Covariant Gravitational Equations on Brane World with Gauss-Bonnet term

合集下载

大亚湾反应堆中微子实验进展

大亚湾反应堆中微子实验进展
框架软件结构
宇宙线事例的模拟
31
探测器模拟
42.5cm, 91%
灵敏度和靶总靶质量的关系
中子探测效率与集光层厚度的关系
4x20 吨
15cm
PMT对液闪中不同位去
• 去年以来顺利通过了一系列重要的评审 • 2007年3月, 土建初步设计评审 • 2007年4月, 核安全评审 • 2007年4月, 美国能源部CD-1评审会 • 2007年8月, 科技部对大亚湾项目初步设计报告进
• θ13目前最好的结果由Chooz给出, 而CP破坏的相位还没有任何测量。 • 大多数理论模型预言sin22q13 ~ 0.001-0.1 • θ13的精确测量 • 其结果将决定未来轻子区CP破坏的测量, 从而有可能解决宇宙中正反
物质的不对称之谜。 • 对标准模型的扩展提供更强的约束。
90%CL
At m231 = 2.5 103 eV2, sin22 < 0.15
逊分校 ,弗吉尼亚工学院和州立大学
~ 200位研究人员
中国 (18) 高能所,北师大, 成都理工大学,原子能
院,中广核,东莞理工学院,南京大 学,南开大学,山东大学,深圳大学 ,清华大学,中国科技大学,中山大 学, 香港大学,香港中文大学,台湾
大学,交通大学,联合大学
3
为什么是θ13
• 三味中微子振荡模型由三个混合角, 两个质量方差, 一个CP相位描述, θ13是混合角之一。
16
钢罐总体机械设计
尺寸重量受严格限制 足够的强度 接口复杂
电缆穿出 4m有机玻璃罐
反射板
最小元分析 应力分布
桶底与反射板
17
支撑平台与吊具
• 支撑平台 • 中心探测器在水池中的支撑平台已完成工程设计, 并招标。 • 要求支撑110吨探测器, 水平度可调至毫米量级(刻度装置要求) • 吊具 • 装配用35吨吊具, 安装用130吨吊具。 • 已完成概念设计和详细的技术要求文档, 将由专业公司设计生产 • 2008年2月底完成设计, 2008年6月底完成生产

TheKlein-Gordonequation:克莱因戈登方程

TheKlein-Gordonequation:克莱因戈登方程
(24)
where the Lagrangian density satisfies the Euler-Lagrange equations of motions
(25)
such that the Euler-Lagrange equations of motion just give the Klein-Gordon equation (12) and its complex conjugate.
as the basic field equation of the scalar field.
The plane waves (10) are basic solutions and the field (9) is constructed by
a general superposition of the basic states.
Quantization
The challenge is to find operator solutions of the Klein-Gordon equation (12) which satisfy eq. (28). In analogy to the Lagrange density (24) , the hamiltonian is
Lecture 8
The Klein-Gordon equation
WS2010/11: ‚Introduction to Nuclear and Particle Physics‘
The bosons in field theory
Bosons with spin 0
scalar (or pseudo-scalar) meson fields
(23)

量子力学英文名词

量子力学英文名词

probability density probability wave normalizing condition Schrödinger equation stationary state stationary Schrödinger equation
势阱
对应原理
隧道效应
能量量子化
Paulaser 泡利不相容原理 激光 自发辐射 受激辐射 氦氖激光器 红宝石激光器
He-Ne laser
Pfund series Bohr quantization condition Bohr hydrogen atom Bohr frequency condition Bohr radius energy level
energy quantum photoelectric effect photo electron photocurrent cutoff potential difference red-limit wave-particle dualism
康普顿效应 康普顿散射 康普顿波长 反冲电子 莱曼系 帕邢系 布拉开系
主量子数
角动量量子化
potential well
correspondence principle
tunneling effect
energy quantization
principal quantum number
angular quantization
角量子数 空间量子化 磁量子数 电子自旋 自旋量子数 自旋磁量子数
Stefan-Boltzmann law Stefan constant Wien displacement law Rayleigh-Jens formula Planck radiation formula Planck constant

牛顿万有引力定律的英语

牛顿万有引力定律的英语

牛顿万有引力定律的英语In the realm of physics, Sir Isaac Newton's law of universal gravitation stands as a cornerstone of understanding the forces that govern celestial bodies. It elegantly explains how every object in the universe attracts every other object with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers.This fundamental principle, first articulated in the late 17th century, has withstood the test of time, shaping our comprehension of how planets orbit the sun, how moons orbit planets, and even how tides are influenced by the gravitational pull of the moon and the sun.Newton's law of universal gravitation is encapsulated in the equation \( F = G \frac{m_1 m_2}{r^2} \), where \( F \) is the force of attraction, \( G \) is the gravitational constant, \( m_1 \) and \( m_2 \) are the masses of the two objects, and \( r \) is the distance between their centers. It's a formula that has guided countless scientific endeavors and space missions.Despite its simplicity, the implications of this law are profound. It has been instrumental in the development of modern astronomy and has been a key factor in the design of spacecraft trajectories, ensuring that they can navigate the vast distances of space with precision.As we delve deeper into the cosmos, the law of universal gravitation remains a vital tool in our scientific arsenal. It is a testament to Newton's genius and the enduring legacy of his work, which continues to inspire new generations of scientists and thinkers to explore the mysteries of the universe.。

克隆巴赫系数的英文

克隆巴赫系数的英文

克隆巴赫系数的英文English:The Bernstein–Sato polynomial of a germ of a complex analytic function at a point is an object of central importance in singularity theory and complex analysis. It encodes crucial information about the singular behavior of the function near the given point. The Bernstein–Sato polynomial is intimately related to the Bernstein–Sato ideal, which is a fundamental concept in the study of D-modules and p-adic differential equations. The study of Bernstein–Sato polynomials and ideals has deep connections to various areas of mathematics, including algebraic geometry, representation theory, and harmonic analysis. These polynomials have been extensively studied in the context of local zeta functions, where they play a crucial role in understanding the structure of singularities and in the computation of zeta functions associated with singularities. In recent years, there has been significant progress in understanding the properties and applications of Bernstein–Sato polynomials, leading to new insights into the nature of singularities and their interactions with other mathematical objects.中文翻译:克隆巴赫多项式是复解析函数在某一点处的一个基本概念,它在奇点理论和复分析中具有重要的地位。

科学中最深刻的发现—贝尔不等式,一个决定上帝是否掷骰子的公式

科学中最深刻的发现—贝尔不等式,一个决定上帝是否掷骰子的公式

科学中最深刻的发现—贝尔不等式,一个决定上帝是否掷骰子的公式展开全文上帝不掷骰子!爱因斯坦坚信斯宾诺莎的上帝,认为大自然规律就是“上帝”,但是量子力学中的不确定性原理让爱因斯坦感到不安,在和波尔的争论当中,爱因斯坦说出了那句名言——上帝不掷骰子!在1935年,爱因斯坦为了论证量子力学根本哈根学派的不完备性,提出了著名的“EPR佯谬”,该佯谬经过玻姆简化后的版本为:一个母粒子分裂成两个相反方向的A粒子和B粒子,理论上A、B具有相反的自旋方向,当A和B相聚很远后,量子力学的根本哈根学派认为我们对任何一个粒子的测量,将会瞬间影响远在另一边的粒子,这在爱因斯坦看来是一种超距作用,爱因斯坦则认为两个粒子在分开时状态就是确定的,与你何时测量没有任何关系。

隐变量理论为了解决这个问题,爱因斯坦着手建立隐变量理论来代替不确定性原理,隐变量认为量子随机并非真正意义的随机,而是存在更深层的物理机制,只是我们还没发现这个机制而已,一旦我们发现了其中的机制,“不确定原理”也将变成确定的。

或许是爱因斯坦把精力都放在了统一场论当中,没有花太多精力在隐变量理论上,扛起隐变量理论大旗的是另外一位物理学家玻姆,玻姆使用超高的数学技巧打造了一个看起来可行的隐变量,但是其中的假设过于累赘,比如他假设了一个存在但是永远无法探测到的“势场”,与奥卡姆剃刀原理相悖,但是不管怎么样,隐变量理论是存在可能的。

然后一位数学大神出来捣乱了,说冯·诺依曼是20世纪最伟大的数学家之一,谁敢质疑?1932年时的冯·诺依曼已经名满天下,他在《量子力学的数学基础》一书当中,以纯数学的数理逻辑,否定了隐变量理论的存在,以他的威望,当时没有人质疑,于是隐变量理论逐渐被人们冷漠了。

直到20多年后,才有人发现冯·诺依曼的错误,冯·诺依曼的论证依赖于五个假设,前面四个假设是没有问题的,问题出在第五个假设,数学描述为(A+B+C,ψ,Y)=(A,ψ,Y)+(B,ψ,Y)+(C,ψ,Y),而且是非常低级的错误,换个比喻,该假设的意思是指“一个班学生的平均身高为170cm,那么班级上所有人的身高都是170cm。

]物理化学名词解释

]物理化学名词解释

物理化学概念及术语A B C D E F G H I J K L M N O P Q R S T U V W X Y Z概念及术语 (16)BET公式BET formula (16)DLVO理论DLVO theory (16)HLB法hydrophile-lipophile balance method (16)pVT性质pVT property (16)ζ电势zeta potential (16)阿伏加德罗常数Avogadro’number (16)阿伏加德罗定律Avogadro law (16)阿累尼乌斯电离理论Arrhenius ionization theory (16)阿累尼乌斯方程Arrhenius equation (17)阿累尼乌斯活化能Arrhenius activation energy (17)阿马格定律Amagat law (17)艾林方程Erying equation (17)爱因斯坦光化当量定律Einstein’s law of photochemical equivalence (17)爱因斯坦-斯托克斯方程Einstein-Stokes equation (17)安托万常数Antoine constant (17)安托万方程Antoine equation (17)盎萨格电导理论Onsager’s theory of conductance (17)半电池half cell (17)半衰期half time period (18)饱和液体saturated liquids (18)饱和蒸气saturated vapor (18)饱和吸附量saturated extent of adsorption (18)饱和蒸气压saturated vapor pressure (18)爆炸界限explosion limits (18)比表面功specific surface work (18)比表面吉布斯函数specific surface Gibbs function (18)比浓粘度reduced viscosity (18)标准电动势standard electromotive force (18)标准电极电势standard electrode potential (18)标准摩尔反应焓standard molar reaction enthalpy (18)标准摩尔反应吉布斯函数standard Gibbs function of molar reaction (18)标准摩尔反应熵standard molar reaction entropy (19)标准摩尔焓函数standard molar enthalpy function (19)标准摩尔吉布斯自由能函数standard molar Gibbs free energy function (19)标准摩尔燃烧焓standard molar combustion enthalpy (19)标准摩尔熵standard molar entropy (19)标准摩尔生成焓standard molar formation enthalpy (19)标准摩尔生成吉布斯函数standard molar formation Gibbs function (19)标准平衡常数standard equilibrium constant (19)标准氢电极standard hydrogen electrode (19)标准态standard state (19)标准熵standard entropy (20)标准压力standard pressure (20)标准状况standard condition (20)表观活化能apparent activation energy (20)表观摩尔质量apparent molecular weight (20)表观迁移数apparent transference number (20)表面surfaces (20)表面过程控制surface process control (20)表面吸附量surface excess (21)表面张力surface tension (21)表面质量作用定律surface mass action law (21)波义尔定律Boyle law (21)波义尔温度Boyle temperature (21)波义尔点Boyle point (21)玻尔兹曼常数Boltzmann constant (22)玻尔兹曼分布Boltzmann distribution (22)玻尔兹曼公式Boltzmann formula (22)玻尔兹曼熵定理Boltzmann entropy theorem (22)泊Poise (22)不可逆过程irreversible process (22)不可逆过程热力学thermodynamics of irreversible processes (22)不可逆相变化irreversible phase change (22)布朗运动brownian movement (22)查理定律Charle’s law (22)产率yield (23)敞开系统open system (23)超电势over potential (23)沉降sedimentation (23)沉降电势sedimentation potential (23)沉降平衡sedimentation equilibrium (23)触变thixotropy (23)粗分散系统thick disperse system (23)催化剂catalyst (23)单分子层吸附理论mono molecule layer adsorption (23)单分子反应unimolecular reaction (23)单链反应straight chain reactions (24)弹式量热计bomb calorimeter (24)道尔顿定律Dalton law (24)道尔顿分压定律Dalton partial pressure law (24)德拜和法尔肯哈根效应Debye and Falkenhagen effect (24)德拜立方公式Debye cubic formula (24)德拜-休克尔极限公式Debye-Huckel’s limiting equation (24)等焓过程isenthalpic process (24)等焓线isenthalpic line (24)等几率定理theorem of equal probability (24)等温等容位Helmholtz free energy (25)等温等压位Gibbs free energy (25)等温方程equation at constant temperature (25)低共熔点eutectic point (25)低共熔混合物eutectic mixture (25)低会溶点lower consolute point (25)低熔冰盐合晶cryohydric (26)第二类永动机perpetual machine of the second kind (26)第三定律熵Third-Law entropy (26)第一类永动机perpetual machine of the first kind (26)缔合化学吸附association chemical adsorption (26)电池常数cell constant (26)电池电动势electromotive force of cells (26)电池反应cell reaction (27)电导conductance (27)电导率conductivity (27)电动势的温度系数temperature coefficient of electromotive force (27)电动电势zeta potential (27)电功electric work (27)电化学electrochemistry (27)电化学极化electrochemical polarization (27)电极反应reactions on the electrode (27)电极种类type of electrodes (27)电解池electrolytic cell (28)电量计coulometer (28)电流效率current efficiency (28)电迁移electro migration (28)电迁移率electromobility (28)电渗electroosmosis (28)电渗析electrodialysis (28)电泳electrophoresis (28)丁达尔效应Dyndall effect (28)定容摩尔热容molar heat capacity under constant volume (28)定容温度计Constant voIume thermometer (28)定压摩尔热容molar heat capacity under constant pressure (29)定压温度计constant pressure thermometer (29)定域子系统localized particle system (29)动力学方程kinetic equations (29)动力学控制kinetics control (29)独立子系统independent particle system (29)对比摩尔体积reduced mole volume (29)对比体积reduced volume (29)对比温度reduced temperature (29)对比压力reduced pressure (29)对称数symmetry number (29)对行反应reversible reactions (29)对应状态原理principle of corresponding state (29)多方过程polytropic process (30)多分子层吸附理论adsorption theory of multi-molecular layers (30)二级反应second order reaction (30)二级相变second order phase change (30)法拉第常数faraday constant (31)法拉第定律Faraday’s law (31)反电动势back E.M.F (31)反渗透reverse osmosis (31)反应分子数molecularity (31)反应级数reaction orders (31)反应进度extent of reaction (32)反应热heat of reaction (32)反应速率rate of reaction (32)反应速率常数constant of reaction rate (32)范德华常数van der Waals constant (32)范德华方程van der Waals equation (32)范德华力van der Waals force (32)范德华气体van der Waals gases (32)范特霍夫方程van’t Hoff equation (32)范特霍夫规则van’t Hoff rule (33)范特霍夫渗透压公式van’t Hoff equation of osmotic pressure (33)非基元反应non-elementary reactions (33)非体积功non-volume work (33)非依时计量学反应time independent stoichiometric reactions (33)菲克扩散第一定律Fick’s first law of diffusion (33)沸点boiling point (33)沸点升高elevation of boiling point (33)费米-狄拉克统计Fermi-Dirac statistics (33)分布distribution (33)分布数distribution numbers (34)分解电压decomposition voltage (34)分配定律distribution law (34)分散相dispersion phase (34)分体积partial volume (34)分体积定律partial volume law (34)分压partial pressure (34)分压定律partial pressure law (34)分子反应力学mechanics of molecular reactions (34)分子间力intermolecular force (34)分子蒸馏molecular distillation (35)封闭系统closed system (35)附加压力excess pressure (35)弗罗因德利希吸附经验式Freundlich empirical formula of adsorption (35)负极negative pole (35)负吸附negative adsorption (35)复合反应composite reaction (35)盖.吕萨克定律Gay-Lussac law (35)盖斯定律Hess law (35)甘汞电极calomel electrode (35)感胶离子序lyotropic series (35)杠杆规则lever rule (35)高分子溶液macromolecular solution (36)高会溶点upper consolute point (36)隔离法the isolation method (36)格罗塞斯-德雷珀定律Grotthus-Draoer’s law (36)隔离系统isolated system (37)根均方速率root-mean-square speed (37)功work (37)功函work content (37)共轭溶液conjugate solution (37)共沸温度azeotropic temperature (37)构型熵configurational entropy (37)孤立系统isolated system (37)固溶胶solid sol (37)固态混合物solid solution (38)固相线solid phase line (38)光反应photoreaction (38)光化学第二定律the second law of actinochemistry (38)光化学第一定律the first law of actinochemistry (38)光敏反应photosensitized reactions (38)光谱熵spectrum entropy (38)广度性质extensive property (38)广延量extensive quantity (38)广延性质extensive property (38)规定熵stipulated entropy (38)过饱和溶液oversaturated solution (38)过饱和蒸气oversaturated vapor (38)过程process (39)过渡状态理论transition state theory (39)过冷水super-cooled water (39)过冷液体overcooled liquid (39)过热液体overheated liquid (39)亥姆霍兹函数Helmholtz function (39)亥姆霍兹函数判据Helmholtz function criterion (39)亥姆霍兹自由能Helmholtz free energy (39)亥氏函数Helmholtz function (39)焓enthalpy (39)亨利常数Henry constant (39)亨利定律Henry law (39)恒沸混合物constant boiling mixture (40)恒容摩尔热容molar heat capacity at constant volume (40)恒容热heat at constant volume (40)恒外压constant external pressure (40)恒压摩尔热容molar heat capacity at constant pressure (40)恒压热heat at constant pressure (40)化学动力学chemical kinetics (40)化学反应计量式stoichiometric equation of chemical reaction (40)化学反应计量系数stoichiometric coefficient of chemical reaction (40)化学反应进度extent of chemical reaction (41)化学亲合势chemical affinity (41)化学热力学chemical thermodynamics (41)化学势chemical potential (41)化学势判据chemical potential criterion (41)化学吸附chemisorptions (41)环境environment (41)环境熵变entropy change in environment (41)挥发度volatility (41)混合熵entropy of mixing (42)混合物mixture (42)活度activity (42)活化控制activation control (42)活化络合物理论activated complex theory (42)活化能activation energy (43)霍根-华森图Hougen-Watson Chart (43)基态能级energy level at ground state (43)基希霍夫公式Kirchhoff formula (43)基元反应elementary reactions (43)积分溶解热integration heat of dissolution (43)吉布斯-杜亥姆方程Gibbs-Duhem equation (43)吉布斯-亥姆霍兹方程Gibbs-Helmhotz equation (43)吉布斯函数Gibbs function (43)吉布斯函数判据Gibbs function criterion (44)吉布斯吸附公式Gibbs adsorption formula (44)吉布斯自由能Gibbs free energy (44)吉氏函数Gibbs function (44)极化电极电势polarization potential of electrode (44)极化曲线polarization curves (44)极化作用polarization (44)极限摩尔电导率limiting molar conductivity (44)几率因子steric factor (44)计量式stoichiometric equation (44)计量系数stoichiometric coefficient (45)价数规则rule of valence (45)简并度degeneracy (45)键焓bond enthalpy (45)胶冻broth jelly (45)胶核colloidal nucleus (45)胶凝作用demulsification (45)胶束micelle (45)胶体colloid (45)胶体分散系统dispersion system of colloid (45)胶体化学collochemistry (45)胶体粒子colloidal particles (45)胶团micelle (45)焦耳Joule (45)焦耳-汤姆生实验Joule-Thomson experiment (46)焦耳-汤姆生系数Joule-Thomson coefficient (46)焦耳-汤姆生效应Joule-Thomson effect (46)焦耳定律Joule's law (46)接触电势contact potential (46)接触角contact angle (46)节流过程throttling process (46)节流膨胀throttling expansion (46)节流膨胀系数coefficient of throttling expansion (46)结线tie line (46)结晶热heat of crystallization (47)解离化学吸附dissociation chemical adsorption (47)界面interfaces (47)界面张力surface tension (47)浸湿immersion wetting (47)浸湿功immersion wetting work (47)精馏rectify (47)聚(合)电解质polyelectrolyte (47)聚沉coagulation (47)聚沉值coagulation value (47)绝对反应速率理论absolute reaction rate theory (47)绝对熵absolute entropy (47)绝对温标absolute temperature scale (48)绝热过程adiabatic process (48)绝热量热计adiabatic calorimeter (48)绝热指数adiabatic index (48)卡诺定理Carnot theorem (48)卡诺循环Carnot cycle (48)开尔文公式Kelvin formula (48)柯诺瓦洛夫-吉布斯定律Konovalov-Gibbs law (48)科尔劳施离子独立运动定律Kohlrausch’s Law of Independent Migration of Ions (48)可能的电解质potential electrolyte (49)可逆电池reversible cell (49)可逆过程reversible process (49)可逆过程方程reversible process equation (49)可逆体积功reversible volume work (49)可逆相变reversible phase change (49)克拉佩龙方程Clapeyron equation (49)克劳修斯不等式Clausius inequality (49)克劳修斯-克拉佩龙方程Clausius-Clapeyron equation (49)控制步骤control step (50)库仑计coulometer (50)扩散控制diffusion controlled (50)拉普拉斯方程Laplace’s equation (50)拉乌尔定律Raoult law (50)兰格缪尔-欣谢尔伍德机理Langmuir-Hinshelwood mechanism (50)雷利公式Rayleigh equation (50)兰格缪尔吸附等温式Langmuir adsorption isotherm formula (50)冷冻系数coefficient of refrigeration (50)冷却曲线cooling curve (51)离解热heat of dissociation (51)离解压力dissociation pressure (51)离域子系统non-localized particle systems (51)离子的标准摩尔生成焓standard molar formation of ion (51)离子的电迁移率mobility of ions (51)离子的迁移数transport number of ions (51)离子独立运动定律law of the independent migration of ions (51)离子氛ionic atmosphere (51)离子强度ionic strength (51)理想混合物perfect mixture (52)理想气体ideal gas (52)理想气体的绝热指数adiabatic index of ideal gases (52)理想气体的微观模型micro-model of ideal gas (52)理想气体反应的等温方程isothermal equation of ideal gaseous reactions (52)理想气体绝热可逆过程方程adiabatic reversible process equation of ideal gases (52)理想气体状态方程state equation of ideal gas (52)理想稀溶液ideal dilute solution (52)理想液态混合物perfect liquid mixture (52)粒子particles (52)粒子的配分函数partition function of particles (53)连串反应consecutive reactions (53)链的传递物chain carrier (53)链反应chain reactions (53)量热熵calorimetric entropy (53)量子统计quantum statistics (53)量子效率quantum yield (53)临界参数critical parameter (53)临界常数critical constant (53)临界点critical point (53)临界胶束浓度critical micelle concentration (53)临界摩尔体积critical molar volume (54)临界温度critical temperature (54)临界压力critical pressure (54)临界状态critical state (54)零级反应zero order reaction (54)流动电势streaming potential (54)流动功flow work (54)笼罩效应cage effect (54)路易斯-兰德尔逸度规则Lewis-Randall rule of fugacity (54)露点dew point (54)露点线dew point line (54)麦克斯韦关系式Maxwell relations (55)麦克斯韦速率分布Maxwell distribution of speeds (55)麦克斯韦能量分布MaxwelIdistribution of energy (55)毛细管凝结condensation in capillary (55)毛细现象capillary phenomena (55)米凯利斯常数Michaelis constant (55)摩尔电导率molar conductivity (56)摩尔反应焓molar reaction enthalpy (56)摩尔混合熵mole entropy of mixing (56)摩尔气体常数molar gas constant (56)摩尔热容molar heat capacity (56)摩尔溶解焓mole dissolution enthalpy (56)摩尔稀释焓mole dilution enthalpy (56)内扩散控制internal diffusions control (56)内能internal energy (56)内压力internal pressure (56)能级energy levels (56)能级分布energy level distribution (57)能量均分原理principle of the equipartition of energy (57)能斯特方程Nernst equation (57)能斯特热定理Nernst heat theorem (57)凝固点freezing point (57)凝固点降低lowering of freezing point (57)凝固点曲线freezing point curve (58)凝胶gelatin (58)凝聚态condensed state (58)凝聚相condensed phase (58)浓差超电势concentration over-potential (58)浓差极化concentration polarization (58)浓差电池concentration cells (58)帕斯卡pascal (58)泡点线bubble point line (58)配分函数partition function (58)配分函数的析因子性质property that partition function to be expressed as a product of the separate partition functions for each kind of state (58)碰撞截面collision cross section (59)碰撞数the number of collisions (59)偏摩尔量partial mole quantities (59)平衡常数(理想气体反应)equilibrium constants for reactions of ideal gases (59)平动配分函数partition function of translation (59)平衡分布equilibrium distribution (59)平衡态equilibrium state (60)平衡态近似法equilibrium state approximation (60)平衡状态图equilibrium state diagram (60)平均活度mean activity (60)平均活度系统mean activity coefficient (60)平均摩尔热容mean molar heat capacity (60)平均质量摩尔浓度mean mass molarity (60)平均自由程mean free path (60)平行反应parallel reactions (61)破乳demulsification (61)铺展spreading (61)普遍化范德华方程universal van der Waals equation (61)其它功the other work (61)气化热heat of vaporization (61)气溶胶aerosol (61)气体常数gas constant (61)气体分子运动论kinetic theory of gases (61)气体分子运动论的基本方程foundamental equation of kinetic theory of gases (62)气溶胶aerosol (62)气相线vapor line (62)迁移数transport number (62)潜热latent heat (62)强度量intensive quantity (62)强度性质intensive property (62)亲液溶胶hydrophilic sol (62)氢电极hydrogen electrodes (62)区域熔化zone melting (62)热heat (62)热爆炸heat explosion (62)热泵heat pump (63)热功当量mechanical equivalent of heat (63)热函heat content (63)热化学thermochemistry (63)热化学方程thermochemical equation (63)热机heat engine (63)热机效率efficiency of heat engine (63)热力学thermodynamics (63)热力学第二定律the second law of thermodynamics (63)热力学第三定律the third law of thermodynamics (63)热力学第一定律the first law of thermodynamics (63)热力学基本方程fundamental equation of thermodynamics (64)热力学几率thermodynamic probability (64)热力学能thermodynamic energy (64)热力学特性函数characteristic thermodynamic function (64)热力学温标thermodynamic scale of temperature (64)热力学温度thermodynamic temperature (64)热熵thermal entropy (64)热效应heat effect (64)熔化热heat of fusion (64)溶胶colloidal sol (65)溶解焓dissolution enthalpy (65)溶液solution (65)溶胀swelling (65)乳化剂emulsifier (65)乳状液emulsion (65)润湿wetting (65)润湿角wetting angle (65)萨克尔-泰特洛德方程Sackur-Tetrode equation (66)三相点triple point (66)三相平衡线triple-phase line (66)熵entropy (66)熵判据entropy criterion (66)熵增原理principle of entropy increase (66)渗透压osmotic pressure (66)渗析法dialytic process (67)生成反应formation reaction (67)升华热heat of sublimation (67)实际气体real gas (67)舒尔采-哈迪规则Schulze-Hardy rule (67)松驰力relaxation force (67)松驰时间time of relaxation (67)速度常数reaction rate constant (67)速率方程rate equations (67)速率控制步骤rate determining step (68)塔费尔公式Tafel equation (68)态-态反应state-state reactions (68)唐南平衡Donnan equilibrium (68)淌度mobility (68)特鲁顿规则Trouton rule (68)特性粘度intrinsic viscosity (68)体积功volume work (68)统计权重statistical weight (68)统计热力学statistic thermodynamics (68)统计熵statistic entropy (68)途径path (68)途径函数path function (69)外扩散控制external diffusion control (69)完美晶体perfect crystalline (69)完全气体perfect gas (69)微观状态microstate (69)微态microstate (69)韦斯顿标准电池Weston standard battery (69)维恩效应Wien effect (69)维里方程virial equation (69)维里系数virial coefficient (69)稳流过程steady flow process (69)稳态近似法stationary state approximation (69)无热溶液athermal solution (70)无限稀溶液solutions in the limit of extreme dilution (70)物理化学Physical Chemistry (70)物理吸附physisorptions (70)吸附adsorption (70)吸附等量线adsorption isostere (70)吸附等温线adsorption isotherm (70)吸附等压线adsorption isobar (70)吸附剂adsorbent (70)吸附热heat of adsorption (70)吸附质adsorbate (70)析出电势evolution or deposition potential (71)稀溶液的依数性colligative properties of dilute solutions (71)稀释焓dilution enthalpy (71)系统system (71)系统点system point (71)系统的环境environment of system (71)相phase (71)相变phase change (71)相变焓enthalpy of phase change (71)相变化phase change (71)相变热heat of phase change (71)相点phase point (71)相对挥发度relative volatility (72)相对粘度relative viscosity (72)相律phase rule (72)相平衡热容heat capacity in phase equilibrium (72)相图phase diagram (72)相倚子系统system of dependent particles (72)悬浮液suspension (72)循环过程cyclic process (72)压力商pressure quotient (72)压缩因子compressibility factor (73)压缩因子图diagram of compressibility factor (73)亚稳状态metastable state (73)盐桥salt bridge (73)盐析salting out (73)阳极anode (73)杨氏方程Young’s equation (73)液体接界电势liquid junction potential (73)液相线liquid phase lines (73)一级反应first order reaction (73)一级相变first order phase change (74)依时计量学反应time dependent stoichiometric reactions (74)逸度fugacity (74)逸度系数coefficient of fugacity (74)阴极cathode (75)荧光fluorescence (75)永动机perpetual motion machine (75)永久气体Permanent gas (75)有效能available energy (75)原电池primary cell (75)原盐效应salt effect (75)增比粘度specific viscosity (75)憎液溶胶lyophobic sol (75)沾湿adhesional wetting (75)沾湿功the work of adhesional wetting (75)真溶液true solution (76)真实电解质real electrolyte (76)真实气体real gas (76)真实迁移数true transference number (76)振动配分函数partition function of vibration (76)振动特征温度characteristic temperature of vibration (76)蒸气压下降depression of vapor pressure (76)正常沸点normal point (76)正吸附positive adsorption (76)支链反应branched chain reactions (76)直链反应straight chain reactions (77)指前因子pre-exponential factor (77)质量作用定律mass action law (77)制冷系数coefficient of refrigeration (77)中和热heat of neutralization (77)轴功shaft work (77)转动配分函数partition function of rotation (77)转动特征温度characteristic temperature of vibration (78)转化率convert ratio (78)转化温度conversion temperature (78)状态state (78)状态方程state equation (78)状态分布state distribution (78)状态函数state function (78)准静态过程quasi-static process (78)准一级反应pseudo first order reaction (78)自动催化作用auto-catalysis (78)自由度degree of freedom (78)自由度数number of degree of freedom (79)自由焓free enthalpy (79)自由能free energy (79)自由膨胀free expansion (79)组分数component number (79)最低恒沸点lower azeotropic point (79)最高恒沸点upper azeotropic point (79)最佳反应温度optimal reaction temperature (79)最可几分布most probable distribution (80)最可几速率most propable speed (80)概念及术语BET公式BET formula1938年布鲁瑙尔(Brunauer)、埃米特(Emmett)和特勒(Teller)三人在兰格缪尔单分子层吸附理论的基础上提出多分子层吸附理论。

Covariant differentiation of spinors for a general affine connection

Covariant differentiation of spinors for a general affine connection

ar Xi v :0710.3982v 2 [g r -q c ] 13 N o v 2007Noname manuscript No.(will be inserted by the editor)N.J.Pop l awski Department of Physics,Indiana University,Swain Hall West 117,727East Third Street,Bloomington,Indiana 47405,USA E-mail:nipoplaw@−=.(4) We can use gµνand its inverse gµνto lower and raise coordinate-based indices,andηab and its inverse ηab to lower and raise coordinate-invariant(Lorentz)indices.Eq.(3)imposes10constraints on the16components of the tetrad,leaving6components arbitrary.Ifwe change from one tetrad eµa to another,˜eµb ,then the vectors of the new tetrad are linear combinationsof the vectors of the old tetrad:˜eµa=Λb a eµb.(5)Eq.(3)applied to the tetradfield˜eµbimposes on the matrixΛthe orthogonality condition:Λc aΛd bηcd=ηab,(6) soΛis a Lorentz matrix.Consequently,the Lorentz group can be regarded as the group of tetrad rotations in general relativity[4,14].3SpinorsLetγa be the coordinate-invariant Dirac matrices:γaγb+γbγa=2ηab.(7) Accordingly,the spacetime-dependent Dirac matrices,γµ=eµaγa,satisfyγµγν+γνγµ=2gµν.(8) Let L be the spinor representation of a tetrad rotation(5):˜γa=Λa b Lγb L−1.(9)2ǫab G ab,L−1=1−14(γaγb−γbγa).(12)A spinorψis defined to be a quantity that,under tetrad rotations,transforms according to[15]˜ψ=Lψ.(13) An adjoint spinor¯ψis defined to be a quantity that transforms according to˜¯ψ=¯ψL−1.(14) Consequently,the Dirac matricesγa can be regarded as quantities that have,in addition to the invariant index a,one spinor index and one adjoint-spinor index.The derivative of a spinor does not transform like a spinor since˜ψ,µ=Lψ,µ+L,µψ.(15) If we introduce the spinor connectionΓµthat transforms according to˜Γµ=LΓµL−1+L,µL−1,(16) then the covariant derivative of a spinor[14]:ψ:µ=ψ,µ−Γµψ,(17)is a spinor:˜ψ:µ=Lψ:µ.(18) Similarly,one can show that the spinor-covariant derivative of the Dirac matricesγa isγa:µ=−[Γµ,γa](19) since˜γµ=LγµL−1due to Eq.(9)andγa,µ=0.4Lorentz connectionCovariant differentiation of a contravariant vector Vµand a covariant vector Wµin a relativistic theory of gravitation introduces the affine connectionΓρµν:Vµ;ν=Vµ,ν+ΓµρνVρ,Wµ;ν=Wµ,ν−ΓρµνWρ,(20) where the semicolon denotes the covariant derivative with respect to coordinate indices.1The affine connection in general relativity is constrained to be symmetric,Γρµν=Γρνµ,and metric compatible, gµν;ρ=0.For a general spacetime we do not impose these constraints.As a result,raising and lowering of coordinate indices does not commute with covariant differentiation with respect toΓρµν.Let us define:ωµaν=eµa;ν=eµa,ν+Γµρνeρa.(21)N abµ,(32)2i.e.the Lorentz connection is antisymmetric infirst two indices only for a metric-compatible affine connection[4].2In the presence of nonmetricity(lack of metric compatibility)the covariant derivative of the Dirac matrices deviates from zero.From Eqs.(7)and(31)it follows that[18]1γa|µ=−2As a result,raising and lowering of Lorentz indices does not commute with covariant differentiation;it commutes only with ordinary differentiation.2N c cµ.(34)We seek the solution of Eq.(34)in the form:Γµ=−12N c cµ+ωc cµ.(36)The right-hand side of Eq.(36)vanishes because of Eq.(32)so Aµis simply an arbitrary vector multiple of the unit matrix[14,19].We can write Eq.(35)asΓµ=−14ω[ab]µγaγb,(39) with the antisymmetric part of the Lorentz connection.5Using the definition(21),we can also writeEq.(39)asΓµ=−18[γν;µ,γν].(40)6Curvature spinorThe commutator of the covariant derivatives of a vector with respect to the affine connection defines the curvature tensor Rρσµν=Γρσν,µ−Γρσµ,ν+ΓκσνΓρκµ−ΓκσµΓρκν:6Vρ;νµ−Vρ;µν=RρσµνVσ+2SσµνVρ;σ,Vρ;νµ−Vρ;µν=−RσρµνVσ+2SσµνVρ;σ.(41) In analogous fashion,the commutator of the total covariant derivatives of a spinor:ψ|νµ−ψ|µν=Kµνψ+2Sρµνψ|ρ,(42)4ω[ab]µγaγbψ,from which it follows that if the vector Aµis imaginary then we can treat it as agaugefield.5The Fock–Ivanenko coefficients(39)can also be written in terms of the generators of the spinor represen-tation of the Lorentz group(12):Γµ=−12RρσµνVσ∆fµνandδVρ=12Nρσµγσ.(45) The commutator of the covariant derivatives of the spacetime-dependent Dirac matrices with respect to the affine connection is then:2γρ|[νµ]=−(Nρσ[νγσ)|µ].(46)Multiplying both sides of this equation byγρ(from the left)and using2γρ|[νµ]=Rρσµνγσ+2Sσµνγρ|σ+[Kµν,γρ](47)and Eq.(8)yieldRρσµνγργσ−SσµνNρρσ+γρKµνγρ−4Kµν=−γρ(Nρσ[νγσ)|µ]=−Nρρ[ν;µ]+12Nρσ[νNρλµ]γλγσ.(48)We seek the solution of Eq.(48)in the form:Kµν=18Nρσ[νNρλµ]γλγσ+Bµν,(49)where Bµνis a spinor quantity with two vector indices.Substituting Eq.(49)to(48)givesγρBµνγρ−4Bµν=−Qµν−Nρρ[ν,µ],(50) whereQµν=Rρσµνgρσ=Γρρν,µ−Γρρµ,ν(51) is the second Ricci tensor,also called the tensor of homothetic curvature[12]or the segmental cur-vature tensor[18].The right-hand side of Eq.(50)vanishes because of Eq.(30)so Bµνis simply an antisymmetric-tensor multiple of the unit matrix.The tensor Bµνis related to the vector Aµin Eq.(35) by7Bµν=Aν,µ−Aµ,ν+[Aµ,Aν].(52) Setting Aµ=0,which corresponds to the absence of non-gravitationalfields,yields Bµν=0.8Therefore the curvature spinor for a general affine connection is:9Kµν=18Nρλ[µNρσν]γλγσ.(53)2RρσµνGρσ−110If the Lorentz connection is antisymmetric,the curvature tensor(56)is antisymmetric in the Lorentz indices and the tensors P aµand Qµνvanish.11The Einstein–Cartan–Kibble–Sciama formulation of gravitation[4,10],where the tetrad and Lorentz con-nection are dynamical variables,is based on the Lagrangian density=R.。

Arrhenius equation - Wikipedia

Arrhenius equation - Wikipedia

Where
k is the rate constant T is the absolute temperature (in kelvin) A is the pre-exponential factor, a constant for each chemical reaction that defines the rate due to frequency of
Arrhenius equation
Contents
1 2 3 4 Equation Arrhenius plot Modified Arrhenius' equation Theoretical interpretation of the equation 4.1 Arrhenius' Concept of Activation Energy 4.2 Collision theory 4.3 Transition state theory 4.4 Limitations of the idea of Arrhenius activation energy See also References Bibliography External links
frequency factor
attempt frequency
Given the small temperature range kinetic studies occur in, it is reasonable to approximate the activation energy as being independent of the temperature. Similarly, under a wide range of practical conditions, the weak temperature dependence of the pre-exponential factor is negligible compared to the temperature dependence of the factor; except in the case of "barrierless" diffusion-limited reactions, in which case the pre-exponential factor is dominant and is directly observable.

特斯拉动态引力理论原文

特斯拉动态引力理论原文
variable canonically conjugated to the mass is the rate at which mass may be
converted into energy. The canonical momentum is defined as follows below:
may be written as follows:
..
.
..
.
..=
ememobobRMRMcGz2, (9
where the subscripts specify the emitter and observer gravitational
potentials respectively. Since the redshift of an object at cosmological distance
.
...
.
..
.
.
..
.
.
+..
.
...++.+..
.
..
.=

⊕⊕
RcGMhRzzHcLhtEs21 ]1ln[1ln .(8)
In this theory, the predicted redshifts are significantly different when
, (1a) 44mvp=
where the velocity in the fifth dimension is given by:
..αγ.
=4v, (1b)
and is a time derivative where gamma itself has units of mass density or

阿伦尼乌斯公式中指前因子的物理意义

阿伦尼乌斯公式中指前因子的物理意义

阿伦尼乌斯公式中指前因子的物理意义
阿伦尼乌斯公式是描述电子绕核运动轨道的一种数学公式,具体形式为:
mvr = nh/2π
其中m为电子的质量,v为电子的速度,r为电子运动轨道的半径,n为运动轨道的主量子数,h为普朗克常数,π为圆周率。

指前因子nh/2π在阿伦尼乌斯公式中扮演的角色是将角动量量子化。

在经典物理中,角动量可以取任意值;而根据量子力学的原理,角动量是量子化的,即只能取离散的特定值。

阿伦尼乌斯公式中的指前因子nh/2π就是量子化的角动量值。

物理上,角动量是物体围绕某个轴旋转产生的属性,其大小与转动物体的质量、速度和离轴距离有关。

对于电子绕核运动,阿伦尼乌斯公式描述了电子的角动量量化规律。

通过该公式,我们可以知道,对于给定的电子轨道,其角动量只能取离散的特定值。

这一量子化的角动量对于解释原子结构和化学性质具有重要意义。

总而言之,阿伦尼乌斯公式中的指前因子nh/2π用于量子化电子绕核运动的角动量。

引力波中的相关英语高考考点

引力波中的相关英语高考考点

引力波中的相关英语高考考点英语可能会在阅读理解中出关于引力波的题目。

相关词汇一定要搞清楚。

引力波 gravitational wave1.由“广义相对论”所预言的“引力子”和“引力波”不存在。

According to the “ general relativity ” predict “ graviton ” and“ gravitational waves ” does not exist.2.因此,高斯束谐振系统对高频遗迹引力波的频率和传播方向具有良好的选择效应。

Therefore, GBRS have a useful selective effect with respect to the frequency and propagation direction of relic HFGWs.3.引力规范理论中的一类引力波方程A Class of Gravitational Waves Equation in Gravitational Gauge Theory4.对物质体系在发射和接收引力波时的能量转换作了新解释.A new interpretation for the energy exchanges of the matter system is given when there exists the gravitational wave.5.谐和条件下的对角度规引力波方程Gravitational Wave Equations under Diagonal Metric and Harmonic Coordinate Conditions6.杨振宁场引力波的极化Polarization of the gravitational waves of yang's gravitational field7.宇宙常数Λ≠0的平面引力波The Plane Gravitational Waves with the Cosmological Constant Λ≠ 08.一种标&张量引力理论的引力波辐射Radiation of gravitational waves in a scalar-tensor theory of gravitation9.De Sitter弯曲时空中遗迹引力波及其能量动量赝张量的表述和正定性问题Relic Gravitational Wave and Positive Definite and Expression of Their Energy-Momentum Pseudo-Tensor in De sitter Background Spacetime of the Curve10.在室内模型激光干涉引力波探测器的基础上,几个野外大型激光干涉引力波探测器正在紧张地建设中。

拉格朗日定理英文缩写

拉格朗日定理英文缩写

拉格朗日定理英文缩写
摘要:
1.拉格朗日定理的概述
2.拉格朗日定理的英文缩写
3.拉格朗日定理的应用
正文:
拉格朗日定理是一种数学定理,由法国数学家约瑟夫·拉格朗日提出。

拉格朗日定理的英文缩写为Lagrange"s Theorem。

拉格朗日定理的概述:拉格朗日定理是一种解析几何中的定理,它描述了一个平面上点的一个性质。

拉格朗日定理的内容是:平面上四个点共线,当且仅当以这四个点为顶点的四个三角形面积之和为零。

拉格朗日定理的英文缩写:拉格朗日定理的英文名称为Lagrange"s Theorem,其缩写为Lagrange"s Theorem。

拉格朗日定理的应用:拉格朗日定理在解析几何中有广泛的应用,例如在求解四边形的面积、判断四点是否共线、计算交点等等。

此外,拉格朗日定理还广泛应用于计算机图形学、地理信息系统等领域。

布朗运动六次方的期望

布朗运动六次方的期望

布朗运动六次方的期望六次方的期望布朗运动六次方的期望六次方的期望又称维纳过程。

英国植物学家R.布朗观察到悬浮在液体中的微粒子作不规则的运动,这种运动的数学抽象,就叫做布朗运动六次方的期望六次方的期望。

19XX年,爱因求出了粒子的转移密度。

19XX年,美国数学家N.维纳从数学上严格地定义了一个随机过程来描述布朗运动六次方的期望。

布朗运动六次方的期望的起因是由于液体的所有分子都处在运动中,且相互碰撞,从而粒子周围有大量分子以微小但起伏不定的力共同作用于它,使它被迫作不规则运动。

若以X(T)表示粒子在时刻T所处位置的一个坐标,如果液体是均匀的,自然设想自时间T1到T2的位移X(T2)一X(T1)是许多几乎独立的小位移之和,因而根据中心极限定理,可以合理地假定X(T2)一X(T1)遵从正态分布,而且对任何0<T0<T1<Tn,增量X(T1)一X(T0),X(Tn)一X(Tn一1),可设想为相互独立。

物理上的这些考虑引导到下面的数学定义。

设X=X(T),T∈R+为定义在概率空间(Ω,F,P)(见概率)上,取值于D维实空间RD中的随机过程,若满足①X(0)=0;(2)独立增量性:对任意的0≤T0<T1<…<Tn,X(T0), X(T1)一X(T0),X(Tn)一X(Tn一1)是相互独立的随机变量;(3)对任意S≥0,τ>0,增量X(S+τ)一X(S)服从密度为的D 维正态分布,式中,表示X到原点的距离;(4)X的一切样本函数连续。

这样的X称为(数学上的)布朗运动六次方的期望或维纳过程。

维纳的一个重要结果,是证明了满足①至④的过程的存在性。

这样的过程X是独立增量过程,因而是马尔可夫过程,而且还是鞅和正态过程(见随机过程)。

其均值函数是一个各分量恒等于零的D维向量函数:EX(T)=0;其协方差阵函数(见矩)EX(T)X(S)=(S∧T)ID,其中ID是D阶单位方阵,S∧T表示S、T中小的一个,X(S)是随机向量X(S)的转置。

莫里森方程

莫里森方程

莫里森方程莫里森方程是一个与众不同的数学方程,它可以用来解决复杂的物理问题,比如大气、流体和电磁学中的多体问题。

它最初由美国数学家格雷戈里莫里森于1845年提出。

莫里森方程是一个拉格朗日系数可变的二阶偏微分方程,它可以用来表示物体在潮汐和空气流动中的运动。

它是一个属于微分方程组的一种,可以用来模拟潮汐运动和流体动力学,它们在科学和工程领域有着广泛的应用。

莫里森方程的最开始的历史可以追溯到19世纪的欧洲,当时大多数人都只会采用简单的有限差分和有限元方法来解决潮汐问题,但这种方法可能会导致计算能力有限,准确度较低,以及存在极限风险和失败可能性。

因此,莫里森方程被提出,可以消除这些问题,获得更准确的潮汐运动的解决方案。

莫里森方程可以用来处理海洋气象学方面的复杂物理问题,其中包括大气运动、流体动力学、潮汐运动和海水的物理性质等等。

它的有用性得到了广泛的认可,并应用于航海、海洋工程、气象和海洋学等领域。

此外,莫里森方程也被用来研究太阳系中的行星动力学问题,这也是它获得广泛应用的原因之一。

莫里森方程也可以用来解决物理和化学问题,比如热传导、电磁学、热力学和物理流体力学等问题。

它可以用来模拟与物理现象有关的各种真实系统,比如介质中的电磁场和流体运动等。

它也可以被用来解决数学计算中的复杂数值问题,如函数逼近、特征值分析等。

虽然莫里森方程是一种很有用的方程,但它的求解方法也非常复杂,常常需要使用计算代数和数值分析的技术来进行求解。

此外,由于莫里森方程的数学形式比较复杂,因此可能存在许多不确定性,因此求解莫里森方程时,需要尽可能多地使用物理学的实验数据来使其解更加精确。

总之,莫里森方程是一种非常重要的数学方程,可以用来解决潮汐运动、流体动力学、大气学和电磁学等多种物理问题,它的应用在许多科学领域都得到了广泛认可。

但是,由于它的表达形式比较复杂,因此在求解莫里森方程时,必须正确运用计算代数和数值分析的方法,以确保所得到的解能够更加准确。

“上帝粒子”追寻记

“上帝粒子”追寻记

“上帝粒子”追寻记
周方彤
【期刊名称】《中国科技奖励》
【年(卷),期】2013(000)010
【总页数】3页(P20-22)
【作者】周方彤
【作者单位】
【正文语种】中文
【相关文献】
1.追寻“上帝粒子”的踪迹助推中国“大加速器梦”——记上海交通大学物理与天文系教授杨海军 [J], 廖潇莎
2.欧核中心称新发现粒子与“上帝粒子”高度吻合——希格斯玻色子最新证据被认为是30年来最伟大科学发现之一 [J],
3.从“上帝粒子”到“真理”的追寻——记中国科学院高能物理研究所副研究员梁志均 [J], 李明丽;王涵
4.活捉粒子跑赢上帝粒子 [J],
5.与“上帝粒子”高度吻合的新粒子被发现 [J], 科技
因版权原因,仅展示原文概要,查看原文内容请购买。

庞加莱重现定理

庞加莱重现定理

庞加莱重现定理简介庞加莱重现定理(Poincaré recurrence theorem)是数学领域的一个重要定理,由法国数学家亨利·庞加莱于1890年提出。

该定理探讨了动力系统中状态的演化以及其可能的周期性重现情况。

它在物理学、统计力学、天体力学等领域有着广泛的应用。

一级标题动力系统与状态演化动力系统是研究物体在时间和空间中运动的一种数学模型。

在动力系统中,系统的状态会随时间的推移而演化。

状态可以由几个变量或参数来描述,例如物体的位置、速度、质量等。

动力系统的演化可以用微分方程或差分方程来描述。

庞加莱重现定理的表述庞加莱重现定理探讨了动力系统中状态的演化是否会出现周期性的重复情况。

如果一个动力系统是定常的(不含时间依赖的外力),并且系统的相空间是有限的,则庞加莱重现定理告诉我们,系统的状态会在未来某个时间点重现。

庞加莱重现定理的证明庞加莱重现定理的证明基于熵的概念和遍历性的定义。

首先需要证明系统状态的熵是一个不增函数,然后根据系统状态的熵的定义以及系统的遍历性,可以得出系统状态会在未来某个时间点重现的结论。

庞加莱重现定理的应用庞加莱重现定理在物理学、统计力学和天体力学等领域有着广泛的应用。

在统计力学中,它可以用来解释热力学系统中熵的涨落和时间反演对称性。

在天体力学中,庞加莱重现定理可以用来研究行星轨道的周期性重现情况。

二级标题熵的概念熵是信息论中的重要概念,用于度量系统的不确定性或无序程度。

对于一个离散概率分布,其熵定义为:log(p i)H(X)=−∑p ii其中,p i表示随机变量X取值为i的概率。

遍历性的定义在动力系统中,一个状态空间的子集A被称为是遍历的,如果系统的轨道在未来某个时间点一定会经过A中的任意一点。

庞加莱重现定理的证明根据动力系统的定义,系统的状态可以通过一组变量或参数来描述。

系统状态的演化可以用微分方程或差分方程来表示。

庞加莱重现定理的证明基于以下两个关键概念:1.熵的不增性:对于一个定常的动力系统,其状态的熵是一个不增函数。

根据伊藤引理,推导出期权价格的布莱克——斯科尔斯偏微分方程

根据伊藤引理,推导出期权价格的布莱克——斯科尔斯偏微分方程

根据伊藤引理,推导出期权价格的布莱克——斯科尔斯偏微分方程以《根据伊藤引理,推导出期权价格的布莱克斯科尔斯偏微分方程》为标题,本文旨在讨论伊藤引理及其在推导期权价格中的作用,以及其推导出的布莱克斯科尔斯偏微分方程的应用。

综上,本文将从以下四个方面展开讨论:(1) 伊藤引理历史渊源;(2) 伊藤引理的内涵;(3)用布莱克斯科尔斯偏微分方程推导伊藤期权价格以及其他价格的计算;(4) 伊藤引理的极限。

在讨论伊藤引理之前,需要先了解它的历史渊源。

伊藤引理,也称为“金融均值定理”,是一项于1972年被发现的重要定理,由日本数学家伊藤昌美发现,但它的本质原理可以追溯到18年前,即巴贝奇布斯霍夫定理。

伊藤引理指出,当期货价格持续变化时,期权价格会维持在某个固定的状态,即被称为“均值校正”,而且期权价格的变化率和期货价格的变化率相等。

这一定理的实质是,在满足一定的假设条件后,即使期货价格发生变动,期权也可以在某一特定状态中保持其价格,而无需支付费用或投资银行。

伊藤引理的最大意义在于,它为推导出期权价格提供了一个理论框架,并且,在此框架下,推导出了布莱克斯科尔斯偏微分方程,用来计算期权价格和其他金融协议价格。

布莱克斯科尔斯偏微分方程是一种关于时间,期权价格,利率和期货价格的微分方程,它可以使价值风险的投资者更好地把握期权的变化,根据风险投资者的需求,调整投资组合,以获取更大的增值空间。

此外,伊藤引理还有一个重要极限,即在股票市场达到“市场期权定价理论”的条件下,伊藤定理仍然有效。

“市场期权定价理论”指的是股票的的波动率存在一定的极限概率,这个极限概率和股票市场中参与者的行为有关。

当股票市场达到极限概率时,伊藤引理仍然有效,但此时的期权价格会更接近期货价格,从而对期权价格的变化影响减少。

综上所述,伊藤引理是一个非常重要的定理,应用其原理可以推导出布莱克斯科尔斯偏微分方程,以便计算期权价格和其他金融协议价格。

此外,伊藤引理也有一个极限,那就是股票市场达到“市场期权定价理论”的条件下,伊藤定理仍然有效,而此时的期权价格会更接近期货价格,从而减少对期权价格的影响。

潘勒韦猜想与N体问题

潘勒韦猜想与N体问题

潘勒韦猜想与N体问题
史峻平
【期刊名称】《科学》
【年(卷),期】2001(0)6
【摘要】太阳系中所有行星及其卫星基本上都以太阳为中心参照物作周期运动。

然而,宇宙中并非所有星球都能保持这种运动。

今天各种街头小报上仍经常充斥一些"小行星将撞击地球,人类面临灭顶之灾"之类的"新闻"。

许多好莱坞电影更是使用现代电脑动画技术栩栩如生地向人们展示这种可怕的灾难。

尽管从科学上说,短期内人类并不用杞人忧天。

【总页数】4页(P20-23)
【关键词】潘勒韦猜想;N;体问题;非碰撞奇点
【作者】史峻平
【作者单位】美国威廉玛丽学院
【正文语种】中文
【中图分类】P132
【相关文献】
1.一类差分潘勒韦方程亚纯解的性质 [J], 陈宝琴;李升;
2.潘勒韦IV型差分方程亚纯解唯一性 [J], 张美娟; 林珊华
3.一类差分潘勒韦方程亚纯解的若干问题 [J], 刘孟月
4.一类差分潘勒韦方程亚纯解的若干问题 [J], 刘孟月
5.一类非线性波方程的潘勒韦分析、对称和精确解 [J], 刘汉泽;李雪霞
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a r X i v :h e p -t h /0309152v 1 16 S e p 2003Covariant Gravitational Equations on Brane World with Gauss-Bonnet termKei-ichi Maeda 1,2,3,and Takashi Torii 21Department of Physics,Waseda University,Shinjuku,Tokyo 169-8555,Japan2Advanced Research Institute for Science and Engineering,Waseda University,Shinjuku,Tokyo 169-8555,Japan3Waseda Institute for Astrophysics,Waseda University,Shinjuku,Tokyo 169-8555,Japan(February 1,2008)We present the covariant gravitational equations to describe a four-dimensional brane world in the case with the Gauss-Bonnet term in a bulk spacetime,assuming that gravity is confined on the Z 2symmetric brane.It contains some components of five-dimensional Weyl curvature (E µν)which describes all effects from the bulk spacetime just as in the case of the Randall-Sundrum second model.Applying this formalism to cosmology,we derive the generalized Friedmann equation and calculate the Weyl curvature term,which is directly obtained from a black hole solution.I.INTRODUCTIONA brane is now one of the most important ideas in particle physics [1].It may provide us a new solution for the so-called hierarchy problem and a new mechanism for compactification of extra dimensions.Since the fundamental scale could be TeV in some models [2],a gravitational effect is not ignored even at much lower energy scale than the Planck mass.For example,a black hole formation in the next generation particle collider could be observed [3].It should be also stressed that we could come across the first experimental evidence of quantum gravity.It may also change our view of the universe:we live in a 4-dimensional (4-D)hypersurface embedded in a higher-dimensional bulk spacetime [4].By these reasons,the brane world scenarios attract many attention.Among many brane models,ones proposed by Randall and Sundrum are very important [5,6].They are motivated by superstring/M-theory,i.e.,the orbifold compactification of higher-dimensional string theory by the dimensional reduction of 11-dimensional supergravity in R 10×S 1/Z 2[7].The standard-model particles are confined in a 4-D brane world while gravity accesses extra dimensions like a string/D-brane system.In their first model (RS I)[5],they proposed a mechanism to solve the hierarchy problem with two branes,whereas in their second model (RS II)[6],they considered a single brane with a positive tension,where 4-D Newtonian gravity is recovered at low energies even if the extra dimension is not compact.This mechanism provides us an alternative compactification of extra dimensions.However,those models may inevitably expect a singular spacetime just as in general relativity,although they are based on a string theory.In fact,Maldacena and Nunez showed no-go theorem [8],which states that there are no non-singular warped compactifications in a large class of supergravity theories including 11-dimensional supergravity,IIB,IIA and massive IIA.One of the ways to evade this argument is adding the higher curvature corrections to the bulk Lagrangian.The higher curvature terms naturally arise as a next leading order of the α′-expansion of a superstring theory [9].One may expect that they are described by the so-called Gauss-Bonnet combination,which is shown to be a ghost-free combination [10].It also plays a fundamental role in Chern-Simon theories [11].It was shown that the graviton zero mode is localized at law energies in the Gauss-Bonnet brane system as in the RS II model [12–14]and that the correction of the Newton’s law becomes milder by including the Gauss-Bonnet term [15].As for cosmology with a brane world,there has been a lot of works over the last several years [16–18].In particular,based on the RS II brane model,which is one of most popular ones,some interesting properties such as “dark radiation”or quadratic density term in the Friedmann equation have been found,assuming a simple bulk metric [18].Since gravity is confined on a brane,the induced metric describes gravity on a brane.Hence the geometrical reduction gives a covariant form of the basic equations for brane gravity [19–22].Applying this formalism,we find the Friedmann equation easily.As we discussed above,since including the Gauss-Bonnet term is important,such models are also extensively studied [23–28].Many authors so far studied mainly in the contexts of a resolution of initial singularity,inflation and a self-tuning mechanism of cosmological constant.In these analysis,a simple bulk metric is assumed just as in Ref.[18].In order to understand those problems further,it may be convenient for us to extend the covariant gravitational equations on a brane to the case with the Gauss-Bonnet term.This is the purpose of the present paper.To find such equations,we first have to prove a consistency with a thin-wall ansatz.When we have a system with quadratic curvature terms in a bulk spacetime,we will be soon faced with an obstacle.In general,we expect terms such as (£n K AB )2in the field equations,where K AB is the extrinsic curvature of a brane.If a brane is an infinitely thin singular wall,which could be described by the δ-function,the extrinsic curvature must have a jump at a brane.However,if £n K AB is proportional to the δ-function,a term of (£n K AB )2makes troubles because it gives a squareof theδ-function.The reason for this breakdown is our thin-wall ansatz.We have tofind other relevant junction condition which may require information about an internal structure of a brane,that is,we have to discuss a thick brane model.The basic equations may not be described only by a geometric reduction.In the case with the Gauss-Bonnet term,however,the situation changes completely.The basic equations show a quasi-linear property pointed out by Deruelle and Madore[29],which guarantees a thin-wall ansatz because it contains only linear terms of£n K ing this fact,some authors derived the generalized Friedmann equation with a simple bulk metric.With this fact,here we derive the covariant gravitational equations on a brane in the case with the Gauss-Bonnet term.The basic equations are described by4-D brane variables except for the5-dimensional(5-D) Weyl curvature tensor Eµν.Although our system is not closed because of the existence of Eµν,for a cosmological setting,we recover the generalized Friedmann equation which contains one integration constant and then it gives a closed form just as in the case of Ref.[19].This generalized Friedmann equation is the same as that obtained by the previous authors[30].In this formulation,we need not to assume any functional form for the brane action.We can add any curvature terms in four dimensions,which may be induced by quantum effects of matterfields.These brane-induced gravity models were investigated mainly in the cosmological aspect[31–34].In Sec.II,we derive the covariant gravitational equations on a brane,applying it to cosmological model in Sec.III. We obtain the generalized Friedmann equation,which is given by a cubic equation with respect to the Hubble parameter square H2.Conclusions and remarks follow in Sec.IV.II.THE EFFECTIVE GRA VITATIONAL EQUATIONSWe consider a5-D bulk spacetime with a single4-D brane world,on which gravity is confined.We assume the5-D bulk spacetime(M,g AB),whose coordinates are X A(A=0,1,2,3,5),is described by the Einstein-Gauss-Bonnet action:S bulk= M d5X√2κ25(R+αL GB)+L m ,(2.1) whereL GB=R2−4R AB R AB+R ABCD R ABCD.(2.2)κ25is the5-D gravitational constant,R,R AB,R ABCD and L m are the5-D scalar curvature,Ricci tensor,Riemann curvature and the matter Lagrangian in the bulk,respectively.αis a coupling constant.The4-D brane world(B,hµν) is located at a hypersurface(Σ(X A)=0)in the5-D bulk spacetime and the induced4-D metric hµνis defined byh AB=g AB−n A n B,(2.3) where n A is the spacelike unit-vectorfield normal to the brane hypersurface B.The action is assumed to be given by the most generic action:S brane= B d4x√[K+2α(J−2GρσKρσ)](2.5)κ25is the surface term[35–37],and L brane(hαβ,ψ)is the effective4-D Lagrangian,which is given by a generic functional of the brane metric hαβand matterfieldsψ.Kµν(=h Aµh Bν∇A n B),K,J and Gρσin the surface term are the extrinsic curvature of B,its trace,its cubic combination defined later,and the Einstein tensor of the induced metric hµν, respectively.The total action(S=S bulk+S brane)gives our basic equations asG AB+αH AB=κ25[T AB+τABδ(Σ)],(2.6) whereG AB=R AB−1g AB L GB,(2.8)2andT AB≡−2δL m+hµνL brane.(2.10)δhµνTheδ(Σ)denotes the localization of brane contributions.It is worth noting thatτµνmay include curvature contri-butions from induced gravity[31,21].In that term,we can also include“non-local”contributions such as a trace anomaly[33,34],although those contributions are not directly derived from the effective Lagrangian L brane.The basic equations in the brane world are obtained by projecting the variables onto the brane world because we assume that the gravity on the brane is confined.We then project the5-D Riemann tensor onto the brane spacetime asR MNRS h M A h N B h R C h S D=R ABCD−K AC K BD+K AD K BC,(2.11)R MNRS h M A h N B h R C n S=2D[A K B]C,(2.12)R MNRS h M A h R C n N n S=−£n K AC+K AB K B C,(2.13) where R ABCD is the Riemann tensor of the induced metric h MN,D M is the covariant differentiation with respect to h MN,and£n denotes the Lie derivative in the n-direction.Thefirst equation is called the Gauss ing this projection,the5-D Riemann curvature and its contractions(the Ricci tensor and scalar curvature)are described by the4-D variables on the brane with the normal n M asR MNRS=R MNRS−K MR K NS+K MS K NR−n M D R K NS+n M D S K RN+n N D R K SM−n N D S K RM −n R D M K NS+n R D N K MS+n S D M K NR−n S D N K MR+n M n R K NC K C S−n M n S K NC K C R−n N n R K MC K C S+n N n S K MC K C R−n M n R£n K NS+n M n S£n K NR+n N n R£n K MS−n N n S£n K MR,(2.14) R MN=R MN−KK MN+2K MC K C N+n M D C K C N−D N K +n N D C K C M−D M K+n M n N K CD K CD−£n K MN−n M n N h CD£n K CD,(2.15) R=R−K2+3K CD K CD−2h CD£n K CD.(2.16) As was shown by Deruelle and Madore[29],the Einstein-Gauss-Bonnet equation is quasi-linear,which means that apart from non-singular terms given by the4-dimensional variables,it contains only linear terms of£n K AB but no quadratic terms appear.In fact,inserting these relations into the basic equation(2.8),wefind the effective equations on the brane asMµν−1Nµνρ=DµKνρ−DνKµρ,Nµ=hρσNρµσ=DνKνµ−DµK,(2.21)Hµν=MMµν−2(MµρMρν+MρσMµρνσ)+MµρσκMρσκν+2KαβKαβMµν+MKµρKρν−2(KµρKρσMσν+KνρKρσMσµ)−2KρκKσκMµρνσ−2[NµNν−Nρ(Nρνµ+Nρµν)]1+NρσµNρσν+2NµρσNρσν−3 2KKµρKρν+KρσKρσKµν−2KµρKρσKσν−K2Kµν (2.25)Pµνρσ=Rµνρσ+2hµ[σRρ]ν+2hν[ρRσ]µ+Rhµ[ρhσ]ν.(2.26) We have introduced[X]±≡X+−X−,(2.27) where X±are X’s evaluated either on the+or−side of the brane and Pµνρσis the divergence free part of the Riemann tensor,i.e.DµPµνρσ=0.(2.28) Because of the Z2-symmetry,we haveK+µν=−K−µν,(2.29) then the extrinsic curvature of the brane is uniquely determined by the junction condition asκ25Bµν=−3 g A[C R D]B−g B[C R D]A −1where C MRNS is the5-D Weyl curvature,wefind£n Kµν−12Eµν−14hµνM +KµρKρν−12+KαβKαβ+κ252(3+αM)I,(2.36)whereI=M2−8MαβMαβ+MαβγδMαβγδ−8NρNρ+4NρσκNρσκ−12MρσEρσ.(2.37) From Eq.(2.33)with Eq.(2.36),we thenfind£n Kµν=−32 Mµν−14(3+αM)T hµν+α2(Mµν+Eµν)−12(3+αM) Mµν−14hµνT+α4Mhµν T ,(2.39)whereH(1)µν=2MµαβγMαβγν−6MρσMµρνσ+4MMµν−8MµρMρν−12hµνMρσEρσ+3MEµν,H(3)µν=−4NµNν+4Nρ(Nρµν+Nρνµ)+2NρσµNρσν+4NµρσNρσν+3hµν NαNα−1Eq.(2.30).Hence Eqs.(2.30)and (2.39)with the energy momentum conservation (2.43)give the effective gravity theory on the brane.It may be better to rewrite Eq.(2.39)to the Einstein-type equations with “correction”terms.From Eqs.(2.19)and (2.39),we findG µν+E µν−KK µν+K µρK ρν+13T MN h M µh N ν+T MN n M n N−13+αMM µν−13 M µαβγM αβγν−3M ρσM µρνσ+2MM µν−4M µρM ρν −13(3+αM )M µν−13+αMM µν−13−N µN ν+N ρ(N ρµν+N ρνµ)+13(3+αM )M µν−12N αβγNαβγ.(2.45)As for the junction condition,we findK µν+2α2τµν−12 K 2−K αβK αβ h µν=2κ254T MMh Mµν ,(2.47)K µν=−κ253τh µν,(2.48)which are exactly the same as those found in Ref.[19],which gives the Einstein gravitational theory in the 4-D brane world.However,if the Gauss-Bonnet term appears,gravitational interaction on the brane will be modified in the effective theory.The gravity on the brane is described by Eq.(2.39)with Eq.(2.30),or equivalently by Eq.(2.44)with Eq.(2.46).Just as the case of the RS II model,this system is not closed because of appearance of the terms with E µν,which is some component of the 5-D Weyl curvature.Although we have to solve a bulk spacetime as well as a brane world,we know that any contribution from a bulk spacetime to a brane world is described only by the tidal force E µν.Although the above form (2.39)or (2.44)is good enough to describe our basic equations,it is sometimes convenient to divide Eq.(2.39)into two parts;its trace and the trace free equation.Introducing trace free variables as˜Mµν=M µν−16Mh µ[ρh σ]ν,(2.49)we findM +α 12˜M µν+E µν +α ¯H (1)µν+¯H (2)µν+¯H (3)µν=κ25T MN h M µh Nν−13+αM˜MµνT MN h MN,(2.51)where¯H (1)µν=2 L µαβγL αβγν−˜M αβL µανβ−˜M αµ˜M αν −3−αM 3+αM˜Mαβ˜M αβ˜M µν−12h µν˜MρσE ρσ+13+αM ˜MρσE ρσ˜M µν,¯H (3)µν=−4N µN ν+4N ρ(N ρµν+N ρνµ)+2N ρσµN ρσν+4N µρσN ρσν+3h µνN αN α−13+αMN αN α−12K 3+2K ˜Kρσ˜K ρσ−82τ,(2.53)˜Bµν≡B µν−13M ˜Kµν=−κ254τh µν,(2.54)where˜Kµν=K µν−14Jh µν=12K ˜Kµρ˜K ρν+˜Kµν˜K ρσ˜K ρσ−12h µν˜K αβ˜K βγ˜K γα−1X ≡H 2+ka 2.(3.3)We assume that only a cosmological constant exists in the bulk,i.e.,κ25T MN =−Λg MN .(3.4)From the symmetry of FRW spacetime,we can setK µν= K 00,K δi j ,(3.5)E µν=E 01,−13,(3.7)3¯Y+2E 00+αH (1)+H (2)=−8αΛ3(3+αM )M 2+18¯Y2 ,H (2)≡42¯X−¯Y +6α2¯Y1,−12K 2(K 00−K )1,−14(K 00−K )(1+4α¯X +8αK 2)+8αK ¯Y 1,−1The junction condition(2.30)gives two independent relationsK(1+4α¯X)+86τ00,(3.17)(K00−K) 1+4α(¯X+2K2) +8αK¯Y=κ253−2¯X 1+2α¯X ,(3.21) which is easily integrated as¯X(1+2α¯X)=Λa4.(3.22)where C is an integration constant.Ifα=0,we have¯X=¯X0(a)≡Λa4.(3.23)With Eq.(3.17)wefindX≡¯X0(a)+K2=κ456+Ca2=Λ43ρ+κ453,(3.25)whereΛ4=16 ,8πG=κ454α −1±3αX+436 τ00 2.(3.28)This is generalization of Friedmann equation.If the brane contains only matterfield including a tension,i.e.τ00=−(λ+ρ),it is a cubic equation with respect to X=H2+k/a2[30,39].When we have the Einstein-Hilbert action on the brane such as an induced gravity[21,31],the generalized Friedmann equation becomes complicated,but it is stilla cubic equation[30].In the case with a trace anomaly,τ00contains not onlyλ,ρ,and X,but also Y and˙Y.As a result,we have a very complicated equation.The other independent equation(3.8)just gives the value of E00,i.e.E00=−33(1+4α¯X±(a)) ,(3.29)where¯Y±(a)= 1+4α¯X±(a) −1 Λ4α 1∓3+16αµr4 1+4αΛ3r4−33+16αµαr4.(3.34) If1+43αΛ<0,r is boundedfrom above as r≤r max,wherer max= 16αµ3αΛ| 1/4.(3.35)Although the equation f(r)=0has a positive root for some restricted conditions,there appears another singularity at r=r max.The curvature invariant diverges there asR ABCD R ABCD≈µWith these basic equations,several authors analyzed the dynamics of the universe[30].In this paper,assuming the induced gravity model[21,31],wefirstfind a condition for a Minkowski brane.In the induced gravity model[21], we haveτ00=−(λ+ρ)+3µ2X,(3.37) whereλis a positive tension of a brane,ρis the energy density on a brane,andµis a mass scale in the induced gravity,which is expected to be the Planck mass.If we setµ=0,wefind the model without induced gravity action on the brane.In the Minkowski brane,X=Y=0andρ=0.From these conditions with Eqs.(3.18)and(3.30),we show that C=0.The real value condition for¯X requires1+43αΛ 3/2.(3.39)This is a tuning condition for zero cosmological constant on the brane.For the upper branch,when we take a limit ofα→0,we recoverΛ+κ45λ2/6=0,which is thefine-tuning condition for the RS II model.Note that such a limit does not exist for the lower branch,although we have the Minkowski brane in this branch.The condition(3.38)gives the possible range forλ,that is,0≤ακ45λ2<4for the upper branch,2≤ακ45λ2<4for the lower branch.(3.40) A de Sitter brane(or anti de Sitter brane)is obtained ifλis larger(or smaller)than that given by Eq.(3.39). Finally,we show an asymptotic Friedmann equation,by perturbing the Minkowski brane spacetime.Here we do not impose the tuning condition(3.39).Setting X,ρand C/a4as small variables and expanding Eq.(3.28)up to thosefirst order terms,wefind the conventional Friedmann equation with dark radiation asH2+k3+8πG(±)Na4,(3.41)whereΛ(±) 4=ακ45λ2−1+4αΛ± 1+412α 1−46κ45λµ2 ,(3.42)8πG(±)N =κ459αΛ+13 1−46κ45λµ22± 3αΛ+83αΛ<0,the scale factor of the universe cannot be infinitely large.There is an upper bound as a<a max=r max.No Minkowski brane exists.If the scale factor approaches this value,the Weyl curvature(3.33)diverges,where a singularity appears in a bulk black hole spacetime.Hence our universe evolves into a singularity although a scale factor isfinite.Even if the universe does not approach this singularity,the universe will get into trouble because it is a naked singularity.IV.CONCLUDING REMARKSWe have derived the covariant gravitational equations of a brane world model with the Gauss-Bonnet curvature-squared term in a bulk spacetime.Although the obtained equations are very complicated,any effects from a bulkspacetime to a brane world are described only by the Weyl curvature(Eµν).The basic equations are not given in a closed form because of this term.Giving the energy-momentum tensor of the brane,which is shown to be conserved,the extrinsic curvature(Kµν) of a brane satisfies a cubic matrix equation.Since it is not explicitly given by the energy-momentum tensor,we have to solve a couple of equations for the induced metric and the extrinsic curvature.If the brane action includes the induced gravity term,which may be expected from quantum effects of matterfields on the brane,we have to replace the energy-momentum tensor with its generalization just as in Ref.[21].We have then applied the present formalism to cosmology.Assuming the FRW spacetime for a brane world,we have re-derived the generalized Friedmann equation.The obtained equation has one integration constant,just as in the RS II model,which is proportional to mass of a5-D black hole solution.Hence the cosmological model has only one unknown parameter.The system is described in a closed form.Note that the present approach can be applied not only to a brane model with the Gauss-Bonnet term in arbitrary dimensions but also to that with any Lovelock terms because of their quasi-linearity.Another extension is inclusion of a dilatonfield.In a realistic string theory,we have a dilatonfield which couples to the Gauss-Bonnet term as well.It will change the dynamics of a brane world too.Such extensions are in progress.Analyzing those models,we hope that some fundamental cosmological problems such as a big-bang singularity or a cosmological constant will be solved.ACKNOWLEDGMENTSWe would like to thank K.Aoyanagi,N.Deruelle,S.Mizuno and N.Okuyama for useful discussions.This work was partially supported by the Grant-in-Aid for Scientific Research Fund of MEXT(Nos.14047216,14540281)and by the Waseda University Grant for Special Research Projects.Y.M.Cho,I.P.Neupane and P.S.Wesson,Nucl.Phys.B621,388(2002);N.E.Mavromatos and J.Rizos,Phys.Rev.D62,124004(2000).[15]N.Deruelle and M.Sasaki,gr-qc/0306032.[16]N.Arkani-Hamed,S.Dimopoulos and G.Dvali,Phys.Rev.D59,086004(1999);N.Arkani-Hamed,S.Dimopoulos,N.Kaloper,J.March-Russell,Nucl.Phys.B567,189(2000).[17]A.Lukas,B.A.Ovrut,K.S.Stelle and D.Waldram,Phys.Rev.D59,086001(1999);H.S.Reall,Phys.Rev.D59,103506(1999);A.Lukas,B.A.Ovrut and D.Waldram,Phys.Rev.D60,086001(1999).[18]P.Bin´e truy,C.Deffayet and nglois,Nucl.Phys.B565,269(2000);N.Kaloper,Phys.Rev.D60,123506(1999);C.Csaki,M.Graesser,C.Kolda and J.Terning Phys.Lett.B462,34(1999);T.Nihei,Phys.Lett.B465,81(1999);P.Kanti,I.I.Kogan,K.A.Olive and M.Prospelov,Phys.Lett.B468,31(1999);J.M.Cline,C.Grojean and G.Servant,Phys.Rev.Lett.83,4245(1999);P.Bin´e truy,C.Deffayet,U.Ellwanger and nglois,Phys.Lett.B477,285(2000);S.Mukohyama,T.Shiromizu and K.Maeda,Phys.Rev.D62,024028(2000).[19]T.Shiromizu,K.Maeda and M.Sasaki,Phys.Rev.D62,024012(2000);M.Sasaki,T.Shiromizu and K.Maeda,Phys.Rev.D62,024008(2000).[20]K.Maeda and D.Wands,Phys.Rev.D62,124009(2000).[21]K.Maeda,S.Mizuno and T.Torii,Phys.Rev.D68,024033(2003).[22]K.Maeda,Prog.Theor.Phys.Suppl.148,59(2003).[23]I.Low and A.Zee,Nucl.Phys.B585,395(2000);J.M.Cline and H.Firouzjahi,Phys.Rev.D65,043501(2002).[24]N.Deruelle and T.Dolezel,Phys.Rev.D62,103502(2000);B.Abdesselam and N.Mohammedi,Phys.Rev.D65,084018(2002).[25]P.Binetruy,C.Charmousis,S.C.Davis and J.Dufaux,Phys.Lett.B544,183(2002);J.E.Lidsey,S.Nojiri and S.Odintov,JHEP06,026(2002);C.Barcelo,C.Germani and C.F.Sopuerta,gr-qc/0306072.[26]J.E.Lidsey and N.J.Nunez,Phys.Rev.D67,103510(2003).[27]M.A.Luty,M.Porrati and M Manera,hep-th/0303116;V.A.Rubakov,hep-th/0303125.[28]J.P.Gregory and A.Padilla,hep-th/0304250.[29]N.Deruelle and J.Madore,gr-qc/0305004.[30]J.E.Kim,B.Kyae and H.M.Lee,Nucl.Phys.B582,296(2000);B591,587(2000);C.Charmousis and J.Dufaux,Class.Quantum Grav.19,4671(2002);J.E.Lidsey and N.J.Nunes,astro-ph/0303168;C.Germani and C.Sopuerta,Phys.Rev.Lett.88,231101(2002);G.Kofinas,R.Maartens,and E.Papantonopoulos,hep-th/0307138.[31]G.Dvali,G.Gabadadze,and M.Porrati,Phys.Lett.B485,208(2000);G.Dvali and G.Gabadadze,Phys.Rev.D63,065007(2001);G.Dvali,G.Gabadadze,and M.Shifman,hep-th/0202174.[32]T.Tanaka,gr-qc/0305031.[33]S.Nojiri,S.D.Odintsov,and S.Zerbini,Phys.Rev.D62,064006(2000);S.Nojiri,and S.D.Odintsov,Phys.Lett.B484,119(2000).[34]S.W.Hawking,T.Hertog,and H.S.Reall,Phys.Rev.D62,043501(2001);ibid.D63,083504(2001);S.W.Hawking and T.Hertog,Phys.Rev.D66,123509(2002).[35]G.W.Gibbons and S.W.Hawking,Phys.Rev.D15,2752(1977).[36]H.A.Chamblin and H.S.Reall,Nucl.Phys.B562,133(1999).[37]R.C.Myers,Phys.Rev.D36,392(1987).[38]W.Israel,Nuovo Cim.44B,1(1966).[39]S.C.Davis,hep-th/0208205;E.Gravanis and S.Willison,Phys.Lett.B562,118(2003).[40]D.G.Boulware and S.Deser,Phys.Rev.Lett.85,2656(1985).[41]J.T.Wheeler,Nucl.Phys.B368,737(1986);N.Deruelle and J.Modare,Phys.Lett.B186,26(1987);R.-G.Cai,Phys.Rev.D65,084014(2002);S.Nojiri and S.D.Odintsov,hep-th/0109122.[42]D.L.Wiltshire,Phys.Lett.B169,36(1986).[43]D.Lovelock,J.Math.Phys.12,498(1971);N.Deruelle and L.Farina-Busto,Phys.Rev.D41,3696(1990);G.A.M.Marugan,Phys.Rev.D46,4320(1992).。

相关文档
最新文档