓二”的星等约为0.75,“天津四”的星等约为1.25,“河鼓二”的亮度是“天津四”的r 倍,则与r 最接近的是( )(注:结果精确到0.01,当|x|较小时,10x ≈1+2.3x +2.7x 2)A. 1.56B. 1.57C. 1.58D. 1.595.已知sinα−cosα=15,0<α<π,则cos2α=( )A. −725B. 725C. 2425D. −24256.如图为函数y =f (x )在[−6,6]上的图像,则f (x )的解析式只可能是( ).A. f (x )=ln (x 2+1+x )cos xB. f (x )=ln (x 2+1+x )sin x C. f (x )=ln (x 2+1−x )cos x D. f (x )=ln (x 2+1−x )sin x7.已知23sinα=1+2cosα,α∈(2π3,7π6),则sin (2α−π6)=( )A. 7+3516B. −78C. 7−3516D. 788.已知函数f(x)的定义域为R ,且满足f(x)+f(3−x)=4,f(x)的导函数为g(x),函数y =g(1+3x)−1为奇函数,则f(32)+g(2024)=( )A. −3B. 3C. −1D. 1二、多选题:本题共3小题,共15分。

黑龙江省哈尔滨市第三中学校18-19学年度高一10月月考

黑龙江省哈尔滨市第三中学校18-19学年度高一10月月考

黑龙江省哈尔滨市第三中学校2018—2019学年度上学期10月月考高一数学试题一、选择题(每小题5分)1.已知集合=,=,则等于(A ) (B ) (C ) (D )2.集合的子集个数为(A) (B) (C) (D)3.集合=,=,则下列对应关系不能构成从集合到集合映射的是(A ) (B )(C ) (D )4.已知函数2(1)()13(1)x f x x x x ⎧>⎪=-⎨⎪-+≤⎩,则=(A ) (B ) (C ) (D )5.函数y =的定义域为(A ) (B ) (C ) (D )6. 函数的值域为(A ) (B ) (C ) (D )7. 函数的值域为(A )R (B ) (C ) (D )8.已知是一次函数,2(2)3(1)5,2(0)(1)1f f f f -=--=,则(A ) (B ) (C ) (D )9.全集为,,,(是常数),且,则(A ) (B ) (C ) (D )10.若函数在上是增函数,则(A ) (B ) (C ) (D )11.已知函数⎩⎨⎧<-≥+=)0(4)0(4)(22x x x x x x x f ,若,则实数 的取值范围是(A ) (B )(C ) (D )12.已知是方程()()053222=+++--k k x k x 的两个实根,则的最大值为(A )32 (B ) 36 (C ) (D )不存在二、填空题(每小题5分)13.不等式的解集为 .14.已知,则 .15.函数的单调递增区间为 .16.定义在正实数集上的函数满足条件:(1);(2);(3)时,则满足的的取值范围为_____.三、解答题(本大题共4道题,每小题10分,共40分)17. 已知函数,证明函数在区间内单调递减.18. 已知集合,{}082|2<-+=x x x B ,{}023|22<+-=a ax x x C ,若,求实数的取值范围.19. 若正方形边长为4,一质点从出发沿正方形从至至至运动,设点运动路程为,把的面积表示为的函数.(1)求的解析式;(2)取何值时面积最大?最大值是多少?20.已知函数(为常数)且方程有两个实根为.(1)求函数的解析式;(2)设,解关于的不等式;.参考答案1.A 2.A 3.C 4.B 5.D6.D7.C8.B9.D 10.D11. C 12.A13. 14.15.16.17.证明略。

黑龙江省哈尔滨三中高三数学上学期第一次月考试卷 理(含解析)

黑龙江省哈尔滨三中高三数学上学期第一次月考试卷 理(含解析)

黑龙江省哈尔滨三中2015届高三上学期第一次月考数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的有( )①集合A={1,2},集合B={x|x是4的因数},A与B是同一个集合;②集合{y|y=2x2﹣3}与集合{(x,y)|y=2x2﹣3}是同一个集合;③由1,,,|﹣|,0.5这些数组成的集合有5个元素;④集合{(x,y)|xy≤0,x、y∈R}是指第二和第四象限内的点集.A.0个B.1个C.2个D.3个考点:命题的真假判断与应用.专题:集合.分析:①整数的因数是指能被整除的整数,②两集合相等是指两集合中元素完全相同,③集合中元素必需满足互异性,④当x=0,或y=0时也适合不等式xy≤0.解答:解:①B={x|x是4的因数}={﹣4,﹣2,﹣1,1,2,4},所以A≠B,所以①错误;②集合{y|y=2x2﹣3}={y|y≥﹣3}是数集,{(x,y)|y=2x2﹣3}表示曲线y=2x2﹣3上的点,是一个点集,所以两个集合不是同一个集合,所以②错误;③∵=,|﹣|=0.5,∴由1,,,|﹣|,0.5这些数组成的集合有3个元素,所以③错误;④当x=0或y=0也满足xy≤0,所以集合{(x,y)|xy≤0,x、y∈R}是指第二和第四象限内或坐标轴上的点集.所以④错误.故选择:A.点评:本题考查了,集合的有关性质,如集合中元素的互异性,集合的代表元,集合相等,这些都是集合中常考的知识点.属于基础题.2.函数的定义域是( )A.B.(﹣3,3)C.(﹣3,2)∪(2,3) D.考点:函数的定义域及其求法.专题:计算题.分析:求出使原函数中根数内部的代数式大于等于0的x的集合,再求出使分母不等于0的x 的取值集合,然后取交集.解答:解:要使原函数有意义,则,解得:﹣3≤x≤3且x≠2.所以原函数的定义域为.故选D.点评:本题考查了函数的定义域及其求法,求函数的定义域时,开偶次方根要保证被开方数大于等于0.定义域的形式一定是集合或区间,此题是基础题.3.函数y=的值域是( )A.C.分析:题设条件用意不明显,本题解题方法应从选项中突破,由于四个选项中有两个选项是与奇偶性有关的,故先验证奇偶性较好,解答:解:,∴f(x)是偶函数,图象关于y轴对称故选D.点评:考查函数的对称性,宜从奇偶性入手研究.5.给定函数①,②,③y=|x﹣1|,④y=2x+1,其中在区间(0,1)上单调递减的函数序号是( )A.①②B.②③C.③④D.①④考点:函数单调性的判断与证明.专题:函数的性质及应用.分析:本题所给的四个函数分别是幂函数型,对数函数型,指数函数型,含绝对值函数型,在解答时需要熟悉这些函数类型的图象和性质;①为增函数,②为定义域上的减函数,③y=|x﹣1|有两个单调区间,一增区间一个减区间,④y=2x+1为增函数.解答:解:①是幂函数,其在(0,+∞)上即第一象限内为增函数,故此项不符合要求;②中的函数是由函数向左平移1个单位长度得到的,因为原函数在(0,+∞)内为减函数,故此项符合要求;③中的函数图象是由函数y=x﹣1的图象保留x轴上方,下方图象翻折到x轴上方而得到的,故由其图象可知该项符合要求;④中的函数图象为指数函数,因其底数大于1,故其在R上单调递增,不合题意.故选B.点评:本题考查了函数的单调性,要注意每类函数中决定单调性的元素所满足的条件.6.设全集U=R,集合E={x|x≤﹣3或x≥2},F={x|﹣1<x<5},则集合{x|﹣1<x<2}等于( )A.E∩F B.∁U E∩F C.∁U E∪∁U F D.∁U(E∪F)考点:交、并、补集的混合运算.专题:计算题.分析:对选支逐一计算看哪个符合结论的解答:解:选项A 易知E∩F={x|2≤x<5}不合题意选项B C U E={x|﹣3<x<2},C U E∩F={x|﹣1<x<2}符合题意选项C C U E={x|﹣3<x<2},C U F={x|x≤﹣1或x≥5},则C U E∪C U F={x|﹣3<x≤﹣1}不合题意选项D E∪F={x|x≤﹣3或x>﹣1},C U(E∪F)={x|﹣3<x≤﹣1}不合题意,故选B.点评:本题考查了交集、并集、补集的混合运算,解题需注意端点能否取到.7.设,则a,b,c的大小关系是( ) A.a>c>b B.a>b>c C.c>a>b D.b>c>a考点:幂函数图象及其与指数的关系.分析:根据幂函数与指数函数的单调性直接可以判断出来.解答:解:∵在x>0时是增函数∴a>c又∵在x>0时是减函数,所以c>b故答案选A点评:本题主要考查幂函数与指数的关系.要充分利用函数图象、函数的单调性来解决问题.8.函数y=a x﹣(a>0,a≠1)的图象可能是( )A.B.C. D.考点:函数的图象.专题:函数的性质及应用.分析:讨论a与1的大小,根据函数的单调性,以及函数恒过的定点进行判定即可.解答:解:函数y=a x﹣(a>0,a≠1)的图象可以看成把函数y=a x的图象向下平移个单位得到的.当a>1时,函数y=a x﹣在R上是增函数,且图象过点(﹣1,0),故排除A,B.当1>a>0时,函数y=a x﹣在R上是减函数,且图象过点(﹣1,0),故排除C,故选D.点评:本题主要考查了指数函数的图象变换,指数函数的单调性和特殊点,体现了分类讨论的数学思想,属于基础题.9.已知函数f(x)=,则f(1+log23)的值为( ) A.6 B.12 C.24 D.36考点:分段函数的应用.专题:函数的性质及应用.分析:根据分段函数的表达式,代入即可得到结论.解答:解:∵2<1+log23<3,∴4<2+1+log23<5,即4<log224<5,∵当x<4时,f(x)=f(x+2),∴f(1+log23)=f(2+1+log23)=f(log224)=,故选:C点评:本题主要考查函数值的计算,根据分段函数的表达式以及函数的周期性是解决本题的关键.10.函数f(x)=的零点个数为( )A.1个B.2个C.3个D.4个考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用.分析:分段函数的零点要讨论,对第一部分要作图.解答:解:①x≤0时,f(x)=x2﹣2x﹣3=(x﹣1)2﹣4=0,解得,x=﹣1或x=3(舍去).②x>0时,由y=lnx与y=x2﹣2x的图象可知,其有(0,+∞)上有两个交点,故有两个解;则函数f(x)=的零点个数为3.故选C.点评:本题考查了分段函数的零点个数,属于中档题.11.设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f=e+1(e是自然对数的底数),则f(ln2)的值等于( )A.1 B.e+l C.3 D.e+3考点:函数单调性的性质.专题:函数的性质及应用.分析:利用换元法将函数转化为f(t)=e+1,根据函数的对应关系求出t的值,即可求出函数f(x)的表达式,即可得到结论.解答:解:设t=f(x)﹣e x,则f(x)=e x+t,则条件等价为f(t)=e+1,令x=t,则f(t)=e t+t=e+1,∵函数f(x)为单调递增函数,∴函数为一对一函数,解得t=1,∴f(x)=e x+1,即f(ln2)=e ln2+1=2+1=3,故选:C.点评:本题主要考查函数值的计算,利用换元法求出函数的解析式是解决本题的关键.12.已知关于x的不等式0≤x2﹣2x+m≤3(m∈R)有且只有一个实数解,函数f(x)=tx,g (x)=2tx2﹣2(m﹣t)x+1,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数t的取值范围是( )A.(﹣∞,0)B.(0,2)C.(2,8)D.(0,8)考点:函数的零点与方程根的关系.专题:计算题;压轴题;函数的性质及应用.分析:由关于x的不等式0≤x2﹣2x+m≤3(m∈R)有且只有一个实数解求出m的值,代入函数化简;当t≤0时,显然不成立;当t>0时,因为g(0)=1>0,所以仅对对称轴进行讨论即可.解答:解:∵y=x2﹣2x+m≥m﹣1,又∵关于x的不等式0≤x2﹣2x+m≤3(m∈R)有且只有一个实数解,∴m﹣1=3,∴m=4,则g(x)=2tx2﹣2(4﹣t)x+1.当t≤0时,当x接近+∞时,函数g(x)=2tx2﹣2(4﹣t)x+1与f(x)=tx均为负值,显然不成立,当t=0时,因g(x)=﹣8x+1,f(x)=0,故不成立;当t>0时,若﹣=≥0,即0<t≤4时,结论显然成立;若﹣=<0时,只要△=4(4﹣t)2﹣8t=4(t﹣8)(t﹣2)<0即可,即4<t<8,故0<t<8.故选D.点评:本题主要考查对一元二次函数图象的理解.对于一元二次不等式,一定要注意其开口方向、对称轴和判别式.二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13.f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣4x,那么当x<0时,f(x)=x2+4x.考点:函数解析式的求解及常用方法.专题:计算题;函数的性质及应用.分析:利用偶函数的定义求函数解析式.解答:解:当x<0时,﹣x>0,∵f(x)是定义在R上的偶函数,且当x≥0时,f(x)=x2﹣4x,∴f(x)=f(﹣x)=x2+4x;故答案为:x2+4x.点评:本题考查了函数奇偶性的应用,属于基础题.14.已知函数f(x)在(﹣∞,+∞)上单调递减,且f(2)=0,若f(x﹣1)>0,则x的取值范围(﹣∞,3).考点:函数单调性的性质.专题:计算题;函数的性质及应用.分析:由f(2)=0,知f(x﹣1)>0化为f(x﹣1)>f(2),再利用函数的单调性可可得x ﹣1<2.解答:解:∵f(2)=0,∴f(x﹣1)>0化为f(x﹣1)>f(2),又f(x)在(﹣∞,+∞)上单调递减,∴x﹣1<2,解得x<3,∴x的取值范围是(﹣∞,3),故答案为:(﹣∞,3).点评:该题考查函数的单调性及其应用,属基础题,正确利用函数的单调性去掉不等式中的符号“f”是解题关键.15.若偶函数f(x)对定义域内任意x都有f(x)=f(2﹣x),且当x∈(0,1]时,f(x)=log2x,则f()=﹣1.考点:抽象函数及其应用;函数的值.专题:函数的性质及应用.分析:先判断函数为周期函数,利用周期性和偶函数得到f()=f(),再有条件即可求出值.解答:解:∵偶函数f(x)对定义域内任意x都有f(x)=f(2﹣x),∴f(x)=f(x﹣2),∴函数f(x)是以2为周期的周期函数,∴f()=f(8﹣)=f(),∵x∈(0,1]时,f(x)=log2x,∴f()=log2=﹣1故答案为:﹣1点评:本题考查了函数的奇偶性、周期性、函数值的计算,属于中档题.16.已知f(x)为奇函数,当x∈时,f(x)=﹣x2+2x;当x∈(2,+∞)时,f(x)=2x﹣4,若关于x的不等式f(x+a)>f(x)有解,则a的取值范围为(﹣2,0)∪(0,+∞).考点:函数单调性的性质.专题:综合题;函数的性质及应用.分析:根据题意画出函数f(x)的图象,根据图象及函数f(x)的单调性,f(x+a),和f(x)的取值即可找出a的范围.解答:解:由题意作出函数f(x)的图象,如图所示:若a>0,则x≥2时,x+a>2,x+a>x;f(x)在为增函数,所以f(x+a)<f(x),即不等式f(x+a)>f(x)无解;综上得a的取值范围是(﹣2,0∪(0,+∞).故答案为:(﹣2,0)∪(0,+∞).点评:考查奇函数的概念,二次函数图象,奇函数图象关于原点的对称性,以及函数单调性的定义.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.全集U={x|x2﹣x+1≥0},A={x||x﹣1|>1},B={x|≥0}.求集合A∩B,A∪(∁U B).考点:交、并、补集的混合运算.专题:集合.分析:求出全集U中不等式的解集确定出U,求出A与B中不等式的解集确定出A与B,进而求出A与B的交集,A与B补集的并集即可.解答:解:由全集U中不等式解得:x≤或x≥2,即全集U=(﹣∞,]∪∴A=(﹣∞,0)∪(2,+∞),由B中不等式解得:x>2或x≤﹣1,即B=(﹣∞,﹣1]∪(2,+∞),∴∁U B=(﹣1,2],则A∩B=(﹣∞,﹣1]∪(2,+∞),A∪(∁U B)=R.点评:此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.18.已知函数f(x)=lg(a≠1)是奇函数,(1)求a的值;(2)若g(x)=f(x)+,x∈(﹣1,1),求g()+g(﹣)的值.考点:函数奇偶性的性质;函数的值.专题:综合题;函数的性质及应用.分析:先根据奇函数的定义得到a的值,再结合定义域关于原点对称即可确定实常数a的值.解答:解:(1)因为函数f(x)=lg是奇函数;所以:f(﹣x)+f(x)=0⇒lg+lg=0⇒lg=0⇒=1.∴a=±1,又a≠1,∴a=﹣1.(2)∵g(x)=f(x)+,且f(x)为奇函数,∴g()+g(﹣)=f()+f(﹣)++=2(﹣1)+=2.点评:本题主要考查函数奇偶性的性质.一个函数存在奇偶性的前提是定义域关于原点对称.19.已知二次函数f(x)=ax2+bx+c(a>0,x∈,且函数f(x)在x=﹣1处取到最大值0.(1)求的取值范围;(2)求的最小值.考点:函数的最值及其几何意义.专题:计算题;函数的性质及应用.分析:(1)因为函数函数f(x)在x=﹣1处取到最大值0,则f(﹣1)=a﹣b+c=0,可得b=a+c 且﹣≤﹣,即可求的取值范围;(2)==+,利用函数的单调性求的最小值.解答:解:(1)因为函数函数f(x)在x=﹣1处取到最大值0,则f(﹣1)=a﹣b+c=0,可得b=a+c且﹣≤﹣,∴﹣≤﹣,解得≥2;(2)==+,因为≥2,所以≥,所以的最小值.点评:本题考查函数的最值及其几何意义,考查函数的单调性,属于中档题.20.已知函数f(x)=m•6x﹣4x,m∈R.(1)当m=时,求满足f(x+1)>f(x)的实数x的范围;(2)若f(x)≤9x对任意的x∈R恒成立,求实数m的范围.考点:其他不等式的解法;函数恒成立问题.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:(1)当m=时,f(x+1)>f(x)即可化简得,()x<,由单调性即可得到;(2)f(x)≤9x对任意的x∈R恒成立即m≤=()﹣x+()x对任意的x∈R恒成立,运用基本不等式即可得到最小值,令m不大于最小值即可.解答:解:(1)当m=时,f(x+1)>f(x)即为•6x+1﹣4x+1>6x﹣4x,化简得,()x<,解得x>2.则满足条件的x的范围是(2,+∞);(2)f(x)≤9x对任意的x∈R恒成立即为m•6x﹣4x≤9x,即m≤=()﹣x+()x对任意的x∈R恒成立,由于()﹣x+()x≥2,当且仅当x=0取最小值2.则m≤2.故实数m的范围是(﹣∞,2].点评:本题考查指数不等式的解法,以及指数函数的单调性及运用,考查不等式的恒成立问题,运用分离参数的方法和基本不等式求最值,属于中档题.21.已知定义在(0,+∞)上函数f(x)对任意正数m,n都有f(mn)=f(m)+f(n)﹣,当x>4时,f(x)>,且f()=0.(1)求f(2)的值;(2)解关于x的不等式f(x)+f(x+3)>2.考点:数列的求和.专题:函数的性质及应用.分析:(1)由已知得f(1)=f(1)+f(1)﹣,解得f(1)=,从而f(2×)=f(2)+f()﹣,由此能求出f(2)=1.(2)任取x1,x2∈(0,+∞),且x1<x2,则f(x2)﹣f(x1)=f()﹣=f()﹣=,由此能求出关于x的不等式f(x)+f(x+3)>2的解.解答:解:(1)∵定义在(0,+∞)上函数f(x),对任意正数m,n都有f(mn)=f(m)+f(n)﹣,∴f(1)=f(1)+f(1)﹣,∴f(1)=,∴f(2×)=f(2)+f()﹣,∵f()=0,∴f(2)=1.(2)任取x1,x2∈(0,+∞),且x1<x2,则f(x2)﹣f(x1)=f()﹣=f()﹣=,∵f()=f()+f()﹣,且时,f(x)>,∴,∴,解得x∈(1,+∞).点评:本题考查函数值的求法,考查不等式的解法,是中档题,解题时要认真审题,注意函数性质的合理运用.22.设x=m和x=n是函数的两个极值点,其中m<n,a∈R.(Ⅰ)求f(m)+f(n)的取值范围;(Ⅱ)若,求f(n)﹣f(m)的最大值.注:e是自然对数的底数.考点:函数在某点取得极值的条件;导数在最大值、最小值问题中的应用.专题:综合题;导数的综合应用.分析:(Ⅰ)确定函数f(x)的定义域,求导函数,利用极值的运用,建立方程,结合韦达定理,即可求f(m)+f(n)的取值范围;(Ⅱ)设,确定t的范围,表示出f(n)﹣f(m),构造新函数,利用导数法确定函数的单调性,即可求得结论.解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),.依题意,方程x2﹣(a+2)x+1=0有两个不等的正根m,n(其中m<n).故,∴a>0,并且m+n=a+2,mn=1.所以,=故f(m)+f(n)的取值范围是(﹣∞,﹣3).…(Ⅱ)当时,.若设,则.于是有,∴,∴t≥e∴构造函数(其中t≥e),则.所以g(t)在[e,+∞)上单调递减,.故f(n)﹣f(m)的最大值是.…点评:本题考查导数知识的运用,考查函数的极值与最值,考查学生分析解决问题的能力,属于中档题.。

哈尔滨三中高一上学期数学第一次月考精彩试题(含问题详解)

哈尔滨三中高一上学期数学第一次月考精彩试题(含问题详解)

哈三中高一第一次月考数学试题一、 选择题:(每小题4分,共48分)1.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=---{}1,A B ⋂=-则a 的值是( )A .1±B .0,或1±C .0,1D . 0,-12. 若不等式()()222240a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是( )A. (],2-∞B. ()2,2-C. (]2,2-D. (),2-∞- 3.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是()A .AB B .A BC .()()U U A B 痧D .()()U U A B 痧4.定义集合B A 与的新运算:{}A B x x AB x A B *=∈∉且,则()=**A B A ( ) A .A B B .A BC .AD .B5. 设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f ,则不等式)1()(f x f >的解集是()A.),3()1,3(+∞⋃-B.),2()1,3(+∞⋃-C.),3()1,1(+∞⋃-D.)3,1()3,(⋃--∞ 6.函数35()21x f x x +=+在⎥⎦⎤ ⎝⎛-⋃⎪⎭⎫⎢⎣⎡--∈2,2121,1x 的值域是( ) A.⎥⎦⎤⎢⎣⎡-511,2 B. 77,,210⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ C.(]11,2,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭ D. (]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭ 7. 已知定义域为R 的函数)(x f 在区间()5,∞-上单调递减,对任意实数t ,都有)10()(t f t f -=,那么下列式子一定成立的是 ( )A .)13()9()1(f f f <<- B.)1()9()13(-<<f f fC.)13()1()9(f f f <-<D.)9()1()13(f f f <-<8.函数)1(+=x f y 的定义域是]2,0[,且|,1|)1(-=+x x f 则)(x f y =的单调递减区间是()A.]1,1[-B.]2,1[C.]2,0[D.]2,1[-9.函数y=2-x x 42+-的值域是( )A .[-2,2]B .[1,2]C .[0,2]D .[-2 , 2 ]10.函数2()2f x x x =+在[,]m n 上的值域是[1,3]-,则m n +取值所成的集合是( )A.[5,1]--B.[1,1]-C.[2,0]-D.[4,0]-11.对,a b R ∈,记}{,max ,,a a b a b b a b ≥⎧=⎨<⎩,函数{}()max 1,2()f x x x x R =+-∈的最小值是 A. 0 B.12 C.32D.3 ( ) 12、若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为221y x =+,值域为{}9的“孪生函数”三个:()1221y x =+,{}2x ∈-; ()2221y x =+,{}2x ∈; ()3221y x =+,{}2,2x ∈-.那么函数解析式为221y x =+,值域为{}1,5的“孪生函数”共有( )A .5个B .4个C .3个D .2个 二:填空题(每小题4分,共28分)13.函数1()23f x x =-的定义域是_______. 14.如果二次函数()215y x a x =--+在()1,0是增函数,那么()2f 的取值范围是_______________.15、已知函数135)(-+-=x x x f ,则函数)(x f 的最大值为___________.16、)(x f y =是R 上的减函数,且)(x f y =的图像经过点)1,0(A 和)1,3(-B ,则不等式1)1(<+x f 的解集为______。

黑龙江省哈尔滨市第三中学2022-2023学年度上学期高一学年第一次第一阶段数学试卷

黑龙江省哈尔滨市第三中学2022-2023学年度上学期高一学年第一次第一阶段数学试卷

哈三中2022—2023学年度上学期高一学年第一次阶段性考试数学试卷考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分120分,考试时间90分钟.第Ⅰ卷(选择题,共60分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列关系中,正确的是A .R ∅∈B .3.14Q ∉C .*0N ∉D .1N-∈2.下列各组函数是同一函数的是①()f x =与()g x =()f x x =与()g x =③()f x =与()g x =2()1f x x =-与2()1g t t =-.A .①②B .②④C .①③D .③④3.已知集合{}2,4,5,7A =,集合{}28120B x x x =-+-<,则集合()R A B ð的非空真子集个数为A.6B.8C .14 D.164.已知函数()21f x -的定义域为{}1|0x x <<,则函数()211f x x --的定义域为A .()0,1B .(1,2)C .()()0,11,2U D .()(),11,1-∞-- 5.已知,a b R Î,0ab ≠,则使11a b <成立的一个充分不必要条件是A.a b > B.0a b << C.()0ab a b -> D.0a b >>6.已知不等式210ax bx +->的解集为11,23⎛⎫-- ⎪⎝⎭,则不等式20x bx a --≥的解集为A.(][),32,-∞--+∞ B .[]32--,C .[]3,2D .(][),23,-∞+∞ 7.已知集合{}3A x m x m =≤≤+,集合{}29140B x x x =-+>,且=A B ∅ ,则实数m 的取值范围为A .()(),24,-∞+∞B .](),24,-∞+∞⎡⎣C .[]2,4D .()2,48.若正数,x y 满足xy y x =+,则y x 2+的最小值是A.6B .223+C .232+D .322+二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.设b a >,则下列不等式一定成立的是A.22a b c c >B .a b >C .33a b >D .a c b c>10.对,a b R ∈,记{},min ,,b a b a b a a b ≥⎧=⎨<⎩,若函数(){}2min 452731,f x x x x =----则下列说法正确的是A .当54x =时()f x 取最小值B .当1x =-时()f x 取最大值C .函数()f x 的最小值为4-D .函数()f x 的最大值为011.已知0,0a b >>且1=+b a ,则下列说法正确的是A.221b a +最大值为2B .b a 11+最小值为4C .ab 最小值为41D .⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+b a 1111最小值为912.下列说法正确的是A .函数312x y x +=+在()1+∞,上的值域为4,3⎛⎫-∞ ⎪⎝⎭B .函数12y x =-41,8⎛⎤-∞ ⎥⎝⎦C .关于x 的方程210a +=有解,则112a -≤≤D .当[]0,1x ∈时,2120x ax a +++>恒成立,则a 的取值范围为1,2⎛⎫-+∞ ⎪⎝⎭第Ⅱ卷(非选择题,共60分)三、填空题:本大题共4小题,每小题5分,共20分.13.已知集合{}22,,3A a a =,集合21,2,B a a ⎧⎫=+⎨⎬⎩⎭,且A B A B = ,则实数a =.14.若命题“x R ∀∈,2230x x m +->”为真命题,则实数m 的取值范围是.15.一家车辆制造厂引进了一条摩托车整车装配流水线,这条流水线生产的摩托车数量x(单位:百辆)与净利润y (单位:十万元)之间关系如图(图象为抛物线的一部分),为使每百辆摩托车获得净利润y x 最大,应生产摩托车百辆.16.已知0,,>z y x 且4222=++z y x ,则xyz z +2的最小值为.四、解答题:本题共4小题,每小题10分,共40分.解答应写出必要的文字说明,证明过程或演算步骤.17.已知集合{}213A x a x a =-≤≤+,集合{}3,24B y y x x ==+<<.(Ⅰ)当52a =时,求A B 及A B ;(Ⅱ)若A B A = ,求实数a 的取值范围.18.已知函数()f x =(Ⅰ)若函数()f x 定义域为R ,求a 的取值范围;(Ⅱ)若函数()f x 值域为[0,)+∞,求a 的取值范围.19.解关于x 的不等式260ax x a ++≤,其中a R ∈.20.已知定义域为R 的函数()f x 满足()()212132f x x a x a +=+--+.(Ⅰ)求函数()f x 的解析式;(Ⅱ)若对任意的[]3,2a Î--,都有()0f x <恒成立,求实数x 的取值范围;(Ⅲ)若[]12,2,1x x ∃∈-,使得()()124f x f x >+,求实数a 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

哈三中高一第一次月考数学试题一、 选择题:(每小题4分,共48分)1.集合{}{}22,1,1,21,2,34,A a a B a a a =+-=---{}1,A B ⋂=-则a 的值是( )A .1±B .0,或1±C .0,1D . 0,-12. 若不等式()()222240a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是( )A. (],2-∞B. ()2,2-C. (]2,2-D. (),2-∞- 3.已知全集{}{}1,2,3,4,5,6,7,8,3,4,5U A ==,{}1,3,6B =,则集合{}2,7,8C =是()A .AB B .A BC .()()U U A B 痧D .()()U U A B 痧4.定义集合B A 与的新运算:{}A B x x AB x A B *=∈∉且,则()=**A B A ( ) A .A B B .A BC .AD .B5. 设函数⎩⎨⎧<+≥+-=0,60,64)(2x x x x x x f ,则不等式)1()(f x f >的解集是()A.),3()1,3(+∞⋃-B.),2()1,3(+∞⋃-C.),3()1,1(+∞⋃-D.)3,1()3,(⋃--∞ 6.函数35()21x f x x +=+在⎥⎦⎤ ⎝⎛-⋃⎪⎭⎫⎢⎣⎡--∈2,2121,1x 的值域是( ) A.⎥⎦⎤⎢⎣⎡-511,2 B. 77,,210⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ C.(]11,2,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭ D. (]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭ 7. 已知定义域为R 的函数)(x f 在区间()5,∞-上单调递减,对任意实数t ,都有)10()(t f t f -=,那么下列式子一定成立的是 ( )A .)13()9()1(f f f <<- B.)1()9()13(-<<f f fC.)13()1()9(f f f <-<D.)9()1()13(f f f <-<8.函数)1(+=x f y 的定义域是]2,0[,且|,1|)1(-=+x x f 则)(x f y =的单调递减区间是()A.]1,1[-B.]2,1[C.]2,0[D.]2,1[-9.函数y=2-x x 42+-的值域是( )A .[-2,2]B .[1,2]C .[0,2]D .[-2 , 2 ]10.函数2()2f x x x =+在[,]m n 上的值域是[1,3]-,则m n +取值所成的集合是( )A.[5,1]--B.[1,1]-C.[2,0]-D.[4,0]-11.对,a b R ∈,记}{,max ,,a a b a b b a b ≥⎧=⎨<⎩,函数{}()max 1,2()f x x x x R =+-∈的最小值是 A. 0 B.12 C.32D.3 ( ) 12、若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如解析式为221y x =+,值域为{}9的“孪生函数”三个:()1221y x =+,{}2x ∈-; ()2221y x =+,{}2x ∈; ()3221y x =+,{}2,2x ∈-.那么函数解析式为221y x =+,值域为{}1,5的“孪生函数”共有( )A .5个B .4个C .3个D .2个 二:填空题(每小题4分,共28分)13.函数1()23f x x =-的定义域是_______. 14.如果二次函数()215y x a x =--+在()1,0是增函数,那么()2f 的取值范围是_______________.15、已知函数135)(-+-=x x x f ,则函数)(x f 的最大值为___________.16、)(x f y =是R 上的减函数,且)(x f y =的图像经过点)1,0(A 和)1,3(-B ,则不等式1)1(<+x f 的解集为______。

17、方程012=---⋅a x x x 有两个不同实根,则实数a 的取值是_ __.18、已知函数a ax x x f 31)(2+-=在区间[)+∞,2上是减函数,则实数a 的取值范围是_ _.19.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈R,都有a +b 、a -b , ab 、a b ∈P (除数b ≠0),则称P 是一个数域.例如有理数集Q 是数域;数集{},F a b =+∈Q 也是数域.有下列命题:①整数集是数域;②若有理数集M ⊆Q ,则数集M 必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)三:解答题20.(本小题12分)已知集合}023|{2=+-=x x x A ,}0)5()1(2|{22=-+++=a x a x x B ,(1)若}2{=B A ,求实数a 的值;(2)若A B A = ,求实数a 的取值范围;21、(本小题12分)某公司生产一种电子仪器的固定总成本是2万元,每生产一台需另投入100元,已知总收益满足⎪⎩⎪⎨⎧-=8000021400)(2x x x k)400()4000(>≤≤x x ,其中x 是仪器的月产量。

22.(本小题12分)已知}112|{≥+=x x x A ,}0)2)(1(|{≤---=a x a x x B ,当)(A C B R ⊆时,求实数a 的取值范围.23.(本小题12分)已知二次函数)(x f 在22+=t x 处取得最小值)0(42≠-t t ,且0)1(=f (1)求)(x f 的表达式; (2)若函数)(x f 在区间]21,1[-上的最小值为5-,求相应的t 和x 的值.24. (本小题13分)已知函数()f x 对一切实数,x y 都有()()f x y f y +-=(21)x x y ++ 成立,且(1)0f =(1)求(0)f 的值; (2)求()f x 的解析式;(3)已知a R ∈,设P :当102x <<时,不等式()32f x x a +<+ 恒成立;Q :当[2,2]x ∈-时,()()g x f x ax =-是单调函数。

如果满足P 成立的a 的集合记为A ,满足Q 成立的a 的集合记为B ,求A ∩ðR B (R 为全集)。

25.(本小题13分)已知二次函数x ax x f +=2)(,如果x ∈[0,1]时1)(≤x f ,求实数a 的取值范围。

答案DCDDA CCBCD CC13、⎥⎦⎤ ⎝⎛⋃⎪⎭⎫⎢⎣⎡3,2323,1 14、[9,)+∞ 15、1265 16、()2,1- 17、21--或 18、(]4,4- 19、③ ④三:解答题20.(1)解:231B a ∈∴=--或,经验证,31a =--或都成立。

5分 (2) 03B a ∴∆<∴<-是空集 7分B =0a=-3 ∴∆∴中有一个元素 9分22(1)3B 52a a a +=-⎧∴∴⎨-=⎩中有两个元素无解 11分 (],3a ∴∞-的取值为- 12分21、解:(1)⎪⎩⎪⎨⎧---=--=xx x x x k x f 10060000200002130020000100)()(2 )400()4000(>≤≤x x 6分 (2)300=x 时,最大利润25000元。

6分22.解:}11|{≥-<=x x x A 或 }11|{<≤-=x x A C U 3分}0)2)(1(|{≤---=a x a x x B(1)当1≥a 时,}21|{a x a x B ≤≤+=,又)(A C B U ⊆ ∴⎩⎨⎧<-≥+1211a a , a 为空集 7分(2)当1<a 时,}12|{+≤≤=a x a x B ,又)(A C B U ⊆ ∴⎩⎨⎧->≤+1211a a , 021≤<-a 11分 综上:021≤<-a 12分23.(1)设)0(4)22()(22≠-+-=a t t x a x f 2分 又0)1(=f 1=⇒a 4分)0(4)22()(22≠-+-=a t t x x f 5分 (2)①当,122-<+t 即t 4-<时 )(x f 在]21,1[-上是增函数当1-=x 时,5)1(min -=-f ,解得 29-=t 7分 ②当21221≤+≤-t ,即14-≤≤-t 时,当22+=t x 时,5)22(min -=+t f , 解得 52-=t (舍) 9分 ③当2122>+t 时,即0,1≠->t t 时,)(x f 在]21,1[-上是减函数 当21=x 时,5)21(min -=f ,解得 221-=t (舍) 11分 综上:29-=t 和1-=x 12分 25. (1)令1,1x y =-=,则由已知(0)(1)1(121)f f -=--++, ∴(0)2f =- 2分(2)令0y =, 则()(0)(1)f x f x x -=+ 又∵(0)2f =-∴2()2f x x x =+- 5分(3)不等式()32f x x a +<+ 即2232x x x a +-+<+即21x x a -+<当102x <<时,23114x x <-+<, 又213()24x a -+<恒成立 故{|1}A a a =≥ 8分 22()2(1)2g x x x ax x a x =+--=+--又()g x 在[2,2]-上是单调函数,故有112,222a a --≤-≥或 ∴{|3,5}B a a a =≤-≥或 10分 ∴A ∩R C B ={|15}a a ≤< 12分解法1:x ∈[0,1]时,1)(≤x f ,即112≤+≤-x ax①当x=0时,a ∈R②当x ∈(]1,0时,问题转化为1122+-≤--≥x ax x ax 恒成,由x x a 112--≥恒成立,即求x x112--的最大值。

设41)211(1122++-=--=x x xu 。

因(]1,0∈x ,[)+∞∈,11x ,)(x u 为减函数,所以当x=1时,2)(max -=x u ,可得2-≥a 。

由x x a 112-≤恒成立,即求x x 112-的最小值。

设41)211(1122--=-=x x xv 。

因(]1,0∈x ,[)+∞∈,11x,)(x v 为增函数,所以当x=1时,0)(min =x v ,可得a ≤0。

又0≠a 02<≤-∴a解法2:讨论二次函数的最值(分类讨论)。

相关文档
最新文档