加工中心几何精度检测方法
加工中心几何精度检测方法
Y>500~800:0.025
Y>800~1250:0.030
Y>1250~2000:0.040
平尺或平板角尺和指示器
如果可能,Z轴轴线锁紧。
指示器测头近似地置于刀具的工作位置,可在平行于工作台面放置的平尺上进行测量。
如主轴能锁紧,则指示器可装在主轴上,否则指示器应装在机床的主轴箱上。
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G14
主轴轴线和Y轴轴线运动间的垂直度:
0.015/300
平尺、专用支架和指示器
如果可能,Z轴轴线锁紧。
平尺应平行于Y轴轴线放置。
为了参考和修正方便,应记录α值是小于、等于还是大于90°
G15
工作台1)面的平面度
1)固有的固定工作台或回转工作台或在工作位置锁紧的任意一个托板。
序号
简图
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G9
Y轴轴线运动和
X轴轴线运动间的垂直度
0.020/500
平尺角尺和指示器
a)平尺或平板应平行X轴轴线放置;
b)应通过和直立在平尺或平板上的角尺检验Z轴轴线。
如如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则指示器应装在机床的主轴箱上。
G3
Z轴轴线运动的直线度:
a)在平行于X轴轴线的Z—X垂直平面内
b)在平行于Y轴轴线的Y—Z垂直平面内
a)和b)
X≤500:0.010
X>500~800:0.015
X>800~1250:0.020
X>1250~2000:0.025
卧式加工中心几何精度立体检验的研究
卜 中争 __ _ f _ 串 {
检 验简 图
慝 辫
一
( ) ;向 置 表 : a治 以 (1 b 沿 向 置 表 : 以
I ” ’
嚣 喜 量
I j
菖 X 窿 5
v
尊
2
指 示 器 装 在 主 轴 上 , 头 接 触 置 于 工 作 台 上 的精 密 圆 柱 角 尺 正 、 触 侧 指示 器 量 于工 作 台 上 , 头 接 触 主 轴 心轴 的 上 、 母 线 。 触 侧 母线 。 工作 台角 度 位 置 :0 0 检 验方 法 工 作 台 角度 位 置 :。 O () c 治 向置 表 : () d 沿 向 置 表 : 以
项 目和 方 法 进 行 。
3 卧 式 加 工 中心 几 何精 度 立体 检 验 探 讨
提高 机床本 身 质量应 是提 高直接 与 被加工 零件 轮
・
1 4
・
… …
维普资讯
T 蝴
检验项 目 1 和 28 和
a 工豹 检■ n d
床实 际的加 工精 度并 无直接 对应 关系 。如何 使检 出的
机床几 何精 度与 定位精 度 同被加 工零件 的相应 型面精 度能够 有直 接的对 应关 系 , 直 是 国 内外 人 们 追求 的 一 目标 , 也是 一个难 题 。本 文 就 以合理 检 验 卧式 加工 中 心几何 精度 为 目标 , 讨 用 常 规 检具 实 施 机 床 工作 空 探 间 内各 点位 置误差 的测 量这 种立 体检验 的理论 和技术
维普资讯
工艺与检潮 Thl 瑚 eng n c 0a 0y d
卧式 加 工 中 心 几何 精 度 立体 检 验 的研 究
立式数控加工中心的加工精度测试和校正方法
立式数控加工中心的加工精度测试和校正方法立式数控加工中心是一种高精度加工设备,可广泛应用于模具制造、零部件加工等领域。
为了保证加工质量和达到客户的要求,对立式数控加工中心的加工精度进行测试和校正是非常重要的。
本文将介绍立式数控加工中心常用的加工精度测试和校正方法。
一、加工精度测试方法1. 几何形状测试:通过测量加工件上的几何形状参数来评估加工精度。
常见的几何形状测试包括直线度、平面度、圆度等。
测试时可使用检测仪器如三坐标测量仪、分度头等进行测量,将测量结果与设计要求进行比对,以评判加工精度。
2. 位置精度测试:通过检测加工件上各个位置的实际坐标与设计坐标的差异来评估加工精度。
可以使用激光干涉仪、光栅尺等精密测量仪器进行测试。
测试时需要在不同的位置进行测量,并记录下实际坐标进行比对,从而得出数控加工中心的位置精度。
3. 重复定位精度测试:重复定位精度是指数控加工中心在多次定位后,返回到同一位置的精度。
测试时可在数控加工中心上设定多个不同的定位点,通过重复加工和测量来判断数控加工中心的重复定位精度。
二、加工精度校正方法1. 机械传动系统校正:数控加工中心的机械传动系统包括滚珠丝杠、导轨等。
当机械传动系统出现松动、磨损等情况时,会影响加工精度。
校正方法包括检查和更换滚珠丝杠、导轨等部件,调整机械传动系统的松紧度,以保证加工精度。
2. 误差补偿校正:数控加工中心的误差主要是由数控系统计算和机床本身的误差所引起的。
校正方法包括输入补偿、输出补偿和补偿表校正。
输入补偿指的是根据测量结果进行修正的输入数据,输出补偿是通过调整机床系统的输出信号来校正加工误差,补偿表校正是根据测量结果进行数值调整。
3. 温度校正:温度变化会引起机床结构的膨胀和松动,从而影响加工精度。
温度校正方法包括测量机床各部分温度的变化,并根据测量结果进行相应的调整,以保证加工精度。
总之,为了保证立式数控加工中心的加工精度,我们需要经常进行加工精度的测试和校正。
数控机床几何精度检验
6
使百分表/千分表读数在平尺的两端相等。手轮模式
下沿X轴线移动工作台,在全行程上进行检验。记录
百分表/千分表读数的最大差值,即为在XY水平面内
X轴线运动的直线度误差
整理、清洁。准备进行下一项目检验,不用的量检具应放回规定的位置,不能随 7
意在检验区域摆放
2.检验Y轴线运动的直线度 检验Y轴线运动的直线度方法见表3-12。
录指示器的最大读数差,即分别为在平行于X轴线的
ZX垂直平面内Z轴线运动的直线度及在平行于Y轴线
的YZ垂直平面内Z轴线运动的直线度
整理、清洁。准备进行下一项目检验,不用的量检具应放回规定的位置,不能 4
随意在检验区域摆放
二、线性运动的角度偏差
线性运动的角度偏差包括X轴、Y轴和Z轴线性运动的角度偏差,现 介绍X轴线性运动的角度偏差检验方法,见表3-14。
1.检验X轴线运动的直线度
检验X轴线运动的直线度方法见表3-11。
表3-11 检验X轴线运动的直线度方法
检验项目G1
X轴线运动的直线度: a)在ZX垂直平面内; b)在XY水平面内
标准
GB/T 18400.2-2010《加工中心检验条件 第2部分:立式或带主回转轴的 万能主轴头机床几何精度检验(垂直Z轴)》规定,G1项公差为:
项目1 数控机床几何精度检验
任务三 立式加工中心几何精度检验验
项目1 数控铣床和立式加工中心几何精度检验 任务三 立式加工中心几何精度检验
国家标准GB/T 18400.2-2010《加工中心检验 条件 第2部分:立式或带主回转轴的万能主 轴头机床几何精度检验(垂直Z轴)》
一、线性运动的直线度
线性运动的直线度包括X轴、Y轴和Z轴的线性运动直线度
加工中心几何精度检测方法
加工中心几何精度检测方法加工中心是一种高精度、高效率的机床,其在工业生产中得到了广泛应用。
为了保证加工中心的几何精度,需要进行准确的检测和调整。
下面将详细介绍加工中心几何精度检测方法。
主轴是加工中心的核心部件,其几何精度对加工质量具有重要影响。
主要的几何精度包括主轴轴线的平行度、同心度和垂直度等。
1.主轴轴线的平行度检测方法:可以使用光学检测仪等设备进行。
具体操作是将光束通过中心孔,通过观察光束和检测仪的相互位置关系来判断主轴轴线的平行度。
2.主轴同心度检测方法:可使用同心度仪等设备进行。
具体操作是在主轴上安装一块标定圆盘,通过记录不同位置的同心度仪示数并进行比较,判断主轴同心度。
3.主轴垂直度检测方法:可使用平台式水平仪等设备进行。
具体操作是将水平仪放置在主轴上,观察水平仪指示是否在同一水平线上,判断主轴的垂直度。
工作台是加工中心上零件加工的位置,其几何精度对加工质量同样重要。
主要的几何精度包括工作台水平度、垂直度和平行度等。
1.工作台水平度检测方法:可使用平台式水平仪等设备进行。
具体操作是将水平仪放置在工作台上,观察水平仪指示是否在同一水平线上,判断工作台的水平度。
2.工作台垂直度检测方法:可使用光学投影仪等设备进行。
具体操作是将投影仪放置在工作台上,通过观察投影仪显示的图案是否在同一水平线上,来判断工作台的垂直度。
3.工作台平行度检测方法:可使用平台式平行度仪等设备进行。
具体操作是在工作台上安装两块标定块,通过观察平行度仪示数并进行比较,判断工作台的平行度。
刀库是加工中心存放刀具的部分,其几何精度对定位准确性有影响。
主要的几何精度包括刀夹孔的同心度和面板的平行度等。
1.刀夹孔同心度检测方法:可使用同心度仪等设备进行。
具体操作是安装同心度仪,观察仪器的示数并进行比较,判断刀夹孔的同心度。
2.刀库面板平行度检测方法:可使用平台式平行度仪等设备进行。
具体操作是在面板上安装两块标定块,通过观察平行度仪示数并进行比较,判断面板的平行度。
加工中心精度检验标准
加工中心精度检验标准加工中心是现代制造业中常见的一种数控机床,它具有高速、高精度、高效率等特点,被广泛应用于航空航天、汽车制造、模具加工等领域。
加工中心的精度对于加工零件的质量和生产效率有着重要的影响,因此对加工中心的精度进行检验是非常重要的。
本文将介绍加工中心精度检验的标准及相关内容。
首先,加工中心的精度检验应包括几个方面,几何精度、运动精度、定位精度、重复定位精度等。
其中,几何精度是指加工中心在加工过程中所能保持的几何形状的精度,包括直线度、平面度、圆度等。
运动精度是指加工中心在工作过程中所能保持的运动精度,包括加工速度、加工精度等。
定位精度是指加工中心在工作过程中所能保持的定位精度,包括工件定位、刀具定位等。
重复定位精度是指加工中心在多次工作过程中所能保持的重复定位精度,包括工件重复定位、刀具重复定位等。
其次,加工中心的精度检验应遵循相关的标准和规范。
国际上常用的加工中心精度检验标准包括ISO、GB、JIS等,这些标准对于加工中心的几何精度、运动精度、定位精度、重复定位精度等方面都有详细的规定和要求。
在进行加工中心精度检验时,应按照这些标准和规范进行,以确保检验结果的准确性和可靠性。
另外,加工中心的精度检验还应结合实际的生产需求和工艺要求进行。
在进行精度检验时,应根据具体的加工要求和工艺流程,确定检验的内容和方法,以确保检验结果符合实际的生产需求。
同时,还应结合加工中心的实际使用情况和维护保养情况进行检验,及时发现并解决加工中心的精度问题,以保证加工质量和生产效率。
综上所述,加工中心的精度检验是非常重要的,它直接影响着加工质量和生产效率。
在进行精度检验时,应全面考虑加工中心的几何精度、运动精度、定位精度、重复定位精度等方面,遵循相关的标准和规范,结合实际的生产需求和工艺要求进行检验,以确保加工中心的精度达到要求,保证加工质量和生产效率的提高。
数控加工中心精度评估报告
数控加工中心精度评估报告1. 背景数控加工中心是现代制造工业中广泛应用的一种加工设备,通过数控系统操控加工机床进行自动化加工,能够大幅提高生产效率和加工精度。
然而,由于加工中心的零件磨损、维护保养等原因,其加工精度可能会发生变化。
因此,对数控加工中心的加工精度进行评估和监控是非常重要的。
2. 目的本文档的目的是对某数控加工中心的加工精度进行评估,以确定其是否满足设计要求,为后续加工工艺优化和质量控制提供依据。
3. 评估方法为了评估数控加工中心的加工精度,我们采用了以下方法:3.1 几何误差测量使用测量仪器测量加工中心的关键零件的几何误差,包括平面度、圆度、垂直度等参数。
通过与设计要求进行比较,评估几何误差是否在允许范围内。
3.2 加工试件加工和测量选择一组标准试件进行加工,并使用测量仪器测量试件的加工尺寸,包括长度、宽度、高度等。
通过与设计要求进行比较,评估加工中心的尺寸精度是否达到要求。
3.3 进给速度评估通过设定不同进给速度,进行加工试验,并测量试件的加工结果。
通过评估试件表面的光洁度和尺寸精度,确定最佳的进给速度范围。
4. 结果与分析经过以上评估方法的实施,我们得到了数控加工中心的加工精度评估结果。
根据测量数据和分析,我们得出以下结论:- 加工中心的几何误差均在设计要求范围内。
- 加工中心的加工尺寸精度达到了设计要求。
- 加工中心的进给速度在一定范围内可以保证较好的加工结果。
5. 建议基于对数控加工中心加工精度的评估结果,我们提出以下建议:- 定期对数控加工中心进行维护保养,确保其几何误差始终在设计要求范围内。
- 根据加工中心的加工尺寸精度情况,进行加工工艺的优化,以提高产品质量和生产效率。
- 对进给速度进行进一步研究和优化,以最大化加工效果。
6. 结论通过本次加工中心的精度评估,我们对其加工精度进行了全面的评估和监控。
根据评估结果,我们有信心确认该加工中心的加工质量符合设计要求,并提出了相应的建议。
加工中心几何精度检测方法
加工中心几何精度检测方法加工中心是一种高精度的机床,广泛应用于各种零件的生产加工。
保证加工中心的几何精度对于加工出符合设计要求的零件至关重要。
本文将介绍几种常见的加工中心几何精度检测方法。
1.垂直度检测垂直度是指主轴与工作台之间垂直程度的精度。
常见的检测方法有:使用测微计测量主轴与工作台的垂直距离,根据测量结果判断垂直度是否在允许范围内;使用精密平台,将其放置在工作台上,通过光电跟踪仪测量主轴的位置,从而计算出垂直度。
2.平行度检测平行度是指主轴与工作台之间平行关系的精度。
通常使用平行度尺进行测量,将其放置在工作台上,并与主轴进行平行调整,通过读取尺上的数值来判断平行度是否在允许范围内。
3.轴向度检测轴向度是指主轴在轴向上的精度,也是加工中心的重要指标之一、轴向度的检测可以使用激光法,将激光瞄准到主轴的轴心上,测量激光点在工作台上的位置,从而计算出轴向度的误差。
4.位置精度检测位置精度是指主轴在各个坐标轴方向上的精度。
常用的检测方法有:使用编码器进行测量,编码器安装在主轴和工作台上,通过读取编码器上的数值计算出位置精度的误差;使用激光干涉仪进行测量,将激光引入主轴和工作台的光路中,通过干涉现象测量位置精度。
5.回转度检测回转度是指主轴在回转方向上的精度。
常用的检测方法有:使用刀具的径部作为参考,通过旋转主轴,测量刀具径部的位置偏差来判断回转度的精度;使用角度测量仪进行测量,将其安装在主轴和工作台上,通过读取角度测量仪上的数值来判断回转度是否在允许范围内。
综上所述,加工中心的几何精度检测方法有垂直度检测、平行度检测、轴向度检测、位置精度检测和回转度检测等。
根据不同的几何精度指标,可以选择相应的检测方法进行测量,并通过测量结果判断几何精度是否符合要求,从而保证加工中心的加工质量和精度。
卧式加工中心几何精度检测项目和标准
卧式加工中心几何精度检测项目和标准卧式加工中心是一种常用的数控机床,具有高效率、高精度和多功能的特点。
在使用卧式加工中心进行工件加工过程中,必须对其几何精度进行严格的检测,以确保加工结果符合要求。
以下将介绍卧式加工中心几何精度检测项目和标准。
一、直线度检测直线度是指工作台在两个坐标轴上移动时轨迹的偏离情况。
常用的检测方法有拉尺法、激光干涉法和三坐标测量法。
检测结果一般用直线度误差来表示,误差越小,说明直线度越好。
二、平行度检测平行度是指两个轨道表面之间的平行度。
检测方法有平行度计或平行度仪。
通过检测两个轨道表面的间距,计算平行度误差。
平行度误差越小,表明两个轨道之间的平行度越好。
三、垂直度检测垂直度是指主轴和工作台之间的垂直度。
常用的检测方法有水平尺或测角仪。
通过测量主轴和工作台之间的夹角,计算垂直度误差。
误差越小,说明主轴与工作台的垂直度越好。
四、角度度量检测角度度量是指工作台绕着某个坐标轴旋转时的角度度量。
检测方法有角度尺、平台式角度测量仪和三坐标测量仪。
角度度量误差一般用角度误差来表示,误差越小,说明角度度量越好。
五、位置度检测位置度是指工件加工后的位置偏移情况。
检测方法一般采用三坐标测量仪或高精度检测仪器。
位置度误差一般用位置偏移来表示,位置偏移越小,说明位置度越好。
以上是卧式加工中心几何精度检测的常见项目和标准。
不同的工件和加工要求可能还会有其他相关检测项目。
在进行几何精度检测时,需要根据具体的要求和标准来选择合适的检测方法和仪器,确保加工结果符合要求。
只有通过严格的几何精度检测,才能保证卧式加工中心在工件加工过程中达到预期精度。
数控机床几何精度检测工具及使用方法
数控机床几何精度检验具有重要的实际 意义,不仅需要精密水平仪、平尺、角尺 、检验棒、指示表(如千分表、百分表、 杠杆表)和激光干涉仪等,还需要一些调 整工具。为完成数控机床调平和几何精度 检验,现介绍常用的工具、量具和检具。
一、常用工具
常用工具有扳手类、螺钉旋具、钳子、 锤子、铜棒、铝棒、千斤顶、油壶、油枪、 撬棍等,其中扳手包括活扳手、呆扳手、梅 花扳手、内六角扳手、扭力扳手、成套手动 套筒扳手和钩型扳手等,常用的螺钉旋具有 一字槽螺钉旋具和十字槽螺钉旋具,其实物 和功能见表1-1。
图1-4 自准直仪原理
图1-5 十字标线
自准直仪的光学系统是由光源发出的光经分划板、半透反射镜和物镜后射 到反射镜上。如反射镜倾斜,则反射回来的十字标线像偏离分划板上的零 位,如图1-5所示。
(2)使用方法 以自准直仪与多面棱镜联合使用检验数控转台分度误差为例, 说明其使用方法,见图1-6。
检验数控转台分度误差时,先清洁数控转台和多面棱镜座相关部位,安装多面棱镜座 并对其打表找正,使其与转台同轴(0.005mm内),将多面棱镜安装在镜座上,并对 其进行紧固,然后安装自准直仪支架,将自准直仪置于支架上,并且将自准直仪电源 线接好,调整水平和角度,完成对光。转动数控转台,通过目镜转动手轮,使其指示 的黑线在亮十字像中间,依次记录数据,用公式计算出数控转台分度误差。
图1-6 自准直仪检验数控转台分度误差
5.水平仪
(1)工作原理 水平仪原理是利用气泡在玻璃管内,气泡保持在最高位 置,如图1-7所示,表明该平面左端高于右端。
图1-7 精密水平仪气泡
1)水平仪刻度示值。实训室的水平仪灵敏度是0.02mm/m,此刻度示值 是以1米为基长的倾斜值为0.02mm/1000mm,如图1-8所示。
立式加工中心的几何精度检验要求(出口用技术要求)
立式加工中心的几何精度检验要求G4X轴线运动的角度偏差:a)在平行于移动方向的ZX垂直平面内(俯仰);b)在XY水平面内(偏摆);c)在垂直于移动方向的YZ垂直平面内(倾斜)。
a)、b)和c)0.060/1000(或60微弧度或12角秒)G5Y轴线运动的角度偏差:a)在平行于移动方向的YZ垂直平面内(俯仰);b)在XY水平面内(偏摆);c)在垂直于移动方向的ZX垂直平面内(倾斜)。
a)、b)和c)0.060/1000(或60微弧度或12角秒)G6Z轴线运动的角度偏差:a)在YZ垂直平面内;b)在ZX垂直平面内;c)在XY水平面内。
a)、b)和c)0.060/1000(或60微弧度或12角秒)G7Z轴线运动和X轴线运动间的垂直度在500测量长度上为0.020。
G8Z轴线运动和Y轴线运动间的垂直度在500测量长度上为0.020。
G9Y轴线运动和X轴线运动间的垂直度在500测量长度上为0.020。
G10a)主轴的周期性轴向窜动;b)主轴端面跳动。
a)0.005 b)0.010G11主轴锥孔的径向跳动:a)靠近主轴端部;b)距主轴端部300处。
a)0.010b)0.020G12主轴轴线和Z轴线运动间的平行度:a)在YZ垂直平面内;b)在ZX水平面内。
a)及b)在300测量长度上为0.015G13主轴轴线和X轴线运动间的垂直度0.020/300 G14主轴轴线和Y轴线运动间的垂直度0.020/300G15工作台面的平面度L≤5000.020500<L≤8000.025800<L≤12500.0301250<L≤≤20000.040L为工作台或托板的较短边。
局部公差:在任意300测量长度上为0.012G16工作台面和X轴线运动间的平行度X≤5000.020500<X≤8000.025800<X≤12500.0301250<X≤20000.040G17工作台面和Y轴线运动间的平行度Z≤5000.020500<Z≤000.025800<Z≤12500.0301250<Z≤20000.040G180º位置时工作台ª的:a)纵向中央或基准T形槽;或b)纵向定位孔的中心线(如果有);或c)纵向侧面定位器和X轴线运动间的平行度。
加工中心几何精度检验
加工中心几何精度检验————————————————————————————————作者: ————————————————————————————————日期:加工中心几何精度检验检验项目主要有:各直线轴轴线运动直线度、各直线轴轴线运动的角度偏差、各直线轴相会垂直度检验、主轴的轴向窜动、主轴的径向跳动、主轴轴线与Z轴轴线运动间的平行度、工作台面的平面度等。
(1)X轴轴线运动直线度检测(a)在Z-X垂直平面内 (b)在X-Y水平面内图8-1-7 X轴轴线运动直线度检测安装示意图根据国家标准可知,X轴轴线运动直线度检测允差为:X≤500mm时,允差为0.010mm;500mm<X≤800mm时,允差为0.015mm;800mm<X≤1250mm时,允差为0.020mm;1250mm<X≤2000mm时,允差为0.025mm。
局部公差要求为:在任意300mm测量长度上为0.007mm。
具体检测方法如下:①将平尺和机床工作台表面擦拭干净。
②将平尺沿X轴放置在机床工作台中间位置,找正平尺,使平尺与X轴平行。
③将磁性表座组装好并吸附在机床主轴箱上,将千分表安装在磁性表座表架上。
④移动机床坐标轴X轴,使千分表测头垂直触及平尺工作面。
安装示意图如图8-1—7所示。
⑤移动机床X轴并读取千分表的变化值,其读数最大差值则为机床X轴轴线运动直线度。
(2)Y轴轴线运动直线度检测Y轴轴线运动直线度检测实施步骤可参照X轴轴线运动直线度检测步骤,检测允差与X 轴相同,安装示意图如图8-1-8所示。
(a)在Y-Z垂直平面内(b)在X-Y水平面内图8-1-8 Y轴轴线运动直线度检测安装示意图(3)Z轴轴线运动直线度检测Z轴轴线运动直线度检测实施步骤可参照X轴轴线运动直线度检测步骤,检测允差与X轴相同,安装示意图如图8-1-9所示。
.(a)在Z-X垂直平面内(b)在Y-Z垂直平面内图8-1-9Z轴轴线运动直线度检测安装示意图注意:对所有结构型式的机床,平尺、钢丝、直线度反射器都应置于工作台上,如果主轴能锁紧,则指示器、显微镜、干涉仪可装在主轴上,否则检验工具应装在机床的主轴箱上。
卧式加工中心精度检验标准
卧式加工中心精度检验标准摘要:一、卧式加工中心精度检验的重要性二、卧式加工中心精度检验的标准1.几何精度检验2.定位精度检验3.重复定位精度检验4.切削精度检验5.刀具破损检测正文:卧式加工中心是一种高精度的机械设备,它的精度直接影响到加工零件的精度。
因此,对卧式加工中心进行精度检验是至关重要的。
一、卧式加工中心精度检验的重要性精度检验是保证卧式加工中心加工零件质量的关键。
只有通过精度检验,才能确保加工中心在加工过程中能够达到预期的精度要求,从而保证加工零件的质量。
此外,精度检验还可以帮助加工中心操作人员及时发现加工中心存在的问题,避免因设备故障导致的生产延误和质量问题。
二、卧式加工中心精度检验的标准1.几何精度检验几何精度检验是衡量卧式加工中心各部件几何形状和位置关系的精度。
主要包括床身、立柱、工作台、主轴箱等部件的直线度、平面度、圆度、圆柱度等。
2.定位精度检验定位精度检验是衡量卧式加工中心在加工过程中,对零件加工位置的准确控制能力。
主要包括X、Y、Z 三个方向的定位精度和主轴的旋转定位精度。
3.重复定位精度检验重复定位精度检验是衡量卧式加工中心在多次加工过程中,对零件加工位置的重复控制能力。
它反映了加工中心在不同加工循环中的精度稳定性。
4.切削精度检验切削精度检验是衡量卧式加工中心在加工过程中,对零件加工尺寸的准确控制能力。
主要包括尺寸精度、形状精度和表面粗糙度等。
5.刀具破损检测刀具破损检测是衡量卧式加工中心在加工过程中,对刀具状态的实时监控能力。
主要包括刀具的磨损、破损、松动等异常状态的检测和报警。
加工中心精度检测标准
加工中心精度检测标准
加工中心是一种高精度、高效率的数控机床,广泛应用于模具加工、航空航天、汽车制造等领域。
而加工中心的精度对于加工零件的质量和精度有着至关重要的影响,因此对加工中心的精度进行检测是非常必要的。
首先,加工中心的精度检测需要遵循一定的标准。
国际上通用的加工中心精度
检测标准包括ISO、GB和JB等标准,这些标准对于加工中心的精度检测提供了详细的规范和要求,包括了加工中心的几何精度、运动精度、重复定位精度等方面的检测内容,确保了检测结果的准确性和可靠性。
其次,加工中心的精度检测需要使用专业的检测设备和工具。
常用的加工中心
精度检测设备包括三坐标测量机、激光干涉仪、角度测量仪等,这些设备能够对加工中心的各项精度进行全面、精确的检测,为加工中心的精度提供了可靠的数据支持。
另外,加工中心的精度检测需要进行全面的检测项目。
在进行加工中心精度检
测时,需要对加工中心的几何精度、运动精度、重复定位精度等多个方面进行全面的检测,确保加工中心在各项指标上都能够达到标准要求,从而保证加工中心加工出的零件具有高精度、高质量。
此外,加工中心的精度检测需要进行定期的检测和维护。
随着加工中心的使用,其精度可能会受到各种因素的影响而发生变化,因此需要定期对加工中心的精度进行检测,并进行相应的维护和调整,以确保加工中心始终保持在良好的工作状态。
总之,加工中心的精度检测是确保加工中心加工精度和零件质量的重要手段,
需要遵循标准规范,使用专业设备,进行全面检测,并进行定期维护,以确保加工中心始终保持在良好的工作状态。
希望本文对大家对加工中心精度检测有所帮助。
一、数控机床的精度检验
一、数控机床的精度检验一、数控机床的精度检验一、数控机床的精度检验数控机床的高精度最终是要靠机床本身的精度来保证,数控机床精度包括几何精度和切削精度。
另一方面,数控机床各项性能和性能检验对初始使用的数控机床及维修调整后机床的技术指标恢复是很重要的。
1. 几何精度检验几何精度检验,又称静态精度检验,是综合反映机床关键零部件经组装后的综合几何形状误差。
数控机床精度的检验工具和检验方法类似于普通机床,但检测要求更高。
几何精度检测必须在地基完全稳定、地脚螺栓处于压紧状态下进行。
考虑到地基可能随时间而变化,一般要求机床使用半年后,再复校一次几何精度。
在几何精度检测时,应注意测量方法及测量工具应用不当所引起的误差。
在检测时,应按国家标准规定,即机床接通电源后,在预热状态下,机床各坐标轴往复运动几次,主轴按中等转速运转十多分钟后进行。
常用的检测工具有精密水平仪、精密方箱、直角尺、平尺、平行光管、千分表、测微仪及高精度主轴心棒等。
检测工具的精度必须比所设的几何精度高一个等级。
以卧式加工中心为例,要对下列几何精度进行检验:1)X、Y、Z坐标轴的相互垂直度;2)工作台面的平行度;3)X、Z轴移动时工作台面的平行度;4)主轴回转轴线对工作台面的平行度;5)主轴在Z轴方向移动的直线度;6)X轴移动时工作台边界与定位基准的平行度;7)主轴轴向及孔径跳动;8)回转工作台精度。
2. 定位精度的检验数控机床的定位精度是表明所测量的机床各运动部位在数控装置控制下,运动所能达到的精度。
因此,根据实测的定位精度数值,可以判断出机床自动加工过程中能达到的最好的工件加工精度。
(1)定位精度检测的主要内容机床定位精度主要检测内容如下:1)直线运动定位精度(包括X、Y、Z、U、V、W轴);2)直线运动重复定位精度;3) 直线运动轴机械原点的返回精度;4) 直线运动失动量的测定;5) 直线运动定位精度(转台A 、B 、C 轴);6) 回转运动重复定位精度;7) 回转轴原点的返回精度;8) 回转运动矢动量的测定。
加工中心几何精度的检验
SI C 7E O Y d3A 10N.2TdNWN ,17N C E& 07N L F 1 E0 0疫局)
工 程 技 术
摘 要: 本文探刻地让释了加工中心. 提出几何精度的检验是加工中心比不可轻视的重要环节, 具体叙述了形状精度是几何精度的重点. 井详细说明了几何精度的误差、检验, 并且对对新标准( 草案) 作出了商榷. 关键词 加工中心 几何精度 检俭 中图分类号: TBI 文献标识码:A 文章编号:1672- 3791(2007)09(c卜0056- 01 ,揭示部件运动直线度的两类误差 运动部件沿各坐标轴运动的直线度, 不仅 直接影响工件的形状精度, 还间接影响工件的 位置精度和尺寸精度(通过部件运动的定位精 度), 故它是加工中心几何精度检验的重点和基 轴(垂直面内) 平移的两个线值直线度误差, 又 差在允差之内( 垂直度的测量实质是平行度的 通过序号 G3 检侧了它绕X 轴倾斜的角值直线 侧量) 。按此检法 : 度误差, 而漏检了它绕 Y 轴的摆动和绕 2 轴的 a .必须规定轨迹 I 运动部件在支律导轨上 起伏两项角值直线度误差, 因此检验合格的机 的确定位置, 而新标准中无此要求, 这将存在部 床仍可能是不合格的。这里应当指出, 检项 分误差的漏检现象 导致检验结果的异议。现 G3 称作移动的平行度不符合IS 0230- 1 : 1996 中 以工作台沿X 轴运动, 主轴箱沿 Y 轴运动的垂 础。 众所周知, 部件的直线运动总是包含着六 平行度的定义, 显然是概念不清或名不符实。 直度检验为例, 分析如下: 同理,轴方向同X 轴方向相似, 2 只检了两个线 在工作台沿 X 轴运动的全程内, 轨迹 工 肯 个误差因素:运动部件上任一有代表性的点(如 值和绕Z 轴倾斜角值的直线度误差, 漏检了绕 定有包括XY 平面中沿Y 轴平移和绕Z轴起伏 刀尖点、工件中心点或工作台中心点等)在运 X轴的起伏和绕Y 轴的摆动两项角值直线度误 角误差在内的直线度 误差, 调整置于工作台上 动方向上的一个位置误差, 两个该点轨迹的线 差。而Y 轴方向则只检了两个线值直线度误 误差和三个该点轨迹的角度误差。 平尺与轨迹 工 精确" .行, f 也只能是轨迹两端或 角值直线度误差全部漏检。 此外, 根本未列 有限点等距。轨迹 I 的直线度误差, 尤其是绕 当仅考查部件沿X 轴运动的直线度时, 则 差, 2 轴起伏角 误差的直线度误差分里, 必将导致 排除位置误差EXX 这个因素, 应该检测点沿Y 项检验主轴及滑枕(有此结构时)沿轴线移动的 轴(在XY 平面内)和Z轴(在XZ平面内)方向平 直线度误差。 工作台处于行程内不同位置时 台面与理想 X b .运动的平行度和垂直度检验 轴线的夹角各异, 直接影响 X 轴与Y 轴运动的 动的线值误差 EXY 、EXZ 以及点绕X 轴倾 在JB/ G 1140- 89 标准中, Q 对有关运动平 垂直度误差读数。可见, 不考虑工作台运动的 斜, Y 轴摆动和绕 2 轴起伏泊旋转角值误差 绕 勺 直线度, 将导致由此引起的这部分误差漏检, 而 EAX, EBX 和ECX 这五项误差的全部, 缺一 行度的检验, 只检了主轴轴线对Z 轴运动的平 不可(应当指出, 由于阿贝误差的影响, 运动部 行度和X轴运动对工作台T形槽或棱边的平行 考虑 X 轴运动直线度的影响, 就必须规定检测 件上不同的点受所测得角值直线度误差的影响 度, 而严重影响加工精度的主轴及滑枕沿其轴 Y轴运动对角尺另一悬边平行时工作台的合理 程度是不同的), 这是因为角值误差和线值误差 线运动对2 轴运动的平行度以及X轴运动或Z 确定位置, 否则可能有此类更大误差漏检. 是两类性质完全不同的直线度误差。具体表 轴运动对工作台面的平行度等却未列项检验。 b .如果机床的Z轴运动是立柱沿Z 向床身 对有关运动垂直度的检验, 也只检了垂直坐标 直线移动的布局形式, X 轴与Y 轴运动的垂 则 现在: 未检X 轴运动对Y 轴 直度检验还应规定, 检测轨迹 n 与角尺另 一悬 (1)它们的形成机理完全不同, 线值误差是 轴对工作台面的垂直度, 运动和2 轴运动的垂直度。 这样一些相互运动 边平行时 立柱在Z向床身导轨上的确定位置。 运行中运动部件平移 导 致的, 角值误差则是运 的位置精度不检, 呈模糊状态, 未真实反映机床 动部件在运行中旋转造成的。 因为给予主轴箱沿Y 轴运动导向的立柱, 需完 (2 )两类误差从理论上讲不能直接相互换 的几何精度, 显然不合理, 不科学。 成沿Z 轴的直线运动, 运动中绕 Z轴旋转的直 G11所检静态的主轴轴线与工作台面的平 线度角误差分量将使立住倾料, 算, 不能用一类误差补偿另一类误差( 当 , 然 角 导致主轴箱沿 行度(卧式)或垂直度(立式) 实用意义不大, 而 一条偏离理想 Y 轴线的斜线运动 , 从而产生Y 度很小时, 用线值误差近似表示角值误差的对 G19 静态的工作台 T形槽直线度的检测, 更可 轴与X 轴运动的垂直度误差。显然, 立柱定位 应弧值是允许的) 。 因这是工作台零件的检项。 在 2 向的不同位置, 立柱的倾角也是不同的。 (3)线值误差用偏离理想直线的长度值计, 取消, 2)基于同样道理, ISO/ DIS 10791标准在检 角值误差则是偏离原位的绕轴线的转角值 , 以 2)ISO/ DIS10791 国际标准几何精度检验 部分 验主轴轴线与2 轴运动的平行度时, 未考虑Y 比值 、微角或微弧计 . (4)线值误差只能用线值检测器具〔 平尺和 a .运动直线度检验 轴运动直线度误差的影响, 未规定主轴箱在立 千分表, 钢丝和显微镜 , 准直望远镜或激光干涉 在」 DIS 10791标准中, , Y和 Z三 柱上的确定高度。 SO/ 对X 分别检验工作台面上排直定 个坐标轴运动直线度误差的检侧, 都是按分别 位孔基准和工作台侧定位基准对Z轴运动的平 仪等) 检验 , 角值误差必须用角度检具( 水平 差和三个角位移误差的方法 行度时, 仪 . 自准直仪、激光千涉仪等) 才能检出。 检测二个线位移i吴 未考虑 X 轴运动在 XZ平面内绕Y 轴 完全符合前述直线度的合理检验方法。 摆动直线度角误差分量的影响, 因此, 少检这五项误差中的任何一项 都会 进行的, 未规定工作台 这里应着重指出的是.Y 轴运动直线度中绕 Y 在 X方向的确定位置. 它们都将导致检验结果 造成直线误差的漏检。例如 , 只用千分表和 因水平仪无法放置, 不能 平尺检工作台沿 X 轴移动的直线度, 不论在水 轴倾斜分量的检法 , 的不确定性, 最终难以贯彻实施。 平面还是垂直面内, 都会出现运动实际不平直 用:而自 准直仪需把反射镜敛在主轴箱上, 又无 也 而千分表读数却始终不变(示平直)的情况, 漏 法保证自准直仪与反射镜的同步直移精度 , 参考文献 不宜 用。 I ll 张福润, 徐鸿本, 刘延林. 机械制造技术基 检了角值误差。 础【 武昌:华中科技大学出版社, MI. 2004 ; 同样, 单用水平仪或自准直仪检工作台沿 288- 320 . X 轴移动的直线度时, 也会在水平面或垂直面 3 对新标准 (草案 )几点商榷 直线度是平行度和垂直度测量的基础 , 笔 121 孙玉清, 内检不出平移直线度误差。 隆刚, 朱宇.加工中乙 理论研究, 大 者认为在检验两直线平行或垂直时应把直线度 连海事大学学报.2006 ,26(2) 0 - 8. 由此, 迷内容值得商 2 加工中心新、 旧几何精度 标准相关检验 误差考虑进去 , 新标准的 下 榷。 项的评析 1)1 0 / D18 10791标准对于Z 与Y , Y 与 5 1)JB/ G 1140 一 89加T 中心精度标准 Q X 及X 与Z 任意两运动轴线垂直度的检验, 均 a .运动直线度检验 按两轨迹互相正交的检法, 先使角尺的一边精 在7B/ G 1140- 89标准中, Q 对各坐标轴线 确平行子部件上一点沿其中一个坐标轴运动的 运动直线度的检验, 有明显的漏检现象。例如 轨迹 I . 再测该点沿另一坐标轴运动的轨迹0 工作台沿X 轴移动的直线度, 只通过序号G 2 对角尺另一悬边的平行度, 使若干点的等距误 的a和 b 两项, 检测了它沿 Z轴(水平面内)和Y 弘 利技资讯 SCIEN 乱 TECHN CE OLOGY IN FORM ATION
加工中心几何精度检测方法
Y轴轴线运动的角度偏差:
a)在平行于移动方向的Y—Z垂直平面内(俯仰)
b)在X—Y水平面内(偏摆)
c)在垂直于移动方向的Z—X垂直平面内(倾斜)
a)、b)和c)
0.060/1000
(或60μrad或12")
局部公差:
在任意500测量长度上为0.030/1000
(或30μrad或6")
a)
精密水平仪或光学角度偏差测量工具
G8
Z轴轴线运动和Y轴轴线运动的垂直度
0.020/500
平尺或平板
角尺和指示器
a)平尺或平板应平行X轴轴线放置;
b)应通过和直立在平尺或平板上的角尺检验Z轴轴线。
如如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则指示器应装在机床的主轴箱上。
为了参考和修正方便,应记录α值是小于、等于还是大于90°
序号
简图
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G9
Y轴轴线运动和
X轴轴线运动间的垂直度
0.020/500
平尺角尺和指示器
a)平尺或平板应平行X轴轴线放置;
b)应通过和直立在平尺或平板上的角尺检验Z轴轴线。
如如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则指示器应装在机床的主轴箱上。
检验方法
参照GB/T17421.1的有关条文
G7
Z轴轴线运动和X轴轴线运动的垂直度
0.020/500
平尺或平板
角尺和指示器
a)平尺或平板应平行X轴轴线放置;
b)应通过和直立在平尺或平板上的角尺检验Z轴轴线。
如如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则指示器应装在机床的主轴箱上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在任意500测量长度上为0.030/1000
(或30μrad或6")
a)
精密水平仪或光学角度偏差测量工具
b)
光学角度偏差测量工具
c)
精密水平仪
5.2.3.1.3,5.2..3.2.2,
和5.2.3.3.2
检验工具应置于运动部件上
a)(俯仰)纵向;
b)(偏摆)水平;
c)(倾斜)横向;
沿行程在等距离的五个位置上检验。
X>1250~2000:0.025
局部公差:
在任意300测量长度上为0.007
a)和b)
精密水平仪或角尺和指示器或钢丝和显微镜或光学仪器
5.2.1.1.5,5.2.3.5,5.2.3.1.2,
2.1
对所有结构型式的机床,平尺和钢丝或反射器都应置于工作台上。如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则检验工具应装在机床的主轴箱上。
对所有结构型式的机床,平尺和钢丝或反射器都应置于工作台上。如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则检验工具应装在机床的主轴箱上。
测量位置应尽量靠近工作台中央。
序号
简图
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G2
Y轴轴线运动的直线度:
a)在Y—Z垂直平面内
b)在X—Y水平面内
和5.2.3.3.2
检验工具应置于运动部件上
a)(俯仰)纵向;
b)(偏摆)水平;
c)(倾斜)横向;
沿行程在等距离的五个位置上检验。
应在每个位置的两个运动方向测取读数。最大与最小读数的差值应不超过允差。
当Y轴轴线运动引起主轴箱和工件夹持工作台同时产生角运动时,这两种角运动应同时测量并用代数式处理
序号
简图
Y>1250~2000:0.040
平尺或平板角尺和指示器
如果可能,Z轴轴线锁紧。
指示器测头近似地置于刀具的工作位置,可在平行于工作台面放置的平尺上进行测量。
如主轴能锁紧,则指示器可装在主轴上,否则指示器应装在机床的主轴箱上。
回转工作台应在互成90°的四个回转位置处测量
序号
简图
检验项目
允差
mm
检验工具
测量位置应尽量靠近工作台中央。
序号
简图
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G3
Z轴轴线运动的直线度:
a)在平行于X轴轴线的Z—X垂直平面内
b)在平行于Y轴轴线的Y—Z垂直平面内
a)和b)
X≤500:0.010
X>500~800:0.015
X>800~1250:0.020
应在每个位置的两个运动方向测取读数。最大与最小读数的差值应不超过允差。
当Y轴轴线运动引起主轴箱和工件夹持工作台同时产生角运动时,这两种角运动应同时测量并用代数式处理
序号
简图
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G5
Y轴轴线运动的角度偏差:
a)在平行于移动方向的Y—Z垂直平面内(俯仰)
4.3线性运动间的垂直度
序号
简图
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G7
Z轴轴线运动和X轴轴线运动的垂直度
0.020/500
平尺或平板
角尺和指示器
5.5.2.2.4
a)平尺或平板应平行X轴轴线放置;
b)应通过和直立在平尺或平板上的角尺检验Z轴轴线。
如如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则指示器应装在机床的主轴箱上。
注:L—工作台托板的较短边的长度。
精密水平仪或平尺、量块和指示器或光学仪器
X轴轴线和Z轴轴线置于其行程中间位置。
工作台面的平面度应检验两次,一次回转工作台锁紧,一次不锁紧(如适用的话)。两次测定的偏差均应符合允差要求
G16
工作台1)面和X轴轴线运动间的平行度
1)固有的固定工作台或回转工作台或在工作位置锁紧的任意一个托板。
回转工作台应在互成90°的四个回转位置处测量
序号
简图
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G17
工作台1)面和X轴轴线运动间的平行度:
1)固有的固定工作台或回转工作台或在工作位置锁紧的任意一个托板。
Y≤500:0.020
Y>500~800:0.025
Y>800~1250:0.030
平尺、专用支架和指示器
如果可能,Y轴轴线和Z轴轴线锁紧。
平尺应平行于X轴轴线放置。
为了参考和修正方便,应记录α值是小于、等于还是大于90°
G14
主轴轴线和Y轴轴线运动间的垂直度:
0.015/300
平尺、专用支架和指示器
如果可能,Z轴轴线锁紧。
平尺应平行于Y轴轴线放置。
为了参考和修正方便,应记录α值是小于、等于还是大于90°
a)在Z—X垂直平面内
b)在X—Y水平面内
a)和b)
X≤500:0.010
X>500~800:0.015
X>800~1250:0.020
X>1250~2000:0.025
局部公差:
在任意300测量长度上为0.007
a)
平尺和指示器或光学仪器
b)
平尺和指示器或钢丝和显微镜或光学仪器
5.2.3
5.2.3
X≤500:0.020
X>500~800:0.025
X>800~1250:0.030
X>1250~2000:0.040
平尺、量块和指示器
如果可能,Z轴轴线锁紧。
指示器测头近似地置于刀具的工作位置,可在平行于工作台面放置的平尺上进行测量。
如主轴能锁紧,则指示器可装在主轴上,否则指示器应装在机床的主轴箱上。
a)和b)
X≤500:0.010
X>500~800:0.015
X>800~1250:0.020
X>1250~2000:0.025
局部公差:
在任意300测量长度上为0.007
a)
平尺和指示器或光学仪器
b)
平尺和指示器或钢丝和显微镜或光学仪器
5.2.3
5.2.3
对所有结构型式的机床,平尺和钢丝或反射器都应置于工作台上。如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则检验工具应装在机床的主轴箱上。
序号
简图
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G15
工作台1)面的平面度
1)固有的固定工作台或回转工作台或在工作位置锁紧的任意一个托板。
L≤500:0.020
L>500~800:0.025
L>800~1250:0.030
L>1250~2000:0.040
局部公差:
在任意300测量长度上为0.012
a)和b)
精密水平仪或光学角度偏差测量工具
5.2.3.1.3,5.2..3.2.2,
和5.2.3.3.2
应沿行程在等距离的五个位置上检验,在每个位置的两个运动方向测取读数。最大与最小读数的差值应不超过允差。
对于a)和b),当Z轴轴线运动引起主轴箱和工件夹持工作台同时产生角运动时,这两种角运动应同时测量并用代数式处理
b)在X—Y水平面内(偏摆)
c)在垂直于移动方向的Z—X垂直平面内(倾斜)
a)、b)和c)
0.060/1000
(或60μrad或12")
局部公差:
在任意500测量长度上为0.030/1000
(或30μrad或6")
a)
精密水平仪或光学角度偏差测量工具
b)
光学角度偏差测量工具
c)
精密水平仪
5.2.3.1.3,5.2..3.2.2,
为了参考和修正方便,应记录α值是小于、等于还是大于90°
G8
Z轴轴线运动和Y轴轴线运动的垂直度
0.020/500
平尺或平板
角尺和指示器
5.5.2.2.4
a)平尺或平板应平行X轴轴线放置;
b)应通过和直立在平尺或平板上的角尺检验Z轴轴线。
如如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则指示器应装在机床的主轴箱上。
为了参考和修正方便,应记录α值是小于、等于还是大于90°
序号
简图
检验项目
允差
mm
检验工具
检9
Y轴轴线运动和
X轴轴线运动间的垂直度
0.020/500
平尺角尺和指示器
5.5.2.2.4
a)平尺或平板应平行X轴轴线放置;
b)应通过和直立在平尺或平板上的角尺检验Z轴轴线。
如如主轴能紧锁,则指示器或显微镜或干涉仪可装在主轴上,否则指示器应装在机床的主轴箱上。
为了参考和修正方便,应记录α值是小于、等于还是大于90°
4.4主轴
序号
简图
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G10
主轴的周期性轴向窜动
0.005
指示器
应在机床的所有工作主轴上进行检验
检验项目
允差
mm
检验工具
检验方法
参照GB/T17421.1的有关条文
G6
Z轴轴线运动的角度偏差:
a)在平行于Y轴轴线的Y—Z垂直平面内
b)在平行于X轴轴线的Z—X垂直平面内
a)和b)
0.060/1000