最新人教版九年级数学实际问题与反比例函数习题1

合集下载

最新人教版初中数学九年级数学下册第一单元《反比例函数》测试(答案解析)(1)

最新人教版初中数学九年级数学下册第一单元《反比例函数》测试(答案解析)(1)

一、选择题1.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()1,1-,点B 在x 轴正半轴上,点D 在第三象限的双曲线8y x=上,过点C 作//CE x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .2.3D .52.将函数 6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是( ) A .61y x =+ B .61y x =- C .61y x=+ D .61y x=- 3.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线y =8x上,过点C 作CE ∥x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .3.5D .54.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC=90°,CA ⊥x 轴,点C 在函数y=kx(x >0)的图象上,若AB=2,则k 的值为( )A.4 B.22C.2 D.25.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B.C.D.6.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数在第一象限内的图像与△ABC有交点,则的取值范围是A.2≤≤B.6≤≤10C.2≤≤6D.2≤≤7.如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C 分别在双曲线y=1k x和y=2k x 的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①12||AM CN ||k k =;②阴影部分面积是12(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是( )A .①②B .①④C .③④D .①②③8.同一坐标系中,函数()1y k x +=与ky x=的图象正确的是( ) A . B .C .D .9.已知二次函数2y ax bx c =++的图象如图,则一次函数y ax bc =+与反比例函数abcy x=在平面直角坐标系中的图象可能是( ).A .B .C .D .10.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCDS为( )A .2.5B .3.5C .4D .511.函数ky x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .12.函数y =x +m 与my x=(m ≠0)在同一坐标系内的图象可以是( ) A . B .C .D .二、填空题13.已知函数3(2)m y m x -=-是反比例函数,则m =_________.14.如图,△OA 1B 1,△A 1A 2B 2,△A 2A 3B 3,…是分别以A 1,A 2,A 3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C 1(x 1,y 1),C 2(x 2,y 2),C 3(x 3,y 3),…均在反比例函数y =4x(x >0)的图象上,则y 1+y 2+…+y 100的值为_____.15.如图,直线122y x =-+与x ,y 轴交于A 、B 两点,以AB 为边在第一象限作矩形ABCD ,矩形的对称中心为点M ,若双曲线(0)k y x x=>恰好过点C 、M ,则k =___________.16.已知()221ay a x -=-是反比例函数,则a =________________.17.如果反比例函数y 2mx-=的图象在第一、三象限,那么m 的取值范围是____. 18.反比例函数2(0)m y x x+=<的图象如图所示,则m 的取值范围为__________.19.点(),A a b 是一次函数3y x =-+与反比例函数2y x =的交点,则11a b+的值__________.20.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点A 在反比例函数221a a y x++=的图象上.若点C 的坐标为(2,2)--,则a 的值为_______.三、解答题21.如图,在平面直角坐标系中,一次函数1y kx =+的图象交y 轴于点D ,与反比例函数16y x=的图象在第一象限相交于点A .过点A 分别作x 轴、y 轴的垂线,垂足为点B 、C . (1)点D 的坐标为__________; (2)当四边形OBAC 是正方形时,求k 值.22.如图,反比例函数(0,0)ky k x x=≠<经过ABO 边AB 的中点D ,与边AO 交于点C ,且:1:2AC CO =,连接DO ,若AOD △的面积为78,则k 的值为_______.23.如图,在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数y =6x的图象相交于点A (m ,3)、B (–6,n ),与x 轴交于点C .(1)求一次函数y =kx +b 的关系式; (2)结合图象,直接写出满足kx +b >6x的x 的取值范围; (3)若点P 在x 轴上,且S △ACP =32BOC S △,求点P 的坐标.24.如图,过直线2y x =上的点A 作x 轴的垂线,垂足为点B (4,0),与双曲线交于点C ,且点A 、C 关于x 轴对称.(1)求该双曲线的解析式;(2)如果点D 在直线2y x =上,且DAB ∆是以AB 为腰的等腰三角形,求点D 的坐标; (3)如果点E 在双曲线上,且ABE ∆的面积为20,求点E 的坐标.25.如图,Rt △ABO 的顶点A 是反比例函数ky x =的图象与一次函数(1)y x k =--+的图象在第二象限的交点,AB ⊥x 轴于点B ,且S △ABO =32.(1)求反比例函数和一次函数的解析式; (2)求△AOC 的面积;(3)当x 为何值时,一次函数的值大于反比例函数的值.26.如图,在平面直角坐标系xOy 中,反比例函数y =mx的图象与一次函数y =k (x -2)的图象交点为A (3,2),B (x ,y ).(1)求反比例函数与一次函数的解析式;(2)若C 是y 轴上的点,且满足△ABC 的面积为10,求C 点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】证明()△△DHA CGDAAS ≅,()△△ANB DGC AAS ≅得到:1AN DG AH===,而11AH m =--=,解得2m =-,即可求解;【详解】 设点8,D m m ⎛⎫ ⎪⎝⎭, 如图所示,过点D 作x 轴的垂线交CE 于点G ,过点A 作x 轴的平行线DG 于点H ,过点A 作AN x ⊥轴于点N ,∵90GDC DCG ∠+∠=︒,90GDC HDA ∠=∠=︒, ∴HDA GCD ∠=∠,又AD CD =,90DHA CGD ∠=∠=︒, ∴()△△DHA CGD AAS ≅,∴HA DG =,DH CG =,同理可得:()△△ANB DGC AAS ≅,∴1AN DG AH===,则点8,1G m m ⎛⎫- ⎪⎝⎭,CG DH =, 11AH m =--=, 解得:2m =-,故点()2,5G --,()2,4D --,()2,1H -,则点8,55E ⎛⎫-- ⎪⎝⎭,25GE =,∴223555CE CG GE DH GE =-=-=-=. 故答案选B . 【点睛】本题主要考查了反比例函数图象上点的坐标特征,正方形的性质,准确分析计算是解题的关键.2.B解析:B 【分析】由于把双曲线平移,k 值不变,利用“左加右减,上加下减”的规律即可求解. 【详解】 解:将函数6y x=的图象沿x 轴向右平移1个单位长度,得到的图象所相应的函数表达式是61y x =-, 故选:B . 【点睛】本题考查了反比例函数的图象,注意:平移后解析式有这样一个规律“左加右减,上加下减”.3.B解析:B 【分析】设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,根据AAS先证明△DHA≌△CGD、△ANB≌△DGC可得AN =DG=1=AH,据此可得关于m的方程,求出m的值后,进一步即可求得答案.【详解】解:设点D(m,8m),过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,如图所示:∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,8m﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣85,﹣5),GE=25,CE=CG﹣GE=DH﹣GE=5﹣25=235,故选B.【点睛】本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.4.A解析:A【解析】【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到22,BD=AD=CD=2,再利用AC⊥x轴得到C(2,22),然后根据反比例函数图象上点的坐标特征计算k的值.【详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.5.D解析:D【分析】先由反比例函数的图象得到k,b同号,然后分析各选项一次函数的图象即可.【详解】∵y=kbx的图象经过第一、三象限,∴kb>0,∴k,b同号,选项A图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;选项B图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;选项C图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;选项D图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选D.考点:反比例函数的图象;一次函数的图象.6.A解析:A【分析】把A点的坐标代入即可求出k的最小值;当反比例函数和直线BC相交时,求出b2﹣4ac的值,得出k的最大值.【详解】把点A(1,2)代入kyx=得:k=2;C的坐标是(6,1),B的坐标是(2,5),设直线BC的解析式是y=kx+b,则25 61 k bk b+=⎧⎨+=⎩,解得:17kb=-⎧⎨=⎩,则函数的解析式是: y=﹣x+7,根据题意,得:kx=﹣x+7,即x2﹣7x+k=0,△=49﹣4k≥0,解得:k≤494.则k的范围是:2≤k≤494.故选A.考点:反比例函数综合题.7.B解析:B【分析】作AE⊥y轴于点E,CF⊥y轴于点F,根据平行四边形的性质得S△AOB=S△COB,利用三角形面积公式得到AE=CF,则有OM=ON,再利用反比例函数k的几何意义和三角形面积公式得到S△AOM=12|k1|=12OM•AM,S△CON=12|k2|=12ON•CN,所以有12kAMCN k=;由S△AOM=12|k1|,S△CON=12|k2|,得到S阴影部分=S△AOM+S△CON=12(|k1|+|k2|)=12(k1-k2);当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=-k2,根据反比例函数的性质得两双曲线既关于x 轴对称,也关于y 轴对称.【详解】作AE ⊥y 轴于E ,CF ⊥y 轴于F ,如图,∵四边形OABC 是平行四边形,∴S △AOB =S △COB ,∴AE=CF ,∴OM=ON ,∵S △AOM =12|k 1|=12OM•AM ,S △CON =12|k 2|=12ON•CN , ∴12k AM CN k ,故①正确; ∵S △AOM =12|k 1|,S △CON =12|k 2|, ∴S 阴影部分=S △AOM +S △CON =12(|k 1|+|k 2|), 而k 1>0,k 2<0,∴S 阴影部分=12(k 1-k 2),故②错误; 当∠AOC=90°,∴四边形OABC 是矩形,∴不能确定OA 与OC 相等,而OM=ON ,∴不能判断△AOM ≌△CNO ,∴不能判断AM=CN ,∴不能确定|k 1|=|k 2|,故③错误;若OABC 是菱形,则OA=OC ,而OM=ON ,∴Rt △AOM ≌Rt △CNO ,∴AM=CN ,∴|k 1|=|k 2|,∴k 1=-k 2,∴两双曲线既关于x 轴对称,也关于y 轴对称,故④正确.故选:B .【点睛】本题属于反比例函数的综合题,考查了反比例函数的图象、反比例函数k的几何意义、平行四边形的性质、矩形的性质和菱形的性质.注意准确作出辅助线是解此题的关键.8.D解析:D【分析】先根据四个选项的共同点确定k的符号,再根据各函数图象的性质确定图象所在的象限即可.【详解】k>,则一次函数图象应该交y轴于正半轴,解:A、反比例函数图象位于一、三象限,0故本选项错误;<,则一次函数图象应该交y轴于负半轴,故本B、反比例函数图象位于二、四象限,k0选项错误;<,则一次函数应该是个减函数,故本选项错C、反比例函数图象位于二、四象限,k0误;k>,则一次函数图象应该交y轴于正半轴,故本D、反比例函数图象位于一、三象限,0选项正确;故选:D.【点睛】此题考查反比例函数的图象性质和一次函数的图象性质,解题关键是由k的取值确定函数所在的象限.9.C解析:C【分析】由二次函数的图像性质分析a,b,c的符号,从而判断bc和abc的符号,然后结合反比例函数和一次函数图像性质进行判断即可.【详解】解:由题意可知,二次函数开口向上,∴a>0由二次函数对称轴在y轴右侧,∴b<0由二次函数与y轴交于原点上方,∴c>0∴bc<0,abc<0∴一次函数图像经过一、三、四象限,反比例函数图像经过二四象限故选:C.【点睛】本题考查一次函数、二次函数、反比例函数的图像性质,掌握函数图像性质,利用数形结合思想解题是关键.10.D解析:D【分析】过点B作BH⊥x轴于H,根据坐标特征可得点A和点B的纵坐标相同,由题意可设点A的坐标为(2a,a),点B的坐标为(3a-,a),即可求出BH和AB,最后根据平行四边形的面积公式即可求出结论.【详解】解:过点B作BH⊥x轴于H∵四边形ABCD为平行四边形∴//AB x轴,CD=AB∴点A和点B的纵坐标相同由题意可设点A的坐标为(2a,a),点B的坐标为(3a-,a)∴BH=a,CD=AB=2a -(3a-)=5a∴ABCDS=BH·CD=5故选D.【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.11.C解析:C【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y轴于负半轴,y 随着x的增大而增大,A选项错误,C选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y轴于正半轴,y 随着x的增大而增减小,B. D均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键.12.B解析:B【分析】先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【详解】A .由函数y =x +m 的图象可知m <0,由函数y m x =的图象可知m >0,相矛盾,故错误; B .由函数y =x +m 的图象可知m >0,由函数y m x =的图象可知m >0,正确; C .由函数y =x +m 的图象可知m >0,由函数y m x =的图象可知m <0,相矛盾,故错误; D .由函数y =x +m 的图象可知m =0,由函数y m x=的图象可知m <0,相矛盾,故错误. 故选:B .【点睛】此题考查了反比例函数的图象性质和一次函数的图象性质,解题关键在于掌握它们的性质才能灵活解题. 二、填空题13.-2【分析】让x 的指数为-1系数不为0列式求值即可【详解】依题意得且解得故答案为:-2【点睛】考查反比例函数的定义;反比例函数解析式的一般形式y =(k≠0)也可转化为y=kx-1(k≠0)的形式特别解析:-2【分析】让x 的指数为-1,系数不为0列式求值即可.【详解】 依题意得31m -=-且20m -≠,解得2m =-.故答案为:-2.【点睛】考查反比例函数的定义;反比例函数解析式的一般形式y =k x(k≠0),也可转化为y=kx -1(k≠0)的形式,特别注意不要忽略k≠0这个条件. 14.20【分析】根据点C1的坐标确定y1可求反比例函数关系式由点C1是等腰直角三角形的斜边中点可以得到OA1的长然后再设未知数表示点C2的坐标确定y2代入反比例函数的关系式建立方程解出未知数表示点C3的解析:20【分析】根据点C 1的坐标,确定y 1,可求反比例函数关系式,由点C 1是等腰直角三角形的斜边中点,可以得到OA 1的长,然后再设未知数,表示点C 2的坐标,确定y 2,代入反比例函数的关系式,建立方程解出未知数,表示点C 3的坐标,确定y 3,……然后再求和.【详解】解:过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…则∠OD1C1=∠OD2C2=∠OD3C3=90°,∵三角形OA1B1是等腰直角三角形,∴∠A1OB1=45°,∴∠OC1D1=45°,∴OD1=C1D1,其斜边的中点C1在反比例函数y=4x,∴C(2,2),即y1=2,∴OD1=D1A1=2,∴OA1=2OD1=4,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=4x得:a(4+a)=4,解得:a=22﹣2,即:y2=22﹣2,同理:y3=23﹣22,y4=24﹣23,……y100=2100﹣299∴y1+y2+…+y100=2+22﹣2+23﹣22……2100﹣299=20,故答案为:20.【点睛】本题考查反比例函数的图象和性质、反比例函数图象上点的坐标特征、等腰直角三角形的性质等知识,通过计算有一定的规律,推断出一般性的结论,得出答案.15.【分析】先由直线与xy轴交于AB两点求出A(40)B(02)根据互相垂直的两直线斜率之积为-1求出直线BC的解析式为y=2x+2设C(a2a+2)由矩形的对称中心为点M得出M为AC的中点根据中点坐标解析:56 9【分析】先由直线122y x =-+与x ,y 轴交于A 、B 两点,求出A (4,0),B (0,2),根据互相垂直的两直线斜率之积为-1,求出直线BC 的解析式为y=2x+2,设C (a ,2a+2),由矩形的对称中心为点M ,得出M 为AC 的中点,根据中点坐标公式得出M (42a +,a+1),再根据双曲线k y x=过点C 、M ,得到a (2a+2)=42a +(a+1),解方程求出a 的值,进而得到k .【详解】 解:∵122y x =-+, ∴x=0时,y=2; y=0时,1202x -+=,解得x=4, ∴A (4,0),B (0,2).∵四边形ABCD 是矩形,∴∠ABC=90°.设直线BC 的解析式为y=2x+b ,将B (0,2)代入得,b=2,∴直线BC 的解析式为y=2x+2,设C (a ,2a+2),∵矩形ABCD 的对称中心为点M ,∴M 为AC 的中点, ∴M (42a +,a+1). ∵双曲线k y x=(x >0)过点C 、M , ∴a (2a+2)=42a +(a+1), 解得a 1=43,a 2=-1(不合题意舍去), ∴k=a (2a+2)=4456(22)339⨯+=, 故答案为569. 【点睛】 本题考查了反比例函数、一次函数图象上点的坐标特征,矩形的性质,中点坐标公式,待定系数法求一次函数的解析式,难度适中.求出M 点的坐标是解题的关键.16.【分析】根据反比例函数的定义列出方程不等式即可求解【详解】解:∵是反比例函数∴且∴且∴故答案是:【点睛】本题考查了反比例函数的定义解方程解不等式等知识点能根据反比例函数的定义正确列出方程和不等式是解 解析:1-【分析】根据反比例函数的定义列出方程、不等式即可求解.【详解】解:∵()221ay a x -=-是反比例函数 ∴221a -=-且10a -≠∴1a =±且1a ≠∴1a =-.故答案是:1-【点睛】本题考查了反比例函数的定义、解方程、解不等式等知识点,能根据反比例函数的定义正确列出方程和不等式是解题的关键. 17.m <2【分析】根据反比例函数y 的图象在第一三象限可知2-m >0从而可以求得m 的取值范围【详解】∵反比例函数y 的图象在第一三象限∴2﹣m >0解得:m <2故答案为:m <2【点睛】本题考查反比例函数的性质解析:m <2.【分析】根据反比例函数y 2m x -=的图象在第一、三象限,可知2-m >0,从而可以求得m 的取值范围.【详解】∵反比例函数y 2m x-=的图象在第一、三象限, ∴2﹣m >0,解得:m <2.故答案为:m <2.【点睛】本题考查反比例函数的性质和图象,解答本题的关键是明确题意,利用反比例函数的性质解答. 18.【分析】直接利用反比函数图象的分布得出m+2<0进而得出答案;【详解】解:∵反比例函数图象分布在第二象限∴m+2<0解得:m <-2;故答案为:m <-2【点睛】本题考查了反比例函数图象上的性质正确掌握解析:2m <-【分析】直接利用反比函数图象的分布得出m+2<0,进而得出答案;【详解】解:∵反比例函数图象分布在第二象限,∴m+2<0,解得:m <-2;故答案为:m <-2.【点睛】本题考查了反比例函数图象上的性质,正确掌握反比例函数的增减性是解题的关键. 19.【分析】联立两函数构成方程组解方程组即可【详解】解:由解得或或故答案为:【点睛】本题考查了反比例函数与一次函数的交点坐标解题的关键是学会利用方程组求两个函数的交点坐标属于基础题 解析:32【分析】联立两函数构成方程组,解方程组即可.【详解】 解:由23y x y x ⎧=⎪⎨⎪=-+⎩解得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩, ()1,2A ∴或()2,1,1132a b ∴+=, 故答案为:32. 【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是学会利用方程组求两个函数的交点坐标,属于基础题. 20.1或-3【分析】由题意根据反比例函数中值的几何意义即函数图像上一点分别作关于xy 轴的垂线与原点所围成的矩形的面积为据此进行分析求解即可【详解】解:由题意图形分成如下几部分∵矩形的对角线为∴即∵根据矩 解析:1或-3【分析】由题意根据反比例函数中k 值的几何意义即函数图像上一点分别作关于x 、y 轴的垂线与原点所围成的矩形的面积为k ,据此进行分析求解即可.【详解】解:由题意图形分成如下几部分,∵矩形ABCD 的对角线为BD ,∴DCB ABD S S =,即164253S S S S S S ++=++,∵根据矩形性质可知1234,S S S S ==,∴56S S =,∵2521S a a =++,点C 的坐标为()2,2--,∴26214S a a =++=,解得a =1或-3.故答案为:1或-3.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题21.(1)()01,;(2)34k = 【分析】(1)根据一次函数解析式确定出D 坐标即可;(2)正方形OBAC 中,OB=AB ,OB=AB=a ,则点A (a ,a ),代入反比例解析式求出a 的值,确定出A 坐标,代入一次函数解析式求出k 的值即可.【详解】解:(1)由于点D 是一次函数y=kx+1的图象与y 轴的交点,当x=0时,y=kx+1=1,所以点D 的坐标为(0,1);故答案为:(0,1);(2)正方形OBAC 中,OB=AB ,设OB=AB=a ,则点A (a ,a ),代入反比例函数解析式得a =16a, ∴a 2=16,∴x=4或x=-4(不合题意,含去),∴A 的坐标为A (4,4),代入一次函数y=kx+1中,得4=4k+1,解得k =34. 【点睛】 此题考查了反比例函数与一次函数的交点问题,待定系数法求函数解析式,正方形的性质,坐标与图形性质,熟练掌握待定系数法是解本题的关键.22.74- 【分析】设点D 的坐标为(),y D D D x ,得12DOB D D Sx y =-,结合题意得:D D x y k =,从而推导得12DOB S k =-;结合AB 的中点为点D ,得78AOD DOB S S ==,经计算即可完成求解. 【详解】设点D 的坐标为(),y D D D x∴12DOB D D S x y =- ∵D D x y k =∴()111222D D DOB S DB OB y x k =⨯=⨯-=- 又∵AB 的中点为点D ∴78AOD DOB S S == ∴1728k -= 故答案为:74-. 【点睛】 本题考查了反比例函数、直角坐标系、一元一次方程的知识;解题的关键是熟练掌握反比例函数、直角坐标系、一元一次方程、三角形中线的性质,从而完成求解.23.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 【分析】(1)利用反比例函数图象上点的坐标特征可求出点A 、B 的坐标,再利用待定系数法即可求出直线AB 的解析式;(2)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C 的坐标,设点P 的坐标为(x ,0),根据三角形的面积公式结合S △ACP =32S △BOC ,即可得出|x+4|=2,解之即可得出结论. 【详解】(1)∵点A(m,3),B(-6,n)在双曲线y=6x上,∴m=2,n=-1,∴A(2,3),B(-6,-1).将(2,3),B(-6,-1)带入y=kx+b,得:3216k bk b+⎧⎨--+⎩==,解得,122kb==⎧⎪⎨⎪⎩.∴直线的解析式为y=12x+2.(2)由函数图像可知,当kx+b>6x时,-6<x<0或2<x;(3)当y=12x+2=0时,x=-4,∴点C(-4,0).设点P的坐标为(x,0),如图,∵S△ACP=32S△BOC,A(2,3),B(-6,-1),∴12×3|x-(-4)|=32×12×|0-(-4)|×|-1|,即|x+4|=2,解得:x1=-6,x2=-2.∴点P的坐标为(-6,0)或(-2,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(2)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=32S△BOC,得出|x+4|=2.24.(1)32yx-=;(2)8516548⎛⎝⎭或851658⎛⎝⎭或1224,55⎛⎫--⎪⎝⎭;(3)329,9⎛⎫-⎪⎝⎭或()1,32-【分析】(1)求出点C 的坐标,代入k y x=即可求解; (2)分两种情况讨论①8AB AD ==,②8AB BD ==求解即可; (3)设设点E 的坐标为32,b b ⎛⎫- ⎪⎝⎭,利用含b 的式子表示出三角形ABE 的面积求解即可. 【详解】解:(1)由题意知:点A 横坐标为4,将4x =代入2y x =得,8y =,A ∴点坐标为(4,8),点A 、C 关于x 轴对称,∴点C 坐标为(4,-8). 设双曲线解析式为k y x =,将(4,-8)代入k y x=得,32k =- 32y x -∴=(3)DAB ∆是等腰三角形,且AB 为腰,设点D 坐标为(),2a a①8AB AD ==8AD ==,解得:4a =±点D 坐标为48⎛ ⎝⎭或8⎛ ⎝⎭②8AB BD ==8BD ==解得:14a =,2125a =- 点D 不能与点A 重合,14a =舍去点D 坐标为1224,55⎛⎫-- ⎪⎝⎭ (3)设点E 的坐标为32,b b ⎛⎫- ⎪⎝⎭ 由题意可知,14202S ABE AB b ∆=⨯⨯-= 解得:19b =,21b =-E 点坐标为329,9⎛⎫- ⎪⎝⎭或()1,32- 【点睛】 本题考查了反比例函数和一次函数的性质及等腰三角形的性质,注意分类讨论思想的运用.25.(1)反比例函数解析式:3y x=-,一次函数解析式:2y x +=-;(2)4;(3)1x <-或03x <<【分析】(1)根据S △AOB =12|k|,可求k 的值,再求出一次函数解析式; (2)两个解析式构成方程组可求点A ,点C 坐标,即可△AOC 的面积;(3)由图象可得当一次函数图象在反比例函数图象上面的x 的取值范围.【详解】解:(1)∵AB ⊥x 轴于点B ,且S △ABO =32, ∴12|k|=32,∴k =±3. ∵反比例函数图象在第二、四象限,∴k<0,∴k =-3.∴反比例函数的解析式为3y x=-,一次函数的解析式为y =-x +2. (2)设一次函数y =-x +2的图象与x 轴的交点为D.令y =0,得x =2.∴点D 的坐标为(2,0). 由23y x y x =-+⎧⎪⎨=-⎪⎩解得13x y =-⎧⎨=⎩或31x y =⎧⎨=-⎩ ∴A(-1,3),C(3,-1),∴S △AOC =S △AOD +S △ODC =12×2×3+12×2×1=4. (3) 由图象可得:当x <−1或0<x <3时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数交点问题,反比例函数系数k 的几何意义,利用方程组求交点坐标是本题的关键.26.(1)y =6x,y =2x -4;(2)C 点的坐标为()0,1或()0,9-. 【分析】(1)将点()3,2A 分别代入反比例函数和一次函数解析式中,求得参数m 和k 的值,即可得到两个函数的解析式;(2)联立反比例函数和一次函数的解析式,求得B 的坐标,再利用一次函数的解析式求得一次函数与y 轴交点的坐标点M 的坐标为()0,4-,设C 点的坐标为(0,y c ),根据12×3×|y c -(-4)|+12×1×|y c -(-4)|=10解得y c 的值,即可得到点C 的坐标. 【详解】(1)∵点()3,2A 在反比例函数y =m x 和一次函数y =k (x -2)的图象上, ∴2=3m ,2=k (3-2),解得m =6,k =2, ∴反比例函数的解析式为y =6x,一次函数的解析式为y =2x -4. (2)∵点B 是一次函数与反比例函数的另一个交点, ∴6x=2x -4,解得x 1=3,x 2=-1, ∴B 点的坐标为()1,6--.设点M 是一次函数y =2x -4的图象与y 轴的交点,则点M 的坐标为()0,4-. 设C 点的坐标为(0,y c ),由题意知12×3×|y c -(-4)|+12×1×|y c -(-4)|=10, ∴|y c +4|=5.当y c +4≥0时,y c +4=5,解得y c =1;当y c +4<0时,y c +4=-5,解得y c =-9,∴C 点的坐标为()0,1或()0,9-.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出两个函数的解析式以及直线AB 与y 轴的交点坐标.。

人教版九年级数学下册的26章实际问题与反比例函数训练题(含答案)

人教版九年级数学下册的26章实际问题与反比例函数训练题(含答案)

人教版九年级数学下册的26章实际问题与反比例函数训练题(含答案)一.选择题(共5小题)1.如图,市煤气公司计划在地下修建一个容积为104m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()A. B.C.D.2.已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()A.B.C.D.3.一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A.B.C.D.4.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为3 0℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:25)能喝到不小于70℃的水,则接通电源的时间可以是当天上午的()A.7:00 B.7:10 C.7:25 D.7:35(4题图)(5题图)5.如图,在直角坐标系中,有菱形OABC,A点的坐标是(10,0),双曲线经过点C,且OB•AC=160,则k的值为()A.40 B.48 C.64 D.80二.填空题(共5小题)6.随着私家车的增加,城市的交通也越来越拥挤,通常情况下,某段高架桥上车辆的行驶速度y(千米/时)与高架桥上每百米拥有车的数量x(辆)的关系如图所示,当x≥10时,y 与x成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,高架桥上每百米拥有车的数量x应该满足的范围是.(6题图)(7题图)(8题图)(9题图)7.如图,直线y=﹣x+b与双曲线y=﹣(x<0)交于点A,与x轴交于点B,则OA2﹣OB2=.8.如图所示,直线y=﹣3x+6交x轴﹨y轴于A﹨B两点,BC⊥AB,且D为AC的中点,双曲线y=过点C,则k= .9.如图,Rt△ABC中,∠OAB=90°,直角边OA在平面直角坐标系的x轴上,O为坐标原点,OA=2,AB=4,函数y=(x>0)的图象分别与BO﹨BA交于C﹨D两点,且以B﹨C﹨D为顶点的三角形与△OAB相似,则k的值为.10.由于天气炎热,某校根据《学校卫生工作条例》,为预防“蚊虫叮咬”,对教室进行“薰药消毒”.已知药物在燃烧机释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在分钟内,师生不能呆在教室.(10题图)(11题图)三.解答题(共4小题)抗菌新药,经种食品的同时(1)分别求出该材料加热和停止加热过程中y与x的函数关系式(写出x的取值范围);(2)根据该食品制作要求,在材料温度不低于12℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理的时间为多少分钟?14.直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线(x<0)交于点A(﹣1,n).(1)求直线与双曲线的解析式.(2)连接OA,求∠OAB的正弦值.(3)若点D在x轴的正半轴上,是否存在以点D﹨C﹨B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由.人教版九年级数学下册的26章26.2实际问题与反比例函数训练题参考答案一.选择题(共5小题)1.A.2.C.3.C.4.B.5.B.二.填空题(共5小题)6.0<x<40.7.28.﹣.9.10.75三.解答题(共4小题)11.解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设直反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.12.解:(1)把A(﹣2,0)代入y=ax+1中,求得a=,∴y=x+1,由PC=2,把y=2代入y=x+1中,得x=2,即P(2,2),把P代入y=得:k=4,则双曲线解析式为y=;(2)设Q(a,b),∵Q(a,b)在y=上,∴b=,当△QCH∽△BAO时,可得=,即=,∴a﹣2=2b,即a﹣2=,解得:a=4或a=﹣2(舍去),∴Q(4,1);当△QCH∽△ABO时,可得=,即=,整理得:2a﹣4=,解得:a=1+或a=1﹣(舍),∴Q(1+,2﹣2).综上,Q(4,1)或Q(1+,2﹣2).13.解:(1)设加热停止后反比例函数表达式为y=,∵y=过(12,14),得k1=12×14=168,则y=;当y=28时,28=,得x=6.设加热过程中一次函数表达式y=k2x+b,由图象知y=k2x+b过点(0,4)与(6,28),∴,解得,∴y=4x+4,此时x的范围是0≤x≤6.y=此时x的范围是x>6;(2)当y=12时,由y=4x+4,得x=2.由y=,得x=14,所以对该材料进行特殊处理所用的时间为14﹣2=12(分钟).14.解:(1)∵直线y=x+b与x轴交于点C(4,0),∴把点C(4,0)代入y=x+b得:b=﹣4,∴直线的解析式是:y=x﹣4;∵直线也过A点,∴把A点代入y=x﹣4得到:n=﹣5∴A(﹣1,﹣5),把将A点代入(x<0)得:m=5,∴双曲线的解析式是:y=;(2)过点O作OM⊥AC于点M,∵B点经过y轴,∴x=0,∴0﹣4=y,∴y=﹣4,∴B(0,﹣4),AO==,∵OC=OB=4,∴△OCB是等腰三角形,∴∠OBC=∠OCB=45°,∴在△OMB中 sin45°==,∴OM=2,∴在△AOM中,sin∠OAB===;(3)存在;过点A作AN⊥y轴,垂足为点N,则AN=1,BN=1,则AB==,∵OB=OC=4,∴BC==4,∠OBC=∠OCB=45°,∴∠OBA=∠BCD=135°,∴△OBA∽△BCD或△OBA∽△DCB,∴=或=,∴=或=,∴CD=2或CD=16,∵点C(4,0),∴点D的坐标是(20,0)或(6,0).。

人教版九年级数学下册-- 第26章 反比例函数(共19页)--(附解析答案)

人教版九年级数学下册-- 第26章  反比例函数(共19页)--(附解析答案)

第二十六章 反比例函数测试1 反比例函数的概念学习要求理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.课堂学习检测一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______. 2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数. (3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数; 当S =18时,a 与h 的关系式为____________,是____________函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m x y (m 是常数)是反比例函数,则m =____________,解析式为____________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________.二、选择题 6.已知函数xky =,当x =1时,y =-3,那么这个函数的解析式是( ). (A)x y 3=(B)xy 3-= (C)xy 31=(D)xy 31-= 7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ). (A)4 (B)-4 (C)3 (D)-3三、解答题8.已知y 与x 成反比例,当x =2时,y =3. (1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.综合、运用、诊断一、填空题9.若函数522)(--=kx k y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数. 二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x(B)xy 100=(C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系; (2)如果S =3cm 2时,h =16cm ,求: ①h (cm)与S (cm 2)之间的函数关系式; ②S =4cm 2时h 的值以及h =4cm 时S 的值.拓展、探究、思考14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.测试2 反比例函数的图象和性质(一)学习要求能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.课堂学习检测一、填空题 1.反比例函数xky =(k 为常数,k ≠0)的图象是______;当k >0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______;当k <0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______. 2.如果函数y =2+1的图象是双曲线,那么k =______.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而______. 4.如果点(1,-2)在双曲线xky =上,那么该双曲线在第______象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是____________. 二、选择题 6.反比例函数xy 1-=的图象大致是图中的( ).7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)xy 1=(C)xy 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ).(A)x my =(B)xm y 1+=(C)xm y 12+=(D)xmy -=9.反比例函数y =221)(2--mx m ,当x >0时,y 随x 的增大而增大,则m 的值是( ).(A)±1 (B)小于21的实数 (C)-1 (D)110.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xky =(k >0)的图象上的两点,若x 1<0<x 2,则有( ). (A)y 1<0<y 2 (B)y 2<0<y 1(C)y 1<y 2<0 (D)y 2<y 1<0三、解答题11.作出反比例函数xy 12=的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的范围.综合、运用、诊断一、填空题12.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第______象限.13.已知一次函数y =kx +b 与反比例函数xkb y -=3的图象交于点(-1,-1),则此一次函数的解析式为____________,反比例函数的解析式为____________. 二、选择题14.若反比例函数xky =,当x >0时,y 随x 的增大而增大,则k 的取值范围是( ). (A)k <0(B)k >0(C)k ≤0(D)k ≥015.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则( ). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3(C)y 3<y 2<y 1(D)y 1<y 3<y 216.对于函数xy 2-=,下列结论中,错误..的是( ). (A)当x >0时,y 随x 的增大而增大 (B)当x <0时,y 随x 的增大而减小 (C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内,y 随x 的增大而增大 17.一次函数y =kx +b 与反比例函数xky =的图象如图所示,则下列说法正确的是( ).(A)它们的函数值y 随着x 的增大而增大 (B)它们的函数值y 随着x 的增大而减小 (C)k <0(D)它们的自变量x 的取值为全体实数 三、解答题18.作出反比例函数xy 4-=的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围; (3)当1≤y <4时,x 的取值范围.拓展、探究、思考19.已知一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1),B (1,n )两点.(1)求反比例函数的解析式和B 点的坐标;(2)在同一直角坐标系中画出这两个函数的图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值? (3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式.测试3 反比例函数的图象和性质(二)学习要求会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.课堂学习检测一、填空题 1.若反比例函数xky =与一次函数y =3x +b 都经过点(1,4),则kb =______.2.反比例函数xy 6-=的图象一定经过点(-2,______). 3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是______. 4.函数y 1=x (x ≥0),xy 42=(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是____________. 二、选择题5.当k <0时,反比例函数xky =和一次函数y =kx +2的图象大致是( ).(A)(B)(C)(D)6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴, △ABC 的面积记为S ,则( ).(A)S =2 (B)S =4 (C)2<S <4(D)S >47.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为( ). (A)2 (B)2-(C)2±(D)±2三、解答题8.如图,反比例函数xky =的图象与直线y =x -2交于点A ,且A 点纵坐标为1,求该反比例函数的解析式.综合、运用、诊断一、填空题9.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2,1),则m =______,n =______.10.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为______. 11.点A (2,1)在反比例函数xky =的图象上,当1<x <4时,y 的取值范围是__________. 二、选择题12.已知y =(a -1)x a 是反比例函数,则它的图象在( ).(A)第一、三象限 (B)第二、四象限 (C)第一、二象限(D)第三、四象限13.在反比例函xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值可以是( ). (A)-1(B)0(C)1(D)214.如图,点P 在反比例函数xy 1=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是( )(A))0(5>-=x xy(B))0(5>=x xy (C))0(5>-=x xy(D))0(6>=x xy 15.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为( ).(A)S >2 (B)1<S <2 (C)1(D)2三、解答题16.如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xky2(k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.拓展、探究、思考17.已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.18.已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式; (3)在(2)中的一次函数图象与x 轴、y 轴分别交于C 、D ,求四边形OABC 的面积.测试4 反比例函数的图象和性质(三)学习要求进一步理解和掌握反比例函数的图象和性质;会解决与一次函数和反比例函数有关的问题.课堂学习检测一、填空题1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B 点坐标是______.2.观察函数xy 2-=的图象,当x =2时,y =______;当x <2时,y 的取值范围是______;当y ≥-1时,x 的取值范围是______. 3.如果双曲线xky =经过点)2,2(-,那么直线y =(k -1)x 一定经过点(2,______). 4.在同一坐标系中,正比例函数y =-3x 与反比例函数)0(>=k xky 的图象有______个交点.5.如果点(-t ,-2t )在双曲线xky =上,那么k ______0,双曲线在第______象限. 二、选择题6.如图,点B 、P 在函数)0(4>=x xy 的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ).(A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4) (C)xy 4=的图象关于过O 、B 的直线对称 (D)长方形FOEP 和正方形COAB 面积相等 7.反比例函数xky =在第一象限的图象如图所示,则k 的值可能是( ).(A)1(B)2(C)3(D)4三、解答题8.已知点A (m ,2)、B (2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.9.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l .直线l 与反比例函数xky =的图象的一个交点为A (a ,2),求k 的值.综合、运用、诊断一、填空题10.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______.11.如图,在直角坐标系中,直线y =6-x 与函数)0(5>=x xy 的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是______.12.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为____________.13.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与xky 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”)二、选择题14.若m <-1,则函数①)0(>=x xmy ,②y =-mx +1,③y =mx ,④y =(m +1)x 中,y 随x 增大而增大的是( ). (A)①④(B)②(C)①②(D)③④15.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).三、解答题16.如图,A 、B 两点在函数)0(>=x xmy 的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.17.如图,等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上,A 点在x 轴正半轴上,求A 点坐标.拓展、探究、思考18.如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式;(2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.19.如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-3,1)、B (2,n )两点,直线AB 分别交x 轴、y 轴于D 、C 两点.(1)求上述反比例函数和一次函数的解析式; (2)求CDAD的值.测试5 实际问题与反比例函数(一)学习要求能写出实际问题中的反比例函数关系式,并能结合图象加深对问题的理解.课堂学习检测一、填空题1.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值范围是______.2.若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系是______ (不考虑x 的取值范围). 二、选择题3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是( ).4.下列各问题中两个变量之间的关系,不是反比例函数的是( ). (A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系 (B)长方形的面积为24,它的长y 与宽x 之间的关系 (C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系 5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:体积x /ml 100 80 60 40 20 压强y /kPa6075100150300(A)y =3000x (B)y =6000x(C)xy 3000=(D)xy 6000=综合、运用、诊断一、填空题6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为v (km/h),到达时所用的时间为t (h),那么t 是v 的______函数,v 关于t 的函数关系式为______. 7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________.二、选择题8.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( ).三、解答题9.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.测试6 实际问题与反比例函数(二)学习要求根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题.课堂学习检测一、填空题1.一定质量的氧气,密度ρ是体积V的反比例函数,当V=8m3时,ρ=1.5kg/m3,则ρ与V 的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20Ω时,电流强度I=0.25A.则(1)电压U=______V;(2)I与R的函数关系式为______;(3)当R=12.5Ω时的电流强度I=______A;(4)当I=0.5A时,电阻R=______Ω.3.如图所示的是一蓄水池每小时的排水量V/m3·h-1与排完水池中的水所用的时间t(h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m3;(2)此函数的解析式为____________;(3)若要在6h内排完水池中的水,那么每小时的排水量至少应该是______m3;(4)如果每小时的排水量是5m3,那么水池中的水需要______h排完.二、解答题4.一定质量的二氧化碳,当它的体积V=4m3时,它的密度p=2.25kg/m3.(1)求V与ρ的函数关系式;(2)求当V=6m3时,二氧化碳的密度;(3)结合函数图象回答:当V≤6m3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?综合、运用、诊断一、选择题5.下列各选项中,两个变量之间是反比例函数关系的有( ).(1)小张用10元钱去买铅笔,购买的铅笔数量y(支)与铅笔单价x(元/支)之间的关系(2)一个长方体的体积为50cm3,宽为2cm,它的长y(cm)与高x(cm)之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y(亩/人)与该村人口数量n(人)之间的关系(4)一个圆柱体,体积为100cm3,它的高h(cm)与底面半径R(cm)之间的关系(A)1个(B)2个(C)3个(D)4个二、解答题6.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7.一个闭合电路中,当电压为6V时,回答下列问题:(1)写出电路中的电流强度I(A)与电阻R(Ω)之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.拓展、探究、思考三、解答题8.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价400 250 240 200 150 125 120 x(元/千克)销售量y/千克30 40 48 60 80 96 100价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?参考答案第二十六章 反比例函数测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)xy 8000=,反比例; (2)xy 1000=,反比例; (3)s =5h ,正比例,ha 36=,反比例; (4)xwy =,反比例. 3.②、③和⑧. 4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A . 8.(1)xy 6=; (2)x =-4. 9.-2,⋅-=xy 410.反比例. 11.B . 12.D . 13.(1)反比例; (2)①Sh 48=; ②h =12(cm), S =12(cm 2). 14.⋅-=325x y 15..23x xy -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大. 4.二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A .11.列表:x … -6 -5 -4 -3 -2 -112 3 4 5 6 … y… -2 -2.4 -3 -4 -6 -12 126432.42…由图知,(1)y =3;(2)x =-6; (3)0<x <6.12.二、四象限. 13.y =2x +1,⋅=xy 1 14.A . 15.D 16.B 17.C 18.列表:x…-4-3-2-11234…y (1)34 2 4 -4 -2 -34-1 …(1)y =-2; (2)-4<y ≤-1; (3)-4≤x <-1.19.(1)xy 2-=, B (1,-2); (2)图略x <-2或0<x <1时; (3)y =-x .测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4). 11..221<<y . 12.B . 13.D. 14.D . 15.D . 16.(1)xy 3=,y =x +2;B (-3,-1); (2)-3≤x <0或x ≥1. 17.(1))0(3>=x x y ;(2).332+-=x y 18.(1)x y x y 9,==;(2)23=m ;;29-=x y(3)S 四边形OABC =1081. 测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三. 6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 311.5,12. 12.2. 13.<. 14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个. 17.A(4,0).18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y x y ;(2).2=CD AD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=x y 903.A . 4.D . 5.D .6.反比例;⋅=tV 3007.y =30πR +πR 2(R >0). 8.A . 9.(1))0(20>=x x y ; (2)图象略; (3)长cm.320. 测试6 实际问题与反比例函数(二)1.).0(12>=V vρ 2.(1)5; (2)R I 5=; (3)0.4; (4)10.3.(1)48; (2))0(48>=t tV ; (3)8; (4)9.6. 4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3); (3)ρ有最小值1.5(kg/m 3).5.C . 6.(1)V p 96=; (2)96 kPa ; (3)体积不小于3m 3524. 7.(1))0(6>=R RI ; (2)图象略; (3)I =1.2A >1A ,电流强度超过最大限度,会被烧. 8.(1)x y 43=,0≤x ≤12;y =x108 (x >12); (2)4小时. 9.(1)xy 12000=;x 2=300;y 4=50; (2)20天。

九年级数学人教版下册教学课件实际问题与反比例函数第一课时 利用反比例函数解决实际生活中的问题

九年级数学人教版下册教学课件实际问题与反比例函数第一课时 利用反比例函数解决实际生活中的问题
d
解: (1)根据圆柱体的体积公式,我们有 S×d=1 0 4
所以S关于d 的函数解析式为
S 104 d
(2)把S=500代入
S
104
d
,得
500 1 0 4 d
解得 d=20(m).
如果把储存室的底面积定为500m²,施工时应向地下掘进20m深.
ቤተ መጻሕፍቲ ባይዱ
(3)根据题意,把d=15代入 S
104
d
,得
s
一、教学目标 (2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?
(3)当施工队按(2)中的计划掘进到地下15m时,公司临时改变计划,把储存室的深度改为15m,相应地,储存室的底面积应改为多少 (结
果保留小数点后两位)?
所(2)以由S题关1意于.,d得运的(函x-用数1解2反0析)y比式=为3例000函, 数的知识解决实际问题.
v 1)和B(m,0.5).
(1)求k和m的值; (2)若行驶速度不得超过60 km/h,则汽车通过该路段最少需要多少时间?
k 解:(1)∵点A(40,1)在反比例函数t= v
∴k=40,∴t=
40 v
.
又∵点B在函数的图象上,
上,
∴m=80; (2)由(1)得 t=4v0. 令v=60,
则 t=4v0=4600=23, 结合图象可知汽车通过该路段最少需要23 h.
如何建立反比例函数如模型何解建决实立际问反题比. 例函数模型解决实际问题.
则y与x的函数图象大致是( )
(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?
运用反比例函数的意义与性质解决实际问题.

人教版九年级数学下册第26章《实际问题与反比例函数》课时练习题(含答案)

人教版九年级数学下册第26章《实际问题与反比例函数》课时练习题(含答案)

人教版九年级数学下册第26章《2.实际问题与反比例函数》课时练习题(含答案)一、单选题1.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为( )A .24I R =B .36I R =C .48I R =D .64I R= 2.港珠澳大桥桥隧全长55千米,其中主桥长29.6千米,一辆汽车从主桥通过时,汽车的平均速度 v (千米/时)与时间 t (小时)的函数关系式为( )A .55t v =B .25.4v t =C .v =29.6tD .29.6v t= 3.研究发现,近视镜的度数y (度)与镜片焦距x (米)成反比例函数关系,小明佩戴的400度近视镜片的焦距为0.25米,经过一段时间的矫正治疗加之注意用眼健康,现在镜片焦距为0.4米,则小明的近视镜度数可以调整为( )A .300度B .500度C .250度D .200度 4.在显示汽车油箱内油量的装置模拟示意图中,电压U 一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V 与电路中总电阻0R R R R =+总总()是反比例关系,电流I 与R 总也是反比例关系,则I 与V 的函数关系是( )A .反比例函数B .正比例函数C .二次函数D .以上答案都不对 5.在压力不变的情况下,某物体所受到的压强P (Pa )与它的受力面积S (2m )之间成反比例函数关系,且当S =0.1时,P =1000.下列说法中,错误..的是( ) A .P 与S 之间的函数表达式为100P S =B .当S =0.4时,P =250C .当受力面积小于20.2m 时,压强大于500PaD .该物体所受到的压强随着它的受力面积的增大而增大6.学校的自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温y (℃)与通电时间(min)x 成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y 与通电时间x 之间的关系如图所示,则下列说法中正确的是( )A .水温从20℃加热到100℃,需要7minB .水温下降过程中,y 与x 的函数关系式是400y x= C .上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水D .水温不低于30℃的时间为77min 37.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量()3mg /m y 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310mg /mB .室内空气中的含药量不低于38mg /m 的持续时间达到了11minC .当室内空气中的含药量不低于35mg /m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32mg /m 时,对人体才是安全的,所以从室内空气中的含药量达到32mg /m 开始,需经过59min 后,学生才能进入室内8.如图,点C 在反比例函数y=k x(x>0)的图象上,过点C 的直线与x 轴,y 轴分别交于点A ,B ,且AB=BC ,△AOB 的面积为1,则k 的值为( )A .1B .2C .3D .4二、填空题9.列车从甲地驶往乙地.行完全程所需的时间()h t 与行驶的平均速度()km/h v 之间的反比例函数关系如图所示.若列车要在2.5h 内到达,则速度至少需要提高到__________km/h .10.如图,一块长方体大理石板的A 、B 、C 三个面上的边长如图所示,如果大理石板的A 面向下放在地上时地面所受压强为m 帕,则把大理石板B 面向下放在地上时,地面所受压强是________m 帕.11.某蓄水池的排水管的平均排水量为每小时8立方米,6小时可以将满池水全部排空.现在排水量为平均每小时Q立方米,那么将满池水排空所需要的时间为t(小时),写出时间t (小时)与Q之间的函数表达式_____.12.对于函数2yx=,当函数值y<﹣1时,自变量x的取值范围是_______________.13.随着私家车的增加,城市的交通也越来越拥挤,通常情况下,某段高架桥上车辆的行驶速度y(千米/时)与高架桥上每百米拥有车的数量x(辆)的关系如图所示,当10x≥时,y与x成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,高架桥上每百米拥有车的数量x应该满足的范围是________.三、解答题14.某市政府计划建设一项水利工程,工程需要运送的土石方总量为610立方米,某运输公司承担了运送土石方的任务.(1)设该公司平均每天运送土石方总量为y立方米,完成运送任务所需时间为t天.①求y关于t的函数表达式.②若080t<≤时,求y的取值范围.(2)若1辆卡车每天可运送土石方210立方米,工期要求在80天内完成,公司至少要安排多少辆相同型号卡车运输?15.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课时间的变化而变化.学生的注意力指数y随时间x(分)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分).(1)上课后的第5分钟与第30分钟相比较,_______分钟时学生的注意力更集中.(2)分别求出线段AB和双曲线CD的函数关系式.(3)一道数学题,需要讲18分钟,为了学生听课效果较好,要求学生的注意力指数不低于40,那么经过适当的时间安排,教师能否在学生注意力达到所需状态下讲完这道题?16.为加强生态文明建设,某市环保局对一企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AC表示前3天的变化规律,第3天时硫化物的浓度降为4.5mg/L.从第3天起,所排污水中硫化物的浓度y与时间x满足下面表格中的关系:时间x(天) 3 5 6 9 ……硫化物的浓度y(mg/L) 4.5 2.7 2.25 1.5 ……(1)在整改过程中,当0≤x<3时,硫化物的浓度y与时间x的函数表达式;(2)在整改过程中,当x≥3时,硫化物的浓度y与时间x的函数表达式;(3)该企业所排污水中硫化物的浓度能否在15天以内不超过最高允许的1.0mg/L ?为什么?17.设函数y 1=k x ,y 2=﹣k x(k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?18.当下教育主管部门提倡加强高效课堂建设,要求教师课堂上要精讲,把时间、思考、课堂还给学生.通过实验发现:学生在课堂上听课注意力指标随上课时间的变化而变化,上课开始后,学生的学习兴趣递增,中间一段时间,学生的兴趣保持平稳高效状态,后阶段注意力开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段,当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值.(2)如果学生在课堂上的注意力指标不低于30属于学习高效阶段,请你求出学生在课堂上的学习高效时间段。

实际问题与反比例函数+课件+—2025学年人教版数学九年级下册

实际问题与反比例函数+课件+—2025学年人教版数学九年级下册
间x(min)的反比例函数.若在水温为20℃时开始加热,水温y与通电时间x之间的函
数关系如图2所示.
6
7
4
(1)将水从20℃加热到100℃需要_________min.
【解析】(1)∵开机加热时每分钟上升20℃,

∴水温从20℃加热到100℃,所需时间为
=4(min).

8
(2)在水温下降的过程中,求水温y关于通电时间x的函数解析式.

解析式为I= .

11
(2)若4≤R≤200,求电流I的变化范围.

【解析】(2)∵在I= 中,144>0,R>0,

∴图象在第一象限,I随R的增大而减小.

∵4≤R≤200,∴把电阻最小值R=4代入I= ,得到电流的最大值I=36,



把电阻最大值R=200代入I= ,得到电流的最小值I= =0.72(安培),

在降温过程中,水温为40℃时,40= ,

解得x=10,∵10-1=9(min),
∴一个加热周期内水温不低于40℃的时间为9 min.
10
重点2反比例函数在其他学科中的应用(模型观念、运算能力、应用意识)
【典例2】(教材再开发·P15例4拓展)
我们知道当电压一定时,电流与电阻成反比例函数关系.现有某学生利用一个最


∴电流I的变化范围是0.72≤I≤36.
素养 当堂 300 t煤,这些煤能烧的时间y(天)与平均每天烧的吨
数x(t)之间的函数关系式是( A )
1 300
A.y=
(x>0)

1 300
B.y=
(x≥0)

C.y=1 300x(x≥0)

人教版数学九年级下册 26.2 实际问题与反比例函数 同步练习(含答案)

人教版数学九年级下册 26.2 实际问题与反比例函数 同步练习(含答案)

人教版九年级下册26.2 实际问题与反比例函数同步练习(含答案)一、选择题(共4题;共8分)1.已知水池的容量为50米3,每时灌水量为n米3,灌满水所需时间为t(时),那么t与n 之间的函数关系式是()A. t=50nB. t=50﹣nC. t=D. t=50+n2.小明乘车从南充到成都,行车的速度ℎ和行车时间ℎ之间的函数图象是()A. B. C. D.3.某乡粮食总产量为a(常数)吨,设该乡平均每人占有粮食为y吨,人口数为x,则y与x之间的函数关系的图象是()A. B. C. D.4.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体体积应()A. 不大于m3B. 不小于m3C. 不大于m 3D. 不小于m 3二、填空题(共7题;共8分)5.某高速公路全长为,那么汽车行完全程所需的时间ℎ与行驶的平均速度ℎ之间的关系式为________.6.某户家庭用购电卡购买了2 000度电,若此户家庭平均每天的用电量为x(单位:度),这2 000度电能够使用的天数为y(单位:天),则y与x的函数关系式为y=________.7.某厂有煤1500吨,求得这些煤能用的天数y与每天用煤的吨数x之间的函数关系为________.8.近视眼镜的度数y度与镜片焦距x米呈反比例,其函数关系式为如果近似眼镜镜片的焦距米,那么近视眼镜的度数y为________.9.某中学要在校园内划出一块面积为100m2的三角形土地做花圃,设这个三角形的一边长为xm,这条边上的高为ym,那么y关于x的函数解析式是________,它是一个________函数.10.某种蓄电池的电压为定值,使用此电源时,电流与可变电阻之间的函数关系如图所示,当用电器的电流为时,用电器的可变电阻为________ .11.某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y(毫克)与时间t(小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为________.三、解答题(共8题;共91分)12.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时)。

九年级数学反比例函数练习题1(基础练习)含答案

九年级数学反比例函数练习题1(基础练习)含答案

k 于点 D,且 OB︰OD=5︰3,则 x
20.如图,双曲线 y=
k (x﹤0)经过矩形 OABC 的边 AB、BC 边上两点 E、F,且 CE︰BE=1︰2, x
. 。
若四边形 OEBF 的面积为 12,则 k=
2 21.如图,函数 y=(m+1)xm -m-7 的图像如图所示,则该函数的解析式为
反比例函数练习题
A 组.1.反比例函数 y= a 的图像经过点(-1,2) ,则 a 值为 x -1 x -2 x
2.下列函数中经过(1,-1)的反比例函数的解析式为( ) A、y= 1 x B、y= 2 x C、y= D、y=
3.反比例函数经过(3,2)和(m,-2),则 m 值为 4.已知正反比例函数 y=k1x 和 y= 交点坐标为 5.反比例函数 y=-
28.在直角坐标系中,一次函数 y=6-x 与反比例函数 y=矩形 AEOF 的面积为 29.如图,y1=kx+3 与 y2= 们的两个交点坐标分别为 30.如图,点 A 为反比例函数 y= ,周长为 。
4 (x>0)的图像交于 A、B 两点,则图中 x
k 交于 A、B 两点,S△AOC=1,则两函数的解析式分别为 x ,当 时,y1﹤y2。 4 图像上一点,B 点在 x 轴上,且 OA=BA,则 S△AOB= x
,它

k 31.如图,直线 y=2x-1 与双曲线 y= 交于点 A,与 x、y 轴分别交于点 B、C,AD⊥x 轴于点 D,若 x S△ABD=4S△BOC,则 k 值为 。 2 x
32.如图,在平面直角坐标系中,A 为 y 轴正半轴上一点,过 A 作 x 轴的平行线,交函数 y=(x﹤0) 、y= 6 (x﹥0)的图像于 B、C 两点,则 AB︰AC= x 。

人教版九年级数学下册 26.2 实际问题与反比例函数 同步测试题(有答案)

人教版九年级数学下册 26.2 实际问题与反比例函数  同步测试题(有答案)

26.2 实际问题与反比例函数同步测试题(满分120分;时间:120分钟)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 在某一电路中,电压U=5伏,则电流强度I(安)与电阻R(欧)的函数关系式是()A.I=5RB.I=5R C.I=R5D.I=25R2. 已知矩形的面积为20,则它的长y与宽x之间的关系用图象表示大致为()A. B. C. D.3. 点A(5, m)在双曲线y=10x上,AB⊥x轴于B,AO的垂直平分线DC分别交AO、BO于点D、C.则△ABC的周长等于()A.10B.9C.8D.74. 如图,Rt△ABC的顶点A在双曲线y=kx的图象上,直角边BC在x轴上,∠ABC=90∘,∠ACB=30∘,OC=4,连接OA,∠AOB=60∘,则k的值是()A.4√3B.−4√3C.2√3D.−2√35. 如图,直线y1=12x+2与双曲线y2=6x交于A(2, m),B(−6, n)两点,则当y1<y2时,x的取值范围是()A.x<−6或x>2B.−6<x<0或x>2C.x<−6或0<x<2D.−6<x<26. 如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=mx(m为常数且m≠0)的图象都经过A(−1, 2),B(2, −1),结合图象,则不等式kx+b−mx>0的解集是()A.x<−1B.−1<x<0C.x<−1或0<x<2D.−1<x<0或x>27. 设x≥0,y≥0,2x+y=6,则u=4x2+3xy+y2−6x−3y的最小值是()A.272B.18C.20D.不存在8. 三角形的面积为8cm,这时底边上的高ycm与底边xcm之间的函数关系的图象大致为()A. B.C. D.9. 某闭合电路中,电源的电压为定值,电流强度I(A)与电阻R(Ω)成反比关系,其函数图象如图所示,则电流强度I(A)与电阻R(Ω)的函数解析式是()A.I=2R B.I=3RC.I=6RD.I=−6R10. 为了预防“流感”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧完后,y与x成反比例(如图所示).现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg.研究表明,当空气中每立方米的含药量不低于3mg才有效,那么此次消毒的有效时间是()A.10分钟B.12分钟C.14分钟D.16分钟二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 有一块长方形试验田面积为3×106m2,试验田长y(单位:m)与宽x(单位:m)之间的函数关系式是________.(x>0)的图象上运动,当圆P与x轴相切12. 如图,圆P的半径为2,圆心p在函数y=6x时,点P的坐标为________.(k≠0)的图象交于点A,已知13. 如图,第四象限的角平分线OM与反比例函数y=kxOA=3√2,则k=________.14. 学校内要设计一个面积是40000㎡长方形的运动场,则运动场的长y(m)与宽x(m)之间的函数关系式为________,当x=________时运动场是正方形.15. 已知点A(−2, 0),B(2, 0),点C 在反比例函数y =kx(x >0)第一象限内的图象上,且∠ACB =90∘,则k 的最大值是________.16. 设函数y =3x 与y =−2x −6的图象的交点坐标为(a, b),则1a +2b 的值是________.17. 把一张一百元人民币换成其他面额的,其换成的元数x 和换成的张数y 的关系如下表:由上表得换成的张数y (张)与换成的元数x (元)之间的函数关系式是________.18. 如果把分数97的分子、分母分别加上正整数a ,b 结果等于913,那么a +b 的最小值是________.19. a ,b 是正数,并且抛物线y =x 2+ax +2b 和y =x 2+2bx +a 都与x 轴有公共点,则a 2+b 2的最小值是________.20. 如图,正比例函数y 1=x 的图象与反比例函数y 2=kx (k ≠0)的图象相交于A 、B 两点,点A 的纵坐标为2.当y 1>y 2时,自变量x 的取值范围是________三、解答题(本题共计6 小题,共计60分,)21. 某公司汽车司机驾驶汽车运输货物从甲地运往乙地,他以60km/ℎ的平均速度,用8小时把货物送达目的地.(1)当他按原路返回时,汽车的平均速度v与时间t满足怎样的函数关系?(2)如果公司要求该司机在送完货物后必须在6ℎ内返回公司,则返程时的平均速度不能低于多少?的图象与一次函数y2=ax+b的图象交22. 在平面直角坐标系xOy中,反比例函数y1=kx于点A(1, 3)和B(−3, m).和一次函数y2=ax+b的表达式;(1)求反比例函数y1=kx(2)点C是坐标平面内一点,BC // x轴,AD⊥BC交直线BC于点D,连接AC.若AC=√5CD,求点C的坐标.23. 蓄电池电压为定值,使用此电源时,电流I(A)与电阻R(Ω)之间关系图象如图所示,若点A在图象上,解答下列问题.(1)电流I随着电阻R的增加是如何变化的?(2)电流I可以看成电阻R的什么函数?求出这个函数的表达式?(3)如果以此蓄电池为电源的用电器能正常工作,则限制电流不得低于8A且不得超过16A,请问用电器的可变电阻应控制在什么范围内?24. 某种水产品现有2080千克,其销售量y(千克)与销售单价x(元/千克)满足下表关系(1)求销售量y(千克)与销售单价x(元/千克)之间的关系式.(2)该水产品销售5天后,余下的水产品均按150元/千克出售,预计卖完这批水产品需要多少天.25. 已知直线l 与x 轴、y 轴分别交于A(2, 0)、B(0, 2)两点,双曲线y =kx(k >0)在第一象限的一支与AB 不相交,过双曲线上一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,分别交AB 于E 、F .(1)如果S △EOF =56,PM =32,求双曲线的解析式;(2)当P 在(1)中双曲线上移动,∠EOF 的大小始终为45∘不变,此时,双曲线上存在这样的点P ,使OE =OF ,求出此时点P 的坐标.26. 如图,在矩形AOBC 中,OB =4,OA =3,分别以OB 、OA 所在直线为x 轴、y 轴建立平面直角坐标系.F 是BC 边上的点,过F 点的反比例函数y =kx (k >0)的图象与AC 边交于点E .若将△CEF 沿EF 翻折后,点C 恰好落在OB 上的点M 处,求点F 的坐标.参考答案与试题解析一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【答案】B【解答】.解:由于电流强度=电压÷电阻,那么I=5R故选B.2.【答案】A【解答】解:∵ 根据题意xy=20,(x>0, y>0).∵ y=20x故选:A.3.【答案】D【解答】解:∵ AB⊥x轴于B,∵ ∠ABO=90∘,得5m=10,解得m=2,把点A(5, m)代入y=10x∵ A点坐标为(5, 2),∵ OB=5,AB=2,∵ DC垂直平分OA,∵ CA=CO,∵ △ABC的周长=CA+CB+AB=OC+CB+AB=OB+AB=5+2=7.故选D.4.【答案】B【解答】∵ ∠ACB=30∘,∠AOB=60∘,∵ ∠OAC=∠AOB−∠ACB=30∘,∵ ∠OAC=∠ACO,∵ OA=OC=4,在△AOB中,∠ABC=90∘,∠AOB=60∘,OA=4,∵ ∠OAB=30∘,OA=2,∵ OB=12∵ AB=√3OB=2√3,∵ A点坐标为(−2, 2√3),得k=−2×2√3=−4√3.把A(−2, 2√3)代入y=kx5.【答案】C【解答】解:根据图象可得当y1<y2时,x的取值范围是:x<−6或0<x<2.故选C.6.【答案】C【解答】解:由函数图象可知,(m为常数且m≠0)的图象上当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=mx方时,满足不等式kx+b>m,x此时x的取值范围是:x<−1或0<x<2,的解集是x<−1或0<x<2.∵ 不等式kx+b>mx故选C.7.【答案】A【解答】解:由已知得:y=6−2x,代入u=4x2+3xy+y2−6x−3y,整理得:u=2x2−6x+18,而x≥0,y=6−2x≥0,则0≤x≤3,u =2(x −32)2+272,当x =0或x =3时,u 取得最大值,u max =18,当x =32时,u 取得最小值,u min =272.故选A .8.【答案】D【解答】解:根据题意有:xy =16;故y 与x 之间的函数图象为反比例函数,且根据x y 实际意义x 、y 应大于0,其图象在第一象限.故选D .9.【答案】C【解答】设I =k R (k ≠0),将点(3, 2)代入可得:2=K 3, 解得:k =6,故电流强度I(A)与电阻R(Ω)的函数解析式I =6R . 10.【答案】B【解答】解:设药物燃烧时y 关于x 的函数关系式为y =k 1x(k 1>0)代入(8, 6)为6=8k 1, ∵ k 1=34;设药物燃烧后y 关于x 的函数关系式为y =k 2x (k 2>0)代入(8, 6)为6=k 8, ∵ k 2=48∵ 药物燃烧时y 关于x 的函数关系式为y =34x(0≤x ≤8);药物燃烧后y 关于x 的函数关系式为y =48x (x >8),把y =3代入y =34x ,得:x =4,把y =3代入y =48x ,得:x =16,∴ 16−4=12,即此次消毒有效时间为12分钟.故选B .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )11.【答案】y =3×106x【解答】解:∵ 由长方形的面积知:xy =3×106,∵ y =3×106x .故答案为y =3×106x. 12.【答案】 (3, 2)【解答】解:根据题意可知,把y =2代入y =6x 得:x =3, ∵ 点P 的坐标是(3, 2),故答案为:(3, 2).13.【答案】−9【解答】解:如图,作AE 垂直于x 轴,作AF 垂直于y 轴,∵ OM 平分∠EOF ,∵ ∠EOM =45∘,∵ OA =3√2,∵ OE =AE =3,∵ A 点在第四象限,∵ A(3, −3),∵ y =k x (k ≠0),∵ −3=k 3,解得:k =−9.故答案为:−9.14.【答案】y=40000,200x【解答】解:∵ 由长方形的面积知:xy=40000∵ y=40000x∵ 当x=y时,运动场为正方形=x∵ y=40000x解得:x=200,200.故答案为:y=40000x15.【答案】2【解答】解:连接OC,做CE⊥y轴,CF⊥x轴,(x>0)第一象限内的图象上,∵ 点A(−2, 0),B(2, 0),点C在反比例函数y=kx且∠ACB=90∘,∵ CO=2,假设CE=x,CF=y,∵ x 2+y 2=4,当k取最大值时,x=y,2x 2=4,∵ x=y=√2,∵ xy=k=2,∵ k的最大值是2.故答案为:2.16.【答案】−2【解答】解:∵ 函数y=3x与y=−2x−6的图象的交点坐标是(a, b),∵ 将x=a,y=b代入反比例解析式得:b=3a,即ab=3,代入一次函数解析式得:b=−2a−6,即2a+b=−6,则1a +2b=2a+bab=−63=−2.故答案为:−2.17.【答案】y=100 x【解答】解:∵ 50×2=100,20×5=100,10×10=100…∵ 张数y(张)与换成的元数x(元)之间的函数关系式是反比例函数关系,yx=100,故y=100x.故答案为:y=100x.18.【答案】28【解答】解:根据题意,得9+a 7+b =913,设9+a=9k,7+b=13k,其中k为正整数.两式相加,得a+b=22k−16.因为a、b为正整数,所以a+b必为正整数.所以22k−16>0,,且k为正整数.解得,k>811当k=1时,a=0,b=6,不合题意,舍去;当k=2时,a=9,b=19;所以a+b的最小值是28;故答案是:28.19.【答案】20【解答】解:由题设知a2−8b≥0,4b2−4a≥0.则a4≥64b2≥64a,∵ a,b是正数,∵ a3≥64,∵ a≥4,b2≥a≥4.∵ a2+b2≥20.又∵ 当a=4,b=2时,抛物线y=x2+ax+2b和y=x2+2bx+a都与x轴有公共点,∵ a2+b2的最小值是20.故答案为:20.20.【答案】−2<x<0或x>2【解答】∵ 点A在正比例函数y1=x的图象上,且点A的纵坐标为2,∵ 点A的坐标为(2, 2).∵ 正、反比例函数图象关于原点中心对称,∵ 点B的坐标为(−2, −2).观察函数图象,可知:当−2<x<0或x>2时,正比例函数图象在反比例函数图象上方,∵ 当y1>y2时,自变量x的取值范围是−2<x<0或x>2.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】返程时的平均速度不能低于每小时80千米.,(2)∵ v=480t∵ t=480v,∵ t≤6,∵ 480v≤6,∵ v≥80.答:返程时的平均速度不能低于每小时80千米.【解答】解:(1)由已知得:vt=60×8,v=480t;(2)∵ v=480t,∵ t=480v,∵ t≤6,∵ 480v≤6,∵ v≥80.答:返程时的平均速度不能低于每小时80千米.22.【答案】∵ 反比例函数y1=kx的图象与一次函数y2=ax+b的图象交于点A(1, 3)和B(−3, m),∵ 点A(1, 3)在反比例函数y1=kx的图象上,∵ k=1×3=3,∵ 反比例函数的表达式为y1=3x.∵ 点B(−3, m)在反比例函数y1=3x的图象上,∵ m=3−3=−1.∵ 点A(1, 3)和点B(−3, −1)在一次函数y2=ax+b的图象上,∵ {a+b=3−3a+b=−1,解得:{a=1b=2.∵ 一次函数的表达式为y2=x+2.依照题意画出图形,如图所示.∵ BC // x轴,∵ 点C的纵坐标为−1,∵ AD⊥BC于点D,∵ ∠ADC=90∘.∵ 点A的坐标为(1, 3),∵ 点D的坐标为(1, −1),∵ AD=4,∵ 在Rt△ADC中,AC2=AD2+CD2,且AC=√5CD,∵ (√5CD)2=42+CD2,解得:CD=2.∵ 点C1的坐标为(3, −1),点C2的坐标为(−1, −1).故点C的坐标为(−1, −1)或(3, −1).【解答】∵ 反比例函数y1=kx的图象与一次函数y2=ax+b的图象交于点A(1, 3)和B(−3, m),∵ 点A(1, 3)在反比例函数y1=kx的图象上,∵ k=1×3=3,∵ 反比例函数的表达式为y1=3x.∵ 点B(−3, m)在反比例函数y1=3x的图象上,∵ m=3−3=−1.∵ 点A(1, 3)和点B(−3, −1)在一次函数y2=ax+b的图象上,∵ {a+b=3−3a+b=−1,解得:{a=1b=2.∵ 一次函数的表达式为y2=x+2.依照题意画出图形,如图所示.∵ BC // x轴,∵ 点C的纵坐标为−1,∵ AD⊥BC于点D,∵ ∠ADC=90∘.∵ 点A的坐标为(1, 3),∵ 点D的坐标为(1, −1),∵ AD=4,∵ 在Rt△ADC中,AC2=AD2+CD2,且AC=√5CD,∵ (√5CD)2=42+CD2,解得:CD=2.∵ 点C1的坐标为(3, −1),点C2的坐标为(−1, −1).故点C的坐标为(−1, −1)或(3, −1).23.【答案】解:(1)电流I随着电阻R的增加而减小.(2)电流I是电阻R的反比例函数.设I=uR,∵ 图象经过A(8, 4),∵ u=IR=8×4=32,∵ I=32R,(R>0)(3)当I=8时,R=328=4,当I=16时,R=3216=2∵ I随R的增大而减小,∵ 当8≤I≤16时,2≤R≤4.∵ 用电器的可变电阻应控制在2欧−4欧范围内.【解答】解:(1)电流I随着电阻R的增加而减小.(2)电流I是电阻R的反比例函数.设I=uR,∵ 图象经过A(8, 4),∵ u=IR=8×4=32,∵ I=32R,(R>0)(3)当I=8时,R=328=4,当I=16时,R=3216=2∵ I随R的增大而减小,∵ 当8≤I≤16时,2≤R≤4.∵ 用电器的可变电阻应控制在2欧−4欧范围内.24.【答案】卖完这批水产品需要17天.【解答】解:(1)设所求函数关系式y=kx,∵ x=30,y=400,∵ 代入得k=12000,∵ 销售量y(千克)与销售单价x(元/千克)之间的关系式为:y=12000x;(2)当x=150时,y=12000150=80,余下的水产品质量为2080−400−300−200−120−100=960(千克),960÷80=12,12+5=17.答:卖完这批水产品需要17天.25.【答案】解:(1)设直线l 的解析式为y =kx +b(k ≠0), ∵ A(2, 0)、B(0, 2),∵ {2k +b =0b =2,解得{k =−1b =2, ∵ 此直线的解析式为y =−x +2,∵ 点E 在直线l 上,∵ 设E(a, −a +2),∵ S △EOF =56,PM =32,PM ⊥x 轴于M ,PN ⊥y 轴于N , ∵ S △EOF =S △AOF −S △AOE =12OA ⋅PM −12OA ⋅ME =12×2×32−12×2×(−a +2) =32+a −2=56, 解得a =43,∵ E(43, 23),∵ P(43, 32), ∵ 点P 在双曲线y =k x 上,∵ k =43×32=2, ∵ 抛物线的解析式为:y =2x ;(2)如图所示,过点O 作OD ⊥AB 于点D , ∵ OB =OA ,∵ BD =AD ,∵ 当OE =OF 时DE =DF ,∵ BF =AE ,∵ △BNF 与△AME 均是等腰直角三角形,∵ BN =NF =ME =AM ,∵ ON =OM ,即四边形NOMP 是正方形,设P(x, x),则x =2x ,解得x =√2或x =−√2(舍去), ∵ P(√2, √2).【解答】解:(1)设直线l 的解析式为y =kx +b(k ≠0),∵ A(2, 0)、B(0, 2),∵ {2k +b =0b =2,解得{k =−1b =2, ∵ 此直线的解析式为y =−x +2,∵ 点E 在直线l 上,∵ 设E(a, −a +2),∵ S △EOF =56,PM =32,PM ⊥x 轴于M ,PN ⊥y 轴于N , ∵ S △EOF =S △AOF −S △AOE =12OA ⋅PM −12OA ⋅ME =12×2×32−12×2×(−a +2) =32+a −2=56, 解得a =43, ∵ E(43, 23), ∵ P(43, 32), ∵ 点P 在双曲线y =k x 上, ∵ k =43×32=2,∵ 抛物线的解析式为:y =2x ;(2)如图所示,过点O 作OD ⊥AB 于点D ,∵ OB=OA,∵ BD=AD,∵ 当OE=OF时DE=DF,∵ BF=AE,∵ △BNF与△AME均是等腰直角三角形,∵ BN=NF=ME=AM,∵ ON=OM,即四边形NOMP是正方形,设P(x, x),则x=2x,解得x=√2或x=−√2(舍去),∵ P(√2, √2).26.【答案】解:∵ 将△CEF沿EF对折后,C点恰好落在OB上的M点处,∵ ∠EMF=∠C=90∘,EC=EM,CF=MF,∵ ∠DME+∠FMB=90∘,而ED⊥OB,∵ ∠DME+∠DEM=90∘,∵ ∠DEM=∠FMB,∵ Rt△DEM∽Rt△BMF;又∵ EC=AC−AE=4−k3,CF=BC−BF=3−k4,∵ EM=4−k3,MF=3−k4,∵ EMMF =4−k33−k4=43;∵ ED:MB=EM:MF=4:3,而ED=3,∵ MB=94,在Rt△MBF中,MF2=MB2+MF2,即(3−k4)2=(94)2+(k4)2,解得k=218,∵ 反比例函数解析式为y=218x,把x=4代入得y=2132,∵ F点的坐标为(4, 2132).【解答】解:∵ 将△CEF沿EF对折后,C点恰好落在OB上的M点处,∵ ∠EMF=∠C=90∘,EC=EM,CF=MF,∵ ∠DME+∠FMB=90∘,而ED⊥OB,∵ ∠DME+∠DEM=90∘,∵ ∠DEM=∠FMB,∵ Rt△DEM∽Rt△BMF;又∵ EC=AC−AE=4−k3,CF=BC−BF=3−k4,∵ EM=4−k3,MF=3−k4,∵ EMMF =4−k33−k4=43;∵ ED:MB=EM:MF=4:3,而ED=3,∵ MB=94,在Rt△MBF中,MF2=MB2+MF2,即(3−k4)2=(94)2+(k4)2,解得k=218,∵ 反比例函数解析式为y=218x,把x=4代入得y=2132,).∵ F点的坐标为(4, 2132。

人教版九年级数学下册第二十六章《反比例函数——实际问题与反比例函数》同步检测1附答案

人教版九年级数学下册第二十六章《反比例函数——实际问题与反比例函数》同步检测1附答案

人教版九年级数学下册第二十六章《反比例函数——实际问题与反比例函数》同步检测1附答案——实际问题与反比例函数》同步检测1附答案第一课时1.某种汽车可装油400L,若汽车每小时的用油量为x (L ).(1)用油量)(h y 与每小时的用油量x (L)的函数关系式为 ;(2)若每小时的用油量为20L,则这些油可用的时间为 ;(3)若要使汽车继续行驶40h 不需供油,则每小时用油量的范围是 .2.甲、乙两地相距250千米,如果把汽车从甲地到乙地所用的时间y (小时),表示为汽车的平均速度为x (千米/小时)的函数,则此函数的图象大致是( ).3.如果等腰三角形的底边长为x 。

底边上的高为y ,则它的面积为定植S 时,则x 与y 的函数关系式为( )A.x S y =B. x S y 2=C.x S y 2=D.Sx y 2= 4.〔08佳木斯市)用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的是( )A .P 为定值,I 与R 成反比例B .P 为定值,2I 与R 成反比例 C .P 为定值,I 与R 成正比例D .P 为定值,2I 与R 成正比例5.一定质量的二氧化碳,其体积V ()3m 是密度)/(3m kg ρ的反比例函数, 请你根据图中的已知条件,下出反比例函数的关系式 , 当V=1.93m 时,ρ= .6你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识: 一定体积的面团做成拉面,面条的总长度y ()m 四面条的粗细 (横截面积)S ()2mm 的反比例函数,其图象如图所示.第5踢图(1)写出y 与S 的函数关系式;(2)求当面条粗1.62mm 时,面条的总长度是多少米?7.蓄电池的电压为定植,使用此电源时,电流I (A )和电阻R ()Ω成反比例函数关系,且当I=4A,R=5Ω.(1)蓄电池的电压是多少?请你写出这一函数的表达式. (2)当电流喂A 时,电阻是多少? (3)当电阻是10Ω.时,电流是多少? (4)如果以此蓄电池为电源的用电器限制电流不超过10A,那么用电器的可变电阻应该控制在什么范围内? 第一课时答案:1.(1);100)3(;20)2(;400<<=x h x y2.D,提示:由题意,得)0(250>=x xy ,故选D ;3.C,提示:根据面积公式S=xSy xy 2,21=;4.B5.V=3/5;5.9m kg ρ,提示:设V=5.99.15,===k V k,代入得,由图象得ρρ;6.解:(1)由于一定体积的面团做成拉面,面条的总长度y ()m 是面条的粗细(横截面积)S ()2mm 的反比例函数,所以可设)0(≠=k Sky ,由图象知双曲线过点(4,32),可得,,128=k 即y 与S 的函数关系式为.128S y =(2)当面条粗1.62mm 时,即当S=1.6时,,806.1128==y 当面条粗1.62mm 时,面条的总长度为80米.7.(1)U=IR=4×5=20V ,函数关系式是:I=.20R(2)当I=1.5时,R=4Ω.; (3)当R=10时,I=2A ; (4)因为电流不超过10A,由I=.20R可得2,1020≥≤R R ,可变电阻应该大于等于2Ω.. 第二课时1.正在新建中的饿某会议厅的地面约5002m ,现要铺贴地板砖.(1) 所需地板砖的块数n 与每块地板砖的面积S 有怎样的函数关系?(2) 为了使地面装饰美观,决定使用蓝、白两种颜色的地板砖组合成蓝白相间的图案, 每块地板砖的规格为80×802cm ,蓝、白两种地板砖数相等,则需这两种地板砖各多少块?2.正比例函数x k y 11=和反比例函数xk y 22=交于A 、B 两点。

人教版九年级数学下册作业课件 第二十六章 反比例函数 周周练(一) 检测内容:

人教版九年级数学下册作业课件 第二十六章 反比例函数 周周练(一) 检测内容:

三、解答题(共 56 分) 12.(10 分)已知 y=y1+y2,y1 与 x2 成正比例,y2 与 x-2 成反比例,且当 x= -1 时,y=1;当 x=0 时,y=2.求 y 关于 x 的函数解析式.
解:设
y1=k1x2,y2=x-k2 2
,∴y=k1x2+x-k2 2
k1+-k23=1, ,由题意得
(1)求此反比例函数的解析式; (2)求△BCE 的面积.
解:(1)当 y=0 时,即 x-1=0,∴x=1,即直线 y=x-1 与 x 轴交于点 A(1,0),
∴OA=1=AD,又 CD=3,∴点 C 的坐标为(2,3),∴k=2×3=6,∴反比例函数的
解析式为 y=6x
y=x-1,
x=3,
(2)联立方程组,得y=6x,
A.36 B.18 C.12 D.9
ቤተ መጻሕፍቲ ባይዱ
二、填空题(每小题 4 分,共 20 分)
7.已知 y=(a-2)xa2-5 是反比例函数,则 a=__-__2.
1-3m 8.已知反比例函数 y= x 的图象上两点 A(-3,y1),B(1,y2).若 y1<y2,则
m 的取值范围是__m__<_13___.
(1)求直线 AB 与双曲线的解析式; (2)求△ABC 的面积.
解:(1)设双曲线的解析式为 y=kx ,∵点 A(1,6)在该双曲线上,∴6=k1 ,解得 k
=6,∴y=6x ,∵B(m,-2)在双曲线 y=6x 上,∴-2=m6 ,解得 m=-3,∴B(-3,
a+b=6,
a=2,
-2),设直线 AB 的函数解析式为 y=ax+b,则有-3a+b=-2, 解得b=4, ∴
解得y=2 (负值舍去),∴点 B 的坐标为(3,2),

最新精选人教版九年级数学实际问题与反比例函数习题

最新精选人教版九年级数学实际问题与反比例函数习题

实际问题与反比例函数习题【知识回顾】1、某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20m 和11m 的矩形大厅内修建一个60m 2的矩形健身房ABCD. 该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/m 2,新建(含装修)墙壁的费用为80元/m 2.设健身房的高为3m,一面旧墙壁AB 的长为xm,修建健身房墙壁的总投入为y 元.(1)求y 与x 的函数关系式;(2)为了合理利用大厅,要求自变量x 必须满足条件:8≤x ≤12, 当投入的资金为4800元时,问利用旧墙壁的总长度为多少? 11m 20m D CB A2、为了预防“非典”,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例,药物燃烧完后,y 与x 成反比例(如图所示),现测得药物8分钟燃毕, 此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息,解答下列问题:(1)药物燃烧时y 关于x 的函数关系式为: _____________, 自变量x 的取值范围是:________________;药物燃烧后y 关于x 的函数关系式为:___________________.(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【拓展探究】3、两个反比例函数x y 3=,x y 6=在第一象限内的图象如图所示, 点P 1,P 2,P 3,…,P 2 005在反比例函数xy 6=图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2 005,纵坐标分别是1,3,5,…,共2005个连续奇数,过点P 1, P 2,P 3,…,P 2005分别作y 轴的平行线,与xy 3=的图象交点依次是Q 1(x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2 005(x 2 005,y 2 005),则y 2005= .【答案】1、解:(1)根据题意,AB=x,AB ·BC=60,所以BC=60x。

人教版九年级数学下册26.2实际问题与反比例函数同步测试及答案(新审)

人教版九年级数学下册26.2实际问题与反比例函数同步测试及答案(新审)

3. 在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密
度也会随之改变,密度
ρ( 单位: kg/m 3) 与体积 V( 单位: m3) 满足函数关系式
k ρ= V( k 为常数, k≠
0) 其图象如图 26- 2- 1 所示,则 k 的值为 ( A ) A. 9 B .- 9 C . 4 D .- 4
初始温度是 32℃.
(1) 分别求出材料煅烧和锻造时 y 与 x 的函数关系式,并且写出自变量 x 的取值范围;
(2) 根据工艺要求,当材料温度低于 480 ℃时,须停止操作,那么锻造的操作时间有多长?
k
k
解: (1) 设煅造时的函数关系式为
y= x,则
600= ,∴ k= 4800, 8
4800 ∴锻造时解析式为 y= x ( x≥6) .
(1) 从运输开始,每天运输的货物吨数 n( 单位:吨 ) 与运输时间 t ( 单位: 天 ) 之间有怎样的函数关系
式?
(2) 因地震,到灾区的道路受阻,实际每天比原计划少运
20%,则推迟 1 天完成任务,求原计划完
成任务的天数. 解: (1) ∵每天运量×天数=总运量
∴ nt =4000 4000
升. 1 450 x 450
∴ y= x×(18+ x2 ) = 18+ x (70 ≤ x≤110) ; x 450
(2) 根据材料得:当 18= x 时 y 有最小值, 解得: x= 90 ∴该汽车的经济时速为 90 千米 / 小时;
1 450 当 x=90 时百公里耗油量为 100×(18+ 8100) ≈11.1 升.
量为 y 升.
(1) 求 y 关于 x 的函数关系式 ( 写出自变量 x 的取值范围 ) ;

2020—2021年人教版初中数学九年级下册实际问题与反比例函数测试卷1(精品试题).docx

2020—2021年人教版初中数学九年级下册实际问题与反比例函数测试卷1(精品试题).docx

实际问题与反比例函数1.下列函数表达式中,x 均表示自变量:①y=-25x ,②y=2x ,③y=-x -1,④xy=2, ⑤y=11x +,⑥y=0.4x,其中反比例函数有( ). A .3个B .4个 C .5个D .6个2.点(13)P ,在反比例函数ky x=(0k ≠)的图象上,则k 的值是( ). A .13B .3 C .13-D .3- 3.体积、密度、质量之间的关系为:质量=密度⨯体积.所以在以下结论中,正确的为( ).A .当体积一定时,质量与密度成反比例.B .当密度一定时,质量与体积成反比例.C .当质量一定时,密度与体积成反比例.D .在体积、密度及质量中的任何两个量均成反比例.4.若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ). A .(2,-1) B .(-21,2) C .(-2,-1) D .(21,2) 5.已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( ).6.当x<0时,反比例函数y=-x21的图像(). A .在第二象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而减大 C .在第三象限,y 随x 的增大而减小 D .在第四象限,y 随x 的增大而减小7.若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A .成正比例B .成反比例C .不成正比例也不成反比例D .无法确定8.如图,点P是x轴正半轴上一个动点,过点P作x轴的垂线PQ交双曲线y=x1于点Q,连结OQ,点P沿x轴正方向运动时,Rt△QOP的面积().A.逐渐增大B.逐渐减小C.保持不变D.无法确定9.函数y=k(x-1)与y=-kx在同一直角坐标系内的图象大致是().10.若A(-3,y1),B(-2,y2),C(-1,y3)三点都在函数y=-x1的图象上,则y1,y2,y3的大小关系是().A.y1>y2>y3B.y1<y2<y3C.y1=y2=y3D.y1<y3<y211.如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值大于一次函数的值的x的取值范围是().A.x<-1 B.x>2C.-1<x<0或x>2 D.x<-1或0<x<212.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若210x≤≤,则y与x的函数图象().二.填空题:13.已知变量y与x成反比例,且1x=时,5y=,则y与x之间的函数关系式是.A. B. C. D.Qp xyo14.函数8y x=-,当0x >时,y 0,相应的图象在第 象限内,y 随x 的增大而 . 15.已知反比例函数xky =的图象分布在第二、四象限,则一次函数k kx y +=的图象不经过第象限.16.已知函数23k y x-=,当0x <时,y 随x 的增大而减小,那么k 的取值范围是 .17.如图,点M 是反比例函数y =xa(a ≠0)的图象上一点,过M 点作x 轴、 y 轴的平行线,若S 阴影=5,则此反比例函数解析式为.18.如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折, 使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的 图象上,那么该函数的解析式是.19.如图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P,则它的解析式是___________.20.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论: ①两函数图象的交点A 的坐标为()22,; ②当2x >时,21y y >; ③当1x =时,3BC =;④当x 增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小. 其中正确结论的序号是. 三.解答题: 21.反比例函数y=xk的图像经过点A (2,3); (1)求这个函数的解析式;(2)请判断点B (1,6)是否在这个反比例函数的图像上,并说明理由.y QO xPA 1x =4y x =22.反比例函数21m y x-=的图象如图所示,1(1)A b -,,2(2)B b -,是该图象上的两点. (1)比较1b 与2b 的大小; (2)求m 的取值范围.23.已知反比例函数xky =图象与直线x y 2=和1+=x y 的图象过同一点. (1)求这个反比例函数的解析式;(2)当x >0时,这个反比例函数值y 随x 的增大如何变化? 24.如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点。

九年级数学上册反比例函数练习题

九年级数学上册反比例函数练习题

九年级数学上册反比例函数练习题在九年级的数学的关于反比例函数的课程即将结束,同学们要准备哪些练习题巩固知识点呢?下面是店铺为大家带来的关于九年级数学上册反比例函数的练习题,希望会给大家带来帮助。

九年级数学上册反比例函数练习题一1.下列函数中,不是反比例函数的是( )A.y=-3xB.y=-32xC.y=1x-1D.3xy=22.已知点P(-1,4)在反比例函数y=kx(k≠0)的图象上,则k的值是( )A.-14B.14C.4D.-43.反比例函数y=15x中的k值为( )A.1B.5C.15D.04.近视眼镜的度数y(单位:度)与镜片焦距x(单位:m)成反比例,已知400度近视眼镜镜片的焦距为0.25 m,则y与x的函数解析式为( )A.y=400xB.y=14xC.y=100xD.y=1400x5.若一个长方形的面积为10,则这个长方形的长与宽之间的函数关系是( )A.正比例函数关系B.反比例函数关系C.一次函数关系D.不能确定6.反比例函数y=kx的图象与一次函数y=2x+1的图象都经过点(1,k),则反比例函数的解析式是____________.7.若y=1x2n-5是反比例函数,则n=________.8.若梯形的下底长为x,上底长为下底长的13,高为y,面积为60,则y与x的函数解析式是__________(不考虑x的取值范围).9.已知直线y=-2x经过点P(-2,a),反比例函数y=kx(k≠0)经过点P关于y轴的对称点P′.(1)求a的值;(2)直接写出点P′的坐标;(3)求反比例函数的解析式.10.已知函数y=(m+1)xm2-2是反比例函数,求m的值.11.分别写出下列函数的关系式,指出是哪种函数,并确定其自变量的取值范围.(1)在时速为60 km的运动中,路程s(单位:km)关于运动时间t(单位:h)的函数关系式;(2)某校要在校园中辟出一块面积为84 m2的长方形土地做花圃,这个花圃的长y(单位:m)关于宽x(单位:m)的函数关系式.九年级数学上册反比例函数练习题二1.反比例函数y=-1x(x>0)的图象如图2617,随着x值的增大,y 值( )A.增大B.减小C.不变D.先增大后减小2.某反比例函数的图象经过点(-1,6),则下列各点中,此函数图象也经过的点是( )A.(-3,2)B.(3,2)C.(2,3)D.(6,1)3.反比例函数y=k2+1x的图象大致是( )4.正方形ABOC的边长为2,反比例函数y=kx的图象经过点A,则k 的值是( )A.2B.-2C.4D.-45.已知反比例函数y=1x,下列结论中不正确的是( )A.图象经过点(-1,-1)B.图象在第一、三象限C.当x>1时,0<y<1D.当x<0时,y随着x的增大而增大6.已知反比例函数y=bx(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过第几象限.( )A.一B.二C.三D.四7.若反比例函数y=kx(k<0)的函数图象过点P(2,m),Q(1,n),则m与n的大小关系是:m____n (填“>”“=”或“<”).8.已知一次函数y=x-b与反比例函数y=2x的图象,有一个交点的纵坐标是2,则b的值为________.9.已知y是x的反比例函数,下表给出了x与y的一些值:x -2 -1 121y 232 -1(1)求这个反比例函数的解析式;(2)根据函数解析式完成上表.10.(2012年广东)如图2619,直线y=2x-6与反比例函数y=kx(x>0)的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.11.当a≠0时,函数y=ax+1与函数y=ax在同一坐标系中的图象可能是( )12.如图26110,直线x=t(t>0)与反比例函数y=2x,y=-1x的图象分别交于B,C两点,A为y轴上的任意一点,则△ABC的面积为( )A.3B.32tC.32D.不能确定13.正比例函数y=12x的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.九年级数学上册反比例函数练习题一答案1.C2.D3.C4.C5.B6.y=3x 解析:把点(1,k)代入函数y=2x+1得:k=3,所以反比例函数的解析式为:y=3x.7.3 解析:由2n-5=1,得n=3.8.y=90x 解析:由题意,得1213x+x•y=60,整理可得y=90x.9.解:(1)将P(-2,a)代入y=2x,得a=-2×(-2)=4.(2)∵a=4,∴点P的坐标为(-2,4).∴点P′的坐标为(2,4).(3)将P′(2,4)代入y=kx得4=k2,解得k=8,∴反比例函数的解析式为y=8x.10.解:由题意,得m2-2=-1,解得m=±1.又当m=-1时,m+1=0,所以m≠-1.所以m的值为1.11.解:(1)s=60t,s是t的正比例函数,自变量t≥0.(2)y=84x,y是x的反比例函数,自变量x>0.九年级数学上册反比例函数练习题二答案1.A2.A3.D 解析:k2+1>0,函数图象在第一、三象限.4.D5.D6.B 解析:当x>0时,y随x的增大而增大,则b<0,所以一次函数不经过第二象限.7.> 解析:k<0,在第四象限y随x的增大而增大.8.-1 解析:将y=2代入y=2x,得x=1.再将点(1,2)代入y=x-b,得2=1-b,b=-1.9.解:(1)设y=kx(k≠0),把x=-1,y=2代入y=kx中,得2=k-1,∴k=-2.∴反比例函数的解析式为y=-2x.(2)如下表:x -3 -2 -1 121 2y 231 2 -4 -2 -110.解:(1)把A(4,2)代入y=kx,2=k4,得k=8,对于y=2x-6,令y=0,即0=2x-6,得x=3,∴点B(3,0).(2)存在.作AD⊥x轴,垂足为D,则点D(4,0),BD=1.在点D右侧取点C,使CD=BD=1,则此时AC=AB,∴点C(5,0).11.C12.C 解析:因为直线x=t(t>0)与反比例函数y=2x,y=-1x的图象分别交于Bt,2t,Ct,-1t,所以BC=3t,所以S△ABC=12•t•3t=32.13.解:(1)设点A的坐标为(a,b),则b=ka,∴ab=k.∵12ab=1,∴12k=1.∴k=2.∴反比例函数的解析式为y=2x.(2)由y=2x,y=12x得x=2,y=1.∴A为(2,1).设点A关于x轴的对称点为C,则点C的坐标为(2,-1).令直线BC的解析式为y=mx+n.∵B为(1,2),∴2=m+n,-1=2m+n.∴m=-3,n=5.∴BC的解析式为y=-3x+5.当y=0时,x=53.∴P点为53,0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实际问题与反比例函数习题1
班级姓名成绩
一、选择题(每题4分,共32分)
1.下列各点中,在双曲线y=3
x
上的是()
A.(0,3) B.(9,3) C.(1,3) D.(3,3)
2.反比例函数y=1
x
,y=-
1
x
,y=
1
3x
的共同特点是()
A.自变量的取值范围是全体实数;B.在每个象限内,y随x的增大而减小 C.图象位于同一象限内; D.图象都不与坐标轴相交
3.双曲线y=k
x
(k≠0),经过点(-2,4),则k=()
A.6 B.-6 C.8 D.-8
4.小华以每分钟x字的速度书写,y分钟写了300字,则y与x的函数关系为()
A.x=300
y
B.
300
x
C.x+y=300 D.y=
300x
x
-
5.一定质量的二氧化碳,当它的体积V=53
m,密度p=1.98kg/3m时,p与V 之间的函数关系式是( )
A.p=9.9V
B.
9.9
V
ρ= C.
9.9
V
ρ= D.2
9.9V
ρ=
6.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。

在课堂上,李老师请学生画出自行车行进路程s千米与行进时间t的函数图像的示意图,同学们画出的示意图如下,你认为正确的是()
A B C D
7.已知圆柱的侧面积是100πcm2,若圆柱底面半径为r(cm2),高线长为h(cm),则h关于r的函数的图象大致是()
8.如图,面积为2的ΔABC,一边长为x,这边上的高为y,则y与x的
变化规律用图象表示大致是( ) 二、填空题(每题5分共25分)
9.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ______; 10.若反比例函数1
232
)12(---=k k
x k y 的图象经过二、四象限,则k = _______
11.已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ; 12.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;
13.如图,面积为3的矩形OABC 的一个顶点B 在反比例函数
x
k
y =
的图象上,另三点在坐标轴上,则k = . 三、解答题(共63分)
14.(8分)一个圆台形物体的上底面积是下底面积的2
3
,如图放在桌上,对桌面的压强是200Pa ,翻过来放,对桌面的压强是多少?
15. (8分)已知矩形的面积为48c 2
m ,求矩形的长y(cm)与宽x(cm)之
间的函数关系式, 并写出自变量的取值范围,画出图象.
16.(8分)在某一电路中,保持电压不变,电流I(安培)与电阻R(欧
姆)
成反比例,当电阻R=5欧姆时,电流I=2安培。

(1)求I 与R 之间的函数关系式;(2)当电流I=0.5安培时,求电阻R 的值.
17.(8分)如图,矩形ABCD 中,AB=6,AD=8,点P 在BC 边上移动(不与点B 、C 重合),设PA=x,点D 到PA 的距离DE=y.
求y 与x 之间的函数关系式及自变量x 的取值范围
.
19.(8分)已知□ABCD 中,AB = 4,AD = 2,E 是AB 边上的一动点,设AE=x ,DE 延长线交CB 的延长线于F ,设CF =y ,求y 与x 之间的函数关系。

18.(11分)如图所示,Rt△AOB 中,∠ABO=90°,点B 在
x 轴上,点A 是直线y=x+m 与双曲y
x
O
C
B
A
A
E
B
D
C
F
线y=m
x
在第一象限的交点,且S△AOB=3.
(1)求m的值.
(2)求△ACB的面积.
20.(12分)某地上年度电价为0.8元,年用电量为1亿度,•本年度计划将电价调至0.55~0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)元成反比例,又当x=0.65元时,y=0.8.
(1)求y与x之间的函数关系式.
(2)若每度电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?
参考答案
一.选择题
1.C 2.D 3.D 4.B 5.B 6.C 7.B 8.C
二.填空题
9.反比例; 10. 2/3; 11. y= +2; 12. 2s/a ;反比例函数; 13. 3.
三.解答题;
14.•300Pa
15. y=48/x ;x的取值范围是0<x≤4;图象(略)
16. I=10/R; 当I=0.5安培时,电阻R=20
17. 提示;连结DP,过P点做PM垂直于AD,交AD于M点,利用三角形APD两种不同的面积表示方法得到xy=48 ,进而得到 y=48/x,自变量的范围是6<X<10
18. 利用三角形ADE∽三角形BFE,对应线段成比例,整理后得到y=8/ x (0<x≤4)
19. (1)m=6 (2)由y=x+6与y=6/x组成方程组,可以得到A点的坐标,当Y=0时得到C 点坐标,进而得到三角形ACB的面积是12+3
20.(1)y=
1
52
x
(2)0.6元.。

相关文档
最新文档