高考三视图题汇编优选稿

合集下载

高考三视图(含解析)理试题(卷)汇总

高考三视图(含解析)理试题(卷)汇总

专题21三视图SUBA. 2 n B • 3 n C【答案】B【解析】综合三视圄可知』几何体是一个半轻炸1的半个球体.且表面积是底面积与半球面积的和丿其表面枳3=丄敦4“+疋2=31t-故选B.2点睛:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2.已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧1 •某几何体的三视图如图所示,则其表面积为(【解析】由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得AB BD AD 2,当BC 平面ABD时,BC=2,ABD的边AB上的高为、3,只有B选项符合,当BC不垂直平面ABD时,没有符合条件的选项,故选 B.点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2•三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据3.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为()B【答案】BA. 4 B . 2.2 C . 20 D . 83【答案】D【解析】由三视图可知,该几何体如图所示,其底面为正方形』正方形的边长为2. 口D=3,BF=1,将相同的两个几何体拼在V』构成一个高为斗的长方饥所臥该几何体的体积為煜x仁仪4.如图,正三棱柱ABC ABG的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为()【答案】D【解析】依题意知,此正三棱拄底面定边长为4的正三角形,接柱高为也其侧视囹为矩形,其一边长为2語,一启一边长訶4,故其面积2斗><2曲=8曲;故选D点睛:三视图问题的常见类型及解题策略⑴由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图•先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式•当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.原几何体为组合体;上面是长方体,下面是圆柱的一半(如图所示),A. 16 B 2 3 C . 4 3 D . 8,35.某几何体的三视图如图所示,则该几何体的体积为( )8 8 (C) 16 16 (D) 8 16将三视图还原为原来的几何体,再利用体积公式求解.其体积为V 4 2 2122 4 16 8 .故选A; 26•如图5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的几条棱中,最长的棱的长度为( )(A) 6,2 (B) 4、2 (C) 6 (D)4【答案】C原几何体为三機锥D-A^C, M 中Aff^BC=i r AC=^D^ = DC=2^ ?QN二旳*叭庁)+4 = 6,故最长的棱的长度为= 选C点睛:对于小方格中的三视图,可以放到长方体,或者正方体里面去找到原图,这样比较好找;7.某几何体的三视图如图所示,则该几何体的表面积为()24 2【解析】如图所示A【解析】由已知三视图得到几何体是一个正方怀割去半轻为2的丄个球」所以表面积为S3 12试4&一亦於+ —><4亦囚・24巧故选:A4S&已知某空间几何体的三视图如图所示,则该几何体的表面积是()iEttffl 博视图A. 12十2&+2后B . 12+ 也+2 后C . 12 + 2辽十曲D . |12 +V2 + .J【答案】A【解析】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,1=-5< 2*2 = 221 =-X2M4=421S ABCD =~X(2+4)X2=69.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体如图,P A丄平面ABCD , 朋=2 , AD = 4,医=2 ,经计算,PD = 2石,P匚=«亍,Dt = 2調,•••可••.,故选A.3D. 35 2.2【答案】A 【解析】试題分析;扌艮据三视图可知几何体是组合体;左边罡直三棱柱、右边是半个圆柱,直三棱柱的底面是等腰 亶角三角形,直角边是1,侧犧长是茶圆柱的底面半径是1,母线长是2,二该几何体的体积V =ixlxlx2十丄芝二臥十1・故选;乩2 2考点:由三视图求体积.10•如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积【答案】C 【解析】A.1 B2C. 2 1的体积是(为(3D. 41 2 体积为—2 2 2 1 4 —3 3试题分析:相当于一个圆锥和一个长方体,故考点:三视图.11. 一个几何体的三视图如图所示,则该几何体的体积为(【解析】试题分析:该几何休的直观團如园所示,连接妙,则该几何体由直三棱柱血D-和四棱锥一吨组合而成,其和易22 +扌心后专詈故应选扎12. 一个几何体的三视图如图所示 ,则该几何体的体积为A.14~316~3D. 6【答案】A考点:三视图.1【答案】-3【解析】本题考查三视图、四棱锥的体积计算等知识,难度中等•由三视图可知该几何体是底1 1面为长和高均为1的平行四边形,高为1的四棱锥,故其体积为V - 1 1 1 - •3 3。

高考三视图(含解析)理试题汇总(精编文档).doc

高考三视图(含解析)理试题汇总(精编文档).doc

【最新整理,下载后即可编辑】专题21 三视图1.某几何体的三视图如图所示,则其表面积为()A.2π B.3π C.4π D.5π【答案】B点睛:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2.已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )A.B.C.D.【答案】B【解析】由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得2⊥平面时,BC=2,===,当BC ABDAB BD AD∆的边AB上的高为3,只有B选项符合,当BC不垂直平面ABD ABD时,没有符合条件的选项,故选B.点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据3.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为( )A . 4B . 22C .203 D . 8【答案】D4.如图,正三棱柱111ABC A B C 的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为( )A . 16B . 23C . 43D . 83【答案】D点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合. (3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.5.某几何体的三视图如图所示,则该几何体的体积为 ( )(A) 168π+ (B) 88π+ (C) 1616π+(D) 816π+【答案】A【解析】将三视图还原为原来的几何体,再利用体积公式求解.原几何体为组合体;上面是长方体,下面是圆柱的一半(如图所示), 其体积为21422241682V ππ=⨯⨯+⨯⨯=+.故选A;6.如图5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的几条棱中,最长的棱的长度为( )(A) 62 (B) 42 (C) 6 (D)4【答案】C【解析】如图所示点睛:对于小方格中的三视图,可以放到长方体,或者正方体里面去找到原图,这样比较好找;7.某几何体的三视图如图所示,则该几何体的表面积为( )A.24π-B.24π+C.20π-D.20π+【答案】A8.已知某空间几何体的三视图如图所示,则该几何体的表面积是()A.B.C.D.【答案】A【解析】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,如图,平面,,,,,经计算,,,,∴,∴, ,,,∴,故选A .9.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是( )A .1π+B .2π+C .21π+D .3522π++【答案】A【解析】考点:由三视图求体积.10.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为( )A .263π+B .83π+ C .243π+ D .43π+ 【答案】C【解析】试题分析:相当于一个圆锥和一个长方体,故体积为122221433ππ⋅+⋅⋅=+.考点:三视图.11.一个几何体的三视图如图所示,则该几何体的体积为( )A . 143B . 5C . 163D .6【答案】A【解析】考点:三视图.12.一个几何体的三视图如图所示,则该几何体的体积为____.【答案】13【解析】本题考查三视图、四棱锥的体积计算等知识,难度中等.由三视图可知该几何体是底面为长和高均为1的平行四边形,高为1的四棱锥,故其体积为11111V=⨯⨯⨯=.33。

三视图高考试题集锦

三视图高考试题集锦

三视图高考试题集锦work Information Technology Company.2020YEAR2立体几何——三视图高考试题集锦1.(14福建卷)某空间几何体的正视图是三角形,则该几何体不可能是 ( A )A .圆柱 B.圆锥 C.四面体 D.三棱柱2.(10年海南卷)正视图是一个三角形的几何体可以是_______(写出三种) 3(11山东卷)右图是长和宽分别相等的两个矩形,给定下列三个命题: ①存在三棱柱,其正(主)视图、俯视图如右图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图。

其中真命题的个数是 (A) 3 (B) 2 (C) 1 (D) 04.(14辽宁)7.某几何体三视图如图所示,则该几何体的体积 为( )A .82π- B .8π- C .82π-D .84π-5.(12海南卷)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 186.(14天津卷)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为____3m .244242俯视图侧视图正视图俯视图正(主)视图(第4题)(第5题)(第6题)7.(13海南卷)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()(A) (B) (C) (D)8.(14湖北卷)在如图所示的空间直角坐标系xyzO 中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C. ④和③D.④和②9.(2014•浙江)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm23410.(07海南文理)已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是( )A .334000cmB .338000cm C .20003cm D .40003cm(第9题) (第10题)11.(07山东文理)下列几何体各自的三视图中,有且仅有两个视图相同的是 ( )A .①②B .①③C .①④D .②④12.(08海南理)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 的b 的线段,则b a 的最大值为( ) A .22 B .32 C .4 D .52201010202020正视图侧视图俯视图513.(09海南文理)一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm )为( )A .21248+ B.22448+ C .21236+D .22436+14.(09山东文理)一空间几何体的三视图如图所示,则该几何体的体积为( )A .223π+B .423π+C .232π+D .234π+(第13题) (第14题)15.(11海南文理)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为( )15.(10安徽文理)一个几个何体的三视图如图,该几何体的表面积为( )A.280 B.292 C.360 D.37216.(11湖南文理)如图是某几何体的三视图,则该几何体的体积为()A.912 2π+B.9182π+ C.942π+ D.3618π+(第15题)(第16题)20.(09辽宁文理)设某几何体的三视图如下(尺寸的长度单位为m)。

三视图高考题选答案版

三视图高考题选答案版

三视图高考题选一、知识点1、三视图的名称几何体的三视图包括:主视图、左视图、俯视图.2、三视图的画法①在画三视图时,重叠的线只画一条,挡住的线要画成虚线.②三视图的主视图、左视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.【题型一】空间几何体的三视图1、若某几何体的三视图如图7-1-4所示,则这个几何体的直观图可以是( )图7-1-4【解析】根据主视图与俯视图可排除A、C,根据左视图可排除D.故选B.2、(2012·陕西高考)将正方体(如图(1)所示)截去两个三棱锥,得到如图(2)所示的几何体,则该几何体的左视图为( )图7-1-73、[2014·福建卷]某空间几何体的正视图是三角形,则该几何体不可能是( )A.圆柱B.圆锥C.四面体D.三棱柱[解析]A由空间几何体的三视图可知,圆柱的正视图、侧视图、俯视图都不可能是三角形.4、[2014·江西卷]一几何体的直观图如图1-1所示,下列给出的四个俯视图中正确的是( )图1-1A B C D图1-2[解析]B易知该几何体的俯视图为选项B中的图形.【题型二】三视图与面积1、(2013·湖南高考)已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧(左)视图是一个面积为的矩形,则该正方体的正(主)视图的面积等于( )A. B.1 C. D.【解析】由于该正方体的俯视图是面积为1的正方形,侧视图是一个面积为的矩形,因此该几何体的主视图是一个长为,宽为1的矩形,其面积为.【答案】D2、[2014·安徽卷]一个多面体的三视图如图1-2所示,则该多面体的表面积为( )A.21+B.8+C.21D.18图1-2[解析]A如图,由三视图可知该几何体是棱长为2的正方体截去两个小三棱锥后余下的部分,其表面积S=6×4-×6+2×××=21+.3、[2014·浙江卷]几何体的三视图(单位:cm)如图1-1所示,则此几何体的表面积是( )图1-1A.90 cm2B.129 cm2 C.132 cm2D.138 cm2[解析].D此几何体是由长方体与三棱柱组合而成的,其直观图如图,所以该几何体的表面积为2(4×3+6×3+6×4)+2××3×4+4×3+3×5-3×3=138(cm2),故选D.4、[2014·重庆卷]某几何体的三视图如图1-2所示,则该几何体的表面积为( )图1-2A.54B.60 C.66D.72[解析]B由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为S=×3×4++×4+×5+3×5=60.【题型三】三视图与体积1、(2013·广东高考)某三棱锥的三视图如图7-1-8所示,则该三棱锥的体积是( )图7-1-8A. B.C. D.1【解析】如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V=××1×1×2=,故选B.【答案】B2、[2014·辽宁卷]某几何体三视图如图1-1所示,则该几何体的体积为( )A.8-2πB.8-πC.8-D.8-图1-1[解析]B根据三视图可知,该几何体是正方体减去两个体积相等的圆柱的一部分后余下的部分,故该几何体体积为2×2×2-2××π×2=8-π.3、[2014·天津卷]一个儿何体的三视图如图1-3所示(单位:m),则该几何体的体积为________m3.图1-3[解析]由三视图可得,该几何体为圆柱与圆锥的组合体,其体积V=π×12×4+π×22×2=.4、(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为()A .168π+B .88π+C .1616π+D .816π+ 【答案】A 5、(2013年广东(理))某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .6 【答案】B 正视俯视侧视第5题。

最新立体几何三视图(高考题精选)

最新立体几何三视图(高考题精选)

三视图强化练习(13北京)10.某四棱锥的三视图如图所示,则该四棱锥的体积为 ______________________(12北京)7.某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+6 . 5B. 30+6 , 5C. 56+ 12 , 5D. 60+12 .. 5(11北京理)7•某四面体的三视图如图所示,该四面体四个面的面积中,最大的是(11北京文)5.某四棱锥的三视图如图所示,该四棱锥的表面积是A . 32B . 16+16、2C . 48D . 16+32 -2A . 8B . 6,2C . 10D . 8 2卜一 1 T-1 T H-1 j +— 1 ―H11- (1:)侧(A J 裡国(13湖北)&一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其 体积分别记为V ,,V 2,V 3,V 4,上面两个简单几何体均为旋转体,下面两个简单几何体均为 多面体,则有()A. V 1 <V 2 : V 4 ::V 3 C. V 2 ::V | ::V 3 : V 4(13辽宁)(13)某几何体的三视图如图所示,则该几何体的体积是I■ I I1■ 1 ■ 1 I 1I '■ LJ — _!_l(13重庆)5、某几何体的三视图如题5图所示,则该几何体的体积为(560A 、-3240B 、580C 、200B. V : V 3 : V 2 : V 4D. V 2 :: V 3 :: V侧I 左、犍图(13全国新课标1) 8、某几何体的三视图如图所示,则该几何体的体积为(A)16 8 n(B)8 8n(C)16 16n(D)8 16n(13全国新课标2) 7、一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1), (1,1,0), (0,1,1), (0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得(11东城二模)(4)如图,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为2,那么这个几何体的体积为。

高考经典三视图习题(含答案)

高考经典三视图习题(含答案)

源-于-网-络-收-集几何体的三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是 ( b )(A )2 (B )1 (C )23(D )135、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( b ) A .3 B .2 C .23 D .6 10、一空间几何体的三视图如图所示,则该几何体 的体积为( c ). A.223π+ B. 423π+C. 2323π+D. 2343π+11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( d ) A .9πB .10πC .11πD .12π16、一个几何体的三视图如上图所示,其中正视图与侧视图都是边长为2的正三角形,则这个几何体的侧面积为( )b A.33π B .2π C .3π D .4π第1题第5题2 2侧(左)视图2 22正(主)视俯视图第10题俯视图 正(主)视图 侧(左)视图2 32 2第11题第2题2020正视图 20侧视图 1010 20俯视图第15题第16题源-于-网-络-收-集18、下图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是d A.9π B.10π C.11π D .12π19、右图是一个多面体的三视图,则其全面积为( c )A .3 B .362+C .36+D .34+20、如图所示,一个空间几何体的正视图和侧视图都是底为1,高为2的矩形,俯视图是一个圆,那么这个几何体的表面积为( b ) A .2π B .52πC .4πD .5π21、一个几何体的三视图及其尺寸(单位:cm)如图所示,则该几何体的侧面积为_80______cm 2.22、如果一个几何体的三视图如图所示(单位长度: cm),则此几何体的表面积是( a )A. 2(2042)cm +B.212cmC. 2(2442)cm +D. 242cm24、已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则2俯视图主视图左视图2 12 第18题第19题 第20题 俯视图85 5 8 8 5 5 第21题源-于-网-络-收-集球心O 到平面ABC 的距离为 ( b ) A. 31 B.33 C. 32 D.36。

全国高考题试题三视图精编

全国高考题试题三视图精编

全国高考数学(理)三视图整精编一、选择题1、(新课标全国Ι)某几何体的三视图如图所示,则该几何体的体积为()2、(广东5)某四棱台的三视图如图所示,则该四棱台的体积是为()3、(湖北8)一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为V1、V2、V3、V4,上面两个简单几何体均为旋转体,下面两个简单几何体均,多面体,则有( )4、(2013重庆卷5)某几何体的三视图如图所示,则该几何体的体积为()5、(2013四川卷3)一个几何体的三视图如图所示,则该几何体的直观图可以是()二、填空题6、(2013浙江卷12)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于cm2.(第6题)7、(2013福建卷12)已知某一多面体内接于球构成一个简单组合体,如果该组合体的正视图、侧视图、俯视图均如图所示,且图中的四边形是边长为2 的正方形,则该球的表面积是8、(2013陕西卷12)某几何体的三视图如图所示,则其体积为(第7题)第8题9、(2013辽宁卷13)某几何体的全视图如图所示,则该几何体的体积是三视图10.文理(15)设某几何体的三视图如下(尺寸的长度单位为m)。

m则该几何体的体积为311.文理(15)如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.2,它的三视12.文理7一个正三棱柱的侧棱长和底面边长相等,体积为3图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是A.42B.3C.2D.313理13.一个几何体的三视图如图1-3所示.则该几何体的表面积为________.图1-314文13.一个几何体的三视图如图所示,则该几何体的体积为__________.15.文理13)某几何体的三视图如图所示,则该几何体的体积是.16.若某空间几何体的三视图如图所示,则该几何体的体积是( )A .2B .1C .2/3D .1/3一、 三视图考点⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧画图邻关系判断几何体各个面的相个数,判断几何体给出某一视图和几何体判断几何体个数体形状给出三视图,判断几何图给出几何体,判断三视例题1:如图所示的几何体的俯视图是( ).A .B .C .D .例题2:下图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )第1题图BCA例题3:一个物体的三视图如图所示,该物体是( ) A .圆柱 B .圆锥 C .棱锥 D .棱柱例题4:如图是一个包装纸盒的三视图(单位:cm ),则制作一个纸盒所需纸板的面积是A .75(1+3)cm 2B .75(1+23)cm 2C .75(2+3)cm 2D .75(2+23)cm 2例题5:下图是由几个相同的小正方体搭成的几何体的三视图, 则搭成这个几何体的小正方体的个数是A .5B .6C .7D .8例题6:如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最多为.左视图俯视图例题7:在如图所示的正方体的三个面上,分别画了填充不同的圆,下面的4个图中,是这个正方体展开图的有( ).例题8:如图是正方体的展开图,则原正方体相对两个面上的数字和最小的是( ).A. 4B. 6C. 7D.8例题9:骰子是一种特别的数字立方体,它符合规则:相对两面的点数之和总是7.下面四幅图中可以折成符合规则的骰子的是例题101 42 5 36第8题图从正面看从左面看主视图左视图俯视图例题11:由一些大小相同的小正方体组成的几何体的主视图和俯视图(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方形的块数n,请你写出n的所有可能值。

高考数学三视图汇编.doc

高考数学三视图汇编.doc

高考立体几何三视图1( 2017 全国卷二理数)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90B.63C.42D.36【答案】 B【解析】该几何体可视为一个完整的圆柱减去一个高为 6 的圆柱的一半.2( 2017 北京文数)某三棱锥的三视图如图所示,则该三棱锥的体积为A 60B 30C 20D 10【答案】 D【解析】该几何体是如图所示的三棱锥P-ABC ,由图中数据可得该几何体的体积为V 115 3 4 10 3 23( 2017 北京理数)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A 3 2B 2 3C 2 2D 2【答案】 B【解析】如下图所示,在四棱锥P ABCD 中,最长的棱为PA,所以 PA= PC2AC 222(2 2) 2 2 3 ,故选B.4( 2017 山东理数)由一个长方体和两个何体的三视图如图,则该几何体的体积为1圆柱构成的几4。

【答案】2+ 【解析】由三视图可知,长方体的长、宽、2高分别是2、 1、 1,圆柱的高为1,底面半径为1,所以V 2 1 1 2 121=2+4 25( 2017 全国卷一理数)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C.14 D .16【答案】 B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为2(2 4) 2 112 ,故选 B. 26( 2017 浙江文数)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A. π+1 πB. +32 2C. 3 3π+1 D. +3 2 2【答案】 A 【解析】由三视图可知该几何体由一个三棱锥和半个圆锥组合而成,圆锥的体积为 V1 1 1 12 3 π,三棱锥的体积为 V2 112 13 1 ,2 3 2 3 2 2所以它的体积为V V1 V2π 1 2 27.( 2016 全国卷 1 文数)如图所示,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π,则它的表面积3是().A .17πB.18πC.20π D .28π【答案】 B 【解析】由三视图可知该几何体是7个球(如图所示),设球的半径为 R ,则8V 7 4π 3 28πS表7 2 3 28R 得 R=2 ,所以它的表面积是84π 2 +42 173 38.( 2016 全国卷 2 文数)右图是圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为().A.20πB.24C.28D.32【答案】 C【解析】由题意可知,圆柱的侧面积为S12π 2 4 16圆锥的侧面积为S212π 2 48 2圆柱的底面积为S3π 22 4该几何体的表面积为S S1+S2 +S3289.( 2016 全国卷 3 文数)如图所示,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为() .A. 18 36 5B. 54 18 5C. 90D. 81【答案】 B 【解析】(1)由题意知,几何体为平行六面体,边长分别为3,3,45,几何体的表面积S=3×6×2+3×3×2+ 3× 45×2= 54+ 18 5. 10.( 2016 北京文数)某四棱柱的三视图如图所示,则该四棱柱的体积为___________.【答案】3【解析】由已知中的三视图可知,该几何体是一个以俯视图为底面的四棱柱,2棱柱的底面积为 S 1(1+2) 1 3 棱柱的高为1,故体积为3 2 2 211.(2016 山东文数)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为() .A . 1 2 πB . 1 2 π3 3 3 3C. 1 2 πD.1 2 π3 6 6 11 1正(主)视图侧(左)视图俯视图【答案】 C【解析】由题意可知,该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥底面棱长为1,可得2R 22,故 R2半球的体积为,2 23 2(g )=326棱锥的面积为1,高为 1,故体积为1故几何体的体积为1 +23 3 612.( 2016 天津文数3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为() .【答案】 B【解析】由正视图和俯视图可知该几何体的直观图如图所示,故该几何体的侧视图为选项 B.13( 2016 四川文数)已知某三棱锥的三视图如图所示,则该三棱锥的体积等于. 【答案】 C【解析】由题意可知,该几何体为三棱锥,底面为俯视图所示的三角形,底面积 S 13 1 3 ,高为 h1 1 32 1 棱锥的体积为VSh g 3g1=3 2 3 314.( 2016 浙江文数)某几何体的三视图如图所示(单位:cm),则该几何体的表2 3面积是 ______cm ,体积是 ______cm .【答案】 C 【解析】由题意可知,该几何体为长方体上面放置一个小的正方体,其表面积为 S 6 22 2 42 4 2 4 2 22 80其体积为 V 23 4 4 2 40。

高考复习空间几何体三视图试题汇编(含答案)

高考复习空间几何体三视图试题汇编(含答案)

空间几何体三视图题库一、单选题(共31题;共62分)1.甲、乙几何体的三视图分别如图•图 所示,分别记它们的表面积为S甲,S乙,体积为V甲,V乙,则()A. S甲>S乙, V甲>V乙B. S甲>S乙, V甲<V乙C. S甲<S乙, V甲>V乙D. S甲<S乙, V甲<V乙2.一个四棱锥的三视图如图所示,关于这个四棱锥,下列说法正确的是()A. 最长的棱长为√7B. 该四棱锥的体积为√3C. 侧面四个三角形都是直角三角形D. 侧面三角形中有且仅有一个等腰三角形3.某四棱锥的三视图如图所示,则该四棱锥的外接球半径为()A. 1B. √32C. √22D. 124.已知一个几何体的正视图和俯视图如图所示,正视图是边长为2a的正三角形, 俯视图是边长为a的正六边形,则该几何体侧视图的面积为()A. √3a2B. √32a2 C. 3 a2 D. 32a25.若某几何体的三视图如图所示,则此几何体的体积等于()A. 30B. 12C. 24D. 46.某几何体的三视图如图所示,则这个几何体的体积为()A. 4B. 203C. 263D. 87.已知一个几何体的三视图如图所示(单位:cm),那么这个几何体的表面积是( )A. (1+√2)cm2B. (3+√2)cm2C. (7+√2)cm2D. (8+√2)cm28.某三棱柱的三视图如图粗线所示,每个单元格的长度为1,则该三棱柱外接球的表面积为()A. 4πB. 8πC. 12πD. 16π9.某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的表面积为()A. (4+4√2)πB. (6+4√2)πC. (8+4√2)πD. (12+4√2)π10.某三棱锥的三视图如图所示,则该三棱锥最长的棱的棱长为()A. 2B. √5C. 2√2D. 311.某几何体的三视图如图所示(单位:cm)则该几何体的体积(单位:cm3)是()A. √212B. √26C. √23D. √212.已知某几何体的三视图如图所示,则该几何体的体积为( )A. 13+π4B. 1+π4C. 13+π12D. 1+π1213.某四面体的三视图如图所示,该四面体四个面的面积中最大的是( )A. 8B. 6√22C. 10D. 8√214.一个长方体被一个平面截去一部分后所剩几何体的三视图如图所示(单位:cm),则该几何体的体积为( )A. 120 cm3B. 100 cm3C. 80 cm3D. 60 cm315.(2017•北京卷)某三棱锥的三视图如图所示,则该三棱锥的体积为()A. 60B. 30C. 20D. 1016.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则在该几何体中,最长的棱的长度是()A. 4 √2B. 2 √5C. 6D. 4 √317.四棱锥P﹣ABCD的三视图如图所示,四棱锥P﹣ABCD的五个顶点都在一个球面上,E、F分别是棱AB、CD的中点,直线EF被球面所截得的线段长为2√2,则该球表面积为()A. 12πB. 24πC. 36πD. 48π18.祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图如图所示,用一个与该几何体的下底面平行相距为h(0<h<2) 的平面截该几何体,则截面面积为()A. 4πB. πℎ2C. π(2−ℎ)2D. π(4-h²)19.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为( )A. 4B. 6+4√2C. 4+4√2D. 220.如图所示为一个简单几何体的三视图,则其对应的几何体是( )A. B. C. D. 21.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为( )A. 12B. √316C. 174 D. √17422.一个几何体的三视图如图所示,则该几何体的体积(单位:cm 3)为( )A. π+√33B. 2π+√33C. 2π+√3D. π+√3 23.三视图如图的几何体是( )A. 三棱锥B. 四棱锥C. 四棱台D. 三棱台24.若一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A. 1B. 2C. 3D. 425.某三棱锥的主视图与俯视图如图所示,则其左视图的面积为A. 2B. 3C. 4D. 626.把边长为的正方形ABCD 沿对角线BD 折起,形成的三棱锥A-BCD 的正视图与俯视图如图所示,则其侧视图的面积为( )A. √22B. 12C. √24D. 14 27.一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的 ( )A. 外接球的半径为√33B. 表面积为√7+√3+1C. 体积为√3D. 外接球的表面积为4π 28.某几何体的三视图如图所示,则该几何体的体积为( )A. √2πB. 2√2πC. π3D. 2π329.一个几何体按比例绘制的三视图如图所示(单位:m ),则该几何体的体积为( )m 3 .A. 73B. 92C. 72D. 9430.某几何体的主视图与俯视图如图所示,左视图与主视图相同,且图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是( )A. 203B. 43C. 6D. 4 31.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”已知1丈为10尺,该锲体的三视图如图所示,则该锲体的体积为( )A. 10000立方尺B. 11000立方尺C. 12000立方尺D. 13000立方尺二、填空题(共8题;共10分)32.如图为某几何体的三视图,则该几何体的体积为________.33.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是________.34.一个四棱锥的三视图如图所示,那么在这个四棱锥的四个侧面三角形中,有________个直角三角形.35.如图是由大小相同的长方体木块堆成的几何体的三视图,则此几何体共由________ 块木块堆成.36.已知某几何体的三视图如图所示(单位:cm),则此几何体的体积为________,表面积为________.37.一简单组合体的三视图如图,则该组合体的体积为________.38.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某三棱锥的三视图,则该三棱锥的体积为________.39.某几何体的三视图如图所示,若俯视图是边长为2的等边三角形,则这个几何体的体积等于________;表面积等于________.三、解答题(共3题;共20分)40.已知四棱锥P-ABCD的体积为√2,其三视图如图所示,其中正视图为等腰三角形,侧视图为直2角三角形,俯视图是直角梯形.(1)求正视图的面积;(2)求四棱锥P-ABCD的侧面积.41.一个空间几何体的三视图如图所示,其中正视图与左视图上方均为等边三角形,根据图中数据:(1)求三棱锥外接球表面积(2)求该几何体的表面积(3)求该几何体的体积.42.如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,求这个多面体最长的一条棱的长.答案解析部分一、单选题1.【答案】B【考点】由三视图求面积、体积,由三视图还原实物图【解析】【解答】甲几何体是棱长为2a的下方体去掉一个棱长为a的小正方体后的几何体,则其体积V甲=8a3−a3=7a3,表面积S甲=24a2;乙几何体是一个棱长为2a的正方体去掉一个底面为直角边为a的等腰直角三角形,高为a的三棱柱后的几何体,其体积V乙=8a3−12a3=152a3,表面积S乙=24a2−a2+√2a2=(23+√2)a2;则S甲> S乙, V甲< V乙.故答案为:B.【分析】分别由三视图还原出几何体的形状和数据,甲是一个棱长为2a的正方体去掉一个棱长为a的小正方体后的几何体,求出表面积和体积;乙是一个棱长为2a的正方体去掉一个底面为直角边为a的等腰直角三角形,高为a的三棱柱后的几何体,求出表面积和体积,再比较大小.2.【答案】B【考点】由三视图还原实物图【解析】【解答】还原四棱锥,如图所示,由主视图可知,PA⊥底面ABCD, AB⊥AD, AD⊥DC, PA=2, AB=1, BC=CD=2, AD=√3, 计算可知B正确,故答案为:B.【分析】由三视图还原出四棱锥,P A ⊥底面ABCD,计算可知B正确.3.【答案】B【考点】球面距离及相关计算,由三视图还原实物图,球内接多面体【解析】【解答】由三视图可知,该四棱锥是底面为边长为1的正方形,一条长为1的侧棱与底面垂直,将该棱锥补成棱长为1的正方体,则棱锥的外接球就是正方体的外接球,正方体外接球的直径就是正方体的对角线,即2R=√3,R=√32,故答案为:B.【分析】结合三视图,将几何体还原为棱锥,将棱锥补成棱长为 1 的正方体,则棱锥的外接球就是正方体的外接球,由正方体外接球的直径就是正方体的对角线求解.4.【答案】D【考点】由三视图求面积、体积,由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】由题图可知该几何体为正六棱锥,侧视图为等腰三角形,其中底边长为√3a,高与正视图的高相同,为√3a,所以面积为12×√3a×√3a=32a2.故答案为:D.【分析】结合三视图还原出几何体为正六棱锥,由公式求体积.5.【答案】C【考点】由三视图求面积、体积,由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】由三视图可知,原几何体是一个三棱柱被截去了一个小三棱锥得到的,如图,V=1 2×3×4×5−13×(12×3×4)×3=24.故答案为:C.【分析】由三视图还出原几何体是一个三棱柱被截去了一个小三棱锥得到的,再由公式求体积.6.【答案】B【考点】由三视图求面积、体积,由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】由三视图可得到几何体的直观图如图所示,该几何体是由一个四棱锥A-CDEF和一个三棱锥F-ABC组成,四棱锥A-CDEF的底面面积为4,高为4,所以体积是V=13×4×4=163;三棱锥F-ABC的底面积为2,高为2,故体积是43,所以该几何体的体积为203.故答案为:B.【分析】由三视图还出原几何体是由一个四棱锥A-CDEF和一个三棱锥F-ABC组成的,再由公式求体积. 7.【答案】C【考点】简单空间图形的三视图,由三视图还原实物图【解析】【解答】由题可知,三视图复原的几何体是一个放倒的底面是直角梯形的四棱柱,所以几何体的表面积S=(1+1+2+√2)×1+1×1+2×1=7+√2(cm2),故答案为:C.【分析】根据三视图将空间几何体还原后计算可得出答案。

高考三视图(含解析)理试题汇总

高考三视图(含解析)理试题汇总

专题21 三视图1.某几何体的三视图如图所示,则其表面积为()A.2π B.3π C.4π D.5π【答案】B点睛:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2.已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )A. B. C. D.【答案】B【解析】由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得2AB BD AD ===,当BC ABD ⊥平面时, BC=2, ABD ∆的边AB ,只有B 选项符合,当BC 不垂直平面ABD 时,没有符合条件的选项,故选B .点睛:1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据3.某个长方体被一个平面所截,得到几何体的三视图如图所示,则这个几何体的体积为( )A . 4B . .203D . 8 【答案】D4.如图,正三棱柱111ABC A B C -的主视图是边长为4的正方形,则此正三棱柱的左视图的面积为( )A . 16B . . .【答案】D点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.5.某几何体的三视图如图所示,则该几何体的体积为 ( )(A) 168π+ (B) 88π+ (C) 1616π+ (D) 816π+【答案】A 【解析】将三视图还原为原来的几何体,再利用体积公式求解.原几何体为组合体;上面是长方体,下面是圆柱的一半(如图所示),其体积为21422241682V ππ=⨯⨯+⨯⨯=+.故选A;6.如图5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的几条棱中,最长的棱的长度为( )(A) (B) 【答案】C 【解析】如图所示点睛:对于小方格中的三视图,可以放到长方体,或者正方体里面去找到原图,这样比较好找;7.某几何体的三视图如图所示,则该几何体的表面积为( )A . 24π-B . 24π+C . 20π-D . 20π+【答案】A8.已知某空间几何体的三视图如图所示,则该几何体的表面积是()A. B. C. D.【答案】A【解析】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,如图,平面,,,,,经计算,,,,∴,∴,,,,∴,故选A.9.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图如图所示,则该几何体的体积是( )A .1π+B .2π+C .21π+D .35π++【答案】A【解析】考点:由三视图求体积.10.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为( )A .263π+B .83π+C .243π+D .43π+【答案】C【解析】 试题分析:相当于一个圆锥和一个长方体,故体积为122221433ππ⋅+⋅⋅=+.考点:三视图.11.一个几何体的三视图如图所示,则该几何体的体积为()A.143B. 5 C.163D.6【答案】A【解析】考点:三视图.12.一个几何体的三视图如图所示,则该几何体的体积为____.【答案】1 3【解析】本题考查三视图、四棱锥的体积计算等知识,难度中等.由三视图可知该几何体是底面为长和高均为1的平行四边形,高为1的四棱锥,故其体积为1111133V=⨯⨯⨯=.。

三视图高考试题.docx

三视图高考试题.docx

三视图高考试题
俯视图
1.(浙江)(7)几何体的二视图如图所示,则这个几何体的直观图可以是()
2.(陕西)5.某几何体的三视图如图所示,则它的体积是()
A. 8 2
B. 8 33
2
3C. 8_2 兀D.
3.(北京)(5)某四棱锥的三视图如图所示,该四棱锥的表面
积是()
(A)32 (B) 16+
(C) 48
73
(D)16 4.(广东)9.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分)
A
73
.B. 4
图1
图3
5.(湖南)4.设图1是某几何体的三视图,则该几
侧(左)视图c.
12 D. 18
侧视图图2
正视图侧视图9292
俯视图图1
6.(安徽)(8)—个空间几何体的三视图如图所示,则该
几何体的表面积为()
7.(2010年高考北京卷5)-个长方体去掉一个小长方体,所得几何体的正视图与侧(左)视图分别如右图所示,则该几何体的俯
视图为()
(A) 48 (B)
(C)
(D) 80
8.(2010年高考浙江卷8)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是() 35233203 cm (B) cm33
22431603 (C) cm (D) cm 33 (A)
9.(2010年高考安徽卷9) 一个几何体的三视图如图,该几何体的表面积是()
(A) 372 (B) 360
(C) 292 (D) 280
10.(2010年高考陕西卷8)若某空间几何体的三视图如图所示,则该几何体的体积是()
(A) 2 (B) 1
(C)
21 (D)。

高考三视图(含解析)理试题(卷)汇总

高考三视图(含解析)理试题(卷)汇总

..专题 21三视图1.某几何体的三视图以以下列图,则其表面积为()A.2πB.3πC.4πD.5π【答案】 B点睛: 1、第一看俯视图,依照俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,今后再依照三视图进行调整.2.已知三棱锥的正视图与俯视图以以下列图,俯视图是边长为 2 的正三角形,则该三棱锥的侧视图可能为 ()A.B.C.D...【解析】由正视图和俯视图还原几何体如图所示,由正视图和俯视图对应线段可得AB BD AD 2 ,当BC 平面 ABD 时,BC=2,ABD 的边 AB 上的高为 3 ,只有 B 选项切合,当BC 不垂直平面 ABD 时,没有切合条件的选项,应选B.点睛: 1.解答此类题目的要点是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧相同高、正俯相同长、俯侧相同宽”,因此,能够依照三视图的形状及相关数据推断出原几何图形中的点、线、面之间的地址关系及相关数据3.某个长方体被一个平面所截,获取几何体的三视图以以下列图,则这个几何体的体积为()A. 4 B. 2 2C.20D.8 3【答案】 D4.如图,正三棱柱ABC A1 B1C1的主视图是边长为4 的正方形,则此正三棱柱的左视图的面积为 ()..A. 16 B. 2 3C. 4 3D.8 3【答案】 D点睛:三视图问题的常有种类及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能够看到的部分用虚线表示.(2)由几何体的部分视图画出节余的部分视图.先依照已知的一部分三视图,还原、推断直观图的可能形式,今后再找其剩下部分三视图的可能形式.自然作为选择题,也可将选项逐项代入,再看看给出的部分三视图可否切合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.5.某几何体的三视图以以下列图, 则该几何体的体积为()(A)16 8(B)8 8(C)16 16(D)816 【答案】 A【剖析】将三视图还原为原来的几何体, 再利用体积公式求解...其体积为V 4 2 2 1 22 4 16 8 .应选A;26.如图 5,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的几条棱中,最长的棱的长度为()(A) 6 2(B) 4 2(C) 6(D)4【答案】 C【剖析】如图所示点睛:对于小方格中的三视图,能够放到长方体,也许正方体里面去找到原图,这样比较好找;7.某几何体的三视图以以下列图,则该几何体的表面积为( )A.24B.24C.20D.20【答案】 A..8.已知某空间几何体的三视图以以下列图,则该几何体的表面积是()A.B.C.D.【答案】 A【剖析】由三视图知:几何体为四棱锥,且四棱锥的一条侧棱与底面垂直,如图,平面,,,,,经计算,,,,∴,∴,,,,∴,应选 A.9.一个几何体由多面体和旋转体的整体或一部分组合而成,其三视图以以下列图,则该几何体的体积是()A. 1 B .2 C . 2 1D. 3 5 2 2【答案】 A【剖析】考点:由三视图求体积.10.如图是一个由两个半圆锥与一个长方体组合而成的几何体的三视图,则该几何体的体积为()2B . 8C . 4 2A.633 3D.43【答案】 C【剖析】试题剖析:相当于一个圆锥和一个长方体,故体积为12 2 2 1 4 2 .3 3考点:三视图.11.一个几何体的三视图以以下列图,则该几何体的体积为( )A .14B. 5C .1633D . 6【答案】 A【剖析】考点:三视图.12.一个几何体的三视图以以下列图 , 则该几何体的体积为 ____...【答案】13【剖析】本题观察三视图、四棱锥的体积计算等知识, 难度中等.由三视图可知该几何体是底面为长和高均为1的平行四边形,高为 1的四棱锥,故其体积为V 11 1 1 1 .3 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考三视图题汇编Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】2013年全国高考理科数学试题分类汇编三视图一、选择题1 .(2013年高考新课标1(理))如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为 ( )A .35003cm π B .38663cm π C .313723cm π D .320483cm π2 .(2013年高考新课标1(理))某几何体的三视图如图所示,则该几何体的体积为( )( )A .168π+B .88π+C .1616π+D .816π+3 .(2013年高考湖北卷(理))一个几何体的三视图如图所示,该几何体从上到下由四个简单几何体组成,其体积分别记为1V ,2V ,3V ,4V ,上面两个简单几何体均为旋转体,下面两个简单几何体均为多面体,则有( )A .1243V V V V <<< B.1324V V V V <<< C.2134V V V V <<< D .2314V V V V <<<4 .(2013年高考湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能...等于 ( )A .1B .2C .2-12D.2+125 .(2013年普通高等学校招生统一考试广东省数学(理)某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163D .66.(2013年普通高等学校招生统一考试重庆数学(理)某几何体的三视图如题()5图所示,则该几何体的体积为( )A .5603B .5803C .200D .2407.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )1 221 1正视图俯视图侧视图第5题图A .B .C .D .8.(2013年高考四川卷(理))一个几何体的三视图如图所示,则该几何体的直观图可以是9.(2013年高考陕西卷(理))某几何体的三视图如图所示, 则其体积为________.112110.(2013年普通高等学校招生统一考试浙江数学(理)若某几何体的三视图(单位:cm)如下面左图所示,则此几何体的体积等于________2cm .(理)某11.(2013年普通高等学校招生统一考试辽宁数学几何体的三视图如上面右图所示,则该几何体的体积是____________.43 233正视图侧视图俯视图12.(2013年普通高等学校招生统一考试福建数学(理)已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________2012年高考真题理科数学解析汇编:立体几何13 .(2012年高考(新课标理))如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6B.9C.12D.1814.(2012年高考(湖南理))某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是15.(2012年高考(湖北理))已知某几何体的三视图如图所示,则该几何体的体积为A.8π3B.3πC.10π3D.6π16.(2012年高考(广东理))(立体几何)某几何体的三视图如图1所示,它的体积为()A.12πB.45πC.57πD.81π13.(2012年高考(福建理))一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱柱C.正方形D.圆柱14.(2012年高考(北京理))某三棱锥的三视图如图所示,该三棱锥的表面积是()A.2865+B.3065+56125+A图1B C D侧视图正视图24242俯图D.60125+15.(2012年高考(天津理))―个几何体的三视图如图所示(单位:m),则该几何体的体积为______3m.16.(2012年高考(辽宁理))一个几何体的三视图如图所示,则该几何体的表面积为______________.17.(2012年高考(安徽理))某几何体的三视图如图所示,该几何体的表面积是_____.2011年高考三视图18.(陕西理5)某几何体的三视图如图所示,则它的体积是A.283π-B.83π-C.82π-D.23π19.(浙江理3)若某几何体的三视图如图所示,则这个几何体的直观图可以是313632233 3 2正视图 侧视图 俯视图20.(山东理11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是 A .3 B .2 C .1 D .021.(全国新课标理6)。

在一个几何体的三视图中,正视图与俯视图如下图所示,则相应的侧视图可以为22.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为A .9122π+B .9182π+C .942π+D .3618π+23.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .63B .93C .123D .18324.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A.8 B.62C.10 D.8225.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A)48(B)32+817(C)48+817(D)8026.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 ( )27.(天津理10)一个几何体的三视图如右图所示(单位:m),则该几何体的体积为__________3m第15题图DBCA 28.某长方体的三视图如右图,长度为10的体对角线在正视图中的长度为6,在侧视图中的长度为5,则该长方体的全面积为________________.29.如图所示,一个三棱锥的三视图是三个直角三角形 (单位:cm),则该三棱锥的外接球的表面积为 ____________cm 2.30.某几何体的三视图如图所示,则此几何体对应直观图中△PAB 的面积是 ( )A.7B.2C.3D.531.已知正四面体的俯视图如图所示,其中四边形ABCD 是边长为 2的正方形,则这个四面体的主视图的面积为_________32.如图所示是一个几何体的三视图(单位:cm),则这个几何体的表面积 cm 2.65234俯视图左视图主视图网上摘编三视图题1、(2012天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为m3【解析】由三视图可知几何体是组合体,下部是长方体,底面边长为3和4,高为2,上部是放倒的四棱柱,底面为直角梯形,底面直角边长为2和1,高为1,棱柱的高为4,所以几何体看作是放倒的棱柱,底面是5边形,几何体的体积为:(2×3+)×4=30(m3).故答案为:30.2、一个几何体的三视图如图所示,则该几何体的体积为______.由三视图可知,几何体为一个三棱柱剪去一个三角锥,三棱柱的体积V1为:1232232⨯⨯⨯=剪去的三棱锥体积V2为:113231323⨯⨯⨯⨯=,所以几何体的体积为:3523333-=3、一个几何体的三视图如图所示,则该几何体的体积为.试题分析:根据题意可知该几何体是底面为圆柱体,上面是三棱锥的组合体,且可知高度为3,底面的边长为2,那么根据几何体的三视图可知圆柱的高为1,三棱锥的底面是直角三角形,边长为2,那么可以利用锥体的体积和圆柱体的体积公式得到为33π+,答案为33π+点评:本题考查由几何体的三视图求几何体的体积,是基础题,解题时要认真审题,仔细解答.4、一个几何体的三视图如图所示,则这个几何体的体积为______.由俯视图可知该几何体的底面为直角梯形,则正视图和俯视图可知该几何体的高为1,结合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为12⨯(1+2)×2×1=3;故答案为3.5、一个几何体的三视图如右图所示(单位:),则该几何体的体积为__________.试题分析:易知该三视图对应的几何体是一个四棱锥,且有一侧棱垂直底面,故体积点评:本题考查了由三视图还原直观图,考查了三视图的概念的应用,属基础题.6、(2013河东区二模)已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为______m3.根据三视图可知几何体上部是一个高为3圆锥,下部是一个高为3圆柱,底面半径都是2,∴几何体的体积是1×22×π×3+22×π×3=16π.3故答案为:16π.7、已知一个几何体的三视图如图所示(单位:m),则该几何体的体积为_______.试题分析:由三视图可知该几何体是组合体,其中下半部分是底面半径为1,高为4的圆柱,上半部分是底面半径为2,高为2的圆锥,其体积为().8、一个几何体的三视图如图所示(单位:cm ),则该几何体的体积是______三视图复原的几何体上部是四棱锥,下部是半球 半球的体积:33216233cm ππ⨯= 四棱锥的体积:31822233cm ⨯⨯⨯= 所以几何体的体积:3168168333cm ππ++= 9、一个几何体的三视图如图所示,则该几何体的体积为( )3.3A π+ 3.23A π+ .23C π+.3C π+由三视图可知,实物图为组合体:其上部为三棱锥,底面为斜边长为的等腰直角三角形,其面积为,其高为,所以此三棱锥的体积为;其下部为底面半径为,高为的圆柱,其体积为.所以所求的体积为正确答案为A。

相关文档
最新文档