特殊工艺简介-超声波焊接

合集下载

超声波焊接法

超声波焊接法

超声波焊接法
超声波焊接是一种利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合的焊接方法。

超声波焊接具有以下优点:
1.熔合强度高,适用于多种塑料焊接,同时还能大大增强焊缝的机械性能;
2.工作效率高,相比于其他焊接方法,超声波焊接的速度更快;
3.对环境污染小,因为整个焊接过程不需要任何辅助剂、焊剂或者气体。

然而,超声波焊接也存在一些缺点:
1.需要对焊头施加压力,导致设备较复杂且维修成本较高;
2.需要焊头传递超声波能量到产品,产品会轻微压痕。

在具体操作过程中,有以下几点注意事项:
1.在熔接法中,通过超音波超高频率振动的焊头在适度压力下,使二块塑胶
的接合面产生摩擦热而瞬间熔融接合,焊接强度可与本体媲美。

此外,采用合适的工件和合理的接口设计,可达到水密及气密的效果;
2.在埋植法中,通过焊头之传道及适当之压力,瞬间将金属零件(如螺母、
螺杆等)挤入预留入塑胶孔内,固定在一定深度。

完成后无论拉力、扭力均可媲美传统模具内成型之强度;
3.在成型法中,该方法与铆焊法类似,将凹状的焊头压着于塑胶品外圈,焊
头发出超音波超高频振动后将塑胶溶融成形而包覆于金属物件使其固定。

总的来说,超声波焊接法是一种有效的塑料焊接方法,它利用了超声波的高频振动来传递能量,使得两个塑料的表面能够迅速地熔合在一起。

超声波焊接

超声波焊接

超声波焊接超声波焊接是一种应用超声波技术进行焊接的方法,它具有高效、可靠、环保等特点,广泛应用于工业生产中。

本文将从超声波焊接的原理、设备、应用领域以及优势等方面进行介绍。

超声波焊接是利用超声波振动产生的能量实现焊接材料的熔接。

超声波是一种频率超过人耳能听到的声音的机械波,其频率一般在20kHz到70kHz之间。

超声波焊接的原理主要是利用超声波振动使材料分子的间距变小,从而产生高温高压的效果,促使材料发生熔接现象。

在焊接过程中,超声波振动会穿透至焊材表面,使接触部分的温度升高,然后通过适当的加压使材料熔化并熔接在一起,最终形成焊接接头。

超声波焊接设备主要由超声波振动系统、机械系统和电气系统组成。

超声波振动系统是超声波焊接的核心部分,它由发声器和承载器组成。

发声器是将电能转化为机械振动的装置,承载器则是将振动传递给焊接件的装置。

机械系统主要包括焊接头、压力机构等部分,用于在焊接过程中施加适当的压力。

电气系统则提供了超声波发生器、控制电路、传感器等设备,用于控制焊接过程的各个参数。

超声波焊接在工业生产中有着广泛的应用。

它可以焊接各种金属材料,如铝、铜、钢等,也可以焊接塑料和纺织品等非金属材料。

超声波焊接常被运用在汽车制造、电子设备生产、包装行业等领域。

例如,在汽车制造中,超声波焊接被应用于制造车灯、排气管和电池等零部件;在电子设备生产中,它被用于焊接电子元件和连接导线等;在包装行业中,超声波焊接可用于封口、划线和熔接等工作。

超声波焊接具有许多优势。

首先,它的焊接速度快,能够在短时间内完成焊接工作,提高生产效率。

其次,超声波焊接的焊接接头牢固可靠,具有较高的拉伸强度和密封性能。

再次,它适用于焊接的材料种类广泛,包括金属、塑料和纺织品等。

此外,超声波焊接过程不需要使用焊接剂和填料,所以它是一种环保、无污染的焊接方法。

总结起来,超声波焊接是一种高效、可靠、环保的焊接方法,广泛应用于多个行业中。

随着技术的不断进步,超声波焊接设备的性能和效果也在不断提高,为我们的生产和生活带来了许多便利和效益。

ptfe超声波焊接工艺

ptfe超声波焊接工艺

ptfe超声波焊接工艺
PTFE(聚四氟乙烯)超声波焊接工艺要点:
①工件准备:清洁待焊PTFE部件表面,确保无油脂、灰尘等污染物;
②夹具设计:定制专用焊接夹具,保证焊缝对正及稳定受压;
③参数设定:根据PTFE厚度、硬度选择适宜的超声波频率(通常15-70kHz)、振幅、焊接时间和压力;
④预热处理:对PTFE进行局部或整体预热,提高材料塑性,降低焊接难度;
⑤焊接实施:将工件置于夹具中,超声波焊头施加恒定压力并产生高频振动,接触面摩擦生热熔融,形成分子间结合;
⑥冷却固化:焊接后保持压力,自然冷却或辅助风冷,使焊缝充分固化;
⑦质量检验:检查焊缝外观、强度、密封性等,确保符合产品要求。

超声波焊接技术

超声波焊接技术

超声波焊接技术大全n ewmaker超声波焊是一种快捷,干净,有工工国效的装配工艺,用来装配处理热塑性塑料配件,及一些合成构件的方法。

目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!它取代了溶剂粘胶机械坚固及其它的粘接工艺是一种先进的装配技术!超声波焊接不但有连接装配功能而且具有防潮、防水的密封效果。

超声波的优点:1,节能2,无需装备散烟散热的通风装置3,成本低,效率咼4,容易实现自动化生产!超声波焊接机的工作原理!超声波焊接装置是通过一个电晶体功能设备将当前50/60HZ的电频转变成20KHZ或40KHZ的电能高频电能,供应给转换器。

转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头。

焊头是将机械振动能直接传输至需压合产品的一种声学装置。

振动通过焊接工作件传给粘合面振动磨擦产生热能使塑胶熔化,振动会在熔融状态物质到达其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键,整个周期通常是不到一秒种便完成,但是其焊接强度却接近是一块连着的材料!!焊接:指的是广义的将两个热塑性塑料产品熔接的过程。

当超音停止振动时,固体材料熔化,完成焊接。

其接合点强度接近一整块的连生材料,只要产品的接合面设计得匹配,完全密封是绝对没有什么问题的,碟合:熔化机械锁形成一个材质不同的塑料螺栓的过程。

嵌入:将一个金属无件嵌入塑料产品的预留孔内。

具有强度高,成型周期短安装快速的优点!!类似于模具设计中的嵌件!11Ultrasonic WeldingHatt jitint itiretw(nti J ildltCilYf ( pWelding Technique• Poor but joint design< Eicesske M6l (9 timff f E?(強睜钊叫 汕卑「gy * £xlidtng nielt re suds in a visual defect♦ Improved bull J G I nt design• Reduced w»ld tlnw * R^uc&d w&ld &n@rgy • Exuding 12雷H (/Isible) • FE?»sh 俪 |p jddwd* R&ductlanln wflIM ar«a • Exiting mol( not mult In a visual defect♦ Step joint design# Fwprcv^d -sneM f«si$nnce • Exiting nt&lt does nor mult in a visual dated♦ Assist in locaiiftg 因厲昂Ultras onic Weldi ng 1W elding TechniquesUltrasonic WeldingAirorplious polymerSeml-crystalhie polymer Ditn” Small part Largs part Small part L 白 ”g 电 part hS3 - 0405 *0.605 - 070.1 ・ to0 60° (0 9Q D90®rypiattdimlttr di tin ■» > in/! \iiHiUimt ^7 s/Ultras onic Weldi ng2Welding TechniquesUltrasonic WeldingUltras onic Weldi ng 3Welding TechniquesUltrasonic Weldinga严surrounding energy directorI —Ultras onic Weldi ng 4.弯曲性成音波将配件的一部分熔化再组成一个塑料的突起部位或塑料管或其它挤出配件。

特种焊接技术--第五章超声波焊接

特种焊接技术--第五章超声波焊接

1-发生器 2-换能器 34-耦合杆 A-发生器 B聚能器 -声学系统 5-上声极6-焊件7-下声级8-电磁加压装臵 C-加压机构 D-控制装臵 9-控制加压电源10-程控器 19 材料科学与工程学院 压力焊
材料科学与工程学院
19
特种焊
1、超声波发生器 是焊机的核心设备。它是一种具有超声频率的 正弦电压波的电源,实质是一个包括机械振动系统 在内的单级或多级放大的自激振荡器。作用是将工 频(50Hz) 电流变成 15 ~ 60Hz 的震荡电流,并通 过输出变压器与换能器相耦合。 2、声学系统 超声波的关键部件,是电声耦合装臵(声学系 统),由换能器、聚能器(变幅杆)、耦合杆(传 振杆和上下声极)等组成。 主要作用是传输弹性振动能给焊件,以实现焊 接。声学系统设计的关在于按照选定的频率计算每 个声学组元的自振频率。
11
特种焊 2、缝焊 缝焊时超声波通过旋转运动的圆盘状声极传输 给工件,形成具有密封性的连续焊缝。 缝焊可以获得密封的连续焊缝。通常工件被夹 持在上、下焊盘之间。在特殊情况下可采用平板式 下声极。
材料科学与工程学院 压力焊 辽宁工程技术大学 材料科学与工程学院
12
12
特种焊 3、环焊 用环焊方法可以一次形成 封闭形焊缝,采用的是扭转振 动系统。焊接时焊盘扭转,振 动振幅相对于声极轴线呈对称 线性分布,轴心区振幅为零, 焊盘边缘振幅最大。显然环焊 最适用于微电子器件的封装工 艺。有时环焊也用于对气密要 求特别高的直线焊缝场合,此 时可采用部分重叠环焊方法, 类似缝焊获得连续直线焊缝。
材料科学与工程学院 压力焊 辽宁工程技术大学 材料科学与工程学院
20
20
特种焊 (1)换能器 将发生器的电震荡能转换成相同频率的机械振 动能,是焊机的机械振动源。有磁致伸缩式和压电 式两种。 磁致伸缩效应是当铁磁材料臵于交变磁场中, 将会在材料的长度方向发生宏观的同步伸缩变形现 象,常用镍片和铁铝合金,工作可靠,但换能效率 仅为20~30%,已被压电式换能器所替代。 压电式是利用某些非金属压电晶体(如石英、 锆酸铅、锆钛酸等)的逆压电效应。当压电材料在 一定晶面上受到压力或拉力时,会出现电荷,称为 正压电效应;反正,当在压电轴方向馈入交变电场 时,晶体会沿一定方向发生同步收缩现象,称逆压 电效应。效率高达80~90%,但寿命短。

超声波焊接和激光焊接工艺

超声波焊接和激光焊接工艺

超声波焊接和激光焊接工艺1. 引言1.1 背景介绍超声波焊接和激光焊接是两种常见的金属焊接工艺,都是利用能量进行熔化和连接金属材料的方式。

超声波焊接是指利用高周波振动产生的超声波能量,在焊缝处产生高温高压,从而实现金属的焊接。

而激光焊接则是利用激光束产生的热能,将金属迅速加热到熔点并实现连接的过程。

随着工业的发展和对制造品质的要求不断提高,金属材料的焊接工艺也在不断创新和发展。

传统的焊接方式存在一些缺陷,比如热影响区广、变形大等问题。

超声波焊接和激光焊接作为新兴的焊接技术受到了越来越多的重视。

超声波焊接和激光焊接通过其高效的焊接速度、精准的焊接控制和对环境的友好性等优势,逐渐成为金属制造领域中重要的焊接工艺。

它们不仅可以提高焊接质量和生产效率,还能减少能源消耗和环境污染。

研究超声波焊接和激光焊接工艺的优势、应用领域和发展趋势,对于提高金属制造工艺水平、推动工业升级具有重要的意义。

本文将针对超声波焊接和激光焊接进行深入探讨,以期为相关领域的研究和实践提供参考。

1.2 研究意义超声波焊接和激光焊接作为现代工艺技术中广泛应用的焊接方法,具有独特的优势和应用前景。

研究这两种焊接工艺的意义主要体现在以下几个方面:超声波焊接和激光焊接作为高效、高精度的焊接工艺,可以在不加入外部金属材料的情况下完成焊接过程,避免了金属材料污染和材料浪费的问题。

这对于精密仪器制造、电子产品组装等领域具有重要意义。

超声波焊接和激光焊接的焊接速度快、热影响区小、焊接质量高,能够提高生产效率,降低能源消耗,减少生产成本,提高产品的整体质量和可靠性。

通过对超声波焊接和激光焊接工艺的研究,可以不断优化工艺参数,提高焊接质量和稳定性,拓展其在不同材料和结构的应用领域,推动材料加工和制造领域技术的进步。

研究超声波焊接和激光焊接工艺的意义在于不断提升焊接技术水平,推动工业制造的现代化和智能化发展,为构建绿色、高效、可持续的制造业发展模式提供技术支持和保障。

铝导线超声波焊接工艺

铝导线超声波焊接工艺

铝导线超声波焊接工艺1.引言1.1 概述概述部分的内容应该对铝导线超声波焊接工艺进行简要介绍和概述。

概述:铝导线超声波焊接工艺是一种常用于铝导线连接的高效、环保的焊接技术。

传统的焊接方法在铝导线连接过程中会产生较高的温度,容易导致材料的热膨胀、氧化以及其他不良后果。

而超声波焊接技术通过在铝导线接触面施加高频振动的方式,将其表面松动层的氧化物剥离,从而实现材料的高效连接。

超声波焊接技术的原理是利用压电振荡器将电能转化为机械振动能,然后通过焊接头将振动能传导到焊接材料中。

在焊接过程中,焊接头使铝导线的接触面以高频振动,从而产生摩擦热,使铝导线表面的氧化物层得以剥离,从而实现铝导线的连接。

与传统的焊接方法相比,超声波焊接工艺具有以下优点:焊接速度快、能耗低、焊接接头耐腐蚀性好、焊缝强度高等。

铝导线超声波焊接工艺已经在电力行业、汽车行业、航空航天行业等领域得到广泛应用。

通过该工艺,可以实现铝导线之间的可靠连接,提高电气传导效率,并具有良好的机械强度和耐腐蚀性能。

随着技术的不断发展,铝导线超声波焊接工艺将会在更多领域得到应用,并为铝导线连接领域带来更多的创新和发展。

综上所述,铝导线超声波焊接工艺作为一种高效、环保的焊接技术,在铝导线连接领域具有广泛的应用前景。

本文将对超声波焊接原理和铝导线焊接工艺进行详细介绍和探讨,以期为相关领域的工程技术人员提供参考和帮助。

1.2 文章结构文章结构部分的内容可以包括以下内容:文章的结构是指整篇文章的组织框架和章节设置。

一个良好的文章结构能够使读者更好地理解文章的内容和逻辑关系。

本文主要分为引言、正文和结论三个部分。

引言部分主要介绍了铝导线超声波焊接工艺的背景和意义,引起读者的兴趣,并简要概述了本文的内容和结构。

正文部分是本文的核心部分,主要包括超声波焊接原理和铝导线焊接工艺两个子章节。

其中,超声波焊接原理部分详细介绍了超声波焊接的原理和工作方式,包括超声波的产生和传播、焊接头的构造和超声波焊接的工艺参数等;铝导线焊接工艺部分则具体探讨了在超声波焊接中铝导线的特点和焊接工艺要点,包括焊接接头的设计和准备、焊接参数的选择和优化等。

超声波焊

超声波焊

图1超声波焊的原理
1—发生器;2—换能器;3—传振杆; 4—聚能器;5—耦合器;6—静载荷; 7—上声极;8—焊件;9—下声极; F—静压力;v1—纵向振动方向; v2—弯曲振动方向
2.1、超声波的分类
根据接头形式分类:超声 波焊可分为点焊、缝焊、 环焊和线焊等。 不同类型的超声波焊得到 的焊缝形状不同,分别为 焊点、密封连续焊缝、环 焊缝和平直连续焊缝。 【1】点焊 根据能量传递方式,点焊 可分为单侧式和双侧式两 类。
3.2、超声波焊接工艺
3.2.1 接头设计 超声波焊接的接头目前只限于搭接一种形式。考虑 到焊接过程母材不发生熔化,焊点不受过大压力, 也没有电流分流等问题,设计焊点的点距s、边距e 、和行距r等参数。
1、边距e 电阻点焊时为了防止熔合溢出而要求 e>6δ (δ为板厚)。超声波点焊不受此限制,可以比 它小,只要声极不压碎或穿破薄板的边缘,就采用 最小的e,节省母材,减轻质量。
点焊机
当超声振动能量只通过 上声极导入时为单侧式 点焊;
分别从上、下声极导入
时为双侧式点焊。目前 应用最广泛的是单侧导 入式超声波点焊。
图2 超声波点焊的能量系统类型 1—静压力 2—上声极 3—焊件 4—下声极 V—振动方向
根据上声极的振动情 况,点焊分为纵向振 动式、弯曲振动式和 介于两者之间的轻型 弯曲振动式。 纵向振动系统主要用于 小功率超声波焊机, 弯曲振动系统主要用 于大功率超声波焊机 ,而轻型弯曲振动系 统适用于中小功率的 超声波焊机。
1.2、超声波的原理
超声波焊接时既不向焊件输送电流,也不向焊件 引入高温热源,只是在静压力作用下将弹性振动 能量转变为焊件间的摩擦功、变形能及随后有限 的温升。接头之间的冶金结合是在母材不发生熔 化的情况下实现的,因而是一种固态焊接方法。 超声波焊接的原理如下:

pbt的超声波焊接工艺

pbt的超声波焊接工艺

pbt的超声波焊接工艺
超声波焊接是一种高效、环保的连接工艺,适用于各种塑料材料,包括PBT。

以下是PBT的超声波焊接工艺流程:
1.焊接准备:在进行超声波焊接之前,需要先准备好所需的工具和材料,包括超声波焊接机、焊头、PBT材料、夹具等。

同时,要确保工作场所干净整洁,避免杂物和灰尘影响焊接效果。

2.放置焊件:将需要焊接的PBT材料放置在夹具中,确保位置准确,以便进行后续的焊接操作。

3.施加压力:在焊头对准焊缝后,施加适当的压力。

压力大小应根据PBT材料的厚度和强度而定,压力过大会导致材料变形,过小则可能无法实现良好的焊接效果。

4.超声波振动:通过超声波焊接机产生高频振动,使焊头与PBT材料表面产生摩擦热,软化材料表面,为焊接创造有利条件。

5.冷却定型:在焊接完成后,应立即停止振动并释放压力,让焊接部位自然冷却定型。

在冷却过程中,应避免外部干扰因素如风、震动等影响焊接效果。

6.完成焊接:冷却后,检查焊接部位是否有缺陷,如气孔、裂缝等。

如一切正常,则可认为焊接完成。

需要注意的是,在进行超声波焊接时,应选择合适的焊头和振动频率,以确保焊接效果良好。

同时,操作人员应具备相关技能和经验,能够准确判断和处理各种问题。

超声波焊接的工艺特点

超声波焊接的工艺特点

超声波焊接的工艺特点超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。

一、超声波焊接特点1)可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。

2)焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。

3)焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。

4)被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。

5)形成接头所需电能少,仅为电阻焊的5%;焊件变形小。

6)不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。

超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。

二、超声波焊接的分类超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。

常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。

(1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。

振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。

超声波焊接工艺标准

超声波焊接工艺标准

超声波焊接工艺标准超声波焊接是一种高效、环保的连接工艺,被广泛应用于各种材料和制品的焊接。

本文将介绍超声波焊接工艺标准,包括焊接设备、材料要求、焊接过程、质量检测等方面的内容。

一、超声波焊接设备超声波焊接设备应符合相关标准和规格,具备稳定的性能和良好的精度。

设备应包括超声波发生器、换能器、焊头、电源等组成部分,同时应具有相应的控制和调节系统,以确保焊接过程的稳定性和可控性。

二、材料要求超声波焊接适用于各种材料,如金属、塑料、陶瓷等。

材料应具有较好的超声波传播特性,同时应满足相应的物理、化学和机械性能要求。

对于金属材料,应具有良好的导电性和导热性,并且表面应光滑、清洁、无氧化膜等杂质。

对于非金属材料,应具有较好的界面粘结性能和耐热性能。

三、焊接过程1.准备工作:将被焊接材料放置在焊接工装夹具上,调整好位置和角度。

检查设备是否正常运转,确认无误后开始焊接。

2.焊接参数设置:根据材料类型、厚度、焊接方式等因素,设置合适的焊接参数,如超声波频率、振幅、焊接时间、压力等。

3.焊接操作:将焊头放置在待焊接材料上方,启动超声波发生器,调整焊头位置和压力,使焊头与材料表面紧密接触。

观察焊接过程,确保材料熔合良好,无飞溅、烧伤等现象。

4.焊接后处理:完成焊接后,将工件从工装夹具上取下,进行清理和修整。

对于有特殊要求的工件,可以进行相应的检验和测试。

四、质量检测1.外观检测:观察焊接接头的表面质量,应光滑、平整、无气孔、裂纹等缺陷。

检查接头的几何尺寸,确保符合设计要求。

2.拉伸强度测试:采用拉伸试验机对焊接接头进行拉伸强度测试,比较接头的强度与母材的强度是否一致。

一般要求接头的拉伸强度不低于母材的80%。

3.气密性检测:对于有密封性能要求的接头,可以采用气密性检测设备进行检测,确保接头的密封性能符合要求。

4.X射线探伤:对于一些高精度、高要求的焊接接头,可以采用X射线探伤方法对接头内部进行检测,以确定是否存在气孔、裂纹等缺陷。

特种焊接技术超声波焊

特种焊接技术超声波焊

现再结晶现象。
二、接头形成过程
3.固相接合阶段
随着摩擦过程的进行,微观接触面积越来越大,接触部 分的塑性变形也不断增加,焊接区内甚至形成涡流状的塑 性流动层,导致焊件表面之间的机械咬合; 引起了物理冶金反应,在结合面上产生联生晶粒,出现 再结晶、扩散、相变及金属间的键合等冶金现象,形成牢 固的接头。
超声波焊属于固相焊接,目前主要用于小型 薄件的焊接,焊接质量可靠,经济性较好。 超声波焊不仅可以焊接铝、铜、金等较软的 金属材料,也可用于钢铁材料、钨、钛、钼 等金属的焊接,物理性质相差悬殊的异种金 属,甚至金属与半导体、金属与陶瓷等非金 属以及塑料等异种材料均可以采用超声波焊。
6.3 典型材料的超声波焊
在焊接铝制点火模件衬底和铜制衬垫时,通 过超声波自动焊接系统可达到每小时完成 3000个焊点的生产效率。 对于不同厚度的金属材料也有很好的超声波 焊接性,甚至焊件的厚度比几乎可以是无限 制的 。 异种金属焊接时,接头组织比较复杂 。
对于金属钼、钨等高熔点的材料,由于超声 波焊可避免接头区的加热脆化现象,从而可 获得高强度的焊点质量。 高硬度金属材料之间的超声波焊接、或焊接 性较差的金属材料之间的焊接,可通过添加 中间过渡层的方法实现超声波焊接。 对于多层金属结构,也可以采用超声波焊。
二、塑料的超声波焊
塑料焊接时,通常尽量将焊件的结合面置于 谐振曲线的波节点上,以便在这里释放出最 高的局部热量,以使材料受热熔化达到焊接 的目的。 塑料超声波焊机一般由超声波发生器、焊压 台和焊具三大部分组成。
二、焊件表面准备
超声波焊时,对焊件表面不需进行严格清理,因为超
声振动本身对焊件表面层有破碎清理作用。 焊件表面被严重氧化或已有锈蚀层,焊前仍需清理, 通常采用机械磨削或化学腐蚀方法清除。

超声波焊接工艺

超声波焊接工艺

超声波焊接工艺
1超声波焊接工艺
超声波焊接技术是一种新兴的焊接技术,在最近几十年得到了极大发展,目前已经成为工业应用中最受欢迎的焊接工艺之一。

它可以用于在连接的任何材料上焊接强度很高的接头,并在不需要焊渣和溶剂的情况下实现高精度的焊接。

超声波焊接是一种不需要昂贵的焊接设备和材料的技术。

这种技术的根源是利用由一个特定频率的振动器发出的超声波,将两块材料用力挤压在一起,使其处于熔融状态,从而在两个材料上创建一个强大、可靠的接头。

超声波焊接技术最大的优势在于操作简单、快速安全,也是一种优秀的节能工艺,因为它只需要消耗很少的能量就可以进行焊接。

另外,由于该技术可以减少焊接温度,因此此类接头不易烧损,并且焊接质量很高,耐腐蚀性强,也可以节约成本和时间。

超声波焊接技术主要应用于金属及其他材料的连接,如钢材、铝材、不锈钢、铜、集成电路等。

广泛用于电子元器件、家用电器、医疗设备、汽车零部件、航空航天、積木和模型等行业。

总之,超声波焊接技术是一种非常有用的工艺,不仅可以提高焊接性能,还可以节约时间、成本和材料。

它不仅可以用于已经投入生
产的行业,还可以大大改善和替代传统的焊接方法。

因此,超声波焊接将在随后的许多年中仍然优先考虑。

超声波焊接工作原理

超声波焊接工作原理

超声波焊接工作原理
超声波焊接是一种利用超声波在材料界面产生剧烈摩擦热而实现焊接的方法。

其工作原理如下:
1. 超声波发生器产生超声波:超声波是指频率高于20kHz的
机械波,通常使用频率在20kHz-60kHz之间的超声波。

2. 超声波通过换能器传递:超声波发生器会将电能转化为机械振动能,通过换能器将振动能传递到工作头部。

3. 工作头部振动:工作头部内部有一个振子,接受到换能器传递的振动能后开始振动,并将振动能传递到焊接接触面。

4. 材料剧烈摩擦热产生:当工作头部与焊接接触面接触时,因为接触面之间有些微的间隙,工作头部的振动会引起接触面的高频摩擦运动,从而产生摩擦热。

5. 材料局部软化:由于摩擦热的作用,接触面的局部区域会被加热到临界温度以上,使得材料表面局部软化,形成塑性流动层。

6. 塑性流动层的形成:当达到一定程度的软化温度时,材料表面就会形成塑性流动层,这层材料具有一定程度的流动性。

7. 熔汇与结合:在两接触面产生摩擦热的作用下,塑性流动层流向工件内部,使得两材料的表面粘接在一起,形成焊接接头。

总结来说,超声波焊接是通过超声波产生高频振动,通过振动产生的摩擦热使材料局部软化形成塑性流动层,最终实现两材料的粘接。

这种焊接方法具有快速、高效、无污染等优点,在各种行业中得到广泛应用。

超声波焊接原理

超声波焊接原理

超声波焊接原理:超声波焊接是熔接热塑性塑料制品的高科技技术,各种热塑性胶件均可使用超声波熔接处理,而不需加溶剂,粘接剂或其它辅助品。

其优点是增加多倍生产率,降低成本,提高产品质量及安全生产超声波塑胶焊接原理是由发生器产生20KHz(或15KHz)的高压、高频信号,通过换能系统,把信号转换为高频机械振动,加于塑料制品工件上,通过工件表面及在分子间的磨擦而使传递到接口的温度升高,当温度达到此工件本身的熔点时,使工件接口迅速熔化,继而填充于接口间的空隙,当震动停止,工件同时在一定的压力下冷却定形,便达成完美的焊接。

新型的15KHz超声波塑胶焊接机,对焊接较软的PE、PP材料,以及直径超大,长度超长塑胶焊件,具有独特的效果,能满足各种产品的需要,能为用户生产效率以及产品档次贡献。

超声波焊接工艺:一、超声波焊接:以超声波超高频率振动的焊头在适度压力下,使二块塑胶的结合面产生磨擦热而瞬间熔融接合,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品带来的不便,实现高效清洁的焊接焊接强度可与本体媲美,二、铆焊法:将超声波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。

三、埋植:借着焊头之传导及适当压力,瞬间将金属零件(如螺母、螺杆等)挤入预留的塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。

一、超声波塑料焊接的相容性和适应性:热塑性塑料,由于各种型号性质不同,造成有的容易进行超声波焊接,有的不易焊接;下表中黑方块的表示两种塑料的相容性好,容易进行超声波焊接;圆圈表示在某些情况下相容,焊接性能尚可;空格表示两种塑料相容性很差,不易焊接■-表示相容○- 注意:表中所列仅供参考,因为熟知的变化可导致结果略有差异.超声波焊接会影响产品内的电子元件吗我有一个产品是把PCBA装到后壳再把前后壳超起来,PCBA上的主要元件有基带射频IC、FLASH、晶振等,我想请教大家,超声会对这些电子元件产生影响吗?超声会对其他哪些电子元件产生影响?谢谢大家了!1:晶振肯定会有影响.2:我之前做个类似读卡器的产品,首先是经过检测的PCBA装配后超声连接的,但其中很奇怪有约10%的产品功能测试NG.拆开后经常生产的技术员检测为BGA IC 开路,对此我也不是很确定就一定会有问题,不过可能跟IC的型号及封装方式有关吧,1 V* O7 `4 {! ~6 A. }2 }8 m所以后来我都改为卡扣连接了.3:超声波加工为高频振荡方式,,对一定的元器件及其连接点都有影响,应慎重选择。

《超声波焊接工艺》课件

《超声波焊接工艺》课件

超声波焊接的物理过程
01
02
03
表面振动
超声波在焊接表面产生高 频率的振动,使接触面摩 擦生热。
材料融合
在高温和压力的作用下, 焊接材料发生塑性变形和 流动,实现焊接。
接头形成
通过材料的融合和相互渗 透,形成牢固的接头。
超声波焊接的工艺参数
振动频率
通常在20kHz至100kHz之间, 频率越高,焊接效果越好。
《超声波焊接工艺》ppt课件
目 录
• 超声波焊接工艺简介 • 超声波焊接原理 • 超声波焊接设备 • 超声波焊接工艺流程 • 超声波焊接的质量控制 • 超声波焊接的未来发展
01
超声波焊接工艺简介
超声波焊接的定义
01
超声波焊接是一种利用超声波能 量将两个或多个材料连接在一起 的工艺。
02
超声波焊接机产生高频振动,通 过接触面将能量传递到待焊接材 料上,使材料局部熔化或达到柔 性状态,从而实现连接。
结合人工智能和机器学习技术,实现焊接过程的自动控制和优化。
多功能超声波焊接技术
开发能够适应不同材料和焊接需求的超声波焊接设备,拓宽应用领 域。
超声波焊接与其他焊接方法的比较
01
热传导焊接
超声波焊接与热传导焊接在原理上有本质的不同,超声波焊接主要依靠
超声波的振动能量使材料表面产生塑性变形而结合,而热传导焊接则是
焊接压力
焊接压力过小,焊接 不牢固;压力过大, 则可能损坏材料。
焊件表面状态
焊件表面不干净或有 杂质,会影响焊接质 量。
焊件材料性质
材料的硬度、热导率 等物理性质会影响超 声波焊接的效果。
提高焊接质量的措施
控制焊接压力,确保在适当 的范围内。

超声焊接工艺

超声焊接工艺

超声焊接工艺
超声波焊接是一种新型的焊接方法,其原理是利用超声能量使焊件表面的分子产生振动,使分子在界面处发生摩擦,产生热量使材料熔化,从而形成焊接。

利用超声波焊接,可以获得比较稳定的焊接效果。

超声焊接的原理与传统的机械振动焊接基本相同。

超声焊接方法与传统机械振动焊接方法相比有其独特之处:
(1)在焊接过程中,焊件不受传统机械振动焊接方法中因
金属和非金属材料之间的粘接而产生的振动和摩擦的影响。

因此,超声焊接设备在工作时不会产生任何机械振动,从而保证了其与传统机械振动焊接方法基本相同的优点。

(2)在超声焊接过程中,焊件之间不需加压或施加一定压
力即可实现连接。

因此,超声焊接设备不仅可以用于一般固体材料(如塑料、金属、陶瓷、玻璃等)的连接,而且还可以用于液体或气体材料的连接。

这对于航空航天、化工医药和电子等工业中需要进行压力密封、化学腐蚀和化学吸附等操作的场合是非常有用的。

(3)超声焊连接不仅能实现固体材料的连接,而且还可以
实现液体及气体材料的连接。

—— 1 —1 —。

petg超声波焊接工艺

petg超声波焊接工艺

petg超声波焊接工艺
PETG(聚对苯二甲酸乙二醇酯)是一种常见的塑料材料,通
常用于制造瓶子、包装材料、水泥等。

超声波焊接是一种常见的塑料焊接方法,可以用于连接PETG材料。

超声波焊接的原理是利用超声波的振动来产生热量,使接触的塑料材料快速熔化并结合在一起。

具体的PETG超声波焊接工艺步骤如下:
1. 准备焊接部件:在进行超声波焊接之前,需要准备好待焊接的PETG部件。

确保部件表面光洁,没有杂质或油脂。

2. 设定焊接参数:根据焊接材料和尺寸,设定适当的焊接参数,包括焊接时间、压力和超声波功率。

3. 定位部件:将待焊接的PETG部件正确放置在焊接夹具或工作台上,保持加工表面平整。

4. 进行焊接:将超声波焊接头安置在待焊接部件的接触面上,并施加足够的压力。

同时启动超声波发生器,使其产生超声波振动。

振动产生的热量将使PETG材料熔化并结合在一起。

5. 完成焊接:等待一定的焊接时间,使焊接部件充分结合。

然后停止超声波发生器和移除焊接头。

6. 冷却和固化:在焊接完成后,将焊接部件保持静止,让其冷却和固化。

这样可以确保焊接部分的强度和稳定性。

需要注意的是,超声波焊接的焊接效果受到多种因素的影响,如焊接参数、表面处理、部件形状等。

因此在进行PETG超声波焊接时,需要进行实验和调整,以获得最佳的焊接效果。

超声波穿刺焊接工艺

超声波穿刺焊接工艺

超声波穿刺焊接工艺
嘿,朋友们!今天咱来聊聊超声波穿刺焊接工艺,这可真是个神奇又好玩的东西呢!
你说啥是超声波穿刺焊接工艺?这就好比是两个东西要紧紧抱在一起,但是常规方法不好使,那就得请出我们的“秘密武器”啦!它利用超声波的能量,让焊接的材料就像被施了魔法一样,乖乖地融合在一起。

想象一下,就像两个好朋友,本来有点陌生,但是通过某种神奇的力量,一下子变得亲密无间啦!这超声波就是那神奇的力量呀!
它的好处可多了去了。

首先呢,焊接速度超级快,“唰”的一下就搞定了,不像有些方法慢悠悠的。

而且啊,焊接的质量那叫一个高,牢固得很呢!
咱再说说这工艺在实际中的应用吧。

你看那些小小的电子元件,它们之间的连接可离不开超声波穿刺焊接工艺哦!要是没有它,那些小玩意儿能这么稳定可靠地工作吗?还有啊,在汽车制造、医疗器械等领域,它也是大显身手呢!
你说这工艺难不难?嘿嘿,其实也没那么难啦!只要掌握了要点,就像骑自行车一样,一开始可能有点晃悠,但熟练了就轻松自如啦!关键是要熟悉设备的操作,了解不同材料的特性。

这就好比做饭,你得知道每种食材怎么处理,调料放多少合适,才能做出美味的菜肴嘛!超声波穿刺焊接工艺也是一样的道理呀!
而且哦,现在的技术发展得这么快,超声波穿刺焊接工艺也在不断进步呢!说不定哪天又有新的突破,让我们惊掉下巴呢!
总之呢,超声波穿刺焊接工艺就是个厉害又有趣的东西,给我们的生活带来了很多便利和惊喜。

咱可得好好了解了解它,说不定哪天你也能成为这方面的专家呢!哈哈!。

特殊工艺简介-超声波焊接

特殊工艺简介-超声波焊接

特殊工艺简介-超声波焊接场景再现:产线上发现供应商超声波焊接的产品出现断路,于是投诉到SQE这里,SQE以普通的焊接处理,要求供应商测量熔深,供应商晕晕乎乎的委托SQE测量熔深,结果为0,于是判定供应商产品有问题,后来又将合格品测了熔深发现也是0,于是大家都迷惑了,是什么原因呢?这就是对特殊工艺的不了解导致的错误,岂不知超声波焊接是没有熔深的~超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。

超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz 电能。

被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。

焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料熔化。

超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。

一套超声波焊接系统的主要组件包括超声波发生器/换能器/变幅杆/焊头三联组/模具和机架。

线性振动摩擦焊接利用在两个待焊工件接触面所产生的摩擦热能来使塑料熔化。

热能来自一定压力下,一个工件在另一个表面以一定的位移或振幅往复的移动。

一旦达到预期的焊接程度,振动就会停止,同时仍旧会有一定的压力施加于两个工件上,使刚刚焊接好的部分冷却、固化,从而形成紧密地结合。

轨道式振动摩擦焊接是一种利用摩擦热能焊接的方法。

在进行轨道式振动摩擦焊接时,上部的工件以固定的速度进行轨道运动——向各个方向的圆周运动。

运动可以产生热能,使两个塑料件的焊接部分达到熔点。

一旦塑料开始熔化,运动就停止,两个工件的焊接部分将凝固并牢牢的连接在一起。

小的夹持力会导致工件产生最小程度的变形,直径在10英寸以内的工件可以用应用轨道式振动摩擦进行焊接。

超声波塑料焊接原理超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊工艺简介-超声波焊接
场景再现:产线上发现供应商超声波焊接的产品出现断路,于是投诉到SQE这里,SQE以普通的焊接处理,要求供应商测量熔深,供应商晕晕乎乎的委托SQE测量熔深,结果为0,于是判定供应商产品有问题,后来又将合格品测了熔深发现也是0,于是大家都迷惑了,是什么原因呢?这就是对特殊工
艺的不了解导致的错误,岂不知超声波焊接是没有熔深的~
超声波焊接是利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合。

超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40 KHz 电能。

被转换的高
频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。

焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将塑料熔化。

超声波不仅可以被用来焊接硬热塑性塑料,还可以加工织物和薄膜。

一套超声波焊接系统的主要组件包括超声波发生器/换能器/变幅杆/焊头三联组/模具和机架。

线性振动摩擦焊接利用在两个待焊工件接触面所产生的摩擦热能来使塑料熔化。

热能来自一定压力下,一个工件在另一个表面以一定的位移或振幅往复的移动。

一旦达到预期的焊接程度,振动就会停止,同时仍旧会有一定的压力施加于两个工件上,使刚刚焊接好的部分冷却、固化,从而形成紧密地结合。

轨道式振动摩擦焊接是一种利用摩擦热能焊接的方法。

在进行轨道式振动摩擦焊接时,上部的工件以固定的速度进行轨道运动——向各个方向的圆周运动。

运动可以产生热能,使两个塑料件的焊接部分达到熔点。

一旦塑料开始熔化,运动就停止,两个工件的焊接部分将凝固并牢牢的连接在一起。

小的夹持力会导致工件产生最小程度的变形,直径在10英寸以内的工件可以用应用轨道式振动摩擦进行焊接。

超声波塑料焊接原理
超声波作用于热塑性的塑料接触面时,会产生每秒几万次的高频振动,这种达到一定振幅的高频振动,通过上焊件把超声能量传送到焊区,由于焊区即两个焊接的交界面处声阻大,因此会产生局部高温。

又由于塑料导热性差,一时还不能及时散发,聚集在焊区,致使两个塑料的接触面迅速熔化,加上一定压力后,使其融合成一体。

当超声波停止作用后,让压力持续几秒钟,使其凝固成型,这样就形成一个坚固的分子链,达到焊接的目的,焊接强度能接近于原材料强度。

超声波塑料焊接的好坏取决于换能器焊头的振幅,所加压力及焊接时间等三个因素,焊接时间和焊头压力是可以调节的,振幅由换能器和变幅杆决定。

这三个量相互作用有个适宜值,能量超过适宜值时,塑料的熔解量就大,焊接物易变形;若能量小,则不易焊牢,所加的压力也不能太大。

这个最佳压力是焊接部分的边长与边缘每1mm的最佳压力之积.
超声波金属焊接原理
超声波金属焊接原理是利用超声频率(超过16KHz )的机械振动能量,连接同种金属或异种金属的
一种特殊方法.金属在进行超声波焊接时,既不向工件输送电流,也不向工件施以高温热源,只是在静压力之下,将框框振动能量转变为工件间的摩擦功、形变能及有限的温升.接头间的冶金结合是母材不发生熔化的情况下实现的一种固态焊接.因此它有效地克服了电阻焊接时所产生的飞溅和氧化等现象.超声金属焊机能对铜、银、铝、镍等有色金属的细丝或薄片材料进行单点焊接、多点焊接和短条状焊接.可广泛应用于可控硅引线、熔断器片、电器引线、锂电池极片、极耳的焊接。

焊接种类
1、超声波焊接ultrasonic welding
热塑性塑料在超声波振动作用下,由于表面分子间摩擦生热而使两块塑料熔接在一起的焊接方法。

热塑性塑料焊接注意事项:
A.舌榫的设计保证在焊接周期中对位方便。

B.焊线设计纤细,但必须有足够的可熔化材料令焊接面熔合。

具体设计方式要视乎应用在焊接何种工
件设备中。

焊接压力、震幅等参数可调,保证焊头能接触到焊接面并施压,下工件为接受压力部份,置于底模中不动。

焊头因产生超声波高频,令上工件生热震动,因而能与下工件熔合,焊头停止震动后,压力保持,令熔解位置冷却成型。

整个焊接时间大多为少于一秒。

2、超声波金属焊接
超声波金属焊接的优点在于快速、节能、熔合强度高、导电性好、无火花、接近冷态加工;缺点是所焊接金属件不能太厚(一般小于或等于5mm)、焊点位不能太大、需要加压。

超声波金属焊接是一种机械处理过程,在焊接过程中,并无电流在被焊件中流过,也无诸如电焊模式的焊弧产生,由于超声焊接不存在热传导与电阻率等问题,因此对于有色金属材料来说,无疑是一种理想的金属焊接设备系统,对于不同厚度的片材,能有效地进行焊接。

熔焊方法
超音波的熔焊应用方法
一、熔接法:以超音波超高频率振动的焊头在适度压力下,使二块塑胶的接合面产生摩擦热而瞬间熔融接合,焊接强度可与本体媲美,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品所带来的不便,实现高效清洁的熔接。

二、铆焊法:将超音波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。

三、埋植:藉着焊头之传道及适当之压力,瞬间将金属零件(如螺母、螺杆等)挤入预留入塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。

四、成型:本方法与铆焊法类似,将凹状的焊头压着于塑胶品外圈,焊头发出超音波超高频振动后将塑胶溶融成形而包覆于金属物件使其固定,且外观光滑美观、此方法多使用在电子类、喇叭之固定成形,及化妆品类之镜片固定等。

五、点焊:A、将二片塑胶分点熔接无需预先设计焊线,达到熔接目的。

B、对比较大型工件,不
易设计焊线的工件进行分点焊接,而达到熔接效果,可同时点焊多点。

六、切割封口:运用超音波瞬间发振工作原理,对化纤织物进行切割,其优点切口光洁不开裂、不拉丝。

焊接优点
1、超声波塑料焊接优点:焊接速度快,焊接强度高、密封性好;
取代传统的焊接/粘接工艺,成本低廉,清洁无污染且不会损伤工件;
焊接过程稳定,所有焊接参数均可通过软件系统进行跟踪监控,一旦发现故障很容易进行排除和维护。

2、超声波金属焊接优点:1)、焊接材料不熔融,不脆弱金属特性。

2)、焊接后导电性好,电阻系数极低或近乎零。

3)、对焊接金属表面要求低,氧化或电镀均可焊接。

4)、焊接时间短,不需任何助焊剂、气体、焊料。

5)、焊接无火花,环保安全。

适用产品
1)、镍氢电池镍氢电池镍网与镍片互熔与镍片互熔。

2)、锂电池、聚合物电池铜箔与镍片互熔,铝箔与铝片互熔。

3)、电线互熔,偏结成一条与多条互熔。

4)、电线与各种电子元件、接点、连接器
互熔。

5)、各种家电用品、汽车用品的大型散热座、热交换鳍片、蜂巢心的互熔。

6)、电磁开关、
无熔丝开关等大电流接点,异种金属片的互熔。

7)、金属管的封尾、切断可水、气密。

应用前景
针对所有的应用市场,超音波焊接其特有的优点--快捷、高效、清洁和牢固,赢得了各行各业的认可。

一、汽车:(交通业)超音波可通过计算机程序控制来实施对大件和不规则工件的焊接如:保险杠、前后门、灯具、刹车灯等。

随着高等级道路的发展,反光片也越来越多的采用超音波焊接。

二、家电:通过适当的调整可用于:手提日光灯罩,蒸气熨门、电视机外壳、收录、音机透明面板、电源整流器、电视机壳螺丝固定座、减蚊灯壳、洗衣机脱水槽等需要密封、牢固和美观的家电产品。

三、包装:软管的封口,特殊打包带的连接。

四、玩具业:由于采用了超音波技术使产品清洁、高效、牢固,免除使用螺丝、粘合剂、胶水或其他辅助品,降低了生产成本,使企业在市场的竞争力大大增强。

五、电子:运用自动化方案设计使用户达到规模化生产,同时确保产品之品质需求。

六、其他商业用途:从通讯器材,电脑行业、打印设备到音像制品等,均可采用明和超音波设备,他给您带来了简捷、清洁、高效的生产方式,为您带来更多的机会。

相关文档
最新文档