Information Theory Regular low-density parity-check codes from oval designs

合集下载

5g编码方案

5g编码方案

5G编码方案引言随着5G通信技术的发展,人们对高速、低延迟、高可靠性的通信需求不断增加。

编码方案作为5G通信中的重要环节,起着关键的作用。

本文将介绍几种常见的5G编码方案,包括LDPC(低密度奇偶校验码)、Polar码、Turbo码等,并对它们的特点进行分析。

1. LDPC(低密度奇偶校验码)LDPC码是一种线性纠错码,最早由Robert G. Gallager教授在1962年提出。

它的编码和解码算法相对简单,并且具有很好的性能。

在5G通信中,LDPC码被广泛应用于物理层和信道编码。

LDPC码的编码过程是利用稀疏矩阵的特性,通过调整校验节点与信息节点之间的连接关系,达到高效的纠错性能。

它的解码过程通常采用迭代译码算法,例如和min-sum算法。

通过多次迭代,LDPC码可以达到接近信道容量的性能。

2. Polar码Polar码是由Erdal Arıkan教授于2008年提出的一种编码方案,它是一种基于概率分析的编码方案。

Polar码以简单的结构和优秀的性能而闻名。

Polar码的特点是通过编码矩阵的特殊结构,将原有的信息序列转化为具有不同可靠性的编码序列和冻结序列,从而实现纠错编码。

它的编码和解码算法相对复杂,通常采用递归解码算法,例如successive cancellation(SC)算法。

Polar码在5G通信中被广泛应用于控制信道和数据信道的编码,具有较低的解码复杂度和较好的纠错性能。

3. Turbo码Turbo码是一种串联系统的纠错码,由Claude Berrou等人于1993年提出。

Turbo码通过在编码和解码过程中引入交织器和迭代译码算法,提供了优秀的纠错性能。

Turbo码的编码过程是通过串行连接两个卷积码器来实现的,其中每个卷积码器采用不同的生成多项式。

解码过程则采用迭代译码算法,例如迭代软输出(SOVA)算法。

Turbo码在5G通信中被广泛应用于数据信道的编码,具有较好的纠错性能和较低的误比特率。

信息论与编码理论中的英文单词和短语

信息论与编码理论中的英文单词和短语
编码范围
decodingsphere
第四章离散无记忆信源和扭曲率方程
Chapter 4 Discrete MemorylessSources andtheir Rate-DistortionEquations
源字母表
sourcealphabet
离散无记忆信源
discrete memoryless sources
backwardstestchannel
哈莫名扭曲度
Hamming distortion measure
错误扭曲率
error probabilitydistortion rate
数据压缩定理
data-compression theorem
目的符号
destinationsymbols
数据压缩系统
datacompressionscheme
overall capacity-cost function oinkdensity
averagecost
容量成本方程
capacity-costequation
验证源头
test-source
n维容许验证源头
n-dimensional admissible testsources
容许成本
admissiblecost
r对称
r-symmetry
系统比率
rateof system
超过信道容量率
Chapter 3 DiscreteMemorylessChannels and theirCapacity-CostEquations
输入符号系统
inputsignsystem
输出符号系统
output signsystem

自适应调制编码技术浅析

自适应调制编码技术浅析

自适应调制编码技术浅析轨道交通控制与安全国家重点实验室(北京交通大学)孔勇轨道交通控制与安全国家重点实验室(北京交通大学)李佳俊北京交通大学电子信息工程学院洪江摘要:自适应调制编码技术作为未来通信系统的关键技术之一,能够更好的利用信道容量,增加频谱利用率。

本文主要介绍了自适应调制编码技术的基本原理及其在HSDPA和LTE系统中的应用。

最后对自适应调制编码技术的若干关键性问题进行了探讨。

一引言随着移动通信用户数量的快速增长,和对高数据速率和高服务质量(QoS)需求的与日剧增,单一的低速语音业务已经不能满足人们的需要,各种移动多媒体业务正在逐步走进人们的生活,未来移动通信竞争的焦点是数据业务。

为了适应未来高速无线数据传输的需要,通信系统必须能够在有限的频谱资源上支持高速率数据和多媒体业务传输,提高系统在衰落信道中的频谱利用率。

因此,频谱利用率成为未来通信系统的关键环节之一。

对于现在的无线通信系统,假如以最优信道状态来设计系统,传输将是不稳定的,因而无法实现要求连续传输的业务,另一方面,如果以最差信道状态为基准,对于较为理想的信道则会造成浪费。

在这种情况下,要想最大限度地利用信道容量,就必须使发送速率也是随信道容量变化的量,即使编码调制方式具有自适应特性。

为了满足这种需求,人们设计了自适应调制编码技术,它能够在给定数据传输质量的前提下,根据业务量、平均信噪比、平均时延等参数来决定所采用的信道编码方式和调制方式,并进一步将两者有机地结合起来。

二基本原理介绍自适应调制编码技术可以使系统的传输效率得到极大的提高,其基本原理是接收端对数据传输的无线信道进行估计,并反馈给发射机,发送端在给定数据传输质量(如通信业务量、平均信噪比、平均时延、通信中断概率和数据速率等)要求的前提下,根据无线信道的实际情况(一般用CSI 指示,Channel Status Index)来选择合适的调制编码方式(Modulation and Coding Scheme, MCS) [1]。

信息熵InformationTheory

信息熵InformationTheory

信息熵InformationTheory信息论(Information Theory)是概率论与数理统计的⼀个分枝。

⽤于信息处理、信息熵、通信系统、数据传输、率失真理论、密码学、信噪⽐、数据压缩和相关课题。

本⽂主要罗列⼀些基于熵的概念及其意义,注意本⽂罗列的所有 log 都是以 2 为底的。

信息熵在物理界中熵是描述事物⽆序性的参数,熵越⼤则越混乱。

类似的在信息论中熵表⽰随机变量的不确定程度,给定随机变量 X ,其取值x1,x2,⋯,x m,则信息熵为:H(X)=m∑i=1p(x i)⋅log1p(x i)=−m∑i=1p(x i)⋅log p(x i)这⾥有⼀张图,形象的描述了各种各样的熵的关系:条件熵设 X ,Y 为两个随机变量,X 的取值为x1,x2,...,x m ,Y 的取值为y1,y2,...y n,则在X 已知的条件下 Y 的条件熵记做 H(Y|X) :H(Y|X)=m∑i=1p(x i)H(Y|X=x i)=−m∑i=1p(x i)n∑j=1p(y j|x i)log p(y j|x i)=−m∑i=1n∑j=1p(y j,x i)log p(y j|x i)=−∑x i,y j p(xi,y j)log p(y j|x i)联合熵设 X Y 为两个随机变量,X 的取值为x1,x2,...,x m ,Y 的取值为y1,y2,...y n,则其联合熵定义为:H(X,Y)=−m∑i=1n∑j=1p(x i,y j)log p(x i,y j)联合熵与条件熵的关系:H(Y|X)=H(X,Y)−H(X)H(X|Y)=H(X,Y)−H(Y)联合熵满⾜⼏个性质:1)H(Y|X)≥max(H(X),H(Y)) ;2)H(X,Y)≤H(X)+H(Y) ;3)H(X,Y)≥0.相对熵 KL距离相对熵,⼜称为KL距离,是Kullback-Leibler散度(Kullback-Leibler Divergence)的简称。

流体力学中英文词

流体力学中英文词
气动中心 aerodynamic center
气动力 aerodynamic force
气动噪声 aerodynamic noise
气动加热 aerodynamic heating
离解 dissociation
地面效应 ground effect
气体动力学 gas dynamics
进口 entrance, inlet
出口 exit, outlet
扰动 disturbance, perturbation
分布 distribution
传播 propagation
色散 dispersion
弥散 dispersion
附加质量 added mass ,associated mass
库埃特流 Couette flow
单相流 single phase flow
单组份流 single-component flow
均匀流 uniform flow
非均匀流 nonuniform flow
二维流 two-dimensional flow
三维流 three-dimensional flow
马赫数 Mach number
平面流 plane flow
势 potential
势流 potential flow
速度势 velocity potential
复势 complex potential
复速度 complex velocity
流函数 stream function
源 source
有旋流 rotational flow
轴对称流 axisymmetric flow

脑网络一些基本概念

脑网络一些基本概念

节点度(degree)、度分布(degree distribution). 度是对节点互相连接统计特性最重要的描述, 也反映重要的网络演化特性. 度k 定义为与节点直接相连的边数. 节点的度越大则该节点的连接就越多, 节点在网络中的地位也就越重要. 度分布P(k)是网络最基本的一个拓扑性质, 它表示在网络中等概率随机选取的节点度值正好为k 的概率, 实际分析中一般用网络中度值为k 的节点占总节点数的比例近似表示. 拥有不同度分布形式的网络在面对网络攻击时会表现出截然不同的网络行为.集群系数(clustering coefficient).或称聚类系数.集群系数衡量的是网络的集团化程度, 是度量网络的另一个重要参数, 表示某一节点i 的邻居间互为邻居的可能. 节点i 的集群系数C i 的值等于该节点邻居间实际连接的边的数目(e i)与可能的最大连接边数(k i(k i–1)/2)的比值(图1(a)), 即网络中所有节点集群系数的平均值为网络的集群系数, 即易知0≤C≤1. 由于集群系数只考虑了邻居节点间的直接连接, 后来有人提出局部效率(local efficiency) E loc 的概念. 任意节点i 的局部效率为其中, G i 指节点i 的邻居所构成的子图, l jk 表示节点j,k 之间的最短路径长度(即边数最少的一条通路). 网络的局部效率为所有节点的局部效率的平均, 即集群系数和局部效率度量了网络的局部信息传输能力, 也在一定程度上反映了网络防御随机攻击的能力.最短路径长度(shortest path length).最短路径对网络的信息传输起着重要的作用, 是描述网络内部结构非常重要的一个参数. 最短路径刻画了网络中某一节点的信息到达另一节点的最优路径,通过最短路径可以更快地传输信息, 从而节省系统资源. 两个节点i,j 之间边数最少的一条通路称为此两点之间的最短路径, 该通路所经过的边的数目即为节点i,j 之间的最短路径长度, l ij (图1(b)). 网络最短路径长度L 描述了网络中任意两个节点间的最短路径长度的平均值.通常最短路径长度要在某一个连通图中进行运算, 因为如果网络中存在不连通的节点会导致这两个节点间的最短路径长度值为无穷. 因此有人提出了全局效率(global efficiency)E glob的概念.最短路径长度和全局效率度量了网络的全局传输能力. 最短路径长度越短, 网络全局效率越高, 则网络节点间传递信息的速率就越快.中心度(centrality). 中心度是一个用来刻画网络中节点作用和地位的统计指标, 中心度最大的节点被认为是网络中的核心节点(hub). 最常用的度中心度(degree centrality)以节点度刻画其在网络中的中心程度, 而介数中心度(betweenness centrality)则从信息流的角度出发定义节点的中心程度. 对于网络G 中的任意一点i, 其介数中心度的计算公式如下:其中σjk 是从节点j 到节点k 的所有最短路径的数量,σjk(i)是这些最短路径中通过节点i 的数量.“小世界”网络. 研究表明, 规则网络具有较高的集群系数和较长的最短路径长度, 与此相反,随机网络拥有较低的集群系数和较短的最短路径长度. 兼具高集群系数和最短路径长度的网络称为“小世界”网络. 将随机网络作为基准,如果所研究网络相对于随机网络具有较大的集群系数和近似的最短路径长度, 即γ = C real/C random>> 1, λ= L real/L random ~ 1 (其中脚标random 表示随机网络,real 表示真实网络), 则该网络属于“小世界”网络范畴.σ =γ /λ来衡量“小世界”特性, 当σ>1 时网络具有“小世界”属性, 且σ越大网络的“小世界”属性越强.概念:小世界网络( small-world network)无标度网络( scale-free network)随机网络( random network)规则网络( regular network)无向网络( undirected network)加权网络( weighted network)图论( Graph theory)邻接矩阵( adjacency matrix)结构性脑网络( structural brain networks 或anatomical brain networks) 功能性脑网络( functional brain networks)因效性脑网络( effective brain networks)感兴趣脑区( region of interest,ROI)血氧水平依赖( BOLD,blood oxygenation level depended)体素( voxel)自发低频震荡( spontaneous low-frequency fluctuations,LFF)默认功能网络( default mode network,DMN)大范围皮层网络( Large-scale cortical network)效应连接(effective connectivity)网络分析工具箱(Graph Analysis Toolbox,GAT)自动解剖模板(automatic anatomical template,AAL)技术:脑电图(electroencephalogram, EEG)脑磁图(magnetoencephalogram, MEG)功能磁共振成像(Functional magnetic resonance imaging, fMRI)弥散张量成像(Diffusion Tensor Imaging, DTI)弥散谱成像( diffusion spectrum imaging ,DSI)细胞结构量化映射( quantitative cytoarchitecture mapping)正电子发射断层扫描(PET, positron emisson tomography)精神疾病:老年痴呆症( Alzheimer’ s disease,AD)癫痫( epilepsy)精神分裂症( Schizophrenia)抑郁症( major depression)单侧注意缺失( Unilateral Neglect)轻度认知障碍(mild cognitive impairment, MCI)正常对照组(normal control, NC)指标:边( link,edge)节点(vertex 或node)节点度(degree)区域核心节点(provincial hub)度分布(degree distribution)节点强度( node strength)最短路径长度(shortest path length)特征路径长度( characteristic path length)聚类系数( clustering coefficient)中心度(centrality)度中心度(degree centrality)介数中心度( betweenness centrality)连接中枢点( connector hub)局部效率(local efficiency)全局效率( global efficiency)相位同步( phase synchronization)连接密度(connection density/cost)方法:互相关分析( cross-correlation analysis)因果关系分析( Causality analysis)直接传递函数分析( Directed Transfer Function,DTF)部分定向相干分析( Partial Directed Coherence,PDC)多变量自回归建模( multivariate autoregressive model,MV AR) 独立成分分析( independent component analysis,ICA)同步似然性(synchronization likelihood, SL)结构方程建模(structural equation modeling, SEM)动态因果建模(dynamic causal modeling, DCM)心理生理交互作用模型(Psychophysiological interaction model) 非度量多维定标(non-metric multidimensional scaling)体素形态学(voxel-based morphometry, VBM)统计参数映射(statistical parametric mapping,SPM)皮尔逊相关系数(Pearson correlation)偏相关系数(Partial correlation)脑区:楔前叶( precuneus)后扣带回( posterior cingulated cortex,PCC)腹侧前扣带回( ventral anterior cingulated cortex,vACC)前额中分( medial prefrontal cortex,MPFC)额叶眼动区( the frontal eye field,FEF)副视区( the supplementary eye field,SEF)顶上小叶( the superior parietal lobule,SPL)顶内沟( the intraparietal sulcus,IPS)。

低信噪比下LDPC码的性能研究的开题报告

低信噪比下LDPC码的性能研究的开题报告

低信噪比下LDPC码的性能研究的开题报告1. 研究背景在通信系统中,由于信道的噪声和干扰等影响,接收端接收到的信号往往会存在一定的误码率。

为了提高通信系统的可靠性和性能,编码技术被广泛应用于通信系统中。

其中,低密度奇偶校验码(Low-Density Parity Check, LDPC)码是一种性能优异的编码技术,被广泛应用于数字通信系统中。

然而,在低信噪比的情况下,LDPC码的译码性能可能会受到较大影响。

因此,本课题拟对低信噪比下LDPC码的性能进行深入的研究,以期提高LDPC 码在低信噪比下的译码性能。

2. 研究目的和意义本研究旨在研究低信噪比下LDPC码的性能,探究其译码性能与信噪比之间的关系,以期提高LDPC码在低信噪比下的译码性能。

具体目的和意义如下:(1)研究LDPC码在低信噪比下的译码性能,探究信噪比对LDPC码译码性能的影响。

(2)分析LDPC码在低信噪比下的优化方法,以提高其译码性能。

(3)验证研究结果,并对LDPC码在低信噪比下的应用进行探讨。

本研究对于提高LDPC码在低信噪比环境下的译码性能具有一定的理论意义和实际应用价值。

同时,研究结果对于提高数字通信系统的可靠性和性能也具有一定的指导意义。

3. 研究内容和方法本研究主要包括以下内容和方法:(1)LDPC码的理论介绍:介绍LDPC码的基本原理、编码和译码过程、码长、码率等基本概念。

(2)低信噪比下LDPC码的性能分析:通过理论分析和仿真实验,探究低信噪比下LDPC码译码性能的变化规律及其影响因素。

(3)LDPC码译码性能优化:对LDPC码在低信噪比下的性能进行优化研究,探究译码性能优化方法和策略。

(4)研究结果验证:通过实验验证研究结果的正确性和可行性。

本研究将采用仿真实验和理论分析相结合的方法,对低信噪比下LDPC码的性能进行深入研究与分析,通过对数字通信系统的实际应用场景进行模拟验证,从而得出相应的研究结论。

4. 参考文献[1] Richardson T J, Urbanke R L. The capacity of low-density parity-check codes under message-passing decoding[J]. Ieee Transactions on Information Theory, 2001, 47(2):599-618.[2] Gallager R G. Low-density parity-check codes[J]. Ieee Transactions on Information Theory, 1963, 8(1):21-28.[3] Song C, Hou X. A comparative study on the performance of LDPC and Turbo codes in wireless communication systems[J]. Frequency Conversion & Signal Processing, 2018, 39(2):76-83.[4] Zhou H, He X. Analysis of LDPC code performance under different code rates and code lengths[J]. Physics Procedia, 2012, 33:1168-1173.[5] Zhang L, Sun L, Li H, et al. Low-SNR performance analysis of LDPC code based on EXIT chart and degree distribution optimization[J]. IEEE Access, 2019,7:36618-36633.。

无线网络中的信道编码综述

无线网络中的信道编码综述

运营探讨无线网络中的信道编码综述周宇翔1,周华2南京210044;2.南京信息工程大学在无线网络中,由于没有有线通信信道,信息源和接收端之间的信息共享非常复杂,因此无线信道经常受到许多干扰的影响而导致信宿接收到错误的码字。

为了检测和纠正传输数据中的错误,信道编码技术应运而生。

信道编码能够在传输的数据中找出错误,并且往往有着一定的纠错能力,能够恢复出原始数据。

在噪声较大的无线网络中通常需要优异的编码码字,以保证较好的传输性能。

以此为基础的数据传输通常有两个过程,一个是利用映射或编码的方式将输入数据转换为信道输入序列,另一个是利用反向映射或解码以检索原始传输数据。

信道编码的类型有很多,常用的有线性分组码、卷积码、Turbo码以及LDPC码等。

通过对无线网络中的信道编码进行论述,信道编码;无线网络;线性分组码;卷积码;Turbo码;LDPCOverview of Channel Coding in Wireless NetworksZHOU Yuxiang1, ZHOU Hua. Changwang School of Honors, Nanjing University of Information Science & Technology, Nanjing. School of Electronics and Information Engineering, Nanjing University of Information Science and Technology,图1 码字传输原理在分组码中,信息序列被划分成固定长度的消息分组,每一个消息分组含有k 个信息比特,一共有个不同的消息。

在(n ,k )分组码中,这k 个消息比特按照一定的编码规则被编码成长为n (n >k )的二进制序列c =(c 1,c 1,…,c n-1),由编码器产生的n -k 个添加到每个输入消息中的比特称为冗余比特。

CCSDS标准下低码率LDPC码的编码器设计

CCSDS标准下低码率LDPC码的编码器设计

CCSDS标准下低码率LDPC码的编码器设计龚杨阳;安军社;朱岩【摘要】An encoder architecture is proposed to implement 1/2,2/3,4/5 rates LDPC codes based on the Consultative Committee for Space Data Systems standards. According to block cycle characteristics of the generation matrix, we used a feedback shift register design this encoder for saving hardware cost. And we add zeros at the end of information to ensure the stability of the LDPC code encoder.%基于空间咨询委员会(CCSDS)推荐的深空通信标准,针对码长为4096,码率为1/2、2/3、4/5的LDPC码,提出了一种实现在FPGA的编码器设计方法.根据生成矩阵的块循环特性,使用移位累加寄存器来设计编码器,3个码率使用同一套触发器,从而极大的节省了硬件消耗资源.【期刊名称】《电子设计工程》【年(卷),期】2017(025)005【总页数】4页(P57-60)【关键词】LDPC码;原模图;CCSDS标准;深空通信;移位累加寄存器【作者】龚杨阳;安军社;朱岩【作者单位】中国科学院国家空间科学中心北京 100190;中国科学院大学北京100190;中国科学院国家空间科学中心北京 100190;中国科学院国家空间科学中心北京 100190【正文语种】中文【中图分类】TN911.22低密度奇偶校验(LDPC)码是Gallager[1]博士在1961年提出的一种线性分组码,采用迭代译码算法译码。

英语语法术语

英语语法术语

英语语法术语语法grammar句法syntax词法morphology 结构structure层次rank句子sentence从句clause词组phrase词类part of speech 单词word实词notional word 虚词structural word 单纯词simple word 派生词derivative复合词compound 词性part of speech名词noun专有名词proper noun普通名词common noun可数名词countable noun不可数名词uncountable noun 抽象名词abstract noun具体名词concret noun物质名词material noun集体名词collective noun个体名词individual noun介词preposition连词conjunction动词verb主动词main verb及物动词transitive verb不及物动词intransitive verb 系动词link verb助动词auxiliary verb情态动词modal verb规则动词regular verb不规则动词irregular verb 短语动词phrasal verb限定动词finite verb非限定动词infinite verb使役动词causative verb感官动词verb of senses动态动词event verb静态动词state verb感叹词exclamation形容词adjective副词adverb 方式副词adverb of manner程度副词adverb of degree时间副词adverb of time地点副词adverb of place修饰性副词adjunct连接性副词conjunct疑问副词interrogative adverb关系副词relative adverb代词pronoun人称代词personal pronoun物主代词possessive pronoun反身代词reflexive pronoun相互代词reciprocal pronoun指示代词demonstrative pronoun 疑问代词interrogative pronoun 关系代词relative pronoun不定代词indefinite pronoun 物主代词possessive pronoun 名词性物主代词nominal possessive pronoun形容词性物主代词adjectival possessive pronoun冠词article定冠词definite article不定冠词indefinite article数词numeral基数词cardinal numeral序数词ordinal numeral分数词fractional numeral形式form单数形式singular form复数形式plural form 限定动词finite verb form非限定动词non-finite verb form 原形base form从句clause从属句subordinate clause并列句coordinate clause名词从句nominal clause定语从句attributive clause状语从句adverbial clause宾语从句object clause主语从句subject clause同位语从句appositive clause时间状语从句adverbial clause of time地点状语从句adverbial clause of place方式状语从句adverbial clause of manner让步状语从句adverbial clause of concession原因状语从句adverbial clause of cause结果状语从句adverbial clause of result目的状语从句adverbial clause of purpose条件状语从句adverbial clause of condition真实条件状语从句adverbial clause of real condition非真实条件状语从句adverbial clause of unreal condition含蓄条件句adverbial clause of implied condition 错综条件句adverbial clause of mixed condition句子sentence简单句simple sentence并列句compound sentence复合句complex sentence并列复合句compound complex sentence陈述句declarative sentence疑问句interrogative sentence一般疑问句general question特殊疑问句special question选择疑问句alternative question 附加疑问句tag question反义疑问句disjunctive question修辞疑问句rhetorical question 感叹疑问句exclamatory question存在句existential sentence肯定句positive sentence基本句型basic sentence pattern 否定句negative sentence祈使句imperative sentence省略句elliptical sentence感叹句exclamatory sentence句子成分members of sentences 主语subject谓语predicate宾语object双宾语dual object 直接宾语direct object间接宾语indirect object复合宾语complex object同源宾语cognate object补语complement主补subject complement宾补object complement表语predicative定语attribute同位语appositive状语adverbial句法关系syntactic relationship 并列coordinate从属subordination修饰modification前置修饰pre-modification后置修饰post-modification 限制restriction双重限制double-restriction 非限制non-restriction数number单数形式singular form复数形式plural form规则形式regular form不规则形式irregular form 格case普通格common case所有格possessive case主格nominative case宾格objective case性gender阳性masculine 阴性feminine通性common中性neuter人称person第一人称first person第二人称second person第三人称third person时态tense过去将来时past future tense过去将来进行时past future continuous tense过去将来完成时past future perfect tense一般现在时present simple tense 一般过去时past simple tense一般将来时future simple tense现在完成时past perfect tense过去完成时present perfect tense 将来完成时future perfect tense 现在进行时present continuous tense过去进行时past continuous tense将来进行时future continuous tense过去将来进行时past future continuous tense现在完成进行时present perfect continuous tense过去完成进行时past perfect continuous tense语态voice主动语态active voice 被动语态passive voice语气mood陈述语气indicative mood 祈使语气imperative mood 虚拟语气subjunctive mood 否定negation否定范围scope of negation 全部否定full negation局部否定partial negation 转移否定shift of negation 语序order自然语序natural order倒装语序inversion全部倒装full inversion部分倒装partial inversion 直接引语direct speech间接引语indirect speech自由直接引语free direct speech 自由间接引语free indirect speech一致agreement主谓一致subject-predicate agreement语法一致grammatical agreement概念一致notional agreement就近原则principle of proximity 强调emphasis重复repetition语音pronunciation语调tone升调rising tone降调falling tone 降升调falling-rising tone文体style正式文体formal非正式文体informal口语spoken/oral English套语formulistic expression英国英语British English美国英语American English 用法usageTerms of English Language Teaching Methodology感情色彩emotional coloring 褒义commendatory贬义derogatory幽默humorous讽刺sarcastic挖苦ironic英语教学法术语Aachievement test 成绩测试acquisition 习得,语言习得acquisition 语言习得顺序active mastery 积极掌握active vocabulary 积极词汇,主动词汇affective filtering 情感筛选aim,objective 目的,目标analysis of errors 错误分析analytic approach 分析教学法,分析法analytical reading 分析性阅读application to practice 运用于实践applied linguistics 应用语言学approach 教学路子aptitude test 能力倾向测验Army method 陆军法associative learning 联想性学习auditory discrimination 辨音能力auditory feedback 听觉反馈auditory memory 听觉记忆auditory perception 听觉audio-lingual method 听说法audio-visual method 视听法aural-oral approach 听说教学法,听说法aural-oral method 听说法Bbasic knowledge 基本知识basic principle 基本原则basic theory 基本理论basic training 基本训练basic vocabulary 基本词汇behaviourism 行为主义bilingual 双语的bilingual education 双语教育blank filling 填空Cchain drill 链式操练,连锁操练choral repetition 齐声照读,齐声仿读class management 课常管理classroom interaction 课常应对cloze 完形填空coach 辅导cognitive approach 认知法common core 语言的共同核心,语言共核communicative drill 交际性操练communicative exercise 交际练习communicative langunge teaching 交际派语言教学法,交际教学法community language learning 集体语言学习法comparative method 比较法communicative approach 交际法comprehensible input 不难理解的输入comprehensive method 综合法computer-managed instruction 计算机管理教学concord and coordination 默契与配合console 控制台consonant cluster 辅音连缀context 上下文controlled composition 控制性作文course density 课堂密度course design 课程设计cramming method 灌输式cue word 提示词curriculum 课程,教学大纲curriculum development 课程编制,课程设计cultrual objective,aim 教养目的cclical approach 循环教学法,循环法Ddeductive learning 演绎性学习deductive method 演绎法delayed auditory feedback 延缓听觉反馈demonstration 演示demonstration lesson 示范教学describe a picture in writing 看图说话describe a picture orally 描写语言学diagram 图解diagnostic test 诊断性测验dicto-comp 听写作文direct application 直接应用direct comprehension 直接理解direct learning 直接学习direct method 直接教学法Eeducational objective, aim 教育目的EFL 英语作为外语EGP 通用英语ELT 英语教学English as a Foreign Language 英语作为外语English as an InternationalLanguage 英语作为国际语言English environment 英语环境English for Academic Purposes 学术英语English for general prupose 普通英语English for General Purposes 通用英语English for specific purposes 专用英语ESOL English for Speakers of Other Languages 供非英语民族使用的英语English medium school 英语授课学校English teaching;teaching English 英语教学WSD(English as a Second Dialect)英语作为第二方言WSL(English as a Second Language)英语作为第二语言ESL Programme(English as a Second Language Programme)英语(第二语言)教程ESP(English for Special Purposes)专用英语EST(English for Science andTechnology)科技英语evaluation 评语,评价examination 考试examination question 考题experimental method 实验法extensive reading 泛读external speech 外语言语extra-curiculum activity 课外活动extra-curriculum club,group 课外小组Ffacial expression 面部表情feedbace 反馈film projector 电影放映机filmstrip 电影胶片final stage 高级阶段first language 第一语言,母语formative evaluation 自由作文free practice 自由练习frequency of word 词的频率al approach 功能法al syllabus 功能派教学大纲word 功能词Ggeneral linguistics 普通语言学gestalt style 格式塔式(学习),整体式(学习)gesture 手势getting students ready for class 组织教学global learning 整体式学习,囫囵吞枣式学习global question 综合性问题gradation 级进法,分级递升法graded direct method 循序直接法grading 级进法,分级递升法;评分grammar lesson 语法课grammar method 语法法grammar translation method 语法翻译法grammatical analysis 语法分析group reading 集体朗读group training 集体练习guided composition 引导性作文Hheuristic method of teaching 启发式教学法heurstics 启发法;探索法humanistic approach 人本主义教学法Iidealism 唯心主义imitatiom 模仿immersion programme 沉浸式教学imparting knowledge 传授知识incomplete plosive 不完全爆破independent composition 独立作文individualized instruction 个别教学individual training 个别练习inductive learning 归纳性学习inductive method 归纳法inflection,inflexion 词形变化information,processing 信息处理initial beginning stage 初级阶段inner speech 内语言语in-service training 在职培训instructional objective 语言教学目标integrative teaching 综合教学integrated approach 综合教学法,综合法intelligent memory 理解性记忆language training 强化教学intensive training 精读intermediate stage 中级阶段interpretation 头口翻译International Phonetic Alphabet 国际音标Jjuncture 连读,音渡junior high school 初级中学junior school 初级学校junior sceondary school 初级中等学校junior-senior high school 初高中junior technical college(orschool) 初级职业学院(或学校)junior year 大学三年级Kkey words 基本词,关键字kinesics 身势语,身势学kinesthetic memory 动觉记忆knowledge 知识knowledge structure 知识结构Llanguage acquisition 语言习得language acquisition device 语言习得机制language arts 语言技能language competence,or knowledge 语言知识language learning capability 语言学习能力language laboratory;lab 语言实验室language leaning capacity 语言学习能力language pedagogy 语言教育language performance 语言行为language program design 语言课程设计language test 语言测试learning by deduction 演绎性学习learning by induction 归纳性学习learning process 学习过程learning style 学习方式lesson conducting 教课lesson plan 课时计划,教案lesson preparation 备课lesson type 课型linguistics 语言学linguistic competence 语言能力linguistic method 口语领先教学法living language 活的语言long-term memory 长期记忆look-and-say method 看图说话法Mmeaningful drill 有意义的操练neabubgful exercise 有意义的练习meaningful learning 理解性学习means of teaching 教学手段mechanical drill 机械操练mechanical exercise 机械练习mechanical memory 机械记忆mechanical translation 机器翻译medium of instruction 教学媒介语,教学语言memory 记忆,记忆力memory span 记忆幅度memorizing 用记记住method 方法methodology of teaching 教学法methodology of teaching English 英语教学法microteaching 微型教学mim-mem method 模仿—记忆法minimal pair 最小对立体(一种辨音练习)model 模型modeling 示范教学modern equipment 现代化设备modern language 现代语言monitor hypothesis 语言监控说mother tongue 母语motivation 引起动机Nnative language 本族语natural appoach 自然教学法,自然法natural method 自然法needs analysis 需要分析new lesson 新课nine-pile grading 九堆法notional approach 意念法notional-al syllabus 意念-功能派教学大纲notional syllabus 意念大纲、意念派教学大纲Oobservation lesson 观摩教学objective 教学目标optimum age hypothesis 学习最佳年龄说operating principle 操作原则oral approach 口语教学法,口语法oral exercise 口语练习oral method 口授法oral reading 朗读order of acquisition 语言习得顺序organization of teaching materials 教材组织organs of speech 发音器官outside reading 课外阅读overlearing 过量学习Ppaired-associate learning 配对联想学习法pair work 双人作业,双人练习passive vocabulary 消极词汇pattern drill 句型操练pattern practice 句型练习pdeagogical grammar 教学语法pedagogy 教育法peer teaching 同学互教penmanship handwriting 书法perception 知觉performance objective 语言实践目标personality 个性philosophy 哲学phoneme 音素phonetics 语音法phonetic method 按字母音值拼读法phonology 音位学picture 图画phasement test 分班测验plateau of learning 学习高原practical objective 实用目的practice effect 练习效应practice of teaching 教学实践presentation of new materials 提出新材料pre-teaching 预教primary of speech 口语领先principle of communication 交际性原则principle of teaching 教学原则problem solving 习题解答production stage 活用阶段,产出阶段productive exercise 活用练习productive mastery 活用掌握productive vocabulary 活用词汇proficiency 熟练program desing 课程设计psycho-linguistics 心理语言学psychological method 心理法Qqualified teacher 合格教师question band 试题库questionnaire 调查问卷questions 提问Rrapid reading 快速阅读,快读rate of reading 阅读速度readability 易读性read by turns 轮读reading 阅读reading lesson 阅读课reading method 阅读法reading speed 阅读速度reading vocabulary 阅读词汇,阅读词汇量receptive language knowledge 接受性语言知识receptive vocabulary 领会词汇reformed method 改良法regression 回看,重读reinforcement 巩固reinforcement lesson 巩固课repetition drill 复述操练repetition-stage 仿照阶段response 反应retelling 复述retention 记忆teview;tevision 复习review(revise)and check up 复习检查review(revision)lesson 复习课rewriting 改写rhythm 节奏role-play 扮演角色rote learning 强记学习法,死记硬背Sscanning 查阅,扫瞄school practice 教学实习scientific way of thinking 科学的思想方法second language 第二语言segment 音段,切分成分semantics 语义学seminar 课堂讨论sentence completion 完成句子short-term memory 短期记忆sight vocabulary 一见即懂的词汇silent reading 默读silent way 沉默法,静授法simplification 简写simplified reader 简写读本simulation 模拟,模拟性课堂活动simultaneous interpretation 同声翻译situational method 情景法situational language teaching 情景派语言教学法,情景教学法situational method 情景教学法situational syllabus 情景派教学大纲situation reinforcement 情景强化法skimming 略读,济览slide 幻灯片slide projector 幻灯片socialized speech 社会化言语socio-linguistics 社会语言学soft ware 软件speech disorder 言语缺陷speech pathology 言语病理学speech perception 言语知觉speech reading 唇读法speed reading 快速阅读,快读speelling 正字法spiral approach 螺旋式教学法,螺旋法spoken lauguang 口语stage of teaching 教学阶段stick drawing;mathch drawing 简笔画stimulus and response 刺激与反应stress accent 重音,重读structuralism 结构主义(语言学)structural method 结构法student-centered 学生中心student-centered learning 学生为主学习法student teacher 实习教师student teaching 教育实习submersion programme 沉浸式教程substitution 替换substitution table 替换表subvocal reading 默读suggestopaedia 暗示教学法syllabus 教学大纲syllabus design 教学大纲设计syllabus for middle school English 中学英语教学大纲synthetic approach 综合性教学法,综合法synthetical reading 综合性阅读Ttarget language 目的语,译文语言teacher’s book 教师用书teacher’s manual 教师手册teaching experience 教学经验teaching objective,aim 教学目的teaching procedure 教学过程teaching tools;property 教具teaching words in isolation 孤立教单词theory of teaching 教学理论TEFL 英语(外语)教学TESL 英语(第二语言)教学TESOL 对非英语民族教英语time allotment 时间分配total physical response method 整体动作反应法transformation drill 转换操练translation method 翻译法transformational generativegrammar 转化生成语法Uunconscious 潜意识underclassman 低年级学生undergraduate 大学本科生undergraduate course 大学本科课程undergraduate school 大学本科学院undergraduate special 大学特殊课程unified studied 统一课程university high school 大学附属中学university of the air 广播电视大学updating courses/training 现代化课程/训练upgrading courses/training 进修课程/训练upperclassman 高年级学生use and usage 使用和用法utterance 语段Vverbal association 词语联想verbal learning 语言学习,单词学习video 电视,影象videotape 录象磁带visual perception 视觉visual aid 直观手段visit a class 听课visual memory 视觉记忆vocabulary control 词汇控制Wword association 词际联想word list 词表word study 词的研究word frequency 词汇重复率written language 书面语感情色彩emotional coloring褒义commendatory贬义derogatory幽默humorous讽刺sarcastic挖苦ironic英语教学术语Approach教学路子Communicative approach交际法Communicative language teaching 交际语言教学Method教学方法Syllabus design教学大纲设计Frist language母语Second language第二语言Foreign language外语Target language目的语言Techniques技巧Brainstorm指就某一问题随便发表观点或建议的过程Group-work小组活动Pair-work两人一组的活动View of work语言理论或对语言的认识Structural view结构主义语言理论Functional view功能主义语言理论Interactional view交互语言理论Behaviourist theory行为主义学习理论Cognitive theory认知学习理论Process-oriented theory强调过程的语言学习理论Condition-oriented theory强调条件的语言学习理论Audiolingual theory外语教学听说法TPR:total physical respone 全身反应法Silent way沉默法Natural approach自然法Reflective teaching反思教学Communicative approach交际法或交际路子Communicative competence交际能力Linguistic competence语言能力Teaching procedures教学步骤Teaching aids教学辅助材料和设备Variety多样性Flexibility灵活性Learnability可学性百度文库 - 让每个人平等地提升自我21Linkage 连接Micro planning 微观备课 Macro planning 宏观备课 RP:received pronunciation 英国伦敦附近的一种方言。

基于MATLAB仿真分析频谱信号的误差

基于MATLAB仿真分析频谱信号的误差

时域信号经过FFT 变换后可以得到信号在频域的频率分布和相应的幅值信息,在频域中只需要关注特定频率的信号,可以有效排除其他频率信号的干扰,从而利用频谱信息恢复出该频率的时域信号。

因此,频谱的信息准确与否会影响到恢复的时域信号。

本文利用MATLAB 软件,从时域正弦信号的初相位和采样频率出发,对FFT 变换后的频域信息误差进行了仿真分析。

1时域与频域信息之间的相互转换对于时域信号,如正弦信号y=Asin (2πft+ψ)+B ,其直流分量为B ,交流分量的幅值为A 、频率为f ,初始相位为ψ。

当模拟信号转化为数字信号时需要进行采样,采样频率f s 需满足采样定理,即f s >2f 。

对于采集的N 点序列,离散傅里叶变换(DFT )公式如下[1]:X (k )=N-1n =0∑x n e-2πNkn (k=0,1,…,N-1)(1)可由欧拉公式变形为:X (k )=N-1n =0∑x (n )(cos (2πkn N )-isin (2πkn N ))(2)X (k )=N-1n =0∑x (n )cos (2πkn N )-i N-1n =0∑x (n )sin (2πkn N )(k=0,1,…,N-1)(3)通过以上公式计算可以得到N 点序列的DFT 结果,从而得到信号在频域的信息。

本文在MATLAB 软件中使用的是FFT 算法。

FFT 是一种实现DFT 的快速算法,其采用分而治之的思想,利用复数形式的离散傅里叶变换来计算实数形式的离散傅里叶变换,使DFT 的计算量降低了一个或几个数量级,使得DFT 得到广泛的应用[2]。

从频域到时域的转换可以通过对频谱信息进行相应的计算得到。

以下以正弦信号y=2sin (2π×2000t+14π)+3为例,图1a为该信号的时域波形,图1b 为该信号的频谱。

该信号在时域的信息有:直流分量B=3,交流分量幅值A=2,频率f=2000Hz ,初相位ψ=14π。

信息论与编码理论中的英文单词和短语

信息论与编码理论中的英文单词和短语

信息论与编码理论Theories of Information
and Coding
第一章介绍
Chapter 1 Introduction
第二章信息理论Chapter 2 Information Theory
信息论与编码理论中的英文单词和短语
第三章 离散无记忆信
道和容量成本方程
Chapter 3 Discrete Memory less Channels and their Capacity -Cost Equations
第四章 离散无记忆信
源和扭曲率方程
Chapter 4 Discrete Memoryless Sources and their Rate -Distortion Equations
第五章 高斯信道和信

Chapter 5 Gaussian Channel and Source
第六章 信源-信道编码
理论
Chapter 6 Source -Channel Coding Theory
第七章 第一部分访问
先进标题
Chapter 7 Survey of Advanced Topics for Part One
第八章线性码Chapter 8 Linear codes
第九章循环码Chapter 9 Cyclic Codes
第十章 香农码和相关
的码
Chapter 10 Shannon Codes and Related Codes
第十一章 卷积码
Chapter 11 Convolution Codes
第十二章变量长度源编

Chapter 12 Variable-length Source Coding。

构造CDR标准中LDPC码的偏移矩阵法

构造CDR标准中LDPC码的偏移矩阵法

构造CDR标准中LDPC码的偏移矩阵法陈冬英【摘要】为构造调频频段数字音频广播(CDR)标准中LDPC码,提出了一种偏移矩阵构造法.该方法根据CDR标准中LDPC码的码长和码率有限,及其校验矩阵有准双对角线的特性,在高斯消元的基础上生成偏移因子构造LDPC码.该方法不仅加快搜索速度,并使其具有准循环与随机的特性.理论分析及仿真的结果表明:降低了构造LDPC码校验矩阵时计算的内存需求,计算复杂度也大大低于高斯消元构造法,且在10-4误码率下比高斯消元法有大约1.5 dB的编码增益,3 dB信噪比误码率达10-6级.【期刊名称】《电声技术》【年(卷),期】2015(039)009【总页数】4页(P87-90)【关键词】调频频段数字音频广播;低密度奇偶校验码;偏移矩阵;准双对角线【作者】陈冬英【作者单位】福州大学物理与信息工程学院,福建福州350108【正文语种】中文【中图分类】TN911.221 引言因中国DAB标准中1.536 MHz信道带宽限于FM/AM的兼容问题,于2013年8月提出了调频频段的数字音频广播标准CDR(China Digital Radio),并发布复用和信道编码调制的相关标准[1]。

LDPC编码为CDR标准信道编码的核心模块。

该标准支持四种码率的LDPC码,其码长均为9 216[2]。

研究表明,LDPC码在码长很长时,具有逼近香农极限的优越性能,但随着码长的增加随之增大了复杂度与所需的存储空间,以及系统的开销[3-4]。

文献[5]表明,通过合理的矩阵构造,LDPC码在码长一定的条件下,性能逼近甚至超越随机的LDPC码[5]。

由文献[6]可知,编码的生成矩阵的获得,主要是通过对其设计的校验矩阵进行求逆运算,若采用常用的高斯消元求逆法直接对这些奇偶校验矩阵进行求逆时,由于计算机负担很大,特别是其需求的超大内存是大多数个人计算机所不具备的。

尽管文献[7]提出了有利于超大矩阵求逆,它的确可以解决计算机内存不足的问题,但是却使计算量变得更大。

信息论与编码理论中的英文单词和短语

信息论与编码理论中的英文单词和短语

信息论与编码理论Theories of Information
and Coding
第一章介绍
Chapter 1 Introduction
第二章信息理论Chapter 2 Information Theory
信息论与编码理论中的英文单词和短语
第三章 离散无记忆信
道和容量成本方程
Chapter 3 Discrete Memory less Channels and their Capacity -Cost Equations
第四章 离散无记忆信
源和扭曲率方程
Chapter 4 Discrete Memoryless Sources and their Rate -Distortion Equations
第五章 高斯信道和信

Chapter 5 Gaussian Channel and Source
第六章 信源-信道编码
理论
Chapter 6 Source -Channel Coding Theory
第七章 第一部分访问
先进标题
Chapter 7 Survey of Advanced Topics for Part One
第八章线性码Chapter 8 Linear codes
第九章循环码Chapter 9 Cyclic Codes
第十章 香农码和相关
的码
Chapter 10 Shannon Codes and Related Codes
第十一章 卷积码
Chapter 11 Convolution Codes
第十二章变量长度源编

Chapter 12 Variable-length Source Coding。

信息论基础英文版

信息论基础英文版

信息论基础英文版
Information Theory(信息论)是由克劳德·香农(Claude Shannon)于1948年提出的,它研究信息传输、存储和处理的数学模型和原则。

虽然没有特定的书名叫做"Information Theory Basics",但有很多关于信息论的经典教材和参考书籍可以提供基础知识。

以下是几本经典的英文书籍,涵盖了信息论的基础知识:
1."Information Theory, Inference, and Learning Algorithms" by David MacKay - 这
本书介绍了信息论的基本原理,并将其与概率统计和机器学习联系起来。

2."Elements of Information Theory" by Thomas M. Cover and Joy A. Thomas - 这是
一本信息论领域的经典教材,涵盖了信息论的基本概念、编码理论、数据压缩和通信方面的内容。

3."A Mathematical Theory of Communication" by Claude E. Shannon - 这是克劳
德·香农的原始论文,其中提出了信息论的基本概念和理论框架。

这些书籍提供了信息论的基本原理、数学模型、应用和实践方面的详细信息,适合想要深入了解信息论的人阅读。

可以通过在线书店或图书馆获取这些书籍。

信息论与编码理论中的英文单词和短语

信息论与编码理论中的英文单词和短语

信息论与编码理论中的英文单词和短语读书破万卷下笔如有神信息论与编码理论bits (binary digits)比natural digits自然entropy function熵函数Theories ofInformationprobability vector可能向conditional entropy条件熵and Codingdiscrete memory channel离散记忆信transition probability过渡可能性output产marginal distritution边际分布介绍第一章mutual information互信heuristic启发joint entropy联合熵Introduction Chapter 1 Venn diagram维恩Markov chain马尔可夫链information theory信息definite function限定函coding theory编码理tandem串emit发data-processing configuration数据过程配bit字convex combination凸组binary二进manipulation操binary symmetric source二进制对称shorthand速记binary symmetric channel二进制对称信communication system通信系统raw bit error probability 原始字节错误率continuous source outputs 连续信息输出encode编码coder 编码员bit error probability 字节错误率map 映射noise 噪音destination目标redundant 冗余data-processing theorem 数据过程定理cross check 相互校验discrete quantization 离散量化codding algorithm 编码算法refinement /精炼改进error pattern 错误模式density密度synthesis 综合mean value theorem 中值定理Hamming code汉明码superficial resemblance 表面相似single-error-correcting code 单独错误校正码mesh网格rate速率differential entropy 微分熵binary entropy function 二进制熵函数Jensen inequality 琴生不等式capacity能量determinate channel确定信道channel coding theory信道编码理论第二章信息理论Information TheoryChapter 2读书破万卷下笔如有神第三章离散无记忆信第四章离散无记忆信源和扭曲道和容量成本率方程方程Chapter 4 Discrete DiscreteMemoryless Sources and Memory less Channels Chapter 3their Rate-Distortion Equations and their Capacity-Cost Equationssource alphabetinput sign system源字母输入符号系discrete memoryless sourcesoutput sign system输出符号系离散无记忆信source statisticsimagine想统计object signmemoryless assumption目标符无记忆假distortionaverage cost平均成扭distortion measurecapacity-cost equation扭曲容量成本方average distortiontest-source平均扭验证源test channeln-dimensional admissible test sources维容许验证测试通distortion rate扭曲admissible cost容许成source coding theorem源编码定r-symmetry对backwards test channel向后测试通道rate of system系统比率Hamming distortion measure 哈莫名扭曲度rates above channel capacity 超过信道容量率error probability distortion rate 错误扭曲率length 长data-compression theorem 数据压缩定理bits per symbol 每个符号的比特destination symbols 目的符号decoding rule 编码规则data compression scheme 数据压缩系统distinct code 区别代码penalty function 罚函数indicator function 指示函数unrestricted sum 无限制和random coding 随机编码inner sum内部和expected value期望值weak law of large numbers 弱大数定律decoding sphere 编码范围第五章高斯信道和信源Chapter 5 Gaussian Channel and Sourcevoltage 伏特transmit 传送signal信号.读书破万卷下笔如有神source statisticswatts信源统rate of transmissiondissipate传送耗conflictjoule焦冲source-channel coding theoremwhite Gaussian noise process白高斯噪声过理noise spectral density噪声错误密data-processing theorem数据传输定bandwidth带intermediate vector中间向band-limited波段限worst-case distortion最坏扭power-limited功率限per-symbol basis每个符号基n-th capacity-cost function项容量成decomposition分函transmitted codingsquared-error传送编平方错affordoinkoverallcapacity-costfunction总的容量成本负density数噪声密tradeoff交arithmetic-geometric average value几何均算realizable region可实现区Gaussiandiscrete-timememoryless离散时间无记standpoint观点source高斯信源mean-squared error criterion第一部分访问gaussion distribution 高斯分布per-symbol均值平方错误标准第七章Gaussiansource高斯信源每个符先进标题per-symbol mean-squared distortion号均值平方扭曲Chapter 7 Survey of Advanced Topics for 信道编码第六章信源-Part One理论twin pearls孪生珍珠finite Abelian commutative group有限阿贝尔交换群Source-Channel Coding Theory Chapter 6 ergodic random process各态经历随机过程information source 信息源entropy熵noisy source 噪声源additive ergodic noise channel添加各态噪音信data processing 道数据处理asymptotic average property quantization 量子化渐进线均分性质Gaussian process modulation 高斯过程调节multiterminal channel successive block多终端信道连续块feedback emit channel output symbols反馈发出信道输出符号seeder 发送人one-to-one correspondence 一对一通信receiver接受人test source 实验来源multi-access channel 多通道信道source sequence 信源序列erasure symbol 擦掉符号destination sequence 目的序列contradiction矛盾读书破万卷下笔如有神rate比率practical standpoint实际观broadcast channel广播信generator matrix生成矩capacity region容量区row space行空high degree of symmetry 高对称parity-check matrix奇偶校验矩test sources测试信canonical form规范形input signal channel输入符号信error pattern错误模global maximum全局最coset傍additive ergodic noise添加各态噪symmetric channel对称信reliability exponent of channel信道的可靠性Hamming wight汉明table lookupcritical rate关键表格查standard arraylinear code线性标准排italicizedtime-varying convolutional强时间改变卷积metric spaceencoder-channel-decoder度量空编信译Hamming distanceouter channel汉明距外部信interectinner code内部编穿minimum weightouter code最小权外部编single-error-correctingweak converse弱颠单错误校perfect codesstrong converse强颠完全repetition codesterm术重复binary Hamming codesrate of transmission二进制汉明传输detecterror exponent错误指检e-correctingstrong similarity电子校强近H-detectingrather duality选择两重检Fparity-check matrixdistortion rate theory扭曲率理类似校验矩double-error-detectingsource coding method源编码双错误检weight enumeratorsingle-letter distortion measure单字母扭曲度权重计数homomorphismimplication含同multiplicative groupconfiguration轮趋于增加组indeterminate error probability 错误可能性不确定half-plane bound 半平面界reception接待discrete-time stable离散时间稳定高第九章循环码斯信源stable Gaussian sequence 稳定高斯序列spectral density 谱密度Chapter 9 Cyclic Codes tree codes树码burst errors突发性错误definition of innocuous-appearing 表面无害定理cyclic shift 循环位移第八章线性码trivial cyclic 一般循环no-information code无信息码Linear codesChapter 8读书破万卷下笔如有神depth-3 interleavingsingle-parity-check code单等价校验度交interleaving operationno-equivalent code无等价交错操elaborate algorithmright cyclic shift右循环位复杂算Fire codegenerating function法尔母函Fire constructiongenerator polynomial法尔结生成多项burst-trapping algorithmreciprocal爆发阻塞算互惠burst-error-correcting codecyclic property爆发错误校正循环性decomposition分left-justified左对transmitted codeword传送编trap陷阱,阻shift-register encoder转换登记编burst-error pattern爆发错误模flip-flops adders突变加法Meggitt lemma米戈蒂引constant multipliers常数乘法shift-register切换显delay延circuit环impulse response脉冲响leftmost flip-flop y香最左面的突state vector状态向量state polynomial 状态多项式input stream 输入流reverse order 反顺序第十章农码和相关linear recursion 线性递归rightmost flip-flop 最右面的突变的码mod-2 adder 模2加法器cyclic 循环two-field二域Chapter 10 Shannon Codes and Related primitive polynomial 原始多项式Codes decoding cycle 译码循环circular journey 循环旅程Shannon code香农码lower shift register 低位移寄存器Vandermonde determinant theory范德蒙德行列式burst-error-correcting 突发错误校正理论pattern 模式original parity-check matrix 初始相同检验矩burst description 突发描述阵location 位置minimal polynomial 最小多项式ambiguity 含糊不清key equation关键方程zero run零操作discrete Fourier transform 离散傅里叶变换burst-error correcting code 突发错误校正码time-domain 时间领域Abramson bounds 阿布拉门逊界frequency-domain 频数领域strict Abramson bound严格阿布拉门逊subtlety 细致界time shift 时间转换weak Abramson bound 弱阿布拉门逊界phase shift 相位转换Reiger bound Reiger界support set 支撑集合loose松散evaluator polynomial 评估多项式Abramson code 阿布拉门逊码formal derivative规范派生interleaving 交错frequency-domain recursion 频数主导递归De-interleaving交错De读书破万卷下笔如有神frequency-domainsubscript下频数Golay codelocator polynomial戈莱定位多项extended Golay codeerror pattern扩展戈莱错误模byte implementationtwisted error pattern字节工扭曲错误模table loopreduced mode表复原模error location错误定位error-evaluator polynomial 错误评估多项式Euclid algorithm 欧几里得算法第十一章卷积码quotient 份额facilitate促进time-domain approach 时间主导方法Chapter 11 Convolution Codes error-locator 错误定位器trial and error 试错法matrix polynomial矩阵多项pseudocode fragment伪码片shift-register approach转移登记方recursion递scalar matrix纯量矩abnormal反state-diagram approach状态图方elaborate theory复杂理memory记忆,内multiple-error-correcting linear code多倍错误校正constraint length约束长性k-tudecode character代码字L-th section截平maximum-distance separable codes最大距离可分state-diagram状态interpolation property插值法性track轨道,足information set信息集trellis diagram格子interpolation algorithm插值算survivors幸存recursive completion递归结Viterbi decoding algorithm维特比译码算pseudocode伪path weight enumerator路权重concatenated coding 连锁elaborate labels复杂burst-error-correction爆发错误校complete path enumerator完全路径depict描error events错误时间unfactor 非因子first error probability 最早错误可能性flaw缺陷bit error probability 比特错误可能性erasure symbol 擦掉符号free distance自由距离transmitted symbol 传递符号sequential decoding algorithm 连续译码算法enlarge扩大tree diagram 树形图minimum-distance decoding 最小距离译码binary tree 二进制树erasure set擦除集合bifurcation 分枝erasure-location polynomial擦除位置多项式abandoned 抛弃errors and erasures-locator-polynomial错误擦除位置多stack algorithm 栈算法项式Fano algorithm 法诺算法errors-and-erasures-evaluator 错误擦除评估多different lengths 差异长度polynomial项式flowchart流程图modified syndrome polynomial 修正综合多项式polynomial multiplication多项式乘法.读书破万卷下笔如有神第十二章变量长度源编码Chapter 12 Variable-length Source Codingmethod of variable-length source 变量长度源编码coding法string of length k 长度串kempty string 空字符串substring子串。

MSK系统中迭代相位同步补偿方法

MSK系统中迭代相位同步补偿方法

MSK系统中迭代相位同步补偿方法李炜;赵旦峰;钱晋希【摘要】For the phase shift of the synchronous problem of baseband signal in Gaussian channel, the LDPC code with excellent Shannon limit and iterative Modulation Algorithm were introduced into the phase synchronization system. A compensation method of iterative phase synchronization was proposed, whose core idea was based on the m sequence as a syneVironiza-tion code word, with different interleaving and decoding algorithm, through the pre-specified synchronization reference threshold to compensate the feedback phase at the receiver, and for different channel conditions, the data could be demodulated and weighted to adjust to meet different performance requirements. Theoretical analysis and simulatuin results showed that; far different iterations, frame size and interleave depth, the algorithm could compensate the phase shift in Gaussian channel and could achieve ideal phase synchronization.%针对高斯信道中基带信号相位偏移的同步问题,将具有极好香农限的LDPC码和迭代调制算法引入相位同步系统中,提出了一种迭代相位同步补偿方法.其核心思想是在m序列作为同步码字的基础上,采用不同的交织和译码算法,在接收端通过预先给定的同步参考门限,进行反馈相位补偿,并且可以针对不同的信道情况,进行加权和解调数据调整,以满足不同的性能要求.理论分析和仿真结果表明,在不同的迭代次数、信源帧长和交织深度的情况下,该方法能够精确地补偿高斯信道带来的相位偏移,达到比较理想的相位同步.【期刊名称】《哈尔滨商业大学学报(自然科学版)》【年(卷),期】2011(027)004【总页数】4页(P602-604,608)【关键词】迭代;同步门限;相位估计;相移同步补偿【作者】李炜;赵旦峰;钱晋希【作者单位】哈尔滨工程大学信息与通信工程学院,哈尔滨150001;哈尔滨工程大学信息与通信工程学院,哈尔滨150001;哈尔滨工程大学信息与通信工程学院,哈尔滨150001【正文语种】中文【中图分类】TN911.22现代数字通信系统中,对数据传输可靠性和有效性的要求越来越高,这使得信道编码的难度越来越大,信道编码可以通过对信息加冗余,保证信息在传输过程当中的可靠性.LDPC码是一种线性编码,通过构造一种具有特殊性质的稀疏校验矩阵以达到较好的译码效果.码长为106时,与香农限仅差 0.13 dB[1-2].在通信系统的调制方法中,一般采用的载波为正弦信号,而对于正弦信号来说,它有3个参数:幅值、频率和相位.相位同步由于本身方法的限制,研究的较少.理想的调制方式应该能够使通信系统在低信噪比的情况下提供低误码率的信息传输,由于通信系统的信道带宽和信道能量的限制,需要采用一种带宽利用率和能量利用率都较好的调制方式来传输信号.与其他数字调制信号相比,MSK的优点在于:功率谱密度集中,频带利用率高;频带较窄,在调频扩频通信中可以增加调频点;具有恒包络,适用于功率受限进行非线性放大的场合;有利于构成最佳接收系统来降低误码率等[3].而同步是数字通信系统以及某些模拟通信系统设计时的关键问题.好的同步系统应该具有高效率和高精度.本文在研究中发现,信息源数据错误帧头与相位同步与否存在一定的关系,并且当所采用的纠错迭代译码算法次数达到一定程度时,可以作为同步参考门限.为了更好的增强相位同步,本文提出一种使用LDPC码和MSK的联合迭代m序列算法,通过该算法,能够使接收机更加精确的补偿由于噪声带来的相位偏移,很大程度提高了系统性能.1 同步模型与门限分析1.1 m序列函数本文对伪随机序列进行研究分析,已知m序列的特征方程由移存器的结构特征表示为:在发送端,将m序列插入为来源信号的头信息,设其特征方程为:而本地产生的同步m序列,在同步的情况下应该与f1(x)保持一致,为:接收到的调制信号与本地m同步码字进行相关峰检测时,可分三种情况,定义:由以上可知:当调制信号同步于本地码字时,其g(x)为平方函数,而调制信号落后与本地码字时,g(x)次数高于二次,而当本地码字落后时,g(x)为更低次项函数.1.2 同步门限在迭代相位同步补偿系统中,其同步补偿门限主要取决于LDPC译码的软输出信息.考虑加性高斯白噪声信道,LDPC的译码过程主要分为初始化、迭代过程和译码判决3部分.用BP算法对LDPC码进行译码,在初始化完成后的主要运算在于两种迭代的更新过程,即信息点的迭代更新和校验点的迭代更新过程.这两个迭代更新过程可以通过两个数学公式来惟一进行表示.可以看出,这两种迭代过程交替进行[4],经过一定的迭代次数后,译码过程终止.同步门限是在LDPC的BP译码基础上,对输出软信息,针对不同的信道情况进行判断,补偿信息在传输过程中的相位失步.如上可以实现根据m序列的相关峰检测情况和信道的译码信息,给出能达到要求的系统门限,在所要求的误差范围内,对相位进行补偿,可以达到系统精度.2 LDPC-MSK系统模型MSK信号通常可以表示如下:其中:ω0为载波中心频率;T为数据码元宽度;ai为第i个数据信号(取值ai=±1);φi 为相位常数,在码元宽度T内保持不变[5].由MSK性质可知,可将编码后的输出进行并串转化,分两路,再进行MSK调制.并且,I路开头应该相应的补入一个初值相当于差分编码的边界条件,这样Q路延时半个码元就相当于I路延时,通常在I路补入1,同时Q路末尾补齐.最后进入信道时,对两路进行加和求平均功率.在接收端,只需进行相反的解码和解调,对信号做并串转换,适当的时候还可以改变解调数据范围,然后根据译码的输出软信息和事先约定的同步判决门限做比较,给出适当的相位补偿,便能取得较好的效果.在分析了同步模型之后,可以确定其实现框图如下,见图1.图1 迭代门限相位补偿系统框图在图1中,编码方法在本文中选择LDPC码,并且事先在发送端和接收端产生一组相同的m序列,将m序列加入信源作为帧头信息,分别经过LDPC编码和MSK调制之后,送入信道,本文中,仿真信道为高斯信道,最后LDPC按照BP译码方法时,进行迭代,在系统执行过程中,可以根据信道情况和实际情况,选择所需要检测的迭代次数作为参考向量,与译码软信息进行对比,作为相位补偿的参考.如果精度要求高,则可以将迭代次数调节在较高的范围,便能达到较为满意的效果.其次,还可以根据信号中的m序列与本地m序列之间的差异,判断每帧数据的头信息,一旦头信息错误超过指标要求,也能作为相位补偿的重要依据.并且在译码软信息不足以控制整个系统时,m序列能起到非常关键的作用.3 系统仿真与结果分析本文是在 WindowsXP系统,CPU为2.9GHz,内存1G的平台上进行的,采用Matlab作为仿真工具.本系统是一个完整的LDPC-MSK系统,里面包含交织技术,实现系统的执行过程.限于篇幅,本文对图1的系统在不同相移、不同信噪比、不同数据帧长、不同交织方式以及不同迭代次数下进行了仿真对比,几组仿真参数分别列于表1、2、3中.表格中英文缩写 1)PS(Phase Shift);2)FS(Frame Size)为数据帧长,单位为bit;3)IL(Interleave)为交织器,分别有随机交织、CDMA2000(码分复用)和LTE(Long Term Evolution,长期演进计划)三种;4)IT(Iteration)为迭代次数.表1 仿真参数1FS=512;的关系0.0 dB 0.5 dB 1.0 dB 1.5 dB 2.0 dB 2.5dBIL=LTE PS=0°IT=6 以下是RSN和RBE 5.283e-15.18e-1 5.1e-1 5.0e-1 4.9e-1 4.8e-1表1仿真数据图如图2所示.图2 相移0°时的系统仿真曲线表2 仿真参数2FS=512;的关系0.0 dB 0.5 dB 1.0 dB 1.5 dB 2.0 dB 2.5 dBIL=LTE PS=180°IT=6 以下是RSN和RBE 5.2e-1 5.1e-1 4.9e-1 5.0e-1 4.8e-1 4.5e-1表2仿真数据图如图3所示.图3 相移180°时的系统仿真曲线表3 仿真参数3FS=512;0.0 dB 0.5 dB 1.0 dB 1.5 dB 2.0 dB 2.5 dB IL=LTEPS=270°IT=6 以下是RSN和RBE的关系5.6e-1 5.40e-15.39e-1 5.2e-1 4.9e-1 4.8e-1表3仿真数据图如图4所示.图4 相移270°时的系统仿真曲线由仿真结果可以看出,相位偏移相差越大,误码率随着信噪比也有所增加,但是基本都控制在范围内.从图2~4得出,曲线下降也比较平缓,当参数设置适当时,系统受信道的影响较小;当相移为0°时,误码率性能最好,补偿效果不明显,因为0°的相移属于同步情况;180°可以为反相时的性能,补偿效果最明显,补偿之后也基本和0°时的误码率持平;而270°的相位偏差属于失步情况,通过本文的算法,补偿也有一定的效果,其误码率性能能够保持到最优状态.另外,限于篇幅,本文中未对迭代次数做的仿真给出曲线,当迭代次数增加时,误码率性能能够得到改善,但是当其增加到一定程度时,误码率性能下降的比较迟缓;对于数据帧长,仿真结果看来,越短性能越佳,由此看以得出另一种方案有待深入研究:采取变帧长的原始数据进行相位同步.4 结语最小移频键控调制是调制指数h=0.5的连续相位调制移频键控方式,其频带利用率较优,且同步恢复也比较方便,在实际系统中有着广泛的应用.而信号在传输过程中的相位同步一直是通信中的关键问题,它直接影响着后续信号的输出结果和误码性能,本文采用具有连续相位性质的MSK调制方式和m迭代性能的LDPC编码方法,通过迭代次数的累加和m序列的相关峰值检测,可以对信号输出的相位做出一定精度的补偿,一方面,提高了信息在传输过程中的相位准确度;另一方面,该系统对信道也有一定自适应能力,能够人为做出调节.参考文献:[1]RICHARDSON T J,SHOCKROLLAHI M A,URBANKE R L.Design of capacity-approaching irregular low-density paritycheck codes[J].IEEE Transactions on Information Theory,2001,47(2):619-637.[2]郑少语,肖静.LDPC编码在OFDM水声通信中的应用与实现[J].中国新通信,2010(11):45-48.[3]胡敏.MSK数字化调制解调技术研究[D].长沙:中南大学,2007.[4]郭忱.LDPC码编译码算法的研究与应用[D].长春:吉林大学.2007.[5]罗新民,张传生,薛少丽.现代通信原理[M].北京:高等教育出版社,2003:348-350.。

基于ADMM的惩罚函数构造方法优化

基于ADMM的惩罚函数构造方法优化

基于ADMM的惩罚函数构造方法优化陈紫强;王广耀【摘要】为了提升传统交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)惩罚译码算法的误码性能和收敛速率,对罚函数做进一步优化,提出一种基于三段式罚函数的ADMM惩罚译码算法(Three-Segment ADMM-PenalizedDecoding,TS-ADMM-PD).通过引入过渡函数,其斜率介于前后两段函数之间,达到折衷译码性能和收敛速度的目的.优化后的罚函数在x=0和x=1附近斜率较大,以增强对伪码字的惩罚力度,降低误码率并加快译码收敛;在x=0.5附近斜率较小,以便此处的变量节点信息进行传递.仿真结果表明,相比于I-ADMM-PD算法,所提的TS-ADMM-PD算法有着更优秀的误码性能和收敛速度.【期刊名称】《无线电工程》【年(卷),期】2017(047)012【总页数】6页(P24-29)【关键词】LDPC码;交替方向乘子法;惩罚函数;误码性能;收敛速度【作者】陈紫强;王广耀【作者单位】桂林电子科技大学信息与通信学院,广西桂林541000;桂林电子科技大学信息与通信学院,广西桂林541000【正文语种】中文【中图分类】TN911.22低密度奇偶校验(Low-Density Parity-Check,LDPC)码是Gallager博士于1962年提出的一种线性分组码[1],是迄今为止发现的误码性能最接近香农极限的码字之一,成为继Turbo之后信道编码领域的研究热点。

线性规划(Linear Programming,LP)最早由J.Feldman提出作为置信传播(Belief Propagation,BP)译码的备选方案[2],然而在实际应用中,LP译码存在收敛速度慢、难以硬件实现等弊端。

针对这一问题,国内外研究人员展开了大量研究[3-6]。

为了解决LP译码算法收敛速度慢的问题,文献[3-7]提出了基于ADMM的LP译码方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONSEuro.Trans.Telecomms.2003;14:399–409(DOI:10.1002/ett.939)Information TheoryRegular low-density parity-check codes from oval designsSteven R.Weller1*and Sarah J.Johnson21School of Electrical Engineering and Computer Science,University of Newcastle,Callaghan,NSW2308,Australia 2Wireless Signal Processing Program,National ICT Australia(NICTA),University of New South Wales,Sydney2052,AustraliaSUMMARYThis paper presents a construction of low-density parity-check(LDPC)codes based on the incidencematrices of oval designs.The new LDPC codes have regular parity-check matrices and Tanner graphs freeof4-cycles.Like thefinite geometry codes,the codes from oval designs have parity-check matrices with alarge proportion of linearly dependent rows and can achieve significantly better minimum distances thanequivalent length and rate randomly constructed LDPC codes.Further,by exploiting the resolvability ofoval designs,and also by employing column splitting,we are able to produce4-cycle free LDPC codes for awide range of code rates and lengths while maintaining code regularity.Copyright#2003AEI.1.INTRODUCTIONLow-density parity-check(LDPC)codes werefirst pre-sented by Gallager[1]in1962and have recently been red-iscovered and extended[2,3].By specifying block codes with a sparse parity-check matrix,Gallager presented an iterative decoding algorithm with complexity linear in the block length and decoding performance remarkably close to the Shannon limit[1,2,4].It is known that Gallager’s iterative decoding algorithm,called sum-product decoding, converges to the optimal solution provided the Tanner graph of the code is free of cycles[5,6].The existence of short cycles in the Tanner graph prevents an exact error-probability analysis of iterative decoding procedures, and the shorter are the cycles in the graph,the sooner the analysis breaks down.To date,randomly constructed LDPC codes have largely relied on the sparsity of the par-ity-check matrix to avoid short cycles in the Tanner graph. Small cycles in the Tanner graph associated with an LDPC code can be systematically avoided by taking as parity-check matrices the incidence matrices of suitably chosen combinatorial designs[7,8].In Reference[7], the incidence matrices of Steiner triple systems(STS) were proposed as parity-check matrices for LDPC codes and in References[8–10]the range of available LDPC code parameters from STS was expanded by using a subset of the resolution classes of the resolvable Kirkman triple systems.A second class of algebraic LDPC codes,from the incidence matrices offinite projective and Euclidean geometries,were presented in References[5,11,12].Like the codes from STS,small cycles are avoided in the Tanner graph of the codes fromfinite geometries.Further,the finite geometry codes produce excellent error correction performances with iterative decoding,a performance attributed to the many linearly dependent rows in their parity-check matrices.In this paper we present a new class of algebraic LDPC codes,taking as parity-check matrices the incidence matrices of combinatorial structures known as oval designs.The family of parity-check matrices so obtained have small,uniform row and column weights,and have Tanner graphs which are free of small cycles.Moreover,*Correspondence to:Steven R.Weller,School of Electrical Engineering and Computer Science,University of Newcastle,Callaghan,NSW2308, Australia.E-mail:steve@.auContract/grant sponsors:Bell Laboratories,Australia;Lucent Technologies.Contract/grant sponsor:Australian Research Council;Contract/grant number:LP0211210.Contract/grant sponsor:CSIRO Telecommunications&Industrial Physics.the incidence matrices of oval designs have column weights which are no longerfixed,as for STS,but grow along with the number of parity-check equations.The properties of the oval codes are similar to those of thefinite geometry codes,including a large proportion of linearly dependent rows in their parity-check matrices.As our construction is based on combinatorial design theory,we present in Section2of this paper some back-ground material on designs before describing oval designs in particular.Section3defines the codes from oval designs and Section4discusses the performance of oval codes with sum-product decoding.Section5concludes the paper. BINATORIAL DESIGNSLet P be a v-set and suppose B is a collection of k-subsets of P with the property that each t-subset of P is contained in exactly l of the elements of B.Then the ordered pair D¼ðP;BÞis called a t-ðv;k;lÞdesign,or simply a t-design.The elements of P are called points and the ele-ments of B are blocks.A regular design is one with a con-stant k points per block and r blocks containing each point. Thus,a regular design has six parameters:t,v,b,r,k and l where b is the number of blocks and is sometimes denoted as t-ðv;b;r;k;lÞdesign.However,these parameters are not independent,as in any regular design,bk¼vr.A2-design is also called a balanced incomplete block design(BIBD).If t!2and l¼1,then a t-design is called a Steiner system or a Steiner t-design.A Steiner2-design thus has the property that every pair of points in the design occur together in exactly one block of the design.A reso-lution of a design D is a partition of the blocks of D into classes such that each point of D is in precisely one block from each class;such a design is said to be resolvable. Every design can be described by a vÂb incidence matrix N where each column in N represents a block B j of the design and each row a point P i:N i;j¼1if P i2B j0otherwiseThe incidence graph of D has vertex set P S B with two vertices x and y connected if and only if x2P and y2B or x2B and y2P.A cycle in the incidence graph is a sequence of connected vertices which start and end at the same vertex in the graph and contain no other vertices more than once.The length of the cycle is simply the num-ber edges it contains and the girth of a graph is the length of its smallest cycle.As the incidence graph is bipartite, the length of a cycle must be even and at least four.In the context of this work,we will henceforth follow the notation established by Kou et al.[11,12]and denote by g and the column and row weights of N respectively. This avoids the unfortunate coincidence of the symbol k to denote both column weight of the incidence matrix of a design and the number of information symbols in an ½n;k;d block code.The oval designs we consider are constructed from pro-jective planes,which have themselves been recently pro-posed for the algebraic construction of LDPC codes[11]. Background material on oval codes and projective planes is presented in the Appendix.Briefly,a projective plane of order q,PG2ðqÞ,is a set of q2þqþ1lines and q2þqþ1 points such that every line passes through exactly qþ1 points and every point is incident on exactly qþ1lines with any pair of points in the plane incident together in exactly one line.An oval,O,in a projective plane is a set of qþ2points that meet each line of the plane in0 or2points.The oval design is the incidence structure hav-ing,for points the lines of the plane exterior to O and for blocks the points of the plane not on the oval O,called the retained points.Incidence is given by the incidence of the projective plane;that is,in an oval design,a point is con-sidered to belong to a block if the corresponding point and line in PG2ðqÞare incident.Oval designs are Steiner2-ðqðqÀ1Þ=2;q=2;1Þdesigns with qþ1blocks through each point and q2À1blocks(see e.g.Reference[13, Chapter8]).Oval designs are also resolvable,with qÀ1blocks per resolution class and qþ1classes in each design[13, Chapter7].Figure1shows an incidence matrix for the oval on six points constructed in the Appendix with col-umns partitioned into resolution classes.Zero entries are indicated by dots.3.CONSTRUCTIONS OF LOW-DENSITYPARITY-CHECK CODES FROM OV AL DESIGNS In this section,we employ the incidence matrices of the oval designs described in the previous section as 1::1::::1:1:1:: ::1::1::1::1::1 :1:1::1::::1:1: ::1:1::1::1::1: :1:::1:1:1::1:: 1:::1:1::1::::1 2666666437777775Figure1.The incidence matrix of the2-(6;2;1)oval design constructed in Appendix.400S.R.WELLER AND S.J.JOHNSONparity-check matrices of LDPC codes;we shall refer to the codes so obtained as oval codes.Further,we will employ two methods to increase the range of available LDPC codes derived from oval designs.Firstly,the resolvability of the oval designs will be used to produce lower rate codes,which we call R-oval codes and secondly,column splitting will be used to produce even higher rate codes, which we call S-oval codes.In both the cases,the codes obtained will also be regular and free of4-cycles.3.1.LDPC codes from oval designsThe incidence matrix of an oval design is used as the parity-check matrix of a binary LDPC code to give favourable properties to the code.In particular,the girth of the Tanner graph of an oval LDPC code corresponds to the girth of the incidence graph of the oval design.The incidence graph of an oval has girth at least6since no two points can be in the same two blocks together.Thus choosing an oval design to construct an LDPC code guarantees the absence of4-cycles in the code.As H¼N the code will have v parity checks and block length n¼b.Oval designs are regular and so all columns of H have constant weight g and all rows constant weight ;such a code is said to beðg; Þ-regular.The incidence matrix of a design is not necessarily full rank and so the the code dimension is k¼nÀrank2ðNÞ. For instance,the Euclidean and projective geometry codes have a significant proportion of linearly dependent rows in their incidence matrix and so give quite high rate codes despite N being square[12].Oval designs also have a sig-nificant portion of linearly dependent rows which give the codes extra parity-check equations and subsequently improved decoding performances with sum-product decod-ing.Oval designs are the same length as the Euclidean geo-metry(EG)designs but produce higher rate LDPC codes. We define oval codes as binary LDPC codes with parity-check matrix,H,whose rows are the the incidence vectors of the lines of PGð2;2mÞexterior to a regular oval O.The columns of H correspond to points of the plane not on O. Thus H has22mÀ1columns and2mð2mÀ1Þ=2rows. Since there are2mþ1ones per row of H and2mÀ1ones per column,H is regular and has a density of2mþ122mÀ1ð1ÞThe2-rank of the incidence matrix of a regular oval design is known to be given by Reference[14]rank2ðWðÅ;OÞÞ¼3mÀ2mð2Þwhich yields both the number of code message bitsk¼ð2mÞ2þ2mÀ3mÀ1ð3Þand number of linearly dependent rows in H:22mÀ1À2mÀ1À3mþ2mð4ÞAvoiding4-cycles guarantees a minimum distance of atleast2mÀ1þ1via Massey’s bound[15],as each bit in the code is checked by g¼2mÀ1orthogonal parity-checkequations.Thus the minimum distance of the oval codesincreases with the length of the code asd!12ðffiffiffiffiffiffiffiffiffiffiffinþ1pþ1ÞHowever,this also means that the density of the parity-check matrix decreases only with the square root of thecode length as opposed to proportionally to the code lengthas is the case for codes defined with constant column weight.For example,the oval design in Figure1has a6Â15incidence matrix with column weight2and row weight5.Thus,the oval LDPC code from this design is(2;5)-regularwith length15.The2-rank of the incidence matrix is5(thelast row is linearly dependent on the previousfive)and sothe oval LDPC code will have dimension k¼15À5¼10.The minimum distance of the code is at least3byMassey’s bound.Further,by observation we see that col-umns1,6and9sum to zero modulo2so there is a codeword of weight3with non-zero entries in bit positions1,6and9and so the code minimum distance is exactly3.Table1shows the parameters of the oval designs andtheir corresponding oval codes for m¼2;...;6.For thetwo shortest codes,the minimum distance has beenobtained by exhaustive computation.For the longer codes,corresponding to m!4in Table1,the range of minimumdistances has been obtained using Magma[16]for anupper bound and Massey’s lower bound applied to ovalLDPC codes.The girth of the oval codes is always6,as the re-quirement that l¼1and t¼2guarantees the existenceof6-cycles as well as the absence of4-cycles.Further,the structure associated with the Steiner2-designs allowsTable1.Parameters of codes from oval designs.m H( ;b; ;g)rank2(H)[n;k;d]2(6;15;5;2)5[15;10;3]3(28;63;9;4)19[63;44;5]4(120;255;17;8)65[255;190;9–10]5(496;1023;33;16)211[1023;812;17–36] 6(2016;4095;65;32)665[4095;3430;33–78]REGULAR LDPC CODES FROM OV AL DESIGNS401the use of counting arguments to show that there are exactlyn 3g2ð À1ÞðgÀ1Þ¼2m2mÀ12ð2mÀ1À1Þð22mÀ1Þ3;6-cycles in an oval code.To see this,consider that every pair of points is incidenttogether in exactly one block of the design.So if wechoose an arbitrary pair of pointsðP1;P2Þin a block B together,P1is incident in À1blocks other than B,sayf D1;...;D À1g,(which cannot contain P2).Likewise P2 is incident in À1blocks other than B,say f E1;...;E À1g,(which cannot contain P1).Since every pair of points must be incident in a block together,all theð À1ÞðgÀ1Þpoints other than P1incident in the blocks f D1;...;D À1g must be incident in the blocks f E1;...;E À1g so that each point is incident with both P1and P2.In fact the only points not in the sets f D1;...;D À1g and f E1;...;E À1g are the points incident with P1and P2in B.We can then connect a6-cycle from P1to a point in Di and through the same point in E j,back to P2to form a6-cycle.This can be doneð À1ÞðgÀ1Þtimes for each pair of pointsðP1;P2Þ.There areðg2Þpairs of points in a block and n blocks in the design.A6-cycle involves a pairs of points in three different blocks and the result follows.LDPC codes from oval designs have lower columnweight and fewer parity-checks than the equivalent lengthEG codes but more than the equivalent length STS LDPCcodes.They therefore represent a middle ground in thetradeoff between minimum distance and decoding perfor-mance.However,as for the codes fromfinite geometriesand STS,as the length of the oval code increases so toodoes the rate and so the longer oval LDPC codes are veryhigh rate codes.The solution,which is to consider theresolution classes of oval designs to obtain low rate codes,is presented in the following section.3.2.Lower rate LDPC codes from resolvableoval designsThe advantage of the resolvability of oval designs,for useas LDPC codes,occurs when only a subset of their reso-lution classes are employed to construct H.By removingfrom H all the columns in a resolution class the weight ofevery row in the parity-check matrix is decreased by exactly1and the matrix is still regular.As the col-umns of the incidence matrices of oval designs can be divided into g n=v resolution classes with v=g columns per class we can generate a regular code with any block lengthvgÂl for l21;2;...;gnvn oSo by using a fraction of the resolution classes of an oval design to define the LDPC codes,we can achieve codes with low rates and a wider range of code lengths.An R-oval code formed from the resolution classes of an oval on v¼2mð2mÀ1Þpoints will have at least 22mÀ1À2mÀ1À3mþ2m linearly dependent rows in its parity-check matrix and a minimum distance lower bounded by2mÀ1þ1.This is because removing columns from the incidence matrix can not increase its rank and nor can it decrease the number of orthogonal parity-check equations on each bit.For example,the resolution classes of the oval on120 points can be used to construct regular codes free of4-cycles with the following parameters.½240;175;9 ;½225;160;9 ;½210;145;9 ;½195;130;9 ;½180;115;9 ;½165;100;9 ;½150;85;9 ;½135;70;9 ;½120;55;9 ;½105;44;9 ;½90;33;9 ;½75;22;9 ;½60;11;9 : (Note that the number of linearly dependent parity-checks in each code is120Àkþn.)The decoding performance of the length210code is shown in the following section.A different selection of resolution classes can result in codes with the same length but with variations in rate depending on how many of the existing linearly dependent parity-checks are made line-arly independent by removing columns of N.3.3.Higher rate LDPC codes from oval designs using column splittingOne feature of both the oval and S-oval LDPC codes is their very high column weight.This is good for the code minimum distance,however minimum distance alone does not determine the decoding performance with sum-product decoding.The larger column weight which gives rise to this increase in decoding performance also increases the density of H,and we will see in the following section that a decoding performance degradation can result.402S.R.WELLER AND S.J.JOHNSONThis motivates the third method of generating LDPCcodes from oval designs,column splitting,a technique alsoemployed in Reference[12].The large column weight ofoval designs allows us to split the non-zero entries of onecolumn into s lower weight columns.The resulting matrixwill have s times as many columns as the original,thesame number of rows and row weight and most impor-tantly will still be free of4-cycles.This is in effect apseudo-random construction of LDPC codes initializedwith the oval design.Starting with an oval design allowsvery high rate LDPC codes to be derived which are bothregular and free of4-cycles.The minimum distance ofthe codes is still lower bounded by gþ1,where g is nowdefined as the weight of the smallest weight column in theparity-check matrix.For example,each column in the incidence matrix of the2-(496;1023;33;16)oval design can be split into four wei-ght4columns to produce a(4;33)-regular½4092;3596;!5 LDPC code without4-cycles.Table2shows the para-meters of some of the LDPC codes we have obtained usingthis method.We can also obtain codes which are irregular by usinguneven column splitting.The oval design on496pointsfor example can provide an S-oval code of length4092with half the columns of weight4and a quarter of the col-umns of each weight3and5.The row weights of the codewill still be33and the corresponding Tanner graph willstill be free of4-cycles.4.SIMULATION RESULTS USINGSUM-PRODUCT DECODINGIn this section,we show the performance of LDPC codesderived from oval designs when decoded using the sum-product decoding algorithm[4]on an additive white Gaus-sian noise(AWGN)channel.In each simulation,a maxi-mum number of iterations has been set and the standardstopping criterion for LDPC codes,zH0¼0,is applied to terminate the decoding early if the hard decision of the bit probabilities,z,is a valid codeword.The LDPC codes from ovals are compared to randomly constructed LDPC codes and existing algebraic LDPC codes from STS codes[7]and EG codes[11,12].For the random LDPC codes we have used the following construc-tion method[2,4]using source code from Reference[17]: *g ones are placed in each column of H with an attemptmade to keep the number of ones in each row approxi-mately the same,*extra ones are randomly added so that the weight of each row is greater than one,*to remove4-cycles,ones are moved randomly within columns involved in the cycle.Regular randomly constructed codes perform best with column weight3[4],and so we have constructed random LDPC codes with this column weight.Further,in an attempt to get the best random LDPC codes,we have gen-erated random LDPC codes with as few4-cycles as possi-ble where this produces a better code.However,there is a tradeoff between removing code cycles and obtaining code regularity as the process of removing4-cycles causes the row weight to be more variable.The more parity checks per bit there are in H,the more calculations that are required to perform an iteration of the sum-product decoding algorithm.The effect this has on decoding complexity at various signal-to-noise ratios (SNR)is also shown in this section.The average number of multiplicationfloating point operations(flops)required to decode a codeword can be calculated by estimating the number offlops for one iteration of the sum-product algo-rithm as6n g[4]and counting the number of iterations required to decode each codeword.There are other mea-surements of decoding complexity such as Reference [18]which include operations other than multiplication. Our values are only an estimation,used solely to give a comparison between the decoding complexity of LDPC codes with different column weights.4.1.The decoding performance of oval codesFigure2shows the performance of the oval[63;44;5] code compared to that of a randomly generated length 63rate-0.7LDPC code in an AWGN channel.The oval code is(4;9)-regular and the randomly generated LDPC code has a column weights of3and row weights between of9and10.Also shown in an STS LDPC code from a2-(21;3;1)design.The STS LDPC code is the same rate as the oval code but is(3;10)-regular and slightly longer.TheTable 2.Parameters of some S-oval codes from the ovaldesigns in Table1.m s H[n,k,d]42(4;17)-regular[500;380;!5]54(4;33)-regular[4092;3596;!5]52(8;33)-regular[2046;1550;!9]68(4;65)-regular[32760;30744;!5]64(8;65)-regular[16380;14364;!9]62(16;65)-regular[8190;6174;!17]REGULAR LDPC CODES FROM OV AL DESIGNS403better performance of the oval code despite its shorter length is attributed to the many extra parity-check equa-tions in the oval code caused by the low rank of the oval incidence matrix.Figure 3shows the performance of the oval [255;190;9]code compared to that of a randomly generated LDPC code in the AWGN channel.The oval code is a (8;17)-regular code and the randomly generated LDPC code has column weight 3and row weights between 7and 18.The oval code has a higher column weight than the random code and sohas a higher decoding complexity per iteration.However,in some cases the faster convergence of the oval code gives the two codes a similar decoding complexity overall.Figure 4shows the decoding performance over an AWGN channel of the oval [1023;812;17]code compared with a randomly generated LDPC code.Also shown is the [1023;781;33]EG code [11,12].The oval code is (16,33)-regular,the EG code is (32;32)-regular and the randomly generated LDPC codes have a column weight of 3and row weights between 11and 19.Again,the numberofFigure 2.The decoding performance of the length 63oval LDPC code in an AWGN channel using sum-product decoding with a maximum of 50iterations.(a)Simulated error correction performance;(b)Average number of floating point multiply operations to decode acodeword.Figure 3.The decoding performance of the length 255oval LDPC code in an AWGN channel using sum-product decoding with a maximum of 50iterations.(a)Simulated error correction performance;(b)Average number of floating point multiply operations to decode a codeword.404S.R.WELLER AND S.J.JOHNSONparity checks in H has a significant effect on decoding complexity as shown in Figure 4b.Like the EG code,the oval code outperforms the equivalent length and rate ran-domly constructed code only at the higher SNR.For even longer oval codes,this trend continues and the performance of the oval codes relative to the standard ran-dom codes grows significantly worse at low SNR due to the increasing density of their parity-check matrices.The longer oval codes have significantly better minimum dis-tances than are possible with a randomly constructed codes and so their disappointing performance is direct evidenceof the limitations of comparing LDPC codes by minimum distance alone.The increase in column weight which pro-vides this minimum distance gain also serves to greatly increase the density of H causing the poorer decoding per-formances.Only at very high SNR do the long oval codes outperform randomly constructed codes.4.2.The decoding performance of R-oval codesA (8;14)-regular rate-0.7code R-oval [210;145;9]has been designed by taking 14of the resolution classes of the 2-(120,8,1)oval.Figure 5shows thedecodingFigure 5.The decoding performance of rate 0.7LDPC codes in an AWGN channel using sum-product decoding with a maximum of 200iterations.(a)Simulated error correction performance;(b)Average number of floating point multiply operations to decode a codeword.REGULAR LDPC CODES FROM OV AL DESIGNS405performance of this code in an AWGN channel compared to a randomly generated LDPC code with the same rate and codeword length.Also shown is the length255EG code which also has the rate0.7compared to a randomly generated LDPC code with the same rate and codeword length.The EG code performs better than the R-oval code but the performance gain is only slightly more than would be expected due to its longer length.Removing the columns of the oval design does not change its density or minimum distance or reduce the number of linearly dependent parity-check constraints and so we will see the same trend in performance for the R-oval codes as for the codes from the whole oval design. That is,improved error correction performance at all SNR, compared to the random LDPC codes,for short codes and worse error correction performances at low SNR,com-pared to random LDPC codes,as the code length and hence column weight is increased.4.3.The decoding performance of S-oval codes Figure6shows the performance of two LDPC codes con-structed using column splitting,one regular and one irregu-lar.Both have been constructed by randomly splitting each of the columns of the2-(496;1023;33;16)oval incidence matrix into four.Both the regular and irregular codes from the oval design have the same row weight,33,and the same average column weight,4,however by considering an irregular code,with column weights between3and5,there is a small performance gain achieved.5.CONCLUSIONSIn this paper,low-density parity-check codes based on combinatorial structures known as oval designs have been presented.Oval designs provide a deterministic construction for regular LDPC codes whose Tanner graphs are free of4-cycles.Furthermore,codes with a significant portion of linearly dependent rows in their parity-check matrices are produced.Simulation results with the iterative sum-product decoding algorithm demonstrate that the LDPC codes from oval designs provide a good tradeoff between error correction performance and decoding com-plexity when compared to existing algebraic and randomly constructed LDPC codes.The number of blocks in an oval design increases with the square of the number of points and so the rate of the oval-LDPC codes increases with their length.However, lower rate LDPC codes are obtained by using only a subset of the resolution classes of the oval designs to construct R-oval codes with properties similar to the oval codes but with a large range of rates.The oval and R-oval LDPC codes seem particularly pro-mising codes with sparse matrices,good minimum dis-tances and many linearly dependent rows in their parity-check matrices.For short lengths,codes from oval designs significantly outperform the randomly constructed codes on an AWGN channel when decoded with the sum-product algorithm.The linearly dependent rows in the incidence matrices of the oval designs improve the performance of the shorter oval and R-oval codes at allSNR.。

相关文档
最新文档