3.2立体几何中的向量方法第1课时 空间向量与平行关系教师版
2019秋高中数学第三章空间向量与立体几何3.2立体几何中的向量方法第1课时空间向量与平行关系课件选修2_1
个法向量 n=(2,-1,2),则下列点中在平面 α 内的是
() A.(-4,4,0)
B.(2,0,1)
C.(2,3,3)
D.(3,-3,4)
答案:C
2.两条不同直线 l1,l2 的方向向量分别是 a=(-2,
1,1),b=(6,-3,-3),则( )
①a=(4,6,-2),b=(-2,-3,1); ②a=(5,0,2),b=(0,1,0). (2)设 u,v 分别是不同的平面 α,β 的法向量,根据 下列条件判断 α,β 的位置关系;
①u=(-1,1,-2),v=3,2,-12; ②u=(3,0,0),v=(-2,0,0).
(3)设 u 是平面 α 的法向量,a 是直线 l 的方向向量, 根据下列条件判断平面 α 与 l 的位置关系:
所以 u·v=-3+2+1=0,所以 u⊥v,所以 α⊥β. ②因为 u=(3,0,0),v=(-2,0,0), 所以 u=-32 v,所以 u∥v,所以 α∥β. (3)①因为 u=(2,2,-1),a=(-6,8,4), 所以 u·a=-12-4+16=0, 所以 u⊥a,所以 l⊂α 或 l∥α. ②因为 u=(2,-3,0),a=(8,-12,0).
5.已知平面 α 和平面 β 有公共的法向量 n=(1,-1, 1),则平面 α,β 的位置关系为________.
高中数学第3章空间向量与立体几何3.2立体几何中的向量方法第1课时空间向量与平行关系学案新人教A版选修2_1
第1课时 空间向量与平行关系1.直线的方向向量与平面的法向量 (1)直线的方向向量的定义直线的方向向量是指和这条直线_平行或共线的非零向量,一条直线的方向向量有无数个.(2)平面的法向量的定义直线l ⊥α,取直线l 的方向向量a ,则a 叫做平面α的法向量. 思考:直线的方向向量(平面的法向量)是否唯一?[提示] 不唯一,直线的方向向量(平面的法向量) 有无数个,它们分别是共线向量. 2.空间中平行关系的向量表示1.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2) C .(2,1,3)D .(3,2,1)A [AB →=(2,4,6)=2(1,2,3).]2.若平面α,β的一个法向量分别为m =⎝ ⎛⎭⎪⎫-16,13,-1,n =⎝ ⎛⎭⎪⎫12,-1,3,则( ) A .α∥βB .α⊥βC .α与β相交但不垂直D .α∥β或α与β重合D [∵n =-3m ,∴m ∥n ,∴α∥β或α与β重合.]3.已知AB →=(-3,1,2),平面α的一个法向量为n =(2,-2,4),点A 不在平面α内,则直线AB 与平面α的位置关系为( )A .AB ⊥αB .AB ⊂αC .AB 与α相交但不垂直D .AB ∥αD [因为n ·AB →=2×(-3)+(-2)×1+4×2=0,所以n ⊥AB →.又点A 不在平面α内,n 为平面α的一个法向量,所以AB ∥α,故选D.]4.若直线l 的方向向量a =(2,2,-1),平面α的法向量μ=(-6,8,4),则直线l 与平面α的位置关系是________.l ⊂α或l ∥α [∵μ·a =-12+16-4=0,∴μ⊥a ,∴l ⊂α或l ∥α.]AD =12,试建立适当的坐标系.(1)求平面ABCD 的一个法向量; (2)求平面SAB 的一个法向量; (3)求平面SCD 的一个法向量.[解] 以点A 为原点,AD 、AB 、AS 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,0,0),B (0,1,0),C (1,1,0),D ⎝ ⎛⎭⎪⎫12,0,0,S (0,0,1).(1)∵SA ⊥平面ABCD ,∴AS →=(0,0,1)是平面ABCD 的一个法向量. (2)∵AD ⊥AB ,AD ⊥SA ,AB ∩SA =A ,∴AD ⊥平面SAB , ∴AD →=⎝ ⎛⎭⎪⎫12,0,0是平面SAB 的一个法向量.(3)在平面SCD 中,DC →=⎝ ⎛⎭⎪⎫12,1,0,SC →=(1,1,-1).设平面SCD 的法向量是n =(x ,y ,z ), 则n ⊥DC →,n ⊥SC →,所以⎩⎪⎨⎪⎧n ·DC →=0,n ·SC →=0,得方程组⎩⎪⎨⎪⎧12x +y =0,x +y -z =0,∴⎩⎪⎨⎪⎧x =-2y ,z =-y , 令y =-1,得x =2,z =1,∴平面SCD 的一个法向量为n =(2,-1,1).1.利用待定系数法求平面法向量的步骤 (1)设向量:设平面的法向量为n =(x ,y ,z ). (2)选向量:在平面内选取两个不共线向量AB →,AC →. (3)列方程组:由⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,列出方程组.(4)解方程组:⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0.(5)赋非零值:取其中一个为非零值(常取±1). (6)得结论:得到平面的一个法向量. 2.求平面法向量的三个注意点(1)选向量:在选取平面内的向量时,要选取不共线的两个向量.(2)取特值:在求n 的坐标时,可令x ,y ,z 中一个为一特殊值得另两个值,就是平面的一个法向量.(3)注意0:提前假定法向量n =(x ,y ,z )的某个坐标为某特定值时一定要注意这个坐标不为0.1.正方体ABCD A 1B 1C 1D 1中,E 、F 分别为棱A 1D 1、A 1B 1的中点,在如图所示的空间直角坐标系中,求:(1)平面BDD 1B 1的一个法向量; (2)平面BDEF 的一个法向量.[解] 设正方体ABCD A 1B 1C 1D 1的棱长为2,则D (0,0,0),B (2,2,0),A (2,0,0),C (0,2,0),E (1,0,2).(1)连接AC (图略),因为AC ⊥平面BDD 1B 1,所以AC →=(-2,2,0)为平面BDD 1B 1的一个法向量.(2)DB →=(2,2,0),DE →=(1,0,2). 设平面BDEF 的一个法向量为n =(x ,y ,z ). ∴⎩⎪⎨⎪⎧n ·DB →=0,n ·DE →=0,∴⎩⎪⎨⎪⎧2x +2y =0,x +2z =0,∴⎩⎪⎨⎪⎧y =-x ,z =-12x . 令x =2,得y =-2,z =-1.∴n =(2,-2,-1)即为平面BDEF 的一个法向量.111111四边形AEC 1F 是平行四边形.[解] 以点D 为坐标原点,分别以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E ⎝ ⎛⎭⎪⎫0,0,12,C 1(0,1,1),F ⎝⎛⎭⎪⎫1,1,12, ∴AE →=⎝⎛⎭⎪⎫-1,0,12,FC 1→=⎝⎛⎭⎪⎫-1,0,12,EC 1→=⎝⎛⎭⎪⎫0,1,12,AF →=⎝⎛⎭⎪⎫0,1,12,∴AE →=FC 1→,EC 1→=AF →,∴AE →∥FC 1→,EC 1→∥AF →, 又∵FAE ,F EC 1,∴AE ∥FC 1,EC 1∥AF ,∴四边形AEC 1F 是平行四边形.1.两直线的方向向量共线(垂直)时,两直线平行(垂直);否则两直线相交或异面. 2.直线的方向向量与平面的法向量共线时,直线和平面垂直;直线的方向向量与平面的法向量垂直时,直线在平面内或线面平行;否则直线与平面相交但不垂直.3.两个平面的法向量共线(垂直)时,两平面平行(垂直);否则两平面相交但不垂直.2.长方体ABCD A 1B 1C 1D 1中,E ,F 分别是面对角线B 1D 1,A 1B 上的点,且D 1E =2EB 1,BF =2FA 1.求证:EF ∥AC 1.[证明] 如图所示,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c ,则得下列各点的坐标:A (a ,0,0),C 1(0,b ,c ),E ⎝ ⎛⎭⎪⎫23a ,23b ,c ,F ⎝ ⎛⎭⎪⎫a ,b 3,23c .∴FE →=⎝ ⎛⎭⎪⎫-a 3,b 3,c 3,AC 1→=(-a ,b ,c ),∴FE →=13AC 1→.又FE 与AC 1不共线,∴直线EF ∥AC 1.在用向量法处理问题时,若几何体的棱长未确定,应如何处理? [提示] 可设几何体的棱长为1或a ,再求点的坐标.【例3】 在正方体ABCD A 1B 1C 1D 1中,M ,N 分别是CC 1,B 1C 1的中点.求证:MN ∥平面A 1BD . 思路探究:[证明] 法一:如图,以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则D (0,0,0),A 1(1,0,1),B (1,1,0),M ⎝⎛⎭⎪⎫0,1,12, N ⎝ ⎛⎭⎪⎫12,1,1,于是DA 1→=(1,0,1),DB →=(1,1,0),MN →=⎝ ⎛⎭⎪⎫12,0,12.设平面A 1BD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ⊥DA 1→,n ⊥DB →,即⎩⎪⎨⎪⎧n ·DA 1→=x +z =0,n ·DB →=x +y =0,取x =1,则y=-1,z =-1,∴平面A 1BD 的一个法向量为n =(1,-1,-1).又MN →·n =⎝ ⎛⎭⎪⎫12,0,12·(1,-1,-1)=0,∴MN →⊥n .∴MN ∥平面A 1BD .法二:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12(D 1A 1→-D 1D →)=12DA 1→,∴MN→∥DA 1→,∴MN ∥平面A 1BD .法三:MN →=C 1N →-C 1M →=12C 1B 1→-12C 1C →=12DA →-12A 1A →=12()DB →+BA→-12()A 1B →+BA →=12DB →-12A 1B →. 即MN →可用A 1B →与DB →线性表示,故MN →与A 1B →,DB →是共面向量,故MN ∥平面A 1BD .1.本例中条件不变,试证明平面平面AEB ,BE ⊂平面AEB 两两垂直.0),C (2,4,0),F (00),AB →=(2,0,-2).,z ),1.向量法证明线面平行的三个思路(1)设直线l 的方向向量是a ,平面α的法向量是u ,则要证明l ∥α,只需证明a ⊥u ,即a ·u =0.(2)根据线面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行,要证明一条直线和一个平面平行,在平面内找一个向量与已知直线的方向向量是共线向量即可.(3)根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可.2.证明面面平行的方法设平面α的法向量为μ,平面β的法向量为v ,则α∥β⇔μ∥v .1.应用向量法证明线面平行问题的方法 (1)证明直线的方向向量与平面的法向量垂直.(2)证明直线的方向向量与平面内的某一直线的方向向量共线.(3)证明直线的方向向量可用平面内的任意两个不共线的向量表示.即用平面向量基本定理证明线面平行.2.证明面面平行的方法设平面α的法向量为n 1=(a 1,b 1,c 1),平面β的法向量为n 2=(a 2,b 2,c 2),则α∥β⇔n 1∥n 2⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)(k ∈R ).1.已知向量a =(2,4,5),b =(3,x ,y ),a 与b 分别是直线l 1,l 2的方向向量,若l 1∥l 2,则( )A .x =6,y =15B .x =3,y =152C .x =3,y =15D .x =6,y =152D [∵l 1∥l 2,∴a ∥b , ∴存在λ∈R ,使a =λb , 则有2=3λ,4=λx ,5=λy , ∴x =6,y =152.]2.已知线段AB 的两端点坐标为A (9,-3,4),B (9,2,1),则线段AB 与坐标平面( ) A .xOy 平行 B .xOz 平行 C .yOz 平行D .yOz 相交 C [AB →=(0,5,-3),坐标平面yOz 的一个法向量为n =(1,0,0),因为AB →·n =0,所以AB →⊥n .故线段AB 与坐标平面yOz 平行.]3.已知直线l 的方向向量为(2,m ,1),平面α的法向量为⎝ ⎛⎭⎪⎫1,12,2,且l ∥α,则m =________.-8 [∵l ∥α,∴l 的方向向量与α的法向量垂直. ∴(2,m ,1)×⎝ ⎛⎭⎪⎫1,12,2=2+12m +2=0. 解得m =-8.]4.在长方体OAEB O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且SB 1=2BS ,点Q ,R 分别是棱O 1B 1,AE 的中点.求证:PQ ∥RS .[解] 如图,建立空间直角坐标系,则A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).易求得P ⎝ ⎛⎭⎪⎫3,0,43,Q (0,2,2),R (3,2,0),S ⎝ ⎛⎭⎪⎫0,4,23,于是PQ →=⎝ ⎛⎭⎪⎫-3,2,23,RS →=⎝ ⎛⎭⎪⎫-3,2,23.∴PQ →=RS →,∴PQ →∥RS →.∵R PQ ,∴PQ ∥RS .。
空间向量与平行关系(公开课)
A1
z
B1
C1
F
D
E
B
C
y
x
A
利用向量解决立体几何问题的三步曲:
①建立立体图形与空间向量的联系,用空间向量 表示问题中涉及的点、直线、平面. (化为向量问题) ②通过向量运算,研究点、直线、平面之间的位置关 系以及它们之间的距离和夹角的问题. (进行向量运算) ③把向量的运算结果“翻译”成相应的几何意义. (回到图形)
b ( a 2 , b 2 , c 2 ). n a 0 a1 x b1 y c1 z 0 ③建立方程组 a x b y c z 0 n b 0 2 2 2
④解方程组,利用赋值法,给 x, y, z 中的一个变量 赋一特值.
量为 n (2 ,0 ,3 ).
(4)直线 l 的方向向量为 a (3, 2,1), 为 n (1, 2, 1).
平面 的法向量
例2:如图,已知正方体
ABCD A1B1C1D1的棱长为2,
E , F分别是 BB1 , DD1的中点.
证明: FC1∥平面 ADE.
探究:
直线可以用方向向量进行描述,平面呢?
问题1:经过定点A且与向量 n 平行的平面有几个? 问题2:经过定点A且与向量 n 垂直的平面有几个?
定义:
直线 l , 取直线 l 的方向向量 n , 则向量 n 叫作 平面 的法向量. l
思考:平面的法向量有什么特点? ①非零 ②有无数条且互相平行
练习:如图所示,正方体的棱长为1. (1)平面 ABCD 的一个法向量为 (2)平面 CDD1C1 的一个法向量为 (3)平面 AB1D1 的一个法向量为
( 人教A版)2-1:3.2立体几何中的向量方法第1课时空间向量与平行关系课件 (共31张PPT)
解析:(1)∵a=(1,-3,-1),b=(8,2,2) ∴a·b=8-6-2=0,∴a⊥b,∴l1⊥l2. (2)∵u=(1,3,0),v=(-3,-9,0), ∴v=-3u,∴u∥v,∴α∥β. (3)∵a=(1,-4,-3),u=(2,0,3), ∴a与u既不共线,也不垂直, ∴l与平面α斜交.
[证明] 如图所示建立空间直角坐标系D-xyz,则有D(0,0,0), A(2,0,0),C(0,2,0),C1(0,2,2),E(2,2,1),F(0,0,1), B1(2,2,2), 所以F→C1=(0,2,1),D→A=(2,0,0),A→E=(0,2,1).
(1)设n1=(x1,y1,z1)是平面ADE的法向量, 则n1⊥D→A,n1⊥A→E, 即nn11··DA→→EA==22yx11+=z01,=0,
设平面SCD的法向量为n=(1,y,z), 则n·D→C=(1,y,z)·(1,2,0)=1+2y=0, ∴y=-12. 又n·D→S=(1,y,z)·(-1,0,2)=-1+2z=0, ∴z=12. ∴n=1,-12,12即为平面SCD的一个法向量.
探究三 利用空间向量证明平行关系 [典例3] 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中 点,求证: (1)FC1∥平面ADE; (2)平面ADE∥平面B1C1F.
G→En=(x,y,z)是平面EFG的法向量,
n·G→E=0, 则n·G→F=0.
∴--2xx-+y+y+2zz==00,.
∴xy==zz., ∴n=(z,z,z),令z=1,此时n=(1,1,1), 所以平面EFG的一个法向量为(1,1,1).
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性格会影响人生!习惯不加以抑 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你到哪里去。当你在埋头工作的 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去方向,就永远不会失去自己! 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移山之术,惟一能移山的方法就 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于没有路,你想知道将来要得到 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个门:一个是家门,成长的地方; 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己,只有战胜自己,才能战胜困难! 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺利的就忏悔,然后放下。“雁 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起折腾;受得起打击;丢得起面 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气;对已讲原则,坚持守底气;淡 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完美。若一心想要事事求顺意, 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生的至宝。我们的梦想在哪里? 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真诚友谊的宽道上!珍惜每一分 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有的,不要感叹你失去或未得到; 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身处困境之人,不做苟且之事, 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光的心态,得失了无忧,来去都 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳光,才是永恒的美。意逐白云 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够用即可;累时,闲是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很多时候限制我们的,不是周遭 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。无论有多少委屈,一笑而泯之。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争,却有柴米之忧烦;世外桃源祥 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦荡,不为虚名所累;做事要头 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一点要求,多一点警醒。傲不可 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命得到升华洗礼,在自观中走向 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差距;表面上看是人脉的差距, 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同,心态决定命运。知恩感恩,是 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致, 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。知恩感恩,是很重要的一 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实没什么道理,但他这样一想、 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开始;寒冷到了极致,太阳就要 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平常心观不平常事,则事事平常。 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不仅要为成功而努力,更要为做 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你什么叫幼稚。只有在我们不需 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不算事。和对自己有恶意的人绝 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易。学会放弃,拽的越紧,痛苦的是自己。低调,取舍间,必有得失。不要试图给自己找任何借口, 错误面前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定要放下。活得轻松,任何事都 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有�
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
3.2立体几何中的向量方法 第1课时 空间向量与平行关系 课件
研一研· 问题探究、课堂更高效
3.2 第1课时
解
(1)∵ a= (2,3,-1),b=(- 6,- 9,3) 1 ∴a=-3b,∴a∥b,∴l1∥l2.
(2)∵a=(-2,1,4),b=(6,3,3),∴a· b≠0 且 a≠kb(k∈R), ∴a,b 既不共线也不垂直,即 l1 与 l2 相交或异面. 1 (3)∵u=(1,-1,2),v=3,2,-2, ∴u· v=3-2-1=0,∴u⊥v,即 α⊥β. (4)∵u=(2, -3,4), v=(4, -2,1), ∴u· v≠0 且 u≠kv(k∈R), ∴u 与 v 既不共线也不垂直,即 α 和 β 相交但不垂直. (5)∵a=(0,-8,12),u=(0,2,-3), 1 ∴u=-4a,∴u∥a,即 l⊥α.
研一研· 问题探究、课堂更高效
3.2 第1课时
跟踪训练 2 用向量方法证明: 平面外一条直线与此平面内 的一条直线平行,则该直线与此平面平行. 已知:直线 l,m 和平面 α,其中 l⊄α,m⊂α,且 l∥m, 求证:l∥α.
证明 设直线 l,m 的方向向量分别为 a,b,平面 α 的 法向量分别为 u. 因为 l∥m,所以 a=kb,k∈R. 又因为 u⊥α,m⊂α,所以 u⊥b, 因此 u· b = 0, u· a= u· kb=0.所以 l∥α.
3.2 第1课时
探究点一 利用方向向量和法向量判定线面的位置关系 问题 1 对于一条确定的直线和一个确定的平面, 它的方向 向量及法向量有几个?
答案 一条直线的方向向量有无数多个,它们都是共线 向量;一个平面的法向量也有无数多个,它们也都是共 线向量.平面的法向量可看作平面的垂线的方向向量。
研一研· 问题探究、课堂更高效
3.2立体几何中的向量方法第1课时空间向量与平行关系教师版剖析
3.2 立体几何中的向量方法第1课时空间向量与平行关系【课标要求】1.理解直线的方向向量与平面的法向量,并能运用它们证明平行问题.2.能用向量语言表述线线、线面、面面的平行关系.【核心扫描】1.求直线的方向向量、平面的法向量.(重点)2.用方向向量、法向量处理线线、线面、面面间的平行关系.(重点、难点)自学导引1.直线的方向向量直线的方向向量是指和这条直线______平行或共线_____的向量.想一想:直线的方向向量唯一吗?若不唯一,它们之间有怎样的关系?提示不唯一.直线的方向向量有无数条,它们都是平行向量.2.平面的法向量直线l⊥α,取直线l的____方向向量a _______,则a叫做平面α的法向量.想一想:平面的法向量唯一吗?若不唯一,它们之间的关系怎样?提示不唯一,平面的法向量有无数条,它们都是平行向量.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔____a =λb______⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔___a·u=0_____⇔ _____a1a2+b1b2+c1c2=0______________ .(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔___u=λv_____⇔ __________a1=λa2,b1=λb2,c1=λc2________(λ∈R).试一试:证明过程中,如何确定直线的方向向量和平面的法向量?提示实际应用中,直线的方向向量即把线段看作有向线段时表示的向量,平面的法向量一般可建系后用待定系数法求出.名师点睛 1.平面法向量的求法(1)当已知平面的垂线时,在垂线上取一非零向量即可作为平面的法向量.(2)当已知平面α内两不共线向量a=(a1,a2,a3),b=(b1,b2,b3)时,常用待定系数法求法向量:设法向量),,(z y x n =,由⎪⎩⎪⎨⎧=⋅=⋅00n b ,得⎩⎨⎧=++=++00321321z b y b x b z a y a x a 在上述方程组中,对x ,y ,z 中的任一个赋值,求出另两个,所得n 即为平面的法向量.2.用向量方法证明空间中的平行关系3.向量法解决几何问题的步骤(1)建立空间图形与空间向量的关系,把几何问题转化为向量问题.(2)进行向量的加减、数乘、数量积运算,得出向量运算的结果.(3)把向量运算的结果转化为相应的几何问题的结果.题型一 利用方向向量和法向量判定线面位置关系【例1】(1)设a ,b 分别是不重合的直线l 1,l 2的方向向量,根据下列条件判断l 1,l 2的位置关系:①a =(4,6,-2),b =(-2,-3,1);②a =(5,0,2),b =(0,1,0);(2)设u ,v 分别是不同的平面α,β的法向量,根据下列条件判断α,β的位置关系;②u =(3,0,0),v =(-2,0,0); (3)设u 是平面α的法向量,a 是直线l 的方向向量,根据下列条件判断平面α与l 的位置关系;①u =(2,2,-1),a =(-6,8,4);②u =(2,-3,0),a =(8,-12,0).解 (1)①∵a =(4,6,-2),b =(-2,-3,1),∴a =-2b ,∴a ∥b ,∴l 1∥l 2.②∵a =(5,0,2),b =(0,1,0),∴a ·b =0,∴a ⊥b ,∴l 1⊥l 2.①u =(-1,1,-2),v =(3,2,-12);规律方法 利用直线的方向向量与平面的法向量判断直线与直线、直线与平面、平面与平面的位置关系是直线的方向向量与平面的法向量的基本应用,解决此类问题时需注意以下几点:(1)能熟练的判断两向量的共线与垂直;(2)搞清直线的方向向量,平面的法向量和直线、平面位置关系之间的内在联系;(3)将向量问题转化为几何问题时的等价性.【变式1】根据下列各条件,判断相应的直线与直线、平面与平面、直线与平面的位置关系.(1)直线l 1、l 2的方向向量分别是a =(1,-3,-1),b =(8,2,2);(2)平面α、β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量、平面α的法向量分别是a =(1,-4,-3),μ=(2,0,3);(4)直线l 的方向向量、平面α的法向量分别是a =(3,2,1),u =(-1,2,-1).解 (1)∵a =(1,-3,-1),b =(8,2,2),∴a ·b =8-6-2=0,∴a ⊥b ,∴l 1⊥l 2.(2)∵u =(1,3,0),v =(-3,-9,0),∴v =-3u ,∴u ∥v ,∴α∥β.(3)∵a =(1,-4,-3),u =(2,0,3),∴a 与u 即不共线,也不垂直,∴l 与平面α斜交.(4)∵a =(3,2,1),u =(-1,2,-1),∴a ·u =-3+4-1=0,∴a ⊥u ,∴l ⊂α或l ∥α.题型二 求平面的法向量【例2】 已知点A (a ,0,0)、B (0,b ,0)、C (0,0,c ),求平面ABC 的一个法向量.(2)①∵u =(-1,1,-2),v =(3,2,-12), ∴u ·v =-3+2+1=0,∴u ⊥v ,∴α⊥β. ②∵u =(3,0,0),v =(-2,0,0), ∴u =-32v ,∴u ∥v ,∴α∥β. (3)①∵u =(2,2,-1),a =(-6,8,4), ∴u ·a =-12-4+16=0, ∴u ⊥a ,∴l ⊂α或l ∥α. ②∵u =(2,-3,0),a =(8,-12,0). ∴u =14a ,∴u ∥a ,∴l ⊥α.【变式2】如图,ABCD 是直角梯形,090=∠ABC ,ABCD SA 平面⊥,1===BC AB SA ,21=AD ,求平面SCD 与平面SBA 的法向量。
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法1空间向量与平行关系课件新人教A版选修
思考
(2)若已知平面外一直线的方向向量和平面的法向量,则这两向 量满足哪些条件可说明直线与平面平行? 答案
可探究直线的方向向量与平面的法向量是否垂直,进而确定线 面是否平行. (3)用向量法处理空间中两平面平行的关键是什么? 答案 关键是找到两个平面的法向量,利用法向量平行来说明两平面 平行.
梳理
引申探究 若本例条件不变,试求直线PC的一个方向向量和平面PCD的一个法向量.
解答
利用待定系数法求平面法向量的步骤
(1)设向量:设平面的法向量为n=(x,y,z). (2)选向量:在平面内选取两个不共线向量A→B,A→C.
n·A→B=0,
(3)列方程组:由n·A→C=0
列出方程组.
n·A→B=0, (4)解方程组ቤተ መጻሕፍቲ ባይዱn·A→C=0.
§3.2 立体几何中的向量方法(一) 空间向量与平行关系
学习目标
1.掌握空间点、线、面的向量表示. 2.理解直线的方向向量与平面的法向量的意义;会用待定系数 法求平面的法向量. 3.能用向量法证明直线与直线、直线与平面、平面与平面的平 行问题.
内容索引
问题导学 题型探究 当堂训练
问题导学
知识点一 直线的方向向量与平面的法向量
跟踪训练2 如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面
所成的角为45°,底面ABCD为直角梯形,∠ABC=∠BAD=90°,PA
=1 2
BC= AD=1,问在棱PD上是否存在一点E,解使答CE∥平面PAB?若存在,
求出E点的位置;若不存在,请说明理由.
当堂训练
1.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为
思考
怎样用向量来表示点、直线、平面在空间中的位置? 答案
3.2立体几何中的向量方法第1课时空间向量与平行关系教案(人教A版选修2-1)概述.
3.2立体几何中的向量方法第1课时空间向量与平行关系●三维目标1.知识与技能能用向量语言表述直线与直线、直线与平面、平面与平面的平行关系,能用向量方法判断有关直线和平面平行关系的立体几何问题.2.过程与方法通过用向量方法解决立体几何中的平行问题的过程,体会向量运算的几何意义.3.情感、态度与价值观引导学生用联系与转化的观点看问题,体验在探索问题的过程中的受挫感和成功感,培养合作意识和创新精神,同时感受数学的形式美与简洁美,从而激发学习兴趣.●重点难点重点:用向量方法判断有关直线和平面平行关系问题.难点:空间直角坐标系的正确建立,空间向量的运算及其坐标表示;用向量语言证明立体几何中有关平行关系的问题.●教学建议在“以生为本”理念的指导下,充分体现课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,构建学生主动的学习活动过程.在教学策略上宜采用“复习引入——推进新课——归纳与总结——反思”组成的探究式教学策略,并使用计算机多媒体作为辅助教具,提高课堂效率.本节课难点在于用向量证明平行关系,所以利用多媒体帮助分散难点,更符合学生的认知规律.同时在教学中注意关注整个过程和全体学生,“以学生发展为核心”,充分调动学生积极参与教学过程的每个环节.●教学流程创设问题情境,在两条平行线上取两向量,它们的位置关系如何?⇒引出直线的方向向量的概念,并用同样的方法得出平面的法向量的概念.⇒结合图形,引导学生分析方向向量、法向量的作用,得出空间平行关系的向量表示方法.⇒通过例1及其变式训练,使学生掌握求已知平面的法向量的方法.⇒通过例2及其变式训练,使学生掌握利用向量法证明线线平行.⇒通过例3及其变式训练,解决利用空间向量证明线面平行问题.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.【问题导思】图3-2-11.如图3-2-1,直线l ∥m ,在直线l 上取两点A 、B ,在直线m 上取两点C 、D ,向量AB →与CD →有怎样的关系?【提示】 AB →∥CD →.2.如图直线l ⊥平面α,直线l ∥m ,在直线m 上取向量n ,则向量n 与平面α有怎样的关系?【提示】 n ⊥α.直线的方向向量是指和这条直线平行或共线的非零向量,一条直线的方向向量有无数个.直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量.图3-2-2已知ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,试建立适当的坐标系.(1)求平面ABCD 与平面SAB 的一个法向量. (2)求平面SCD 的一个法向量.【思路探究】 (1)根据图形特点,如何建立坐标系更方便?(2)怎样求平面的法向量?题中所要求的三个平面的法向量在求解时方法是否相同?【自主解答】 以点A 为原点,AD 、AB 、AS 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的坐标系,则A (0,0,0),B (0,1,0),C (1,1,0),D (12,0,0),S (0,0,1).(1)∵SA ⊥平面ABCD ,∴AS →=(0,0,1)是平面ABCD 的一个法向量. ∵AD ⊥AB ,AD ⊥SA ,∴AD ⊥平面SAB , ∴AD →=(12,0,0)是平面SAB 的一个法向量.(2)在平面SCD 中,DC →=(12,1,0),SC →=(1,1,-1).设平面SCD 的法向量是n =(x ,y ,z ),则n ⊥DC →,n ⊥SC →. 所以⎩⎪⎨⎪⎧ n ·DC →=0n ·SC →=0,得方程组⎩⎪⎨⎪⎧12x +y =0x +y -z =0.∴⎩⎪⎨⎪⎧x =-2yz =-y ,令y =-1得x =2,z =1,∴n =(2,-1,1).1.若一个几何体中存在线面垂直关系,则平面的垂线的方向向量即为平面的法向量. 2.一般情况下,使用待定系数法求平面的法向量,步骤如下: (1)设出平面的法向量为n =(x ,y ,z ). (2)找出(求出)平面内的两个不共线的向量 a =(a 1,b 1,c 1),b =(a 2,b 2,c 2).(3)根据法向量的定义建立关于x ,y ,z 的方程组⎩⎪⎨⎪⎧n ·a =0,n ·b =0. (4)解方程组,取其中的一个解,即得法向量.3.在利用上述步骤求解平面的法向量时,方程组⎩⎪⎨⎪⎧n ·a =0,n ·b =0有无数多个解,只需给x ,y ,z 中的一个变量赋于一个值,即可确定平面的一个法向量;赋的值不同,所求平面的法向量就不同,但它们是共线向量.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱A 1D 1、A 1B 1的中点,在如图3-2-3所示的空间直角坐标系中,求:图3-2-3(1)平面BDD 1B 1的一个法向量. (2)平面BDEF 的一个法向量.【解】 设正方体ABCD -A 1B 1C 1D 1的棱长为2,则D (0,0,0),B (2,2,0),A (2,0,0),C (0,2,0),E (1,0,2)(1)连AC ,因为AC ⊥平面BDD 1B 1,所以AC →=(-2,2,0)为平面BDD 1B 1的一个法向量. (2)DB →=(2,2,0),DE →=(1,0,2).设平面BDEF 的一个法向量为n =(x ,y ,z ). ∴⎩⎪⎨⎪⎧n ·DB →=0n ·DE →=0, ∴⎩⎪⎨⎪⎧2x +2y =0x +2z =0, ∴⎩⎪⎨⎪⎧y =-x z =-12x .令x =2得y =-2,z =-1.∴n =(2,-2,1)即为平面BDEF 的一个法向量.长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是面对角线B 1D 1,A 1B 上的点,且D 1E=2EB 1,BF =2F A 1.求证:EF ∥AC 1.【思路探究】 (1)你能写出EF 、AC 1的方向向量吗?(2)两直线的方向向量满足什么条件则说明它们平行?【自主解答】 如图所示,分别以DA ,DC ,DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系,设DA =a ,DC =b ,DD 1=c ,则得下列各点的坐标:A (a,0,0),C 1(0,b ,c ),E (23a ,23b ,c ),F (a ,b 3,23c ).∴FE →=(-a 3,b 3,c 3),AC 1→=(-a ,b ,c ),∴FE →=13AC 1→.又FE 与AC 1不共线, ∴直线EF ∥AC 1.利用向量法证明线线平行的方法与步骤:图3-2-4如图3-2-4所示,在正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为DD 1和BB 1的中点.求证:四边形AEC 1F 是平行四边形.【证明】 以点D 为坐标原点,分别以DA →,DC →,DD 1→为正交基底建立空间直角坐标系,不妨设正方体的棱长为1,则A (1,0,0),E (0,0,12),C 1(0,1,1),F (1,1,12),∴AE →=(-1,0,12),FC 1→=(-1,0,12),EC 1→=(0,1,12),AF →=(0,1,12),∴AE →=FC 1→,EC 1→=AF →,∴AE →∥FC 1→,EC 1→∥AF →,又∵F ∉AE ,F ∉EC 1,∴AE ∥FC 1,EC 1∥AF , ∴四边形AEC 1F 是平行四边形.图3-2-5如图3-2-5,在正三棱柱ABC -A 1B 1C 1中,D 是AC 的中点,求证:AB 1∥平面DBC 1.【思路探究】 线面平行→线与面的法向量垂直→数量积为0【自主解答】 以A 为坐标原点建立空间直角坐标系.设正三棱柱的底面边长为a (a >0),侧棱长为b (b >0), 则A (0,0,0),B (32a ,a 2,0),B 1(32a ,a 2,b ),C 1(0,a ,b ),D (0,a2,0), ∴AB 1→=(32a ,a 2,b ),BD →=(-32a,0,0),DC 1→=(0,a 2,b ).设平面DBC 1的一个法向量为n =(x ,y ,z ), 则⎩⎨⎧ n ·BD →=-32ax =0,n ·DC 1→=a 2y +=0,∴⎩⎪⎨⎪⎧x =0,z =-a 2b y .不妨令y =2b ,则n =(0,2b ,-a ). 由于AB 1→·n =ab -ab =0,因此AB 1→⊥n . 又AB 1⊄平面DBC 1,∴AB 1∥平面DBC 1.利用空间向量证明线面平行一般有三种方法:方法一:证明直线的方向向量与平面内任意两个不共线的向量共面,即可用平面内的一组基底表示.方法二:证明直线的方向向量与平面内某一向量共线,转化为线线平行,利用线面平行判定定理得证.方法三:先求直线的方向向量,然后求平面的法向量,证明方向向量与平面的法向量垂直.在长方体ABCD -A 1B 1C 1D 1中,AA 1=2AB =2BC ,E ,F ,E 1分别是棱AA 1,BB 1,A 1B 1的中点.求证:CE ∥平面C 1E 1F .【证明】 以D 为原点,以DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设BC =1,则C (0,1,0),E (1,0,1),C 1(0,1,2),F (1,1,1),E 1(1,12,2).设平面C 1E 1F 的法向量为n =(x ,y ,z ), ∵C 1E 1→=(1,-12,0),FC 1→=(-1,0,1),∴⎩⎪⎨⎪⎧n ·C 1E 1→=0,n ·FC 1→=0,即⎩⎪⎨⎪⎧x =12y ,x =z ,取n =(1,2,1). ∵CE →=(1,-1,1),n ·CE →=1-2+1=0, ∴CE →⊥n ,且CE →⊄平面C 1E 1F . ∴CE ∥平面C 1E 1F .向量法证明空间平行关系图3-2-6(12分)如图3-2-6,在多面体ABCDEF 中,四边形ABCD 是正方形,EF ∥AB ,EF ⊥FB ,AB =2EF ,∠BFC =90°,BF =FC ,H 为BC 的中点.求证:FH ∥平面EDB .【思路点拨】 先通过推理证明FH ⊥平面ABCD ,建立空间直角坐标系,再设证明HF →、BE →、BD →共面.【规范解答】 ∵四边形ABCD 是正方形, ∴AB ⊥BC ,又EF ∥AB , ∴EF ⊥BC . 又EF ⊥FB , ∴EF ⊥平面BFC . ∴EF ⊥FH ,∴AB ⊥FH .2分 又BF =FC ,H 为BC 的中点, ∴FH ⊥BC .∴FH ⊥平面ABC .4分以H 为坐标原点,HB →为x 轴正方向,HF →为z 轴正方向. 建立如图所示的空间直角坐标系. 设BH =1,则B (1,0,0),D (-1,-2,0),E (0,-1,1),F (0,0,1).6分 ∴HF →=(0,0,1),BE →=(-1,-1,1),BD →=(-2,-2,0),设HF →=λ·BE →+μ·BD →=λ·(-1,-1,1)+μ(-2,-2,0)=(-λ-2μ,-λ-2μ,λ)8分 ∴(0,0,1)=(-λ-2μ,-λ-2μ,λ),∴⎩⎪⎨⎪⎧-λ-2μ=0λ=1,解得⎩⎪⎨⎪⎧λ=1μ=-12,∴HF →=BE →-12BD →10分∴向量HF →,BE →,BD →共面. 又HF 不在平面EDB 内, ∴HF ∥平面EDB .12分【思维启迪】 1.建立空间直角坐标系,通常需要找出三线两两垂直或至少找到线面垂直的条件.2.证明时,要注意空间线面关系与向量关系的联系与区别,注意所运用定理的条件要找全.1.利用向量解决立体几何问题的“三步曲”:(1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(2)进行向量运算,研究点、直线、平面之间的关系(距离和夹角等);(3)根据运算结果的几何意义来解释相关问题.2.证明线面平行问题,可以利用直线的方向向量和平面的法向量之间的关系;也可以转化为线线平行,利用向量共线来证明.1.若A (-1,0,1),B (1,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2)C .(2,1,3)D .(3,2,1)【解析】 AB →=(2,4,6)=2(1,2,3). 【答案】 A2.下列各组向量中不平行的是( ) A .a =(1,2,-2),b =(-2,-4,4) B .c =(1,0,0),d =(-3,0,0) C .e =(2,3,0),f =(0,0,0) D .g =(-2,3,5),h =(16,24,40)【解析】 ∵b =(-2,-4,4)=-2(1,2,-2)=-2a ,∴a ∥b ,同理:c ∥d ,e ∥f . 【答案】 D3.设平面α内两向量a =(1,2,1),b =(-1,1,2),则下列向量中是平面α的法向量的是( )A .(-1,-2,5)B .(-1,1,-1)C .(1,1,1)D .(1,-1,-1)【解析】 平面α的法向量应当与a 、b 都垂直,可以检验知B 选项适合. 【答案】 B4.根据下列各条件,判断相应的直线与直线、平面与平面、直线与平面的位置关系: (1)直线l 1,l 2的方向向量分别是a =(1,-3,-1),b =(8,2,2); (2)平面α,β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量,平面α的法向量分别是a =(1,-4,-3),u =(2,0,3). 【解】 (1)∵a ·b =1×8+(-3)×2+(-1)×2=0,∴l 1⊥l 2.(2)∵v =(-3,-9,0)=-3(1,3,0)=-3μ,∴α∥β. (3)∵a 、u 不共线,∴l 不与α平行,也不在α内. 又∵a ·u =-7≠0,∴l 与α不垂直. 故l 与α斜交.一、选择题1.(2013·吉林高二检测)l 1的方向向量为v 1=(1,2,3),l 2的方向向量v 2=(λ,4,6),若l 1∥l 2,则λ=( )A .1B .2C .3D .4 【解析】 ∵l 1∥l 2,∴v 1∥v 2,则1λ=24,∴λ=2.【答案】 B2.(2013·青岛高二检测)若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( ) A .相交B .平行C .在平面内D .平行或在平面内【解析】 ∵AB →=λCD →+μCE →,∴AB →、CD →、CE →共面,则AB 与平面CDE 的位置关系是平行或在平面内.【答案】 D3.已知平面α内有一个点A (2,-1,2),α的一个法向量为n =(3,1,2),则下列点P 中,在平面α内的是( )A .(1,-1,1)B .(1,3,32)C .(1,-3,32)D .(-1,3,-32)【解析】 对于B ,AP →=(-1,4,-12),则n ·AP →=(3,1,2)·(-1,4,-12)=0,∴n ⊥AP →,则点P (1,3,32)在平面α内.【答案】 B4.已知A (1,1,0),B (1,0,1),C (0,1,1),则平面ABC 的一个法向量的单位向量是( ) A .(1,1,1) B .(33,33,33) C .(13,13,13)D .(33,33,-33) 【解析】 设平面ABC 的法向量为n =(x ,y ,z ),AB →=(0,-1,1),BC →=(-1,1,0),AC→=(-1,0,1),则⎩⎨⎧AB →·n =-y +z =0BC →·n =-x +y =0AC →·n =-x +z =0∴x =y =z ,又∵单位向量的模为1,故只有B 正确.【答案】B图3-2-75.如图3-2-7,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,则( )①A 1M ∥D 1P ; ②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1; ④A 1M ∥平面D 1PQB 1. 以上正确说法的个数为( )A .1B .2C .3D .4【解析】 A 1M →=A 1A →+AM →=A 1A →+12AB →,D 1P →=D 1D →+DP →=A 1A →+12AB →,∴A 1M →∥D 1P →,所以A 1M ∥D 1P ,由线面平行的判定定理可知,A 1M ∥面DCC 1D 1,A 1M ∥面D 1PQB 1.①③④正确.【答案】 C 二、填空题6.(2013·泰安高二检测)已知直线l 的方向向量为(2,m,1),平面α的法向量为(1,12,2),且l ∥α,则m =________.【解析】 ∵l ∥α,∴l 的方向向量与α的法向量垂直, ∴(2,m,1)·(1,12,2)=2+12m +2=0,∴m =-8.【答案】 -87.已知A (4,1,3),B (2,3,1),C (3,7,-5),点P (x ,-1,3)在平面ABC 内,则x =________. 【解析】 AB →=(-2,2,-2),AC →=(-1,6,-8),AP →=(x -4,-2,0),由题意知A 、B 、C 、P 共点共面,∴AP →=λAB →+μAC →=(-2λ,2λ,-2λ)+(-μ,6μ,-8μ)=(-2λ-μ,2λ+6μ,-2λ-8μ).∴⎩⎪⎨⎪⎧ 2λ+6μ=-2-2λ-8μ=0,∴⎩⎪⎨⎪⎧λ=-4μ=1,而x -4=-2λ-μ,∴x =11. 【答案】 118.下列命题中,正确的是________.(填序号)①若n 1,n 2分别是平面α,β的一个法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的一个法向量,则α⊥β ⇔n 1·n 2=0; ③若n 是平面α的一个法向量,a 与平面α共面,则n ·a =0; ④若两个平面的法向量不垂直,则这两个平面一定不垂直. 【解析】 ②③④一定正确,①中两平面有可能重合. 【答案】 ②③④ 三、解答题图3-2-89.已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图3-2-8所示),并且OE →=kOA →,OF →=kOB →,OH →=kOD →,AC →=AD →+mAB →,EG →=EH →+mEF →.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)AC →∥EG →; (3)OG →=kOC →.【解】 (1)由AC →=AD →+mAB →,EG →=EH →+mEF →,知A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面.(2)∵EG →=EH →+mEF →=OH →-OE →+m (OF →-OE →) =k (OD →-OA →)+km (OB →-OA →)=kAD →+kmAB → =k (AD →+mAB →)=kAC →, ∴AC →∥EG →.(3)由(2)知OG →=EG →-EO →=kAC →-kAO →=k (AC →-AO →)=kOC →. ∴OG →=kOC →.10.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,DC 的中点,求证:AE →是平面A 1D 1F 的法向量.【证明】 设正方体的棱长为1,建立如图所示的空间直角坐标系,则A (1,0,0),E (1,1,12),D 1(0,0,1),F (0,12,0),A 1(1,0,1),AE →=(0,1,12), D 1F →=(0,12,-1),A 1D 1→=(-1,0,0).∵AE →·D 1F →=(0,1,12)·(0,12,-1)=12-12=0, 又AE →·A 1D 1→=0, ∴AE →⊥D 1F →,AE →⊥A 1D 1→. 又A 1D 1∩D 1F =D 1, ∴AE ⊥平面A 1D 1F ,∴AE →是平面A 1D 1F 的法向量.图3-2-911.如图3-2-9,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,∠ABC =π4,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点,证明:直线MN ∥平面OCD .【证明】 作AP ⊥CD 于点P .如题图分别以AB 、AP 、AO 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.A (0,0,0),B (1,0,0),P (0,22,0),D (-22,22,0),O (0,0,2),M (0,0,1),N (1-24,24,0).MN →=(1-24,24,-1),OP →=(0,22,-2),OD →=(-22,22,-2).设平面OCD 的法向量为n =(x ,y ,z ), 则n ·OP →=0,n ·OD →=0.即⎩⎨⎧22y -2z =0-22x +22y -2z =0,取z =2,则y =4,x =0,得n =(0,4,2).∵MN →·n =(1-24,24,-1)·(0,42)=0,∴MN ∥平面OCD .(教师用书独具)如图所示,在直角梯形ABCP 中,AP ∥BC ,AP ⊥AB ,AB =BC =12AP =2,D 是AP 的中点,E 、F 、G 分别为PC 、PD 、CB 的中点,将△PCD 沿CD 折起,使得PD ⊥平面ABCD .试用向量方法证明AP ∥平面EFG .【自主解答】 如图,以D 为原点,以DA →、DC →、DP →为方向向量建立空间直角坐标系Dxyz ,则有关点及向量的坐标为: P (0,0,2),C (0,2,0),G (1,2,0),E (0,1,1),F (0,0,1),A (2,0,0). AP →=(-2,0,2),EF →=(0,-1,0),EG →=(1,1,-1). 设平面EFG 的法向量为n =(x ,y ,z ). ∴⎩⎪⎨⎪⎧n ·EF →=0n ·EG →=0⇒⎩⎪⎨⎪⎧ -y =0x +y -z =0⇒⎩⎪⎨⎪⎧x =z ,y =0.取n =(1,0,1).∵n ·AP →=1×(-2)+0×0+1×2=0, ∴n ⊥AP →.又AP ⊄平面EFG ,∴AP ∥平面EFG .如图,四棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 与底面成的角为45°,底面ABCD 为直角梯形,∠ABC =∠BAD =90°,P A =BC =12AD =1.问:在棱PD 上是否存在一点E ,使得CE ∥平面P AB ?若存在,求出E 点的位置,若不存在,请说明理由.【解】 分别以AB 、AD 、AP 为x ,y ,z 轴建立空间直角坐标系,如图.则P (0,0,1),C (1,1,0),D (0,2,0), 设E (0,y ,z ),则 PE →=(0,y ,z -1), PD →=(0,2,-1), ∵PE →∥PD →,∴y (-1)-2(z -1)=0,①∵AD →=(0,2,0)是平面P AB 的法向量, CE →=(-1,y -1,z ), ∴由CE ∥平面P AB, 可得CE →⊥AD →. ∴(-1,y -1,z )·(0,2,0)=2(y -1)=0. ∴y =1,代入①式得z =12.∴E 是PD 的中点,即存在点E 为PD 中点时,CE ∥平面P AB .。
§3.2 立体几何中的向量方法(一)——空间向量与平行关系
§3.2立体几何中的向量方法(一)——空间向量与平行关系课时目标 1.理解直线的方向向量与平面的法向量,并能运用它们证明平行问题.2.能用向量语言表述线线,线面,面面的平行关系.1.直线的方向向量直线的方向向量是指和这条直线________或______的向量,一条直线的方向向量有________个.2.平面的法向量直线l⊥α,取直线l的____________a,则向量a叫做平面α的__________.3.空间中平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),且a2b2c2≠0,则l∥m⇔______________⇔__________⇔________________________.(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔________⇔__________⇔________________________.(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔__________⇔__________⇔________________________.一、选择题1.若n=(2,-3,1)是平面α的一个法向量,则下列向量能作为平面α的一个法向量的是()A.(0,-3,1) B.(2,0,1)C.(-2,-3,1) D.(-2,3,-1)2.若A(-1,0,1),B(1,4,7)在直线l上,则直线l的一个方向向量为()A.(1,2,3) B.(1,3,2)C.(2,1,3) D.(3,2,1)3.已知平面α上的两个向量a=(2,3,1),b=(5,6,4),则平面α的一个法向量为() A.(1,-1,1) B.(2,-1,1)C.(-2,1,1) D.(-1,1,-1)4.从点A(2,-1,7)沿向量a=(8,9,-12)的方向取线段长AB=34,则B点的坐标为() A.(-9,-7,7) B.(18,17,-17)C.(9,7,-7) D.(-14,-19,31)5.在正方体ABCD—A1B1C1D1中,棱长为a,M、N分别为A1B、AC的中点,则MN与平面BB1C1C的位置关系是()A.相交B.平行C.垂直D.不能确定6.已知线段AB的两端点的坐标为A(9,-3,4),B(9,2,1),则与线段AB平行的坐标平面是()A .xOyB .xOzC .yOzD .xOy 或yOz二、填空题7.已知A (1,0,0),B (0,1,0),C (0,0,1),则平面ABC 的单位法向量坐标为________________________.8.已知直线l 的方向向量为(2,m,1),平面α的法向量为⎝⎛⎭⎫1,12,2,且l ∥α,则m =________. 9.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 、P 、Q 分别为棱AB 、CD 、BC 的中点,若平行六面体的各棱长均相等,则 ①A 1M ∥D 1P ; ②A 1M ∥B 1Q ;③A 1M ∥面DCC 1D 1; ④A 1M ∥面D 1PQB 1.以上结论中正确的是________.(填写正确的序号) 三、解答题10.已知平面α经过三点A (1,2,3),B (2,0,-1),C (3,-2,0),试求平面α的一个法向量. 11.如图所示,在空间图形P —ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,CD ∥AB ,∠ABC =∠BCD =90°,AB =4,CD =1,点M 在PB 上,且PB =4PM ,∠PBC =30°,求证:CM ∥平面P AD .【能力提升】12.在正方体ABCD—A1B1C1D1中,O是B1D1的中点,求证:B1C∥平面ODC1.13.如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=60°,P A⊥平面ABCD,P A=AC =a,点E在PD上,且PE∶ED=2∶1.在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.平行关系的常用证法(1)证明线线平行只需要证明表示两条直线的向量满足实数倍数关系,如证明AB ∥CD只需证AB →=λCD →.证明线面平行可转化为证直线的方向向量和平面的法向量垂直,然后说明直线在平面外.证面面平行可转化证两面的法向量平行.(2)证明线面平行问题或面面平行问题时也可利用立体几何中的定理转化为线线平行问题,再利用向量进行证明.§3.2 立体几何中的向量方法(一)——空间向量与平行关系知识梳理1.平行 重合 无数 2.方向向量 法向量3.(1)a ∥b a =λb a 1a 2=b 1b 2=c 1c 2(a 2b 2c 2≠0)(2)a ⊥u a·u =0 a 1a 2+b 1b 2+c 1c 2=0(3)u ∥v u =k v a 1a 2=b 1b 2=c 1c 2(a 2b 2c 2≠0)作业设计1.D [只要是与向量n 共线且非零的向量都可以作为平面α的法向量.故选D.]2.A [∵AB →=(2,4,6),而与AB →共线的非零向量都可以作为直线l 的方向向量,故选A.]3.C [显然a 与b 不平行,设平面α的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧a·n =0,b·n =0, ∴⎩⎪⎨⎪⎧2x +3y +z =0,5x +6y +4z =0. 令z =1,得x =-2,y =1,∴n =(-2,1,1).]4.B [设B (x ,y ,z ),AB →=(x -2,y +1,z -7) =λ(8,9,-12),λ>0.故x -2=8λ,y +1=9λ,z -7=-12λ, 又(x -2)2+(y +1)2+(z -7)2=342, 得(17λ)2=342,∵λ>0,∴λ=2.∴x =18,y =17,z =-17,即B (18,17,-17).]5.B [可以建立空间直角坐标系,通过平面的法向量AB →和MN →的关系判断.]6.C [AB →=(0,5,-3),AB 与平面yOz 平行.]7.⎝⎛⎭⎫33,33,33或⎝⎛⎭⎫-33,-33,-338.-8解析 ∵l ∥α,∴l 的方向向量与α的法向量垂直.∴(2,m,1)·⎝⎛⎭⎫1,12,2=2+12m +2=0,∴m =-8. 9.①③④解析 ∵A 1M →=AM →-AA 1→=D P →-DD 1→=D 1P →, ∴A 1M ∥D 1P .∵D 1P ⊂面D 1PQB 1,∴A 1M ∥面D 1PQB 1. 又D 1P ⊂面DCC 1D 1,∴A 1M ∥面DCC 1D 1. ∵B 1Q 为平面DCC 1D 1的斜线,∴B 1Q 与D 1P 不平行,∴A 1M 与B 1Q 不平行. 10.解 ∵A (1,2,3),B (2,0,-1),C (3,-2,0),∴AB →=(1,-2,-4),AC →=(2,-4,-3), 设平面α的法向量为n =(x ,y ,z ).依题意,应有n ·AB →=0,n ·AC →=0. 即⎩⎪⎨⎪⎧ x -2y -4z =02x -4y -3z =0,解得⎩⎪⎨⎪⎧x =2y z =0. 令y =1,则x =2.∴平面α的一个法向量为n =(2,1,0).11.证明 建立如图所示的空间直角坐标系Cxyz . 方法一 ∵∠PBC =30°,PC =2, ∴BC =23,PB =4.于是D (1,0,0),C (0,0,0),A (4,23,0),P (0,0,2). ∵PB =4PM ,∴PM =1,M ⎝⎛⎭⎫0,32,32.∴CM →=⎝⎛⎭⎫0,32,32,DP →=(-1,0,2),DA →=(3,23,0).设CM →=x DP →+y DA →,其中x ,y ∈R .则⎝⎛⎭⎫0,32,32=x (-1,0,2)+y (3,23,0).∴⎩⎨⎧-x +3y =023y =322x =32,解得x =34,y =14.∴CM →=34DP →+14DA →,∴CM →,DP →,DA →共面.∵CM ⊄平面P AD ,∴CM ∥平面P AD .方法二 由方法一可得CM →=⎝⎛⎭⎫0,32,32,DP →=(-1,0,2),DA →=(3,23,0).设平面P AD的法向量为n =(x ,y ,z ),则有,即⎩⎨⎧-x +2z =03x +23y =0.令x =1,解得z =12,y =-32.故n =⎝⎛⎭⎫1,-32,12.又∵CM →·n =⎝⎛⎭⎫0,32,32·⎝⎛⎭⎫1,-32,12=0.∴CM →⊥n ,又CM ⊄平面P AD . ∴CM ∥平面P AD .12.证明 方法一 ∵B 1C →=A 1D →,B 1∉A 1D , ∴B 1C ∥A 1D ,又A 1D ⊂平面ODC 1,∴B 1C ∥平面ODC 1.方法二 ∵B 1C →=B 1C 1→+B 1B →=B 1O →+OC 1→+D 1O →+OD →=OC 1→+OD →. ∴B 1C →,OC 1→,OD →共面.又B 1C ⊄平面ODC 1,∴B 1C ∥平面ODC 1. 方法三建系如图,设正方体的棱长为1,则可得 B 1(1,1,1),C (0,1,0), O ⎝⎛⎭⎫12,12,1,C 1(0,1,1), B 1C →=(-1,0,-1),OD →=⎝⎛⎭⎫-12,-12,-1,OC 1→=⎝⎛⎭⎫-12,12,0. 设平面ODC 1的法向量为n =(x 0,y 0,z 0),则得⎩⎨⎧-12x 0-12y 0-z 0=0, ①-12x 0+12y 0=0, ②令x 0=1,得y 0=1,z 0=-1,∴n =(1,1,-1). 又B 1C →·n =-1×1+0×1+(-1)×(-1)=0, ∴B 1C →⊥n ,且B 1C ⊄平面ODC 1, ∴B 1C ∥平面ODC 1.13.解 方法一 当F 是棱PC 的中点时,BF ∥平面AEC . ∵BF →=BC →+12CP →=AD →+12(CD →+DP →)=AD →+12(AD →-AC →)+32(AE →-AD →)=32AE →-12AC →. ∴BF →、AE →、AC →共面. 又BF ⊄平面AEC , ∴BF ∥平面AEC . 方法二如图,以A 为坐标原点,直线AD 、AP 分别为y 轴、z 轴,过A 点垂直于平面P AD 的直线为x 轴,建立空间直角坐标系.由题意,知相关各点的坐标分别为A (0,0,0),B ⎝⎛⎭⎫32a ,-12a ,0,C ⎝⎛⎭⎫32a ,12a ,0,D (0,a,0),P (0,0,a ),E ⎝⎛⎭⎫0,23a ,13a . 所以AE →=⎝⎛⎭⎫0,23a ,13a ,AC →=⎝⎛⎭⎫32a ,12a ,0, AP →=(0,0,a ),PC →=⎝⎛⎭⎫32a ,12a ,-a ,BP →=⎝⎛⎭⎫-32a ,12a ,a .设点F 是棱PC 上的点,PF →=λPC →=⎝⎛⎭⎫32aλ,12aλ,-aλ,其中0<λ<1, 则BF →=BP →+PF →=⎝⎛⎭⎫32aλ-1 ,12a 1+λ,a 1-λ,令BF →=λ1AC →+λ2AE →即⎩⎪⎨⎪⎧λ-1=λ1,1+λ=λ1+43λ2,1-λ=13λ2.解得λ=12,λ1=-12,λ2=32,即λ=12时,BF →=-12AC →+32AE →,即F 是PC 的中点时,BF →、AC →、AE →共面.又BF ⊄平面AEC ,所以当F 是棱PC 的中点时,BF∥平面AEC.。
空间向量与平行、垂直关系
Courseware template
证明:由题意得AB,BC,B1B两两垂直, 以B为原点,分别以BA,BC,BB1所在直线 为x,y,z轴,建立如图所示的空间直角坐 标系,则A(2,0,0),A1(2,0,1),C(0, 2,0),C1(0,2,1),
On the evening of July 24, 2021
On the evening of July 24, 2021
Courseware template
【证明】 如图所示建立空间直角坐标系 Dxyz, 则有 D(0,0,0),A(2,0,0),C(0,2,0), C1(0,2,2),E(2,2,1),F(0,0,1),B1(2, 2,2), 所以F→C1=(0,2,1), D→A=(2,0,0),A→E=(0,2,1).
On the evening of July 24, 2021
Courseware template
变式训练 3. 如图,在直三棱柱ABCA1B1C1中,AB⊥BC ,AB=BC=2,BB1=1,E为BB1的中点,求 证:平面AEC124, 2021
空间向量与平行、垂直关系
It is applicable to work report, lecture and teaching
Courseware template
3.2 立体几何中的向量方法
第1课时 空间向量与平行、垂直关系
On the evening of July 24, 2021
学习导航 学习目标
Courseware template
【解】 如图,建立空间直角坐标系. 设正方体的棱长为 1, 则 A1(1,0,1),B1(1,1,1),
E21,1,0,C1(0,1,1),D(0,0,0), F0,1,12.(1 分)
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法第一课时空间向量与平行、垂直关系a21
(3)根据法向量的定义建立关于x,y,z的方程组:
n n
a b
0, 0.
(4)解方程组,取其中的一组解,即得该平面的一个法向量.由于平面的法
向量有无数个,故可在方程组的解中取一个较简单的作为平面的法向量.
7.利用空间向量表示立体几何中的平行与垂直关系 因为直线的方向向量与平面的法向量可以确定直线与平面的位置关系,所 以我们可以利用直线的方向向量与平面的法向量来研究空间直线、平面 的平行(或垂直)问题. 设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为u,v,则
4.已知直线l的方向向量为(2,m,1),平面α的法向量为(1, 1 ,2),且l∥α,
2
则m=
.
答案:-8
5.若平面α,β的法向量分别为(-1,2,4),(x,-1,-2),并且α⊥β,则x的
值为
.
答案:-10
课堂探究
题型一 求平面的法向量 【例1】 如图所示,在四棱锥S-ABCD中,底面是直角梯形,∠ABC=90°, SA⊥底面ABCD,且SA=AB=BC=1,AD= 1 ,建立适当的空间直角坐标系,求平面 SCD与平面SBA的一个法向量. 2
法三
因为 MN
= C1N
- C1M
=
1 2
D1
A1
-
1 2
D1D
=
1 2
(
DB +
BA )-
1 2
(
D1 A1
+
A1D
)=
1 2
DB
+
1 2
BA
-
1 2
D1 A1
-
1 2
A1D
=
1 2
19-20版 第3章 3.2 第1课时 空间向量与平行关系
栏目导航
令y=1,得z=-1,x=-1,则n=(-1,1,-1), ∴A→B·n=-2+0+2=0,即A→B⊥n. ∵AB 平面DEG, ∴AB∥平面DEG.
栏目导航
栏目导航
2.长方体ABCD-A1B1C1D1中,E,F分别是面对角线B1D1,A1B 上的点,且D1E=2EB1,BF=2FA1.求证:EF∥AC1.
栏目导航
[证明] 如图所示,分别以DA,DC,DD1所在的直线为x轴、y 轴、z轴建立空间直角坐标系,设DA=a,DC=b,DD1=c,则得下 列各点的坐标:
栏目导航
(2)∵AD⊥AB,AD⊥SA,AB∩SA=A,∴AD⊥平面SAB, ∴A→D=12,0,0是平面SAB的一个法向量. (3)在平面SCD中,D→C=12,1,0,S→C=(1,1,-1). 设平面SCD的法向量是n=(x,y,z), 则n⊥D→C,n⊥S→C,所以nn··DS→→CC==00,,
A(a,0,0),C1(0,b,c),E23a,23b,c,Fa,b3,32c. ∴F→E=-a3,b3,3c,A→C1=(-a,b,c), ∴F→E=13A→C1. 又FE与AC1不共线,∴直线EF∥AC1.
栏目导航
利用空间向量证明线面、面面平行 [探究问题] 在用向量法处理问题时,若几何体的棱长未确定,应如何处 理? [提示] 可设几何体的棱长为1或a,再求点的坐标.
栏目导航
利用空间向量证明线线平行 【例2】 如图所示,在正方体ABCD-A1B1C1D1中,E,F分别为 DD1和BB1的中点.求证:四边形AEC1F是平行四边形.
栏目导航
高中数学第三章3.2立体几何中的向量方法第1课时空间向量与平行关系课件新人教A版选修2_1
[规范解答]
∵四边形 AA1B1B,ADD1A1,ABCD 均为正方形,∴AA1⊥AB,
→ → → AA1⊥AD,AB⊥AD 且 AA1=AB=AD,以 A 为原点,分别以AB,AD,AA1为 x 轴, y 轴和 z 轴建立如图空间直角坐标系, 设 AB=AD=AA1=1, 可得 A(0,0,0), B(1,0,0), D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而 E 为 B1D1 的中点, 1 1 ∴E(2,2,1). 设平面 A1DE 的法向量 n1=(x1,y1,z1), 1 1 → → 又A1E=(2,2,0),A1D=(0,1,-1), → → 由 n1⊥A1E,n1⊥A1D,
互动探究学案
命题方向1 ⇨求直线的方向向量,平面的法向量
如图所示,在多面体 A1B1D1DCBA中,四边形AA1B1B, ADD1A1,ABCD均为正方形,E为B1D1的 中点,过A1,D,E的平面交CD1于F,求 平面A1DE、平面A1B1CD的一个法向量. [思路分析] 先设出平面A1DE、平面 A1B1CD的法向量,利用法向量与平面内 的两个向量的数量积为零,列出方程组 求解.
x1=-1, 1 1 x1+ y1=0, 2 得2 取 z1=1,则y1=1, 则 n1=(-1,1,1). z =1, y1-z1=0, 1 设平面 A1B1CD 的法向量 n2=(x2,y2,z2), → → 由A1B1=(1,0,0),A1D=(0,1,-1), 而
1.用向量表示点的位置 一定点O (1)基点:在空间中,我们取________ ____作为基点. → 向量OP 来表示. (2)向量表示:空间中任意一点P的位置可以用__________ → 向量OP . (3)点的位置向量:点P的位置向量为__________
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 立体几何中的向量方法第1课时空间向量与平行关系【课标要求】1.理解直线的方向向量与平面的法向量,并能运用它们证明平行问题.2.能用向量语言表述线线、线面、面面的平行关系.【核心扫描】1.求直线的方向向量、平面的法向量.(重点)2.用方向向量、法向量处理线线、线面、面面间的平行关系.(重点、难点)自学导引1.直线的方向向量直线的方向向量是指和这条直线______平行或共线_____的向量.想一想:直线的方向向量唯一吗?若不唯一,它们之间有怎样的关系?提示不唯一.直线的方向向量有无数条,它们都是平行向量.2.平面的法向量直线l⊥α,取直线l的____方向向量a _______,则a叫做平面α的法向量.想一想:平面的法向量唯一吗?若不唯一,它们之间的关系怎样?提示不唯一,平面的法向量有无数条,它们都是平行向量.空间平行关系的向量表示(1)线线平行设直线l,m的方向向量分别为a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔a∥b⇔____a =λb______⇔a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔a⊥u⇔___a·u=0_____⇔ _____a1a2+b1b2+c1c2=0______________ .(3)面面平行设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔u∥v⇔___u=λv_____⇔ __________a1=λa2,b1=λb2,c1=λc2________(λ∈R).试一试:证明过程中,如何确定直线的方向向量和平面的法向量?提示实际应用中,直线的方向向量即把线段看作有向线段时表示的向量,平面的法向量一般可建系后用待定系数法求出.名师点睛 1.平面法向量的求法(1)当已知平面的垂线时,在垂线上取一非零向量即可作为平面的法向量.(2)当已知平面α内两不共线向量a=(a1,a2,a3),b=(b1,b2,b3)时,常用待定系数法求法向量:设法向量),,(z y x n =,由⎪⎩⎪⎨⎧=⋅=⋅00n b ,得⎩⎨⎧=++=++00321321z b y b x b z a y a x a 在上述方程组中,对x ,y ,z 中的任一个赋值,求出另两个,所得n 即为平面的法向量.2.用向量方法证明空间中的平行关系3.向量法解决几何问题的步骤(1)建立空间图形与空间向量的关系,把几何问题转化为向量问题.(2)进行向量的加减、数乘、数量积运算,得出向量运算的结果.(3)把向量运算的结果转化为相应的几何问题的结果.题型一 利用方向向量和法向量判定线面位置关系【例1】(1)设a ,b 分别是不重合的直线l 1,l 2的方向向量,根据下列条件判断l 1,l 2的位置关系:①a =(4,6,-2),b =(-2,-3,1);②a =(5,0,2),b =(0,1,0);(2)设u ,v 分别是不同的平面α,β的法向量,根据下列条件判断α,β的位置关系;②u =(3,0,0),v =(-2,0,0); (3)设u 是平面α的法向量,a 是直线l 的方向向量,根据下列条件判断平面α与l 的位置关系;①u =(2,2,-1),a =(-6,8,4);②u =(2,-3,0),a =(8,-12,0).解 (1)①∵a =(4,6,-2),b =(-2,-3,1),∴a =-2b ,∴a ∥b ,∴l 1∥l 2.②∵a =(5,0,2),b =(0,1,0),∴a ·b =0,∴a ⊥b ,∴l 1⊥l 2.①u =(-1,1,-2),v =(3,2,-12);规律方法 利用直线的方向向量与平面的法向量判断直线与直线、直线与平面、平面与平面的位置关系是直线的方向向量与平面的法向量的基本应用,解决此类问题时需注意以下几点:(1)能熟练的判断两向量的共线与垂直;(2)搞清直线的方向向量,平面的法向量和直线、平面位置关系之间的内在联系;(3)将向量问题转化为几何问题时的等价性.【变式1】根据下列各条件,判断相应的直线与直线、平面与平面、直线与平面的位置关系.(1)直线l 1、l 2的方向向量分别是a =(1,-3,-1),b =(8,2,2);(2)平面α、β的法向量分别是u =(1,3,0),v =(-3,-9,0);(3)直线l 的方向向量、平面α的法向量分别是a =(1,-4,-3),μ=(2,0,3);(4)直线l 的方向向量、平面α的法向量分别是a =(3,2,1),u =(-1,2,-1).解 (1)∵a =(1,-3,-1),b =(8,2,2),∴a ·b =8-6-2=0,∴a ⊥b ,∴l 1⊥l 2.(2)∵u =(1,3,0),v =(-3,-9,0),∴v =-3u ,∴u ∥v ,∴α∥β.(3)∵a =(1,-4,-3),u =(2,0,3),∴a 与u 即不共线,也不垂直,∴l 与平面α斜交.(4)∵a =(3,2,1),u =(-1,2,-1),∴a ·u =-3+4-1=0,∴a ⊥u ,∴l ⊂α或l ∥α.题型二 求平面的法向量【例2】 已知点A (a ,0,0)、B (0,b ,0)、C (0,0,c ),求平面ABC 的一个法向量.(2)①∵u =(-1,1,-2),v =(3,2,-12), ∴u ·v =-3+2+1=0,∴u ⊥v ,∴α⊥β. ②∵u =(3,0,0),v =(-2,0,0), ∴u =-32v ,∴u ∥v ,∴α∥β. (3)①∵u =(2,2,-1),a =(-6,8,4), ∴u ·a =-12-4+16=0, ∴u ⊥a ,∴l ⊂α或l ∥α. ②∵u =(2,-3,0),a =(8,-12,0). ∴u =14a ,∴u ∥a ,∴l ⊥α.【变式2】如图,ABCD 是直角梯形,090=∠ABC ,ABCD SA 平面⊥,1===BC AB SA ,21=AD ,求平面SCD 与平面SBA 的法向量。
SACB D解 设坐标原点为O , 由已知可得:AB →=OB →-OA → =(0,b ,0)-(a ,0,0)=(-a ,b ,0), AC →=OC →-OA →=(0,0,c )-(a ,0,0)=(-a ,0,c ). 设平面ABC 的一个法向量为n =(x ,y ,z ), 则n ·AB →=(x ,y ,z )·(-a ,b ,0)=-ax +by =0, n ·AC →=(x ,y ,z )·(-a ,0,c )=-ax +cz =0. 于是得y =a b x ,z =a c x . 不妨令x =bc ,则y =ac ,z =ab . 因此,可取n =(bc ,ac ,ab )为平面ABC 的一个法向量. 解 ∵AD 、AB 、AS 是三条两两垂直的线段,∴以A 为原点,以AD →、AB →、AS →的方向为x 轴,y 轴,z 轴的正方向建立坐标系,则A (0,0,0),D (12,0,0),C (1,1,0),S (0,0,1), AD →=(12,0,0)是平面SAB 的法向量,设平面SCD 的法向量n =(1,λ,u ), 则n ·DC →=(1,λ,u )·(12,1,0)=12+λ=0,∴λ=-12. n ·DS →=(1,λ,u )·(-12,0,1)=-12+u =0, =(1,-1,1).规律方法 平面的法向量有无数条,一般用待定系数法求解,解一个三元一次方程组,求得其中一条即可,构造方程组时,注意所选平面内的两向量是不共线的,赋值时保证所求法向量非零,本题中法向量的设法值得借鉴.题型三 利用空间向量证明平行问题【例3】已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E 、F 分别是BB 1、DD 1的中点,求证:(1)FC 1∥平面ADE ;(2)平面ADE ∥平面B 1C 1F .证明 如图所示建立空间直角坐标系D -xyz ,则有D (0,0,0)、A (2,0,0)C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC 1→=(0,2,1), DA →=(2,0,0),AE →=(0,2,1). 2分 (1)设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0, 4分 得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1, 所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1. 又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . 7分 (2)∵C 1B 1→=(2,0,0), 设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0z 2=-2y 2 10分 令z 2=2得y 2=-1, 所以n 2=(0,-1,2),因为n 1=n 2, 所以平面ADE ∥平面B 1C 1F . 12分规律方法 利用向量法解此类题的关键是建立适当的坐标系,求出平面的法向量,通过分析直线的方向向量、平面的法向量之间的关系进行证明.【变式3】 如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1B 1,A 1D 1,B 1C 1,C 1D 1的中点.求证:平面AMN ∥平面EFDB .证明 如图,分别以DA 、DC 、DD 1所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系. 设正方体棱长为a ,则A (a ,0,0),A 1(a ,0,a ),D 1(0,0,a ),B 1(a ,a ,a ),B (a ,a ,0),C 1(0,a ,a ).∴N (a2,0,a ),M (a ,a 2,a ),E (a2,a ,a ),F (0,a2,a ),∴AN →=(-a2,0,a ),NM →=(a 2,a2,0),DB →=(a ,a ,0),DF →=(0,a 2,a ),设平面AMN 与平面EFDB 的法向量分别为m =(x 1,y 1,z 1)和n =(x 2,y 2,z 2),则⎩⎪⎨⎪⎧m ·AN →=0,m ·NM →=0,∴⎩⎪⎨⎪⎧-a2x 1+0×y 1+az 1=0,a2x 1+a 2y 1+0×z 1=0,∴y 1=-x 1=-2z 1,取z 1=1,∴平面AMN 的一个法向量为m =(2,-2,1),同理由⎩⎪⎨⎪⎧n ·DB →=0,n ·DF →=0,可得x 2=-y 2,y 2=-2z 2,令z 2=1,∴平面EFDB 的一个法向量为n =(2,-2,1),∵m =n ,∴m ∥n ,方法技巧 探索性、存在性问题的解题技巧探索性、存在性问题是条件不完备和结论不确定的问题,这类问题对学生解决问题、处理问题的能力要求较高.立体几何中的探索性、存在性问题,是比较有思维层次的,对能力要求非常高.利用向量的方法,可以将这类问题由立体几何问题转化成为代数的方程式或不等式的解的问题,降低了问题的难度.【例4】如图,四棱柱P -ABCD 中,ABCD PA 平面⊥PB 与底面成的角为045,底面ABCD 为直角梯形,090=∠=∠BAD ABC ,121===AD BC PA ,问在棱PD 上是否存在一点E ,使PAB CE 平面//?若存在,求出E 点的位置;若不存在,请说明理由。