浙教版八年级数学上期末专项训练试卷
浙教版八年级数学上期末检测题有答案 (优质精编)
初二数学上册期末检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列“数字”图形中,有且仅有一条对称轴的是( A )A. B. C. D.2.将一副直角三角尺按如图的方式叠放在一起,则图中∠α的度数是( C ) A .45° B .60° C .75° D .90°,第2题图) ,第4题图),第7题图)3.已知点P(a ,2),Q(-1,b)关于x 轴对称,则点(a ,b)位于( C ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.如图,△ACB ≌△A ′CB ′,∠BCB ′=30°,则∠ACA′的度数为( B ) A .20° B .30° C .35° D .40°5.把不等式组⎩⎨⎧2x +1>-1,x +2≤3的解集表示在数轴上,下列选项正确的是( B )A.B.C.D.6.一次函数y =2x +m 2+1的图象不可能经过( D ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.如图,点B ,C ,E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( D )A .△ACE ≌△BCDB .△BGC ≌△AFC C .△DCG ≌△ECFD .△ADB ≌△CEA 8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k<0;②a>0;③b>0;④当x<3时,y 1<y 2.其中正确的有( C )A .0个B .1个C .2个D .3个,第8题图) ,第9题图),第10题图)9.如图,P 为等腰△ABC 内一点,过点P 分别作三条边BC ,CA ,AB 的垂线,垂足分别为D ,E ,F ,已知AB =AC =10,BC =12,且PD∶PE∶PF=1∶3∶3,则AP 的长为( B )A.43B.203C .7D .8 10.明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t(单位:分)之间的函数关系如图.放学后如果按原路返回,且往返过程中,上坡速度相同,下坡速度相同,那么他回家时走这段路所用的时间为( D )A .12分B .10分C .16分D .14分 二、填空题(每小题4分,共24分)11.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长为__22__.12.如图,△ABC 和△DEF 全等且BC =EF ,则DF =__5__cm ,∠E =__60__度.13.将点P(-2,y)先向下平移4个单位,再向左平移2个单位后得到点Q(x ,-1),则x +y =__-1__.14.如图,AB =AC ,AD =AE ,∠BAC =∠DAE,∠1=25°,∠2=30°,则∠3=__55°__.,第14题图) ,第15题图),第16题图)15.如图,一次函数y =kx +b 的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b>0;③关于x 的方程kx +b =0的解为x =2.其中正确的是__①②③__.(填序号)16.如图,在第1个△A 1BC 中,∠B =30°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A 2E ,得到第3个△A 2A 3E ……按此做法继续下去,则第n 个三角形中以A n 为顶点的内角度数是__(12)n -1×75°__.三、解答题(共66分)17.(6分)解不等式组⎩⎨⎧5x -2>3(x +1),12x -1≤7-32x ,并把不等式组的解在数轴上表示出. 解:52<x≤4,在数轴上表示略18.(8分)如图,在平面直角坐标系内,试写出△ABC 各顶点的坐标,并求出△ABC 的面积.解:A(6,6),B(0,3),C(3,0),S △ABC =27219.(8分)如图,∠BAC =∠ABD,AC =BD ,点O 是AD ,BC 的交点,点E 是AB 的中点.试判断OE 和AB 的位置关系,并给出证明.解:OE ⊥AB.在△BAC 和△ABD 中,AC =BD ,∠BAC =∠ABD,AB =BA ,∴△BAC ≌△ABD(SAS),∴∠OBA =∠OAB,∴OA =OB.又∵AE=BE ,∴OE ⊥AB20.(8分)如图,直线l 与两坐标轴的交点坐标分别是A(-3,0),B(0,4). (1)求直线l 所对应的函数表达式;(2)以AB 为腰的等腰三角形的另一顶点C 在坐标轴上,直接写出点C 的坐标.解:(1)y =43x +4(2)点C 坐标为(3,0)或(-8,0)或(0,9)或(0,-1)或(0,-4)或(2,0)21.(8分)如图,折叠长方形,使点D 落在BC 边上的点F 处,BC =10 cm ,AB =8 cm.(1)求FC 的长;(2)求EF 的长.解:(1)由题意可得AF =AD =10 cm ,在Rt △ABF 中,BF =AF 2-AB 2=6 cm ,∴FC =BC -BF =10-6=4(cm) (2)由题意可得EF =DE ,可设DE 的长为x cm ,则EC =(8-x)cm ,在Rt △EFC 中,由勾股定理得(8-x)2+42=x 2,解得x =5,即EF 的长为5 cm22.(9分)如图,在△ABC 中,∠BCA =90°,∠BAC=30°,分别以AB ,AC 为边作等边△ABE 和等边△ACD,连结ED 交AB 于点F.求证:(1)BC =12AB ;(2)EF =FD.解:(1)取AB 的中点M ,连结CM ,∵∠BCA =90°,∴CM =BM =AM.又∵∠BAC=30°,∠BCA =90°,∴∠CBA =60°,∴△BCM 是等边三角形,∴BC =BM =CM =12AB(2)连结EM ,则EM⊥AB.∵△ACD 是等边三角形,∴∠CAD =60°,又∵∠BAC=30°,∴∠DAM =90°,∴∠EMF =∠DAF=90°,可证△BEM≌△BAC(AAS),∴EM =AC ,又∵AC =DA ,∴EM =DA ,∴△EMF ≌△DAF(AAS),∴EF =FD23.(9分)某电脑公司经销甲种型号电脑,随着科技的进步,电脑价格不断下降,今年3月份的甲种电脑售价比去年同期每台下降1000元.如果卖出相同数量的甲种电脑,去年的销售额为10万元,今年的销售额只有8万元.(1)今年3月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 的值应是多少?此时,哪种方案对公司更有利?解:(1)设今年3月份甲种电脑每台售价x 元,则100000x +1000=80000x,解得x =4000.经检验,x =4000是原方程的根,∴今年3月份甲种电脑每台售价4000元(2)设购进甲种电脑x 台,则48 000≤3 500x+3 000(15-x)≤50 000,解得6≤x≤10,∴x 的正整数解为6,7,8,9,10,∴共有5种进货方案(3)设总获利为W 元,则W =(4000-3500)x +(3800-3000-a)(15-x)=(a -300)x +12000-15a.当a =300时,(2)中所有方案获利相同,此时,购买甲种电脑6台,乙种电脑9台时对公司更有利24.(10分)如图,在平面直角坐标系中,四边形OABC是长方形,点A,C,D的坐标分别为A(9,0),C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O→C→B→A运动,点P的运动时间为t(s).(1)当t=2时,求直线PD的表达式;(2)当点P在BC上,OP+PD有最小值时,求点P的坐标;(3)当t为何值时,△ODP是腰长为5的等腰三角形(直接写出t的值)?解:(1)当t=2时,点P的坐标为(0,2),可求直线PD的表达式为y=-25x+2(2)作点O关于直线BC的对称点O′,此时O′(0,8),连结O′D交BC于点P,此时OP+PD的值最小.可求直线O′D的表达式为y=-错误!x+8,令y=4,则x=2.5,∴P(2.5,4)(3)t=6或t=7或t=12或t=14。
2022-2023学年浙教版八年级数学上册期末模拟测试题含答案
2022-2023学年八年级数学上册期末模拟测试题一、选择题(本大题有10小题,每小题3分,共30分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A . B . C . D . 2.下列结论中,正确的是( )A .若a >b ,则1a <1bB .若a >b ,则a 2>b 2C .若a >b ,则1﹣a <1﹣bD .若a >b ,ac 2>bc 23.下列命题中,逆命题错误的是( )A .两直线平行,同旁内角互补B .对顶角相等C .直角三角形的两个锐角互余D .直角三角形两条直角边的平方和等于斜边的平方4.若点A(2,m)在一次函数y =2x −7的图象上,则点A 到x 轴的距离是( ) A .2 B .−2 C .3 D .−35.如图,∠AOB =40°,OC 平分∠AOB ,直尺与OC 垂直,则∠1等于( )A .60°B .70°C .50°D .40°(第5题) (第6题) (第7题) (第9题) (第10题) 6.如图,在Rt △ABC 中,∠C =90°,D 为AC 上一点.若DA =DB =15,△ABD 的面积为90,则AC 的长是( )A .9B .12C .3√14D .247.如图,∠ABC 中,AB =AC ,∠DEF 为等边三角形,则α、β、γ之间的关系为() A .β=α+γ2 B .α=β+γ2 C .β=α−γ2 D .α=β−γ2 8.一次函数 y 1=ax +b 与 y 2=bx +a ,它们在同一坐标系中的大致图象是( ) A . B . C . D . 9.如图,边长为5的大正方形ABCD 是由四个全等的直角三角形和一个小正方形EFGH 组成,连结AF 并延长交CD 于点M.若AH =GH ,则CM 的长为( )A .12B .34C .1D .54 10.在Rt∠ABC 中,AC=BC ,点D 为AB 中点.∠GDH=90°,∠GDH 绕点D 旋转,DG 、DH 分别与边AC 、BC 交于E ,F 两点.下列结论:①AE+BF=√22AB ;②∠DEF 始终为等腰直角三角形;③S 四边形CEDF =18AB 2;④AE 2+CE 2=2DF 2. 其中正确的是( )A .①②③④B .①②③C .①④D .②③二、填空题(本大题有6小题,每小题4分,共24分)11.若点P(m+3,m+1)在x轴上,则点P的坐标为.12.一次函数y=(m+4)x+m+2的图象不经过第二象限,则整数m =13.如图,AB=AC,点D是△ABC内一点,∠D=110°,∠1=∠2,则∠A=°.(第13题)(第14题)(第15题)(第16题)14.如图,在长方形ABCD中,AB=3,BC=5,在CD上取一点E,连结BE.将∠BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.15.如图,已知∠A=∠B=90°,AB=6,E,F分别是线段AB和射线BD上的动点,且BF=2BE,点G在射线AC上,连接EG,若△AEG与△BEF全等,则线段AG的长为.16.如图,∠ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若∠ABC 的边长为4,AE=2,则BD的长为.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.在平面直角坐标系中,点A、B的坐标是(2a−5, a+1),B(b−1, 3−b).(1)若点A与点B关于x轴对称,求点A的坐标;(2)若A, B关于y轴对称,求(4a+b)2的值.18.如图,在Rt∠ABC中,∠C=90°.(1)作∠BAC的平分线AD交边BC于点D.(尺规作图,保留作图痕迹,不写作法).(2)在(1)的条件下,若∠BAC=28°,求∠ADB的度数.19.如图,AB=DC,AC=DB,AC和BD相交于点O.(1)求证:∠ABC∠∠DCB;(2)求证:∠ABD=∠DCA.20.某水产品市场管理部门规划建造面积为2400m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28m2,月租费为400元,每间B种类型的店面的平均面积为20m2,月租费为360元,全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A种类型店面的数量范围;(2)该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%.为使店面的月租费最高,应建造A种类型的店面多少间?21.如图,一次函数y=2x+b的图像经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45∘至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.22.如图,在△ABC中,BD、CE分别是边AC、AB上的高线.(1)如果BD=CE,那么△ABC是等腰三角形,请说明理由;(2)取F为BC中点,连接点D,E,F得到△DEF,G是ED中点,求证:FG⊥DE;(3)在(2)的条件下,如果∠A=60°,BC=16,求FG的长度.23.如图1,∠ABC和∠DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D在同一直线上,连接AD,BD.(1)求证:∠ACD∠∠BCE;(2)探求AD与BE的数量和位置关系(3)若AC=√10,EC=√2求线段AD的长.24.在平面直角坐标系中,直线l分别于x轴,y轴的正半轴交于A,B两点,OC平分∠AOB,交AB于点D,点M是直线l上一动点,过M作OC的垂线,交x轴于E,交y轴于F,垂足为H,设∠OAB=α°,∠OBA=β°,且α2−4αβ+4β2=0.(1)直接写出α,β的值,α=,β=(2)若M与A重合(如图2),求证AD=BF;(3)①若M是线段AB上任意一点(如图3),则AE,BF,AD之间有怎样的数量关系,说明理由.②若M不在线段AB上时,求出AE,BF,AD之间的数量关系。
最新浙教版八年级上册数学期末试检测卷(附解析)
最新浙教版八年级上册数学期末试检测卷(附解析)最新浙教版八年级上册数学期末试卷(附解析)一、选择题(共30分,每小题3分)1.(3分)点P(1,3)向下平移2个单位后的坐标是()A.(1,2)B.(1,1)C.(1,5)D.(1,0)2.(3分)不等式x-1>0的解在数轴上表示为()A.(1,∞) B.(-∞,1) C.(1,∞) D.(-∞,1)3.(3分)以a,b,c为边的三角形是直角三角形的是()A.a=2,b=3,c=4 B.a=4,b=5,c=6 C.a=2,b=2,c=2√2 D.a=3,b=4,c=54.(3分)对于命题“若a^2=b^2”,则“a=b”下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=3 B.a=-3,b=-3 C.a=3,b=-3 D.a=-3,b=35.(3分)若x+aay,则()A.x0 B.x>y,ay,a>06.(3分)已知y=kx+k的图象与y=x的图象平行,则y=kx的大致图象为()A. B. C. D.7.(3分)如图,若△ABC的周长为20,则AB的长可能为()A.8 B.10 C.12 D.148.(3分)如图,△ABC中,D为AB的中点,BE⊥AC,垂足为E.若DE=4,AE=6,则BE的长度是()A.10 B.8 C.6 D.49.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=5,BC=12,将△ABC绕点B顺时针旋转60°,得到△BDE,连结DC交AB于点F,则△ACF与△BDF的周长之和为()A.44 B.43 C.42 D.4110.(3分)关于函数y=(k-3)x+k,给出下列结论:①此函数是一次函数。
②无论k取什么值,函数图象必经过点(-1,3)。
③若图象经过二、三、四象限,则k的取值范围是k<3。
④若函数图象与x轴的交点始终在正半轴可得k<3.其中正确的是()A.①② B.②③ C.③④ D.①③二、填空题(共24分,每小题4分)11.(4分)若函数y=2x+b(b为常数)的图象经过点A (-1,-2),则b=-4.12.(4分)若不等式组的解集是-1<x<2,则a=-1.13.(4分)已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为72°。
浙教版八年级上册数学期末考试试题及答案
浙教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是( )A .B .C .D .2.为了测量工件的内径,设计了如图所示的工具,点O 为卡钳两柄的交点,且有OA =OB =OC =OD ,只要量得CD 之间的距离,就可知工件的内径AB .其数学原理是利用△AOB△△COD ,判断的依据是( )A .SSSB .SASC .ASAD .AAS3.下列命题中,属于假命题的是( )A .三角形三个内角的和等于180°B .全等三角形的对应角相等C .等腰三角形的两个底角相等D .相等的角是对顶角4.不等式组23112x x ->⎧⎨-≥-⎩的解在数轴上表示为( ) A . B .C .D .5.关于一次函数y =x +2,下列说法正确的是( )A .y 随x 的增大而减小B .经过第一、三、四象限C .与y 轴交于(0,2)D .与x 轴交于(2,0)6.一次函数()50y kx k =+≠的图象与正比例函数()0y mx m =≠的图象都经过点(-3,2),则方程组5y kxy mx=+⎧⎨=⎩的解为()A.32xy=⎧⎨=⎩B.32xy=-⎧⎨=-⎩C.23xy=⎧⎨=-⎩D.32xy=-⎧⎨=⎩7.如图,点A,B,C分别代表王老师的家,图书馆,学校.已知图书馆B在王老师家A 的北偏东32°方向上,学校C在图书馆B的北偏西32°方向上.则△ABC的度数是()A.112°B.114°C.116°D.118°8.如图,在Rt△ABC中,△ACB=90°,AC=3,BC=4,点E,F在斜边AB上,将边AC 沿CE翻折,使点A落在AB上的点D处,再将边BC沿CF翻折,使点B落在CD延长线上的点B'处,则线段B F'的长为()A.35B.45C.1D.659.如图是2×5的正方形网格,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形.则在网格中,能画出且与△ABC成轴对称的格点三角形一共有()个.A.1B.2C.3D.410.如图,BD 平分△ABC 交AC 于点D .若20C A ∠-∠=,则△ADB =( )A .100°B .105°C .110°D .120°二、填空题11.若x 的2倍与y 的差小于3,用不等式可以表示为______.12.如果点(),P x y 的坐标满足222x y xy +=,那么称点P 为和谐点.请写出一个和谐点的坐标:______.13.如图,点D 在线段AB 的延长线上,△BAC =26°,△CBD =115°,则△C 的度数是______.14.如图,OP 平分△MON ,PA△ON 于点A ,点Q 是射线OM 上一个动点,若PA=3,则PQ 的最小值为_____.15.如图,在△ABC 中,AB =AC ,D ,E 是△ABC 内两点,AD 平分△BAC ,△EBC =△BEC =67.5°,BD =1,则BC =______.16.已知点A(2,5),B3),C(-5,2),D(-0.5.则在这些点中,在如图所示的直角坐标系阴影区域内的点有__________.17.如图,等腰直角△ABC中,D为斜边AB的中点,E,F分别为腰AC,BC上(异于端点)的点,DE△DF,AB=10,设x=DE+DF,则x的取值范围是__________.18.已知甲、乙两地相距24千米,小明从甲地匀速跑步到乙地用时3小时,小明出发0.5小时后,小聪沿相同的路线从甲地匀速骑自行车到甲乙两地中点处的景区游玩1小时,然后按原来速度的一半骑行,结果与小明同时到达乙地.小明和小聪所走的路程S(千米)与时间t(小时)的函数图象如图所示.(1)小聪骑自行车的第一段路程速度是______千米/小时.(2)在整个过程中,小明、小聪两人之间的距离S随t的增大而增大时,t的取值范围是______.三、解答题19.解答下列各题:(1)解不等式12126x x +-≤-; (2)把点A (a ,-3)向左平移3个单位,所得的点与点A 关于y 轴对称,求a 的值. 20.以下是小欣同学解不等式1123x x --≥+的解答过程: 解:去分母,得()1132x x -+≥+. …………△去括号,得1163x x -+≥+. …………△移项,得3116x x --≥--+. …………△合并同类项,得44x -≥. …………△两边除以-4,得1x ≥-. …………△小欣同学的解答过程是否有错误?如果有错误,请写出正确的解答过程.21.如图,函数y =-2x 和y =kx +3的图象相交于点A (m ,2).(1)求m 和k 的值.(2)根据图象,直接写出不等式23x kx -<+的解.22.如图,在平面直角坐标系xoy 中,点A 的坐标为(4,8),点B 的坐标为(4,0).(1)只用直尺(没有刻度)和圆规,在AB 上求作一个点P ,使点P 到A ,O 两点的距离相等(要求保留作图痕迹,不必写出作法).(2)求出(1)中画出的点P 的坐标.23.如图是9×9的正方形网格,按下列要求操作并计算.(1)在9×9的正方形网格中建立平面直角坐标系,使点A的坐标为(-1,3),点B的坐标为(-3,2).(2)先作点A关于y轴的对称点1A,然后点1A再向下平移4个单位得到点C,画出三角形ABC,并写出点C的坐标.(3)求△ABC的面积.24.如图,在△ABC中,AB=AC,点D,E分别是BC,AC的中点,CF△AB于点F,连结DE,DF,EF.(1)求证:△DEF是等腰三角形.(2)若AB=5,BC=6,求CF的长.25.如图,在△ABC中,△C=90°,AC=BC=1,AD是△BAC的平分线,DE△AB,垂足为E.求BE的长.26.如图,正方形EFGH的四个顶点分别在边长为1的正方形ABCD的四条边上.(1)设AE x =,试求正方形EFGH 的面积y 关于x 的函数式,并写出自变量x 的取值范围;(2)当14AE =时,求正方形EFGH 的面积.参考答案1.C【详解】解:A 、是轴对称图形,故此选项不符合题意;B 、是轴对称图形,故此选项不符合题意;C 、不是轴对称图形,故此选项符合题意;D 、是轴对称图形,故此选项不符合题意;故选:C .2.B【详解】解:在△ABO 和△CDO 中OA OC AOB COD OB OD =⎧⎪∠=⎨⎪=⎩∴△ABO△△CDO (SAS )故选B3.D【分析】根据三角形内角和定理,等腰三角形的性质,全等三角形性质,对顶角的定义,逐项分析判断即可求解.【详解】解:A. 三角形三个内角的和等于180°,是真命题,故该选项不符合题意;B. 全等三角形的对应角相等,是真命题,故该选项不符合题意;C. 等腰三角形的两个底角相等,是真命题,故该选项不符合题意;D. 有公共的顶点,角的两边互为反向延长线是对顶角,是假命题,故该选项符合题意. 故选:D .4.A【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次不等式;分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集,然后在数轴上表示出不等式的解集即可求解.【详解】23112x x ->⎧⎨-≥-⎩①②, 解不等式△得:2x >,解不等式△得:3x ≤,△不等式组的解集为:23x <≤,将不等式的解集在数轴上表示为:故选:A .5.C【分析】根据一次函数解析式可得10,20k b =>=>,进而判断A ,B 选项,分别0,0x y ==即可求得与y 轴,x 轴的交点坐标,进而判断C ,D 选项,即可求解.【详解】解:由y =x +2,10,20k b =>=>,令0x =,得2y =,令0y =,得2x =-,A . y 随x 的增大而增大,故该选项不正确,不符合题意;B . 图像经过第一、二、三象限,故该选项不正确,不符合题意;C . 与y 轴交于(0,2),故该选项正确,符合题意;D . 与x 轴交于(-2,0)故该选项不正确,不符合题意.故选:C .6.D【分析】根据一次函数()50y kx k =+≠的图象与正比例函数()0y mx m =≠的图象都经过点(-3,2),即可得方程组的解.【详解】解:△一次函数()50y kx k =+≠的图象与正比例函数()0y mx m =≠的图象都经过点(-3,2),△方程组5y kx y mx =+⎧⎨=⎩的解为32x y =-⎧⎨=⎩. 故选:D .7.C32ADB ∠=︒,进而根据三角形内角和定理即可求解.【详解】如图,过点A 作AD ∥BE 交BC 于点D ,BE 方向为正北方向,根据题意可得32,32BAD DBE ∠=︒∠=︒,AD BE ∥,32DBE ADB ∴∠=∠=︒,△1801803232116ABC ADB DAB ∠=︒-∠-∠=︒-︒-︒=︒,故选C .8.B【分析】先利用勾股定理可得5AB =,再根据折叠的性质可得90AEC DEC ∠=∠=︒,,ACE DCE B CF BCF '∠=∠∠=∠,B F BF '=,利用三角形的面积公式可得125CE =,利用勾股定理可得95AE =,然后根据角的和差可得45ECF ∠=︒,根据等腰直角三角形的判定可得125EF CE ==,最后根据线段和差可得45BF =,由此即可得. 【详解】解:90,3,4ACB AC BC ∠=︒==,5AB ∴==,由折叠的性质得:,90,,B F BF AEC DEC ACE DCE B CF BCF ''=∠=∠=︒∠=∠∠=∠, 1122ABC SAB CE AC BC ∴=⋅=⋅,即1153422CE ⨯=⨯⨯,解得125CE =,95AE ∴==,又,,90ACE DCE B CF BCF ACB '∠=∠∠=∠∠=︒,1452DCE B CF ACB '∴∠+∠=∠=︒,即45ECF ∠=︒,Rt CEF ∴是等腰直角三角形,125EF CE ==,45BF AB AE EF ∴=--=,45B F BF '∴==,故选:B .9.D【分析】根据题意画出图形,找出对称轴及相应的三角形即可.【详解】解:如图所示:与△ABC 成轴对称的格点三角形一共4个,故选D .10.A【详解】解:△BD 平分△ABC 交AC 于点D ,△ABD DBC ∠=∠,△20C A ∠-∠=即20C A ∠=∠+,又△ADB C DBC ∠=∠+∠,△20ADB A DBC ∠=∠++∠,△180A ABD ADB ∠+∠+∠=,即180A ABD ADB ∠+∠=-∠,△18020ADB ADB ∠=-∠+,△2200ADB ∠=,△100ADB ∠=.故选:A .11.23x y -<【详解】解:x 的2倍与y 的差小于3,用不等式可以表示为23x y -<.故答案为:23x y -<.12.(0,0)(答案不唯一)【详解】解:移项得,x 2-2xy+y 2=0,所以,(x -y )2=0,所以,x -y=0,x=y ,所以,和谐点为(0,0)(答案不唯一,只要横坐标与纵坐标相等即可).故答案为:(0,0).13.89︒【详解】解:△点D 在线段AB 的延长线上,△BAC =26°,△CBD =115°,△1152689C CBD BAC ∠=∠-∠=︒-︒=︒,故答案为:89︒.14.3【详解】解:由垂线段最短可知,当PQ 与OM 垂直的时候,PQ 的值最小,根据角平分线的性质可知,此时PA=PQ=3.故答案为:3.15【分析】根据AD 平分△BAC ,及AB =AC ,证得BAD CAD ≌,得出BD CD =,由△EBC =△BEC =67.5°,计算出BCE ∠的大小,并证得BDC 是直角三角形,根据勾股定理解出答案.【详解】△AD 平分△BAC ,△BAD CAD ∠=∠,△在BAD 和CAD 中,AB ACBAD CAD AD AD=⎧⎪∠=∠⎨⎪=⎩,△BAD CAD ≌,△1BD CD ==,△△EBC =△BEC =67.5°,△18045BCE EBC BEC ∠=︒-∠-∠=︒,△1BD CD ==,△45CBD ∠=︒,△18090BDC BCE CBD ∠=︒-∠-∠=︒,△BDC 是直角三角形,△根据勾股定理,BC ==.16.B ,D【详解】由题意可知,阴影区域横坐标范围13x -≤≤,纵坐标范围1 3.5y ≤≤,△A (2,5),C (-5,2)不在阴影区域内B3),D (-0.5故答案为:B ,D .17.10x ≤<【详解】如图所示,过点D 作DM△AC ,DN△BC ,分别交AC 、BC 于M 、N ,△△ABC 是等腰三角形,点D 是AB 的中点,△DM= DN ,又DE△DF ,△△EDM=△FDN ,在△EDM 和△FDN 中EMD FND DM DNMDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩△EDM △△FDN (ASA),△DE=DF ,在Rt ABC 中, △AB=10,△AC=BC=当DE 、DF 与边垂直时和最小,即1()2DE DF AC BC +=+= 当E 或F 有一个与C 重合时,其和最大,即10DE DF DC DB AB +=+==,△10x <.故答案为:10x <.18. 24 00.5t ≤≤,0.751x ≤≤,1.52x t ≤≤【分析】(1)设小聪骑自行车的第一段路程速度是a 千米/小时,则第二段路程的速度为12a 千米/小时, 根据题意建立分式方程解方程即可求解;(2)分析题意,结合函数图象可知,从00.5t ≤≤时,两人的距离S 随t 的增大而增大,当第一次相遇到小聪停下,S 随t 的增大而增大,当两人再次相遇到小聪开始骑行第二段路程时,S 随t 的增大而增大.【详解】(1)设小聪骑自行车的第一段路程速度是a 千米/小时,则第二段路程的速度为12a 千米/小时, 根据题意得,12120.5+1+30.5a a+= 解得24a =,经检验,24a =是原方程的解,故答案为:24∴第一段路程的速度为12千米/小时(2)结合函数图象可知,从00.5t ≤≤时,两人的距离S 随t 的增大而增大,小明的速度为24=83千米/小时 当第一次相遇时,()8240.5x x =-解得0.75x =当第一次相遇到小聪停下,此时0.751x ≤≤,当第二次相遇时,812x =解得 1.5x =小聪开始骑行第二段路程时的时间为10.5 1.5x =+=,当两人再次相遇到小聪开始骑行第二段路程时,S 随t 的增大而增大,此时1.52x ≤≤. 当2x >时,因为小聪的速度大于小明的速度,则两人的距离随t 的增大而减小, 综上所述,00.5t ≤≤,0.751x ≤≤,1.52x t ≤≤时,S 随t 的增大而增大,故答案为:00.5t ≤≤,0.751x ≤≤,1.52x t ≤≤19.(1)74x ≤- (2)32a = 【分析】(1)按照解不等式的步骤,去分母、去括号、移项、合并同类项、化系数为1求解即可;(2)求出平移后的点的坐标()3,3A a '--,根据关于y 轴对称的点的特征,横坐标互为相反数,纵坐标相同,即可得出方程,解出方程即可得到a 的值.(1)12126x x +-≤- 解:去分母得,()()3126x x +≤--,去括号得,3326x x +≤--,移项,合并得,47x ≤-, 解得,74x ≤-; (2)将点A (a ,-3)向左平移3个单位后得到()3,3A a '--△点A′与点A 关于y 轴对称,△()3a a =-- △32a =. 20.小欣同学的解答过程有错误,解答见解析【详解】解:小欣同学的解答过程第△步和第△步都出现了错误,正确的解答过程如下,解:去分母,得()()3132x x --≥+.去括号,得3163x x -+≥+.移项,得3316x x --≥--+.合并同类项,得42x -≥.两边除以-4,得12x ≤-. 21.(1)1,1m k =-=(2)1x >-【分析】(1)将点A (m ,2)代入2y x =-求得m 的值,进而求得()1,2A -,代入y =kx +3即可求解;(2)根据图象,求得直线y =kx +3在y =-2x 上方时x 的取值范围,即可求解. (1)将点A (m ,2)代入2y x =-,即22m =-,解得1m =-,∴()1,2A -,将点()1,2A -代入y =kx +3,得()213k =⨯-+,解得1k =,(2)△()1,2A -,根据图象可知, 23x kx -<+的解集为1x >-.22.(1)见解析(2)()4,3P【分析】(1)根据题意作出OA 的垂直平分线交AB 于点P ,则点P 即为所求;(2)连接OP ,根据垂直平分线的性质可得OP PA =,根据题意设()4,P m ,在Rt POB △中,勾股定理求得m 的值,进而求得P 点的坐标.(1)如图所示,点P 即为所求,(2)如图,连接OP ,PO PA =,()4,8A ,点B 的坐标为(4,0)AB y ∴∥轴,设()4,P m ,则,8PB m PO PA m ===-,在Rt POB △中,4BO =,222OP OB PB =+,即()22284m m -=+,解得3m =, ()4,3P ∴.23.(1)见解析 (2)见解析 (3)5【解析】(1)由于点A 坐标为(-1,3),将点A 向右平移1个单位,再向下平移3个单位,即为坐标原点O ,如图所示:(2)点A 关于y 轴的对称点1A 如图所示,△C 点的横坐标为(1)1--=,纵坐标为341-=-,△C 点坐标为(1,1)-,△ABC 如图所示:(3)将三角形补成矩形,如图所示:△111442134245222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=△.24.(1)见解析(2)245 【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得12DE DF AC ==,即可得证. (2)根据等腰三角形的性质,可得90ADB ∠=︒,进而勾股定理求得AD ,根据等面积法即可求解.(1)证明:△,AB =AC ,点D ,E 分别是BC ,AC 的中点,CF△AB 于点F ,Rt AFC ∴中,12EF AC =,AD BC ⊥,Rt ADC ∴中,12DE AC =,∴EF DE =,∴△DEF 是等腰三角形; (2)解:AD BC ⊥,BD DC =1=32BC =,Rt △ABD 中,5,3AB BD ==,224AD AB BD ∴=-=,1122ABC S BC AD AB CF =⋅=⋅△,∴642455BC AD CF AB ⋅⨯===. 【点睛】本题考查了等腰三角形的性质与判定,直角三角形中斜边上的中线等于斜边的一半,勾股定理,掌握以上知识是解题的关键.25.21BE =-【分析】利用AD 是△BAC 的平分线,DE△AB ,得到90C DEA ∠=∠=,CAD EAD ∠=∠,得到△CAD△△EAD ,得到AC=AE ,再用勾股定理求出AB 即可得到答案.【详解】△△C=90°,DE△AB△90C DEA ∠=∠=△ AD 平分△ CAB ,△CAD EAD ∠=∠又△AD=AD△ △CAD△△EAD (AAS )△ AE=AC=1在Rt△ACB 中,由勾股定理得AB △1BE AB AE =-【点睛】本题考查全等三角形的判定定理、勾股定理的应用,证明出△CAD△△EAD 是关键.26.(1)()222101y x x x =-+<< (2)58【分析】(1)求出△DHG =△AEH ,可证△HAE△△GDH ,则DH =AE =x ,AH =1-x ,在Rt△HAE 中,利用勾股定理求出2HE 即可得到正方形EFGH 的面积y 关于x 的函数式,然后求出自变量x 的取值范围即可;(2)把14x =代入(1)中解析式计算即可. (1)解:△四边形ABCD 与EFGH 均为正方形,△HG =EH ,△D =△A =90°,△GHE =90°,△△DHG +△AHE =90°=△AHE +△AEH ,△△DHG =△AEH ,△△HAE△△GDH (AAS ),△DH =AE =x ,△AH =1-x ,在Rt△HAE 中,由勾股定理得()2222221221HE AE AH x x x x =+=+-=-+, △2221y x x =-+;又△0x >,且10x ->,△01x <<,△()222101y x x x =-+<<;(2) 当14x =时,22115221221448y x x ⎛⎫=-+=⨯-⨯+= ⎪⎝⎭,△当14AE =时,正方形EFGH 的面积为58.。
浙教版八年级上册数学期末测试卷及含答案
浙教版八年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为()A. B.4 C. D.2、下列长度的4根木条中,能与4cm和9cm长的2根木条首尾依次相接围成一个三角形的是()A.4cmB.9cmC.5cmD.13cm3、一次函数y=x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4、在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7B.1,5,9C.5,12,13D.7,15,245、已知如图,两个三角形全等,则∠1等于()A.73°B.57°C.50°D.60°6、如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°7、如图,⊙O中,弦AB、CD相交于点P,∠A=40°,∠APD=75°,则∠B的度数是()A.15°B.40°C.75°D.35°8、下列图形是公共设施标志,其中是轴对称图形的是( )A. B. C. D.9、传统佳节“春节”临近,剪纸民俗魅力四射,对称现象无处不在.观察下面的四幅剪纸,其中是轴对称图形的有()A. 个B. 个C. 个D. 个10、明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m 2B.150m 2C.330m 2D.450m 211、下列各组线段,能组成三角形的是()A.1cm,1cm,3cmB.2cm,3cm,5cmC.3cm,4cm,8cm D.5cm,6cm,10cm12、如图,在中,,为斜边的中点,在内绕点转动,分别交边,于点,(点不与点,重合),下列说法正确的是()①;②;③A.①②B.①③C.②③D.①②③13、如图,已知⊙O的半径为5,弦AB=8,CD=6,则图中阴影部分面积为()A. π–24B.9πC. π–12D.9π–614、一个一元一次不等式组的解集在数轴上表示如图,则此不等式组的解集是()A.x>3B.x≥3C.x>1D.x≥115、将三角形三个顶点的横坐标都减2,纵坐标不变,则所得三角形与原三角形的关系是()A.将原三角形向左平移两个单位B.将原三角形向右平移两个单位C.关于x轴对称D.关于y轴对称二、填空题(共10题,共计30分)16、若不等式组的解集是-1<x<1,则(a+b)2019=________.17、如图,OB是⊙O的半径,弦AB=OB,直径CD⊥AB.若点P是线段OD上的动点,连接PA,则∠PAB的度数可以是________(写出一个即可)18、如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B 运动.若设点P运动的时间是t秒,那么当t=________,△APE的面积等于6.19、如图,直角△ABC中,∠A=90°,CD=DE=BE,当∠ACD=21°时,∠B=________.20、如图,边长为4的菱形ABCD中,∠ABC=30°,P为BC上方一点,且,则PB+PC的最小值为________.21、等腰三角形的一边长7cm,另一边长8cm,那么这个三角形的周长是________cm.22、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是________.23、我们规定:等腰三角形的顶角与一个底角度数的比值叫作等腰三角形的“特征值”,记作k.若,则该等腰三角形的顶角为________度.24、如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.25、已知在Rt△ABC中,P为斜边AB上一点,且PB=PC=2,那么AB=________.三、解答题(共5题,共计25分)26、解不等式组:,并在数轴上表示解集.27、如图,AD∥BE,∠1=∠2,求证:∠A=∠E.请完成解答过程解:∵AD∥BE(已知),∴∠A=∠▲(▲)又∴∠1=∠2(已知),∴AC∥▲(▲)∴∠3=∠▲(▲)∴∠A=▲(▲)28、如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.求证:FP=EP.29、如图,AE是△ABC的角平分线,D是AE上一点,∠DBE=∠DCE.求证:BE =CE.30、如图,在△ABC中,∠ACB=90°,AC=BC,BD⊥CE,AE⊥CE,垂足分别为D、E,猜想图中线段DE、AE、DB之间的关系,并说明理由.参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、C5、C6、B7、D9、D10、B11、D12、A13、A14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
浙教版八年级上册数学期末考试试卷含答案
浙教版八年级上册数学期末考试试题一、单选题1.下面四个标志中,是轴对称图形的是( )A .B .C .D .2.如图,在△ABC 中,AC 边上的高线是( )A .线段DAB .线段BAC .线段BCD .线段BD3.在下列长度的四根木棒中,能与6cm ,9cm 长的两根木棒钉成一个三角形的是( )A .1cmB .2cmC .3cmD .4cm4.若a >b ,则下列式子正确的是( )A .b+2>a ﹣2B .﹣2017a >﹣2017bC .4﹣a >4﹣bD .44ab 5.在平面直角坐标系中,点(),2A m 与点()3,B n 关于x 轴对称,则( )A .3m =,2n =-B .3m =-,2n =C .3m =,2n =D .2m =-,3n =6.已知点(﹣1,y 1),(4,y 2)在一次函数y =3x+a 的图象上,则y 1,y 2的大小关系是()A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定7.能说明命题“若x 2≥9,则x≥3”为假命题的一个反例可以是( )A .x =4B .x =2C .x =﹣4D .x =﹣28.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC =BC ,则下列选项正确的是( )A .B .C .D . 9.如图,A ,B 两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且ABC 为等腰三角形,在图中所有符合条件的点C 的个数为( )A .7B .8C .9D .1010.如图,在平面直角坐标系中,点A 的坐标为(4,0),点Q 是直线y 上的一个动点,以AQ 为边,在AQ 的右侧作等边△APQ ,使得点P 落在第一象限,连接OP ,则OP+AP 的最小值为( )A .6B .C .8D .二、填空题11.命题“内错角相等,两直线平行”的题设是__________.12.已知点A 的坐标为(3,4),将其向右平移2个单位后的坐标为 _____.13.如图,直线y kx b =+经过点(2,3)A --和点(3,0)B -,直线y ax =经过点A ,则不等式ax kx b <+的解集为______;14.如图,四边形ABCD中,90∠=∠=︒,分别以它的四条边为斜边,向外作等ABC CDA腰直角三角形,其中3个三角形面积分别为2,5,9,则第4个三角形面积为___________.15.已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若△EAB=△ABO,则点E的坐标为_____________.16.如图,在△ABC中,AB>AC,△B=45°,AC=5,BC=E是AB边上一点,将△BEC沿EC所在直线翻折得到△DEC,DC交AB于F,当DE△AC时,BE的长为_____.17.如图,等腰直角△ABC中,D为斜边AB的中点,E,F分别为腰AC,BC上(异于端点)的点,DE△DF,AB=10,设x=DE+DF,则x的取值范围是__________.三、解答题18.如图,已知AC 平分△BAD ,AB =AD .求证:△B =△D .19.解不等式组:1+221 1.3x x >-⎧⎪-⎨≤⎪⎩ 20.如图所示的象棋棋盘上,若帅位于点(1,0)上,相位于点(3,0)上.(1)请在如图所示的网格中建立平面直角坐标系;(2)炮所在点的坐标是 ,马与帅的距离是 ;(3)若要把炮移动到与它关于y 轴对称的点的位置,则移动后炮的位置是 (用坐标表示).21.如图,一次函数y =﹣2x+4的图象分别与x 轴、y 轴交于点A ,B .(1)求△AOB的面积;(2)在该一次函数图象上有一点P到x轴的距离为6,求点P的坐标.22.某公司购买A B、两种不同品牌的免洗洗手液,若购买A种10件,B种5件,共需130元;若购A种5件,B种10件,共需140元.、两种洗手液每件各多少元?(1)A B、两种洗手液共100件,且总费用不超过900元,则A种洗手液至少需要购(2)若购买A B买多少件?23.甲、乙两人分别从同一公路上的A,B两地同时出发骑车前往C地,两人行驶的路程y (km)与甲行驶的时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)A,B两地相距km;乙骑车的速度是km/h;(2)请分别求出甲、乙两人在0≤x≤6的时间段内y与x之间的函数关系式;(3)求甲追上乙时用了多长时间.24.在△ABC中,△BAC=90°,AB=AC.(1)如图1,点D是CA延长线上的一点,点E在线段AB上,且AD=AE,连接BD和CE,延长CE交BD于点F.求证:BD=CE;(2)在(1)的条件下,若点F为BD的中点,求△AFD的度数;(3)如图2,点P是△ABC外一点,△APB=45°,猜想PA,PB,PC三条线段长度之间存在的数量关系,并证明你的结论.25.如图,在平面直角坐标系中,直线y=kx+b分别交x轴,y轴于点A(6,0),点B(0,﹣8),过点D(0,16)作平行于x轴的直线CD,交AB于点C,点E(0,m)在线段OD 上,延长CE交x轴于点F,点G在x轴的正半轴上,且AG=AF.(1)求直线AB的函数表达式;(2)当点E恰好是OD的中点时,求△ACG的面积;(3)是否存在m,使得△FCG是直角三角形?若存在,求m的值;若不存在,请说明理由.参考答案1.B【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.【详解】由图可知, △ABC 中AC 边上的高线是BD .故选:D .【点睛】本题主要考查了三角形的高线,钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.3.D【分析】首先设第三根木棒长为xcm ,再根据三角形三边关系,即可求得3<x <15,据此即可判定.【详解】解:设第三根木棒长为xcm ,由题意得:9﹣6<x <9+6,所以3<x <15,故只有4cm 符合题意.故选:D .【点睛】本题考查了三角形三边关系,熟练掌握和运用三角形三边关系是解决本题的关键.4.D【分析】根据不等式的性质 (△不等式的两边都加上或减去同一个数或整式, 不等号的方向不变,△不等式的两边都乘以或除以同一个正数, 不等号的方向不变,△不等式的两边都乘以或除以同一个负数, 不等号的方向改变)逐个判断即可.【详解】解:A,a>b,∴a -2>b -2,无法得出A 中结论,故本选项错误; B.a>b, ∴﹣2017a <﹣2017b,故本选项错误; C.a>b, ∴-a<-b,∴4-a<4-b, 故本选项错误; D. a>b, ∴4a >4b , 故本选项正确; 故选D.【点睛】本题考查了对不等式的性质的应用, 主要考查学生的辨析能力, 是一道比较典型的题目,难度适中.5.A【分析】根据关于x 轴对称的两点横坐标相等,纵坐标互为相反数即可求得m 与n 的值.【详解】根据关于x 轴对称的两点横坐标相等,纵坐标互为相反数可知3m =,2n =-,故选:A .【点睛】本题主要考查了关于x 轴对称的两点的坐标特征,熟练掌握平面直角坐标系中的相关对称知识是解决本题的关键.6.A【分析】根据一次函数y =3x+a 的一次项系数k >0时,函数值随自变量的增大而增大的性质来求解即可.【详解】解:△一次函数y =3x+a 的一次项系数为3>0,△y 随x 的增大而增大,△点(﹣1,y 1),(4,y 2)在一次函数y =3x+a 的图象上,﹣1<4,△y 1<y 2,故选:A .【点睛】本题考查了一次函数的性质,掌握y kx b =+,0k >时,y 随x 的增大而增大是解题的关键.7.C【分析】把x 的值分别代入x 2≥9且与3比较,即可判定【详解】解:当x =﹣4时,满足x 2≥9,但不能得到x≥3,说明命题“若x 2≥9,则x≥3”是假命题的一个反例可以是x =﹣4.故选:C .【点睛】本题考查了判定一个命题真假的方法,熟练掌握和运用判定一个命题真假的方法是解决本题的关键.8.B【详解】解:△PB+PC=BC ,PA+PC=BC ,△PA=PB ,根据线段垂直平分线定理的逆定理可得,点P 在线段AB 的垂直平分线上,故可判断B 选项正确.故选B .9.B【分析】分两种情况:△AB 为等腰三角形的底边;△AB 为等腰三角形的一条腰;画出图形,即可得出结论.【详解】解:如图所示:△AB为等腰三角形的底边,符合条件的点C的有5个;△AB为等腰三角形的一条腰,符合条件的点C的有3个.所以符合条件的点C共有8个.故选:B.【点睛】此题考查了等腰三角形的判定,熟练掌握等腰三角形的判定是解题的关键,注意数形结合的解题思想.10.C【分析】根据点Q的运动先证明点P在直线PM是运动,再根据轴对称最值问题,作点P 关于直线PM的对称点B,连接AB,求出AB的长即可.【详解】解:如图,作△OAM=60°,边AM交直线OQ于点M,作直线PM,由直线y可知,△MOA=60°,△△MOA=△OAM=60°,△△OAM是等边三角形,△OA=OM,△△APQ是等边三角形,△AQ=AP,△PAQ=60°,△△OAQ=△MAP,△△OAQ△△MAP(SAS),△△QOA=△PMA=60°=△MAO,△PM△x轴,即点P在直线PM上运动,过点O关于直线PM的对称点B,连接AB,AB即为所求最小值,此时,在Rt△OAB中,OA=4,△BAO=60°,△△OBA=30°,△AB=2OA=8.故选:C.【点睛】本题属于一次函数与几何综合题,涉及勾股定理,等边三角形的性质与判定,全等三角形的性质与判定,轴对称最值问题,旋转的性质等知识,解题的关键是得出点P在直线PM是运动.11.内错角相等【分析】根据一个命题都可以改成“如果…那么…”的形式,如果后面的部分是题设,那么后面的部分是结论,由此问题可求解.【详解】解:命题“内错角相等,两直线平行”改为“两条直线被第三条直线所截,如果一对内错角相等,那么这两条直线平行”,所以这个命题的题设为内错角相等;故答案为内错角相等.【点睛】本题主要考查命题的题设与结论,熟练掌握命题的题设和结论的书写是解题的关键.12.(5,4)【分析】直接利用平移的变化规律求解即可.平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:原来点的横坐标是3,纵坐标是4,向右平移2个单位得到新点的横坐标是3+2=5,纵坐标不变.则新坐标为(5,4).故答案为:(5,4).【点睛】本题考查了平移坐标的变化规律,即平移的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,熟练掌握知识点是解题的关键.x13.<2【分析】不等式ax kx b <+的解集,就是指函数图象在点A 左边的部分的自变量的取值范围.【详解】解:根据题意,y kx b =+与y ax =都经过点(2,3)A --,结合图像可知,不等式ax kx b <+的解集为<2x -.故答案为:<2x -【点睛】本题主要考查一次函数与一元一次不等式之间的联系.根据函数图象即可得到不等式的解集.14.12【分析】连接AC ,先根据等腰直角三角形的面积公式、勾股定理可得222,,AB BC AD 的值,再利用勾股定理可得2CD 的值,由此即可得.【详解】解:如图,连接AC ,ABE 是等腰直角三角形,且它的面积为5,211522AE BE AE ∴⋅==,即210AE =, 2222220AB AE BE AE ∴=+==,同理可得:2236,8BC AD ==,90ABC CDA ∠=∠=︒,22222AB BC AC AD CD ∴+==+,即220368CD +=+,解得248CD =,在等腰Rt CDF 中,22222CD CF DF CF =+=,即221242CF CD ==, 则等腰Rt CDF 的面积为21112412222CF DF CF ⋅==⨯=, 故答案为:12.【点睛】本题考查了等腰直角三角形、勾股定理,熟练掌握勾股定理是解题关键.15.(-12,-8);(4,8)【分析】分两种情况:当点E 在y 轴右侧时,由条件可判定AE△BO ,容易求得E 点坐标;当点E 在y 轴左侧时,可设E 点坐标为(a ,a+4),过AE 作直线交x 轴于点C ,可表示出直线AE 的解析式,可表示出C 点坐标,再根据勾股定理可表示出AC 的长,由条件可得到AC=BC ,可得到关于a 的方程,可求得E 点坐标.【详解】(1)当点E 在y 轴右侧时,如图1,连接AE ,△△EAB=△ABO ,△AE△OB ,△A (0,8),△E 点纵坐标为8,又E 点在直线y=x+4上,把y=8代入可求得x=4,△E 点坐标为(4,8);(2)当点E 在y 轴左侧时,过A 、E 作直线交x 轴于点C ,如图2,设C(m,0),△△EAB=△ABO,△AC=BC,△(4-m)2=m2+82,解得m=-6,△C(6,0)△直线AC的解析式为483y x=+,△E是直线AC与y=x+4的交点△联立4834y xy x⎧=+⎪⎨⎪=+⎩,解得128xy=-⎧⎨=-⎩△E(-12,-8).综上可知,E点坐标为(4,8)或(-12,-8).故答案为:(4,8)或(-12,-8).【点睛】本题主要考查一次函数的综合应用,涉及待定系数法、平行线的判定和性质、等腰三角形的性质、分类讨论思想等知识点.确定出E点的位置,由条件得到AE△OB或AC=BC 是解题的关键.本题难度未大,注意考虑全面即可.16.2【分析】作CH△AB于H,EM△BC于M,求出BH=CH=4,根据AC=5,可得AH=3,AB=7,然后再证明△ACE=△AEC,得到AE=AC=5,即可求出BE=2.【详解】解:如图,作CH△AB于H,EM△BC于M,△△B=45°,BC=,△BH=CH=4,△AC=5,△AH=3,△AB=AH+BH=3+4=7,△将△BEC沿EC所在直线翻折得到△DEC,且DE△AC,△△ACD=△D=△B=45°,△DCE=△BCE,△△ACE=△ACD+△DCE=△B+△BCE=△AEC,△AE=AC=5,△BE=AB﹣AE=7﹣5=2.故答案为:2.【点睛】本题考查翻折变换的性质,等腰直角三角形的性质,勾股定理,平行线的性质,等角对等边等知识,解题的关键是熟练掌握图形翻折的性质.17.10≤<x【分析】过点D作DM△AC,DN△BC,分别交AC、BC于M、N,证明DE=DF,当DE、DF与边垂直时和最小,当E或F有一个与C重合时,其和最大.【详解】如图所示,过点D作DM△AC,DN△BC,分别交AC、BC于M、N,△△ABC是等腰三角形,点D是AB的中点,△DM= DN,又DE△DF,△△EDM=△FDN,在△EDM和△FDN中EMD FND DM DNMDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩△EDM △△FDN (ASA),△DE=DF ,在Rt ABC 中, △AB=10,△AC=BC=当DE 、DF 与边垂直时和最小,即1()2DE DF AC BC +=+= 当E 或F 有一个与C 重合时,其和最大,即10DE DF DC DB AB +=+==,△10x <.故答案为:10x <.【点睛】本题主要考查了全等三角形的判定和性质,等腰三角形性质,垂线段最短等,能灵活证明三角形全等,判断出DE+DF 什么情况下和最大,最小是解题的关键.18.见解析【分析】首先根据角平分线的定义,可证得△BAC =△DAC ,再根据SAS 即可证得△ABC△△ADC ,据此即可证得结论【详解】首先根据角平分线的定义得到△BAC =△DAC ,再利用SAS 定理便可证明其全等,进而可得结论.证明:△AC 平分△BAD ,△△BAC =△DAC ,在△ABC 和△ADC 中,AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩, △△ABC△△ADC (SAS ),△△B =△D .【点睛】本题考查了角平分线的定义及全等三角形的判定和性质,熟练掌握和运用全等三角形的判定方法是解决本题的关键.19.-3<x≤2【详解】解:解不等式△得:x>-3,将△化简得:2x-1≤3,解得:x≤2,△不等式组的解为-3<x≤2.20.(1)见解析(2)(﹣2,2);2(3)(2,2)【分析】(1)根据已知两点的坐标可确定平面直角坐标系,再判断其它各点的坐标;(2)根据点的坐标确定距离;(3)根据对称关系即可求解平移的位置.(1)根据帅位于点(1,0)上,相位于点(3,0),坐标系如图:(2)炮位于点(﹣2,2),马与帅的距离是2,故答案为:(﹣2,2);2;(3)炮移动到关于y轴对称的位置应该为马的右侧一个单位,则移动后炮的位置是(2,2).故答案为:(2,2).【点睛】本题考查了构建直角坐标系,读出点的坐标,根据坐标求距离,以及关于坐标轴对称的点的特征,灵活掌握性质是本题的关键.21.(1)4;(2)P点坐标(﹣1,6),(5,﹣6)【分析】(1)根据题意可求A,B两点坐标,即可求△AOB的面积.(2)由点P到x轴的距离为6,即|y|=6,可得y=±6,代入解析式可求P点坐标.【详解】解:(1)当x=0时,y=4,当y=0时,x=2△A (2,0),B (0,4)△AO =2,BO =4△S△AOB =12AO×BO =4 (2)△点P 到x 轴的距离为6△点P 的纵坐标为±6△当y =6时,6=﹣2x+4△x =﹣1,即P (﹣1,6)当y =﹣6时,﹣6=﹣2x+4△x =5,即P (5,﹣6)△P 点坐标(﹣1,6),(5,﹣6)22.(1)A 种洗手液每件8元,B 种洗手液每件各10元;(2)50件【分析】(1)设A 种洗手液每件x 元,B 种洗手液每件各y 元,根据题意列出二元一次方程组,解方程组即可求解;(2)设A 种洗手液购买m 件,根据题意列出不等式,从中找到最小整数解即可.【详解】解:(1)设A 种洗手液每件x 元,B 种洗手液每件各y 元, 根据题意得105130510140x y x y +=⎧⎨+=⎩解得:810x y =⎧⎨=⎩ 答:A 种洗手液每件8元,B 种洗手液每件各10元;(2)设A 种洗手液购买m 件,则B 种洗手液购买()100m -件,根据题意可得()810100900m m +-≤,解得:50m ≥.答:A 种洗手液至少需要购买50件.23.(1)20;5;(2)甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为10y x =,520y x =+;(3)甲追上乙用了4小时的时间【分析】(1)根据图象可直接求出A 、B 两地的相距距离,然后由图象可知乙行驶10km 所需的时间为2小时,由此问题可求解;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,然后把点()()()6,60,2,30,0,20代入求解即可;(3)由题意可联立(2)中的两个函数关系式进行求解即可.【详解】解:(1)由图象可知:A 、B 两地的相距20km ;乙骑车的速度为(30-20)÷2=5km/h ; 故答案为20;5;(2)设甲、乙两人在0≤x≤6的时间段内y 与x 之间的函数关系式分别为y kx =、y ax b =+,则由图象可把点()6,60代入甲的函数关系式得:660k =,解得:10k =,△甲的函数关系式为10y x =;把点()()2,30,0,20代入乙的函数关系式得:23020a b b +=⎧⎨=⎩,解得:520a b =⎧⎨=⎩,△乙的函数关系式为520y x =+;(3)由(2)可联立关系式得:10520y xy x =⎧⎨=+⎩,解得:440x y =⎧⎨=⎩,△甲追上乙用了4小时的时间.24.(1)见解析(2)45°(3)PB ﹣PC =,理由见解析【分析】(1)由两个等腰直角三角形得到两个三角形全等的条件,即可;(2)利用(1)得到的结论,判断出点A ,E ,F ,D 四点共圆,即可;(3)利用三角形相似的判定和性质,再利用勾股定理,即可.【详解】(1)证明:△△BAC =90°,△△BAC =△DAB =90°,在Rt△EAC 和Rt△DAB 中,AD AEDAB EAC AB AC=⎧⎪∠=∠⎨⎪=⎩,△Rt△EAC△Rt△DAB (SAS ),△CE =BD ;(2)解:如图1,由(1)有,Rt△EAC△Rt△DAB,△△ABD=△ACE,△△ACE+△AEC=90°,△△ABD+△AEC=△ABD+△BEF=90°,△△DAE=90°,△点A,E,F,D四点共圆,△△AFE=△ADE=45°,△△AFD=45°;(3)解:结论:PB﹣PC=.理由:如图2,在PB上截取PM=PC,由(2)有,△BPC=90°,△CM=,△PMC=45°,△△BMC=135°,△△APB=45°,△△APC=135°,△△APC=△BMC,△△ACP+△ACM=△BCM+△ACM=45°,△△ACP=△BCM,△△APC△△BMC ,△PC PA CM MB ==△BM =,△PB =PM+BM =PC ,△PB ﹣PC =.25.(1)y 43=x ﹣8 (2)192(3)存在,m =7或4【分析】(1)将点A 、B 的坐标代入函数表达式:y =kx+b ,即可求解;(2)证明△EDC△△EOF (AAS ),由全等三角形的性质得出OF =CD =18,求出AG =AF =24,过点C 作CH△x 轴于点H ,由三角形面积公式可得出答案;(3)△当△FGC =90°时,AG =AF ,则AC 是中线,则AF =AC =20,故点F (﹣14,0),即可求解;△当△CGF =90°时,则点G (18,0),则AF =AG =12,故点F (﹣6,0),即可求解.(1)解:将点A 、B 的坐标代入函数表达式:y =kx+b , 608k b b +=⎧⎨=-⎩, 解得:438k b ⎧=⎪⎨⎪=-⎩, △直线的表达式为:y 43=x ﹣8; (2) 当y =16时,43x ﹣8=16, 解得x =18,△点C 的坐标为(18,16),△CD =18,△E 是OD 中点,△DE =OE ,△△CDE=△FOE,△DEC=△OEF,△△EDC△△EOF(ASA),△OF=CD=18,△AG=AF=OF+OA=24,过点C作CH△x轴于点H,△S△ACG1122AG CH=⨯⨯=⨯24×16=192;(3)△当△FCG=90°时,AG=AF,则AC是中线,则AF=AC=20,故点F(﹣14,0),由点C、F的坐标可得:直线CF的表达式为:y12=x+7,故点E(0,7),则m=7;△当△CGF=90°时,则点G(18,0),则AF=AG=12,故点F(﹣6,0),同理直线CF的表达式为:y23=x+4,故m=4;综上可得,m=7或4.21。
浙教版八年级上册数学期末检测卷(含答案)
浙教版八上数学期末检测卷一、单选题1.下列每组数分别是三根小木棒的长度,其中能摆成三角形的是()A.3 4 5B.7 8 15C.3 12 20D.5 5 112.下列命题是真命题的是()A.对角线互相平分的四边形是平行四边形;B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是菱形D.对角线互相垂直的四边形是正方形3.点A(2, 6)与点B(-4,6)关于直线()对称A.x=0B.y=0C.x=-1D.y=-14.等腰三角形一个角为80°,则底角为( )A.80°B.20°C.50°D.80°或50°5.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,)剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长)是()A.2+B.2+2C.12D.186.不等式<x的解集是()A.x<-2B.x<-1C.x<0D.x>27.一次函数y=ax+b(a>0)与x轴的交点坐标为(m,0),则一元一次不等式ax+b≤0的解集应为()A.x≤mB.x≤-mC.x≥mD.x≥-m8.若点P(a,b)在第四象限内,则a,b的取值范围是()A.a>0,b<0B.a>0,b>0C.a<0,b>0D.a<0,b<09.如图,在Rt△ABC中,∠C=90°,BC=1,AB=2,∠B的度数为()A.30°B.45°C.60°D.75°10.如图,一次函数y=x+3的图象与x轴交于A点,与y轴交于B,与正比例函数y=﹣x的图象交于点C,则△AOC的面积为()A. B. C. D.二、填空题11.如图,△ABC≌△DEF,则EF= ________.12.不等式组的解集为________13.在Rt△ABC中,∠C =90°,∠A=30°,AB=4,则AC=________14.一次函数y=3﹣9x与x轴的交点坐标是________.15.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,E是AC的中点.若DE=5,则AB的长为________.16.如图,在矩形ABCD中,AB=10cm,BC=4cm,M,N两点分别从A,B两点以2cm/s和1cm/s的速度在矩形ABCD 边上沿逆时针方向运动,其中有一点运动到点D停止,当运动时间为________秒时,△MBN为等腰三角形.三、计算题17.解不等式组,并写出不等式组的整数解.四、解答题18.八年级某班数学实验课安排测量操场上旗杆的高度.小聪同学经过认真思考,研究出了一个可行的测量方案:在某一时刻测得旗杆AB的影长BC和∠ACB的大小,然后在操场上画∠MDN,使得∠MDN=∠ACB,在边DM上截取线段DE=BC,再利用三角形全等的知识求出旗杆的高度,请完成小聪同学的测量方案,并把图形补画完整,说明方案可行的理由.19.如图正方形ABCD的边长为4,E、F分别为DC、BC中点.(1)求证:△ADE≌△ABF.(2)求△AEF的面积.20.博物馆每周都吸引大量中外游客前来参观.如果游客过多,对馆中的珍贵文物会产生不利影响.但同时考虑到文物的修缮和保存费用问题,还要保证一定的门票收入.因此,博物馆采取了涨浮门票价格的方法来控制参观人数,在该方法实施过程中发现:每周参观人数与票价之间存在着如图所示的一次函数关系,在这样的情况下,如果确保每周4万元的门票收入,那么每周应限定参观人数是多少门票价格应是多少元?21.如图,在平面直角坐标系内,一次函数y=kx+b(k≠0)的图象与正比例函数y=﹣2x的图象相交于点A,且与x轴交于点B,求这个一次函数的解析式.22.如图,已知在△ABC中,△ABC的外角∠ABD的平分线与∠ACB的平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.求证:MN=CN﹣BM.答案部分第 1 题:【答案】A第 2 题:【答案】A第 3 题:【答案】C第 4 题:【答案】D第 5 题:【答案】B第 6 题:【答案】A第7 题:【答案】A第8 题:【答案】A第9 题:【答案】C第10 题:【答案】B第11 题:【答案】 5第12 题:【答案】﹣4<x≤2【答案】23第14 题:【答案】(13 ,0)第15 题:【答案】10第16 题:【答案】或(12﹣4 )或第17 题:【答案】解:由①得x<3;由②得x≥﹣1,∴原不等式组的解集为﹣1≤x<3,则不等式组的整数解有﹣1,0,1,2.第18 题:【答案】解:如图所示:过点E作GE⊥DM,垂足为E,此时EG=AB,理由:在△ACB和△GDE中,∴△ACB≌△GDE(ASA),∴AB=EG,即可以得出旗杆高度.【答案】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠=90°,DC=CB,∵E、F为DC、BC中点,∴DE= DC,BF= BC,∴DE=BF,∵在△ADE和△ABF中,,∴△ADE≌△ABF(SAS);(2)解:由题知△ABF、△ADE、△CEF均为直角三角形,且AB=AD=4,DE=BF= ×4=2,CE=CF= ×4=2,∴S△AEF=S正方形ABCD﹣S△ADE﹣S△ABF﹣S△CEF=4×4﹣×4×2﹣×4×2﹣×2×2=6.第20 题:【答案】解:设每周参观人数与票价之间的一次函数关系式为y=kx+b 把(10,7000)(15,4500)代入y=kx+b中得,解得∴y=﹣500x+12000根据确保每周4万元的门票收入,得xy=40000即x(﹣500x+12000)=40000x2﹣24x+80=0解得x1=20 x2=4把x1=20,x2=4分别代入y=﹣500x+12000中得y1=2000,y2=10000因为控制参观人数,所以取x=20,y=2000答:每周应限定参观人数是2000人,门票价格应是20元/人.第21 题:【答案】解:在函数y=﹣2x中令y=2得:﹣2x=2,解得:x=﹣1,∴点A坐标为(﹣1,2),将点A(﹣1,2)、点B(1,0)代入y=kx+b,得:,解得:,∴一次函数解析式为:y=﹣x+1.第22 题:【答案】证明:∵ON∥BC,∴∠NOB=∠OBD∵BO平分∠ABD,∴∠ABO=∠DBO,∴∠MOB=∠OBM,∴BM=OM∵ON∥BC,∴∠NOC=∠OCD∵CO平分∠ACB,∴∠NCO=∠BCO,∴∠NCO=∠NOC,∴ON=CN∵ON=OM+MN,ON=CN,OM=BM,∴CN=BM+MN,∴MN=CN﹣BM.。
浙教版八年级上册数学期末测试卷(参考答案)
浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是( )A. B. C.D.2、定义新运算:a※b= ,则函数y=3※x的图象大致是( )A. B. C. D.3、下表是我国从1949年到1999年的人口统计数据(精确到0.01亿)时间(年)1949 1959 1969 1979 1989 1999人口(亿) 5.42 6.72 8.07 9.75 11.07 12.59从表中获取的信息:①人口随时间的变化而变化,时间是自变量,人口是因变量;②1979﹣1989年10年间人口增长最慢;③1949﹣1979这30年的增长逐渐加大,1979﹣1999这20年的增长先减小后增大;④人口增长速度最大的十年达到约20%,其中正确的有()A.4个B.3个C.2个D.1个4、如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1、P2、P 3、P4四个点中找出符合条件的点P,则这样的点P有()A.1个B.2个C.3个D.4个5、点P(﹣2,3)关于y轴的对称点的坐标是()A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3)D.(﹣3,2)6、在我国古代数学著作《九章算术》“勾股”章中有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何?”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB的距离为1尺(1尺=10寸),双门间的缝隙CD 为2寸,那么门的宽度(两扇门的和)AB为( )A.103寸B.102寸C.101寸D.100寸7、在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A. B. C. D.8、已知反比例函数 y= (k≠0),当x>0时,y随x的增大而增大,那么一次函数y=kx﹣k的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限9、等腰三角形一腰上的高与另一腰的夹角为60°,则顶角的度数为()A.30°B.30°或150°C.60°或150°D.60°或120°10、弹簧挂上物体后会伸长(在允许挂物重量范围内),测得一弹簧的长度y (cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法错误的是()x 0 1 2 3 4 5y 10 10.5 11 11.5 12 12.5A.弹簧不挂重物时的长度为10cmB.x与y都是变量,且x是自变量,y 是因变量C.物体质量每增加1kg,弹簧长度y增加0.5cmD.所挂物体质量为7kg时,弹簧长度为14cm11、以下列各组线段为边,能组成三角形的是()A.1cm,2cm,3cmB.4cm,6cm,8cm,C.5cm,6cm,12cm, D.2cm,3cm,5cm12、下列四个选项中,不是全等图形的是()A. B. C.D.13、已知三角形的三边分别为2,a,4,那么a的取值范围是()A.1<a<5B.2<a<6C.3<a<7D.4<a<614、点M(3,﹣4)关于y轴的对称点的坐标是()A.(3,4)B.(﹣3,﹣4)C.(﹣3,4)D.(﹣4,3)15、如图,在菱形中,,,、分别是边、中点,则周长等于()A. B. C. D.二、填空题(共10题,共计30分)16、若关于x的不等式(1﹣a)x>3可化为x<,则a的取值范围是________17、如图,在△ABC中,∠ACB=∠ABC=40o, BD是∠ABC的角平分线,延长BD 至点E,使得DE=DA,则∠ECA=________.18、如图,在正五边形中,是的中点,连接,,则的度数是________.19、如图,点G在的边的延长线上,点H为中点,点D在上,点E在上,连接交于点F,,,若,,则________.20、如图,点O是▱ABCD的对称中心,AD>AB,E,F是AB边上的点,且EF=AB;G,H分别是BC边上的点,且GH=BC,若S1, S2分别表示△EOF和△GOH的面积,则S1与S2之间的数量关系是________.21、已知△ABC≌△DEF,∠A=40° ,∠F=60° ,则∠B的度数等于________度。
完整版浙教版八年级上册数学期末测试卷
浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.2、如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABCB.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABCD.AD=BC,BD=AC3、点P 在轴上,则的值为()A.1B.2C.-1D.04、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米5、如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A.PC=PDB.∠CPD=∠DOPC.∠CPO=∠DPOD.OC=OD6、下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)7、不等式x<2的解集在数轴上表示为( )A. B. C.D.8、如图,和均为等腰直角三角形,且,点A、D、E在同一条直线上,平分,连接.以下结论:① ;② ;③ ;④ ,正确的有()A.1个B.2个C.3个D.4个9、下列说法正确的是()A.两角及一边分别相等的两三角形全等B.全等的两个图形一定成轴对称 C.两个成轴对称的图形的对应点一定在对称轴的两侧 D.有一个角是60°的等腰三角形是等边三角形10、某一次函数的图象过点(1,-2),且y随x的增大而减小,则这个函数的表达式可能是()A.y=2x-4B.y=3x-1C.y=-3x+1D.y=-2x+411、如图所示,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前()米.A.15B.20C.3D.2412、不等式组的解集在数轴上表示为 ( )A. B. C. D.13、如图,在四边形ABCD中,∠DAB=30°,点E为AB的中点,DE⊥AB,交AB 于点E,DE= ,BC=1,CD= ,则CE的长是()A. B. C. D.14、如图,已知∠ACB=∠DBC,添加以下条件,不能判定△ABC≌△DCB的是()A.∠ABC=∠DCBB.∠ABD=∠DCAC.AC=DBD.AB=DC15、以下列长度的线段为边,可以作一个三角形的是A.6cm,16cm,21cmB.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm二、填空题(共10题,共计30分)16、如图,在等腰△ABC中,AB=AC,∠A=360,BD⊥AC于点D,则∠CBD=________.17、若点在直角坐标系的轴上,则点的坐标为________.18、斜边的边长为17cm,一条直角边长为8cm的直角三角形的面积是________.19、已知点和点关于轴成轴对称,则________.20、已知实数x,y满足lx-3I+ =0,则以x,y的值为两边长的等腰三角形的周长是________.21、如图,尺规作图作出∠CAB的平分线,则∠ADC= ________ °.22、若一个三角形三边长分别为2,3,x,则x的值可以为________(只需填一个整数)23、如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=________用含k的代数式表示).24、如图,中,,,,,则的度数为________.25、如图,矩形纸片中,,,点在边上,将沿所在直线折叠,使点落在边上的点处,则的长为________ .三、解答题(共5题,共计25分)26、解不等式组:27、如图,△ABC中,AB=AC.(1)以点B为顶点,作∠CBD=∠ABC(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,证明:AC∥BD.28、如图,在△ABC中,∠C=60°,△ABC的高AD,BE相交于点F.求∠AFB 的度数.29、已知:如图Rt△ABC中,∠ACB=90°,CD为∠ACB的平分线,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CEDF是正方形.30、如图,∠A=∠D=90°,BE平分∠ABC,且点E是AD的中点,求证:BC=AB+CD。
浙教版 八年级数学上册期末测试卷(含答案)
八年级数学上册期末测试卷一、选择题(共10小题,每小题2分,满分20分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.教室的一扇窗户打开后,用窗钩可以将其固定,这里所运用的几何原理是()A.两点之间线段最短B.三角形的稳定性C.两点确定一条直线D.垂线段最短3.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.4.长度分别为2,6,x的三条线段能组成一个三角形,x的值可以是()A.2B.4C.6D.85.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>B.m C.m=D.m=6.关于的叙述正确的是()A.在数轴上不存在表示的点B.=+C.=±2D.与最接近的整数是37.如图,在平面直角坐标系中,一次函数y=ax+b经过A(0,2),B(3,0)两点,则不等式ax+b>0的解是()A.x>0B.x>3C.x<0D.x<38.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,若∠B=30°,∠C=40°,则∠DAC的度数是()A.25°B.35°C.45°D.75°9.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的进水量与出水量分别是()A.5L,3.75L B.2.5L,5L C.5L,2.5L D.3.75L,5L10.下面所说的“平移”,是指只沿方格的格线(即左右或上下)运动,并将图中的任一条线段平移一格称为“1步”.通过平移,使得图中的3条线段首尾相接组成一个三角形,最少需要移动的步数是()A.7步B.8步C.9步D.10步二、填空题(共10小题,每小题3分,满分30分)11.二次根式有意义,则x的取值范围是.12.命题“若a=b,则a2=b2”的逆命题是.13.已知不等式﹣4x≤﹣8,两边同时除以“﹣4”得14.若将方程x2+2x﹣1=0配方成(x+a)2=h的形式,则a+h的值是.15.等腰三角形的一边长为3,另一边长为6,则该三角形的周长是.16.如图,小巷左右两侧是竖直的墙,已知小巷的宽度是2.2米,一架梯子斜靠在左墙时,梯子底端到坐墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端距离地面米.17.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=30°,∠E=70°,则∠ADC的度数是.18.如图,在平面直角坐标系中,△OAB是等腰直角三角形,∠OAB=90°,已知点A(4,3),点B在第四象限,则点B的坐标是.19.定义:在平面直角坐标系中,把从点P出发沿横或纵方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的公共自行车,逐渐成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,3),B(6,﹣2),C(0,﹣4),若点M表示公共自行车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标是.20.已知等边三角形ABC中,AB=4,点D是边AB的中点,点E是边BC上的动点,连接DE,将△BDE沿直线DE翻折,点B的对应点为B′,当直线B′E与直线AC的夹角为30°时,BE的长度是.三、解答题(共6小题,满分50分)21.(8分)(1)计算:×(+)﹣2.(2)已知a=﹣1,求a2+2a的值.22.(8分)(1)解不等式组:(2)解方程:2x2﹣4x﹣3=0.23.(6分)在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的顶点A,B的坐标分别是(﹣6,7),(﹣4,3).(1)请你根据题意在图中的网格平面内作出平面直角坐标系.(2)请画出△ABC关于y轴对称的△A1B1C124.(8分)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.请根据图象提供的信息解答下列问题:(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.25.(8分)已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,BC=2,求CF的长.26.(12分)已知:如图1,在平面直角坐标系中,一次函数y=x+3交x轴于点A,交y轴于点B,点C是点A关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.(1)求点A,B的坐标.(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ =2S△DPQ,若存在,请求出对应的点Q坐标;若不存在,请说明理由.四、附加题(第27题4分,第28题4分,第29题12分)27.(4分)如图,在平面直角坐标系xOy中,A(4,0),B(0,3),点D在x轴上,若在线段AB(包括两个端点)上找点P,使得点A,D,P构成等腰三角形的点P恰好只有1个.下列选项中满足上述条件的点D坐标不可以是()A.(﹣3,0)B.(1,0)C.(5,0)D.(9,0)28.(4分)已知,在△ABC中,∠A>∠B,分别以点A,C为圆心,大于AC长为半径画弧,两弧交于点P,点Q,作直线PQ交AB于点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧交于点M,点N,作直线MN交BC于点E,若△CDE是等边三角形,则∠A=.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.教室的一扇窗户打开后,用窗钩可以将其固定,这里所运用的几何原理是()A.两点之间线段最短B.三角形的稳定性C.两点确定一条直线D.垂线段最短【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:窗户打开后,用窗钩钩住,正好构成三角形的形状,因此可以将其固定,主要利用了三角形的稳定性.故选:B.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用.3.不等式x+1≥2的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出原不等式的解集,再根据解集即可求出结论.【解答】解:∵x+1≥2,∴x≥1.故选:A.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.长度分别为2,6,x的三条线段能组成一个三角形,x的值可以是()A.2B.4C.6D.8【分析】已知三角形的两边长分别为2和6,根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长的范围,再结合选项选择符合条件的.【解答】解:由三角形三边关系定理得6﹣2<x<6+2,即4<x<8.因此,本题的第三边应满足4<x<8,把各项代入不等式符合的即为答案.2,4,8都不符合不等式4<x<8,只有6符合不等式,故选:C.【点评】考查了三角形三边关系,此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.5.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>B.m C.m=D.m=【分析】根据方程的系数结合根的判别式,即可得出△=9﹣8m=0,解之即可得出结论.【解答】解:∵一元二次方程2x2+3x+m=0有两个相等的实数根,∴△=32﹣4×2m=9﹣8m=0,解得:m=.故选:C.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.6.关于的叙述正确的是()A.在数轴上不存在表示的点B.=+C.=±2D.与最接近的整数是3【分析】根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.【解答】解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.【点评】考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.7.如图,在平面直角坐标系中,一次函数y=ax+b经过A(0,2),B(3,0)两点,则不等式ax+b>0的解是()A.x>0B.x>3C.x<0D.x<3【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式ax+b >0的解集.【解答】解:一次函数y=ax+b的图象经过点B(3,0),且函数值y随x的增大而减小,∴不等式ax+b>0的解集是x<3.故选:D.【点评】此题考查一次函数问题,正确理解图象,函数图象在x轴上方,即函数值大于0;在下方时,函数值小于0;图象在y轴左侧的部分函数的自变量x小于0,在右侧则自变量大于0.8.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD,若∠B=30°,∠C=40°,则∠DAC的度数是()A.25°B.35°C.45°D.75°【分析】由AB=BD,∠B=30°得到∠ADB=75°,再根据三角形的外角的性质即可得到结论.【解答】解:∵AB=BD,∠B=30°,∴∠ADB=75°,∵∠C=40°,∴∠DAC=∠ADB﹣∠C=75°﹣40°=35°.故选:B.【点评】本题考查了等腰三角形的性质,三角形内角和定理,掌握等边对等角是解题的关键,注意三角形外角性质的应用.9.一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的进水量与出水量分别是()A.5L,3.75L B.2.5L,5L C.5L,2.5L D.3.75L,5L【分析】根据题意和函数图象可以求得每分钟的进水量和出水量,从而可以解答本题.【解答】解:由题意可得,每分钟的进水量为:20÷4=5(L),每分钟的出水量为:[5×8﹣(30﹣20)]÷8=3.75(L),故选:A.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.下面所说的“平移”,是指只沿方格的格线(即左右或上下)运动,并将图中的任一条线段平移一格称为“1步”.通过平移,使得图中的3条线段首尾相接组成一个三角形,最少需要移动的步数是()A.7步B.8步C.9步D.10步【分析】根据图示和平移的性质,注意正确的计数,查清方格的个数,从而求出步数.【解答】解:所画图形如下图所示:其中移动方案为:AB向下移动2格,EF向右1格再向上2格,CD向左3格,共应8格.共走了8步.故选:B.【点评】本题考查图形的平移变换,注意平移不改变图形的形状和大小且平移前后图形对应点之间的连线应该互相平行,另外使平移后成为三角形.二、填空题(共10小题,每小题3分,满分30分)11.二次根式有意义,则x的取值范围是x≥3.【分析】二次根式的被开方数x﹣3≥0.【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【点评】写出一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换.在写逆命题时要用词准确,语句通顺.13.已知不等式﹣4x≤﹣8,两边同时除以“﹣4”得x≥2【分析】根据不等式的性质3得出即可.【解答】解:﹣4x≤﹣8,两边同时除以﹣4得:x≥2,故答案为:x≥2.【点评】本题考查了解一元一次不等式和不等式的性质,能熟记不等式的性质是解此题的关键.14.若将方程x2+2x﹣1=0配方成(x+a)2=h的形式,则a+h的值是3.【分析】先把常数项移到方程右边,再把方程两边加上1,则把方程左边写成完全平方的形式得到(x+1)2=2,于是得到a=1,h=2,然后计算a+h即可.【解答】解:x2+2x=1,x2+2x+1=1+1,(x+1)2=2,所以a=1,h=2,所以a+h=1+2=3.故答案为:3.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.15.等腰三角形的一边长为3,另一边长为6,则该三角形的周长是15.【分析】本题应分为两种情况3为底或6为底,还要注意是否符合三角形三边关系.【解答】解:∵等腰三角形的一边长为3,另一边长为6,∴有两种情况:①6为底,3为腰,而3+3=6,那么应舍去;②3为底,6为腰,那么6+6+3=15;∴该三角形的周长是6+6+3=15.故填15.【点评】本题考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.16.如图,小巷左右两侧是竖直的墙,已知小巷的宽度是2.2米,一架梯子斜靠在左墙时,梯子底端到坐墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端距离地面2米.【分析】先根据勾股定理求出AB的长,同理可得出A′D的长,进而可得出结论.【解答】解:如图.在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,BD=2.2﹣0.7=1.5(米),BD2+A′D2=A′B2,∴A′D2+1.52=6.25,∴A′D2=4,∵A′D>0,∴A′D=2米,故答案是:2.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.17.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=30°,∠E=70°,则∠ADC的度数是65°.【分析】由全等三角形的性质可求得∠B和∠BAC的度数,由角平分线可求得∠BAD的度数,利用三角形的外角可求得∠ADC的度数.【解答】解:∵△ABC≌△EDF,∴∠B=∠EDA=30°,∠BAC=∠E=70°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=35°,∴∠ADC=∠B+∠BAD=30°+35°=65°,故答案为:65°.【点评】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键,即对应角相等、对应边相等.18.如图,在平面直角坐标系中,△OAB是等腰直角三角形,∠OAB=90°,已知点A(4,3),点B在第四象限,则点B的坐标是(7,﹣1).【分析】过A作AN⊥y轴于N,过B作BM⊥y轴于M,BH⊥AN于H,交x轴于Q,则四边形NHBM是矩形,证△ANO≌△BHA,根据全等三角形的性质得出AH=ON=3,AN=HB=4,即可求出答案.【解答】解:过A作AN⊥y轴于N,过B作BM⊥y轴于M,BH⊥AN于H,交x轴于Q,则四边形NHBM是矩形,所以NH=BM,MN=HB,∵A(4,3),∴AN=4,HQ=ON=3,∵∠ANO=∠H=90°,∠OAB=90°,∴∠NAO+∠NOA=90°,∠NAO+∠HAB=90°,∴∠NOA=∠HAB,在△ANO和△BHA中∴△ANO≌△BHA(AAS),∴AH=ON=3,AN=HB=4,∴BQ=4﹣3=1,BM=HN=4+3=7,即B点的坐标是(7,﹣1),故答案为:(7,﹣1).【点评】本题考查了全等三角形的性质和判定,坐标与图形性质,等腰直角三角形等知识点,能求出△ANO≌△BHA是解此题的关键.19.定义:在平面直角坐标系中,把从点P出发沿横或纵方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的公共自行车,逐渐成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,3),B(6,﹣2),C(0,﹣4),若点M表示公共自行车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标是(2,﹣1).【分析】若设M(x,y),构建方程组即可解决问题.【解答】解:若设M(x,y),则由题目中对“实际距离”的定义可得方程组:3﹣x+3﹣y=y+2+6﹣x=0﹣x+4+y,解得,x=2,y=﹣1,则M(2,﹣1)故答案为:(2,﹣1).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.20.已知等边三角形ABC中,AB=4,点D是边AB的中点,点E是边BC上的动点,连接DE,将△BDE沿直线DE翻折,点B的对应点为B′,当直线B′E与直线AC的夹角为30°时,BE的长度是1+或4﹣2.【分析】分两种情况进行讨论:直线B′E与直线AC的交点在线段AC上;直线B′E与直线AC的交点在线段AC延长线上,分别依据含30°角的直角三角形的性质以及线段的和差关系,即可得到BE的长度.【解答】解:如图所示,直线B′E与直线AC的交点在线段AC上时,∠CGE=30°,∵∠C=60°,∴∠CEG=90°,由折叠可得,∠DEB=∠BEG=45°,过D作DH⊥BC于H,则∠BDH=30°,∴BH=BD=1,DH==HE,∴BE=BH+HE=1+;如图所示,直线B′E与直线AC的交点在线段AC延长线上时,∠CGE=30°,∴∠CEB=∠ACB﹣∠G=30°,由折叠可得,∠EB'D=∠B=60°,∴∠EHB'=90°,∴∠BDH=30°,∴BH=BD=1,DH==HE,又∵DB'=DB=2,∴HB'=2﹣,∴Rt△EB'H中,EH=2﹣3,∴BE=BH﹣EH=1﹣(2﹣3)=4﹣2,故答案为:1+或4﹣2.【点评】本题主要考查了折叠问题以及等边三角形的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(共6小题,满分50分)21.(8分)(1)计算:×(+)﹣2.(2)已知a=﹣1,求a2+2a的值.【分析】(1)根据二次根式的运算法则即可求出答案.(2)根据配方法即可求出答案.【解答】解:(1)原式=3+2﹣2=3(2)当a=﹣1时,原式=(a+1)2﹣1=2【点评】本题考查学生的运算法则,解题的关键是熟练运用运算法则,本题属于基础题型.22.(8分)(1)解不等式组:(2)解方程:2x2﹣4x﹣3=0.【分析】(1)直接分别解不等式进而得出答案;(2)直接利用公式法解方程得出答案.【解答】解:(1)解①得:x>﹣2.5,解②得:x≤1,故不等式组的解集为:﹣2.5<x≤1;(2)2x2﹣4x﹣3=0△=b2﹣4ac=16+24=40>0,则x=,解得:x1=,x2=.【点评】此题主要考查了不等式组的解法以及公式法解一元二次方程,正确掌握解题步骤是解题关键.23.(6分)在如图的正方形网格中,每一个小正方形的边长为1,格点三角形ABC(顶点是网格线交点的三角形)的顶点A,B的坐标分别是(﹣6,7),(﹣4,3).(1)请你根据题意在图中的网格平面内作出平面直角坐标系.(2)请画出△ABC关于y轴对称的△A1B1C1【分析】(1)根据点B的坐标可确定原点位置,然后画出坐标系即可;(2)首先确定A、B、C三点关于y轴对称的对称点位置,再连接即可.【解答】解:(1)如图:(2)如图所示:△A1B1C1即为所求.【点评】此题主要考查了作图﹣﹣轴对称变换,关键是正确确定组成图形的关键点对称点位置.24.(8分)“和谐号”火车从车站出发,在行驶过程中速度y(单位:m/s)与时间x(单位:s)的关系如图所示,其中线段BC∥x轴.请根据图象提供的信息解答下列问题:(1)当0≤x≤10,求y关于x的函数解析式;(2)求C点的坐标.【分析】(1)根据函数图象和图象中的数据可以求得当0≤x≤10,y关于x的函数解析式;(2)根据函数图象可以得到当10≤x≤30时,y关于x的函数解析式,然后将x=30代入求出相应的y值,然后线段BC∥x轴,即可求得点C的坐标.【解答】解:(1)当0≤x≤10时,设y关于x的函数解析式为y=kx,10k=50,得k=5,即当0≤x≤10时,y关于x的函数解析式为y=5x;(2)设当10≤x≤30时,y关于x的函数解析式为y=ax+b,,得,即当10≤x≤30时,y关于x的函数解析式为y=2x+30,当x=30时,y=2×30+30=90,∵线段BC∥x轴,∴点C的坐标为(60,90).【点评】本题考查了一次函数的应用,解答本题的关键是明确题意,求出相应的函数解析式,利用一次函数的性质解答.25.(8分)已知:如图,在Rt△ACB中,∠ACB=90°,点D是AB的中点,点E是CD的中点,过点C作CF∥AB交AE的延长线于点F.(1)求证:△ADE≌△FCE;(2)若∠DCF=120°,BC=2,求CF的长.【分析】(1)由E是CD的中点知DE=CE、由CF∥AB知∠DAE=∠F,根据“AAS”可证△ADE ≌△FCE;(2)证△BDC是等边三角形,利用直角三角形斜边上的中线等于斜边的一半即可得.【解答】证明:(1)∵点E是CD的中点,∴DE=CE,∵CF∥AB,∴∠DAE=∠F,在△ADE和△CFE中,∵,∴△ADE≌△CFE(AAS);(2)∵AB∥CF,∠DCF=120°,∴∠BDC=60°,又∵点D是斜边AB的中点,∴BD=CD,∴△BDC是等边三角形,∴CF=AD=CD=BC=2.【点评】本题主要考查了全等三角形性质与判定,等腰三角形的性质、直角三角形的性质,熟练掌握全等三角形的判定与性质及直角三角形的性质是解答此题的关键.26.(12分)已知:如图1,在平面直角坐标系中,一次函数y=x+3交x轴于点A,交y轴于点B,点C是点A关于y轴对称的点,过点C作y轴平行的射线CD,交直线AB与点D,点P是射线CD上的一个动点.(1)求点A,B的坐标.(2)如图2,将△ACP沿着AP翻折,当点C的对应点C′落在直线AB上时,求点P的坐标.(3)若直线OP与直线AD有交点,不妨设交点为Q(不与点D重合),连接CQ,是否存在点P,使得S△CPQ =2S△DPQ,若存在,请求出对应的点Q坐标;若不存在,请说明理由.【分析】(1)利用坐标轴上点的特点建立方程即可得出结论;(2)先求出C(4,0),D(4,6),进而求出AC=8,CD=6,AD=10,由折叠知,AC'=8,C'D=2,再用勾股定理即可得出结论;(3)利用三角形面积关系求出点P坐标,再联立直线AB解析式求出交点坐标即可得出结论.【解答】解:(1)令x=0,则y=3,∴B(0,3),令y=0,则x+3=0,∴x=﹣4,∴A(﹣4,0);(2)∵点C 是点A 关于y 轴对称的点,∴C (4,0),∵CD ⊥x 轴,∴x=4时,y=6,∴D (4,6),∴AC=8,CD=6,AD=10,由折叠知,AC'=AC=8,∴C'D=AD ﹣AC'=2,设PC=a ,∴PC'=a ,DP=6﹣a ,在Rt △DC'P 中,a2+4=(6﹣a )2,∴a=,∴P (4,);(3)设P (4,m ),∴CP=m ,DP=|m ﹣6|,∵S △CPQ =2S △DPQ ,∴CP=2PD ,∴2|m ﹣6|=m ,∴m=4或m=12,∴P (4,4)或P (4,12),∵直线AB 的解析式为y=x +3①,当P (4,4)时,直线OP 的解析式为y=x ②,联立①②解得,x=12,y=12,∴Q (12,12),当P (4,12)时,直线OP 解析式为y=3x ③,联立①③解得,x=,y=4,∴Q (,4),即:满足条件的点Q (12,12)或(,4).【点评】此题是一次函数综合题,主要考查了坐标轴上点的特点,对称性,勾股定理,待定系数法,用方程的思想解决问题是解本题的关键.四、附加题(第27题4分,第28题4分,第29题12分)27.(4分)如图,在平面直角坐标系xOy中,A(4,0),B(0,3),点D在x轴上,若在线段AB(包括两个端点)上找点P,使得点A,D,P构成等腰三角形的点P恰好只有1个.下列选项中满足上述条件的点D坐标不可以是()A.(﹣3,0)B.(1,0)C.(5,0)D.(9,0)【分析】先利用勾股定理计算出AB=5,然后利用等腰三角形的判定方法对各选项进行判断.【解答】解:∵A(4,0),B(0,3),∴AB=5,当D点坐标为(﹣3,0)时,只能作以PD、PA为腰的等腰三角形;当D点坐标为(﹣1,0)时,可作以PD、PA为腰的等腰三角形也可作AP=AD(此时P 点在B点);当D点坐标为(5,0)时,只能作以AP、AD为腰的等腰三角形;当D点坐标为(9,0)时,只能作以AP、AD为腰的等腰三角形(此时P点在B点).故选:B.【点评】本题考查了等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等.也考查了坐标与图形性质.28.(4分)已知,在△ABC中,∠A>∠B,分别以点A,C为圆心,大于AC长为半径画弧,两弧交于点P,点Q,作直线PQ交AB于点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧交于点M,点N,作直线MN交BC于点E,若△CDE是等边三角形,则∠A=45°.【分析】如图,由作法得PQ垂直平分AC,MN垂直平分BD,利用线段垂直平分线的性质得到DA=DC,EB=ED,则∠A=∠DCA,∠EDB=∠B,再利用等边三角形的性质和三角形外角性质计算出∠EDB=30°,则可判断△ACD为等腰直角三角形,从而得到∠A=45°.【解答】解:如图,由作法得PQ垂直平分AC,MN垂直平分BD,∴DA=DC,EB=ED,∴∠A=∠DCA,∠EDB=∠B,∵△CDE为等边三角形,∴∠CDE=∠DEC=60°,而∠DEC=∠EDB+∠B,∴∠EDB=×60°=30°,∴∠CDB=90°,∴△ACD为等腰直角三角形,∴∠A=45°.故答案为45°.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).1、三人行,必有我师。
浙教版八年级上册数学期末测试卷(附答案)
浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、若m>n,则下列不等式中成立的是()A.m+a<n+bB.ma<naC.ma 2>na 2D.a-m<a-n2、下列命题是真命题的是()A.两个锐角的和还是锐角;B.全等三角形的对应边相等;C.同旁内角相等,两直线平行;D.等腰三角形既是轴对称图形,又是中心对称图形.3、如图,在平面直角坐标系xOy中,直线经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2, 0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(,1)D.(,2)4、如图,已知等边和等边,点在的延长线上,的延长线交于点M,连,若,则()A. B. C. D.5、如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSSB.SASC.AASD.ASA6、已知点A(2,1),过点A作x轴的垂线,垂足为C,则点C的坐标为().A.(1,2)B.(1,0)C.(0,1)D.(2,0)7、下列图形中,是轴对称图形的是()A. B. C. D.8、下列图形中,对称轴条数最多的是()A. B. C. D.9、如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是()A. B. C. D.10、如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.1011、一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12B.9C.13D.12或912、下列图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.平行四边形C.正方形D.正五边形13、若,则下列各式正确的是()A. B. C. D.14、如图,在△ABC中,BD、CE是角平分线,AM⊥BD于点M,AN⊥CE于点N.△ABC的周长为30,BC=12.则MN的长是()A.15B.9C.6D.315、如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm二、填空题(共10题,共计30分)16、在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分不少于100分,则他至少要答对________道题.17、如图,等边△ABC中,AD是中线,AD=AE,则∠EDC=________18、如图,反比例函数(x>0)的图象经过点M(1,﹣1),过点M作MN⊥x轴,垂足为N,在x轴的正半轴上取一点P(t,0),过点P作直线OM 的垂线l.若点N关于直线l的对称点在此反比例函数的图象上,则t=________ .19、如图,点A、B在反比例函数(k>0,x>0)的图象上,过点A、B作x轴的垂线,垂足分别为M、N,延长线段AB交x轴于点C,若OM=MN=NC,△AOC的面积为6,则k的值为________.20、如图,△ABC中,∠C=90°,点D是BC上一点,连结AD.若CD=3,∠B=40°,∠CAD=25°,则点D到AB的距离为________21、如图,在平面直角坐标系中,一动点从原点出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点,,,,则点的坐标为________,点的坐标为________,点(是自然数)的坐标为________.22、如图,在等边三角形ABC中,点D是边BC的中点,则∠BAD=________.23、已知三角形两边长分别为6,7,要使该三角形为直角三角形,则第三边长为________①5② ③ ④824、用不等式表示:①x与5的差不小于x的2倍:________;②小明的身高h 超过了160cm:________.25、如图,已知和的边BC,DF在同一直线上,∠B=∠F,AB=EF,BD=CF.根据条件,写出图中一个有关角或线段的等量关系________.(只写一个结论即可)三、解答题(共5题,共计25分)26、如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?(3)通话7分钟呢?27、如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(﹣4,0)、B(0,3),抛物线y=﹣x2+2x+1与y轴交于点C.(Ⅰ)求直线y=kx+b的函数解析式;(Ⅱ)若点P(x,y)是抛物线y=﹣x2+2x+1上的任意一点,设点P到直线AB 的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(Ⅲ)若点E在抛物线y=﹣x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE+EF的最小值.28、已知实数m是一个不等于2的常数,解不等式组,并根据m的取值情况写出其解集.29、如图,四边形ABCD中,∠BAD=100°,∠BCD=70°,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,求∠B的度数.30、如图,在△ABC 中,∠C=90°,DB⊥BC 于点,分别以点 D 和点为圆心,以大于的长为半径作弧,两弧相交于点 E 和点,作直线 EF,延长 AB 于点,连接 DG,下面是说明∠A=∠D 的说理过程,请把下面的说理过程补充完整:因为DB⊥BC(已知),所以∠DBC=90°( ) .因为∠C=90°(已知),所以∠DBC=∠C(等量代换),所以DB∥AC ( ) ,所以(两直线平行,同位角相等);由作图法可知:直线 EF 是线段 DB 的 ( ) ,所以 GD=GB,线段(上的点到线段两端点的距离相等),所以( ) ,因为∠A=∠1(已知),所以∠A=∠D(等量代换).参考答案一、单选题(共15题,共计45分)1、D2、B3、A4、A5、D6、D7、B8、9、B10、A11、A12、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
浙教版八年级上册数学期末测试卷
浙教版八年级上册数学期末测试卷一、单选题(共15题,共计45分)1、A,B,C,D,E五人参加“五羊杯”初中数学竞赛得分都超过91分.其中E 排第三,得96分.又知A,B,C平均95分,B,C,D平均94分.若A排第一,则D得多少分()A.98B.97C.93D.922、如图,Rt△ABC中,于点D则下列结论不一定成立的是()A. B. C. D.3、如图,已知直线y=x﹣3与x轴、y轴分别交于A、B两点,P是以C (0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是()A.8B.12C.D.4、下列图形中,既是轴对称图形又是中心对称图形的是()A.角B.等腰三角形C.平行四边形D.正六边形5、如图,一个扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线 D.垂线段最短6、如图,直线与交于点,则不等式的解集为()A. B. C. D.7、如果等腰三角形的两边长是6cm和3cm,那么它的周长是()A.9cmB.12cmC.12cm或15cmD.15cm8、如图,在Rt△ABC中,AB=AC.D,E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是()A.②④B.①④C.②③D.①③9、一水池有甲、乙、丙三个水管,其中甲、丙两管为进水管,乙管为出水管.单位时间内,甲管水流量最大,丙管水流量最小.先开甲、乙两管,一段时间后,关闭乙管开丙管,又经过一段时间,关闭甲管开乙管.则能正确反映水池蓄水量y(立方米)随时间t(小时)变化的图象是()A. B. C. D.10、如果ax>a的解是x<1,那么a必须满足 ( )A.a<0B.a>1C.a>-1D.a<-111、如图,在边长为2的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则周长的最小值为A. B.3 C. D.12、如图,在Rt△ABC中,∠ABC=90°,DE是AC的垂直平分线,交AC于点D,交BC于点E,∠BAE=20°,则∠C的度数是()A.30°B.35°C.40°D.50°13、甲以每小时20km的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=20t来表示,则下列说法正确的是()A.数20和s,t都是变量B.s是常量,数20和t是变量C.数20是常量,s和t是变量D.t是常量,数20和s是变量14、如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C 地,分别连接AB、AC、BC,形成一个三角形。
浙教版2023—2024学年数学八年级上册期末复习卷(含答案)
浙教版数学八年级上学期期末复习卷一考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间120分钟。
2.答题前,必须在答题卡上填写校名,班级,姓名,座位号。
3.不允许使用计算器进行计算,凡题目中没有要求取近似值的,结果应保留根号或π一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列选项中,可以用来证明命题“若a>b,则a2>b2”是假命题的反例是( )A.a=﹣2,b=1B.a=2,b=3C.a=3,b=﹣2D.a=2,b=﹣32.下列体育运动图标中是轴对称图形的是( )A.B.C.D.3.如图,B,D分别是位于线段AC两侧的点,连接AB,AD,CB,CD,则下列条件中,与AB=AD相结合无法判定△ABC≌△ADC的是( )A.CB=CD B.∠BAC=∠DACC.∠BCA=∠DCA D.以上都无法判定4.如图,在平面直角坐标系中A(2m,1―m)、B(3―n,―n),若A、B两点关于x轴对称,则点(m,n)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限5.如图.在△ABC中,AB=AC.D是BC上一点,DE⊥AB于点E,若∠A=50",则∠A.65°B.50°C.30°D.25°6.已知函数y=kx―6和y=―2x+a,且k>0,a<―6,则这两个一次函数图象的交点在( )A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在平面直角坐标系中,若直线y1=―x+a与直线y2=bx―4相交于点P,则下列结论错误的是( )A.方程―x+a=bx―4的解是x=1B.不等式―x+a<―3和不等式bx―4>―3的解集相同C.不等式组bx―4<―x+a<0的解集是―2<x<1D.方程组y+x=ay―bx=4的解是x=1 y=―38.如图,圆柱底面半径为4πcm,高为18cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( )A.24cm B.30cm C.221cm D.497cm9.如图,已知AB⊥BD,CD⊥BD,若用“HL”判定Rt△ABD和Rt△CDB 全等,则需A.AD = CB B.∠A = ∠C C.BD = DB D.AB =CD 10.设m,n是实数,a,b是正整数,若(m+n)a⩾(m+n)b,则( )A.m+n+a⩾m+n+b B.m+n―a⩽m+n―bC.am+n⩾bm+nD.m+na⩽m+nb二、填空题(本大题有6个小题,每小题4分,共24分)11.已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是 .12.已知点A(3a-9,2-a)关于原点对称的点为A′,点A′关于x轴对称的点为A″,点A″在第四象限,那么a的取值范围是 .13.不等式x―32>2x的解集是 .14.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(―2,0),点A的坐标为(―6,3),则B点的坐标是 .15.如图,直线AB的解析式为y=-x+b,分别与x轴,y轴交于A,B两点,点A的坐标为(4,0),过点B的直线交x轴负半轴于点C,且OB:OC=4:1.若在x轴上方存在点D,使以A,B,D为顶点的三角形与△ABC全等,则点D的坐标为 .16.如图,等腰△ABC的面积是12,AB=AC,BC=4,EF垂直平分AB,点D为BC 的中点,点M为线段EF上一点,则△BDM的周长的最小值为 .三、解答题(本大题有7小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(1)解下列不等式并在数轴上表示:6x-6≤2(x+3);(2)解不等式组:x>x+235x―3<5+x18.在如图所示的正方形网格中,每个小正方形的边长为1,格点△ABC(顶点是网格线的交点的三角形)的顶点A,C的坐标分别为(―4,5),(―1,3).⑴请在如图所示的网格平面内作出平面直角坐标系;⑵请作出△ABC关于y轴对称的△A′B′C′;⑶在y轴上存在一点P,满足点P到点A与点B距离之和最小,请直接写出PA+PB 的最小值为▲.19.如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.(1)求证:△BDE≌△CDF;.(2)若AE=13,AF=7,求DE的长.20.每年五、六月份是我国冬小麦的收割时间.某农业合作社租用中型收割机和小型收割机进行冬小麦收割.已知1台中型收割机和3台小型收割机一天共能收割小麦430亩,1台中型收割机比1台小型收割机每天多收割70亩.(1)求每台中型收割机和每台小型收割机平均每天各收割小麦多少亩?(2)每台中型收割机和每台小型收割机每天的租金分别为1800元和1000元,该合作社种植了冬小麦5350亩,合作社计划租用两型收割机共8台,在5天时间内将小麦全部收割,要使租用收割机的总金额不超过65000元,试求出所有满足条件的租用方案.并指出最经济的方案,计算出此种方案的总租金.21.已知一个一次函数图象经过点(3,7)与(―1,―1);(1)求这个一次函数的解析式;(2)设这个一次函数与x轴,y轴分别交于A,B两点,求△ABO的面积.22.如图,在△ABC中,AB=AC,AD是△ABC的中线,点E在AD上,点F在BA的延长线上,EF与AC交于点O,且EC=EF.(1)求证:∠CEF=∠CAF;(2)若∠B=30°,求证:AB=AE+AF23.如图1,直线l1:y=1x+2和直线l2与x轴分别相交于A,B两点,且两直线相交2于点C,直线l与y轴相交于点D(0,―4),OA=2OB.(1)求点A的坐标及直线l2的函数表达式;(2)求△ABC的面积;(3)试探究在x轴上是否存在点P,使得△PAC为等腰三角形,若存在,请直接写出点P的坐标;若不存在,请说明理由.浙教版数学八年级上学期期末复习卷一参考答案1.【答案】D2.【答案】B3.【答案】C4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】A10.【答案】D11.【答案】40°或100°12.【答案】2<a <313.【答案】x <―6―3214.【答案】(1,4)15.【答案】(5,4)16.【答案】817.【答案】(1)解:6x-6≤2(x+3),去括号,得6x-6≤2x+6,移项,得6x-2x≤6+6,合并同类项,得4x≤12,系数化为1,得x≤3;数轴上表示:(2)解:x >x +23①5x ―3<5+x②解不等式①得:x >1解不等式②得:x <2∴不等式的解集为:1<x <218.【答案】解:⑴如图所示;⑵如图所示⑶21319.【答案】(1)证明:∵AD是BC边上的中线,∴BD =CD.∵BE∥CF,∴∠DBE =∠DCF.在△BDE和△CDF中,∠DBE=∠DCF,BD=CD,∠BDE=∠CDF,∴△BDE≌△CDF;(2)解:∵AE=13,AF=7,∴EF=AE-AF=13-7=6.∵△BDE≌△CDF,∴DE=DF.∵DE+DF=EF=6,∴DE=3.20.【答案】(1)解:设每台中型收割机平均每天收割小麦x亩,每台小型收割机平均每天收割小麦y亩,由题意得:x+3y=430 x―y=70,解得:x=160y=90,∴每台中型收割机平均每天收割小麦160亩,每台小型收割机平均每天收割小麦90亩, 答:每台中型收割机平均每天收割小麦160亩,每台小型收割机平均每天收割小麦(2)设租用m 台中型收割机,则租用(8―m)台小型收割机,由题意得:160×5m +90×5(8―m)≥53501800×5m +1000×5(8―m)≤65000,解得:5≤m ≤254, 又∵m 为正整数,∴m 可以为5或6,∴共有2种租用方案,方案1、租用5台中型收割机,3台小型收割机;方案2、租用6台中型收割机,2台小型收割机;方案1租金为:1800×5×5+1000×5×3=60000(元),方案2租金为:1800×5×6+1000×5×2=64000(元),∵60000<64000,∴最经济的方案为:方案1:租用5台中型收割机,3台小型收割机,此种方案的总租金为60000元.21.【答案】(1)解:设一次函数解析式为y =ax +b ,将(3,7)与(―1,―1)代入y =ax +b 得,3a +b =7―a +b =―1,解得,a =2b =1,∴y =2x +1(2)解:当x =0时,y =1,即B(0,1),当y =0时,x =―12,即A(―12,0),∴S △ABO =12×1×12=14,∴S △ABO =1422.【答案】(1)证明:连接BE ,∵AB=AC、AD是△ABC的中线,∴∠BAD=∠CAD,在△ABE和△ACE中AB=AC∠BAD=∠CAD,AE=AE∴△ABE≌△ACE,∴∠ABE=∠ACE,BE=CE,∵EC=EF,∴BE=EF,∴∠EBA=∠EFA,∴∠ECA=∠AFE,∵∠EOC=∠AOF,∴∠CEF=CAF;(2)证明:在AB上截取AG=AE,连接EG,BE,∵AB=AC,∴∠ABC=∠ACB,∵∠ABD=30°,∴∠CAF=2∠ABD=60°,在Rt△ABD中∵∠ABD=30°,∴∠BAD=60°,∴△AEG为等边三角形,∴EG=AE,∠AEG=60°,∴∠BGE=120°,∠EAF=120°,∴∠BGE=∠EAF,∵∠EBA=∠EFA,∴△BGE≌△EAF,∴BG=AF,∴AB=AG+BG,∴AB=AE+AF.23.【答案】(1)解:将y=0代入y=12x+2得,x=―4,∴A(―4,0),∴OA=4,∵OA=2OB,∴OB=2,∴B(2,0),设直线l2的函数表达式为:y=kx+b,将D(0,―4)、B(2,0)分别代入y=kx+b得:2k+b=0b=―4,解得:k=2b=―4,∴直线l2的函数表达式为:y=2x―4;(2)解:∵点C是直线l1和l2的交点,∴y=12x+2y=2x―4,解得:x=4y=4,∴C(4,4),∵A(―4,0),B(2,0),∴AB=6.∴△ABC的面积为:12×AB×y C=12×6×4=12;(3)解:设点P(x,0)由点A、P、C的坐标得,A C2=(4+4)2+42=80,A P2=(x+4)2,P C2=(x―4)2 +16,当AC=AP时,即80=(x+4)2,解得:x=―4±45,即点P的坐标为:(―4+45,0)或(―4―45,0);当AC=PC时,则80=(x―4)2+16,解得:x=―4(舍去)或16,即点P(16,0);当AP=PC时,即(x+4)2=(x―4)2+16,解得:x=1,即点P(1,0),综上,点P的坐标为:(―4+45,0)或(―4―45,0)或(16,0)或(1,0).。
(word完整版)新浙教版八年级上数学期末测试题
新浙教版八年级上数学期末测试题一、选择题1.假设 a-b>a , a+b<b , a , b 为不等于零的实数,那么有〔 B 〕 A.ab<0B.a>0C. a+b>0 D.a-b<0b2.满足不等式 -1 ≤ x< 17 的自然数 x 的个数为〔 B 〕A .6个B. 5 个C .4个D. 3 个3.在平面直角坐标系中,点P 〔 2x-6 , x-5 〕在第四象限,那么x 的取值范围是〔A 〕A . 3<x<5B . -3<x<5C . -5<x<3 D. -5<x<-34.以下说法错误的选项是〔 C 〕A .有 2 个内角是 70°与 40°的三角形是等腰三角形B .一个外角的均分线平行于一边的三角形是等腰三角形C .有 2 个内角不等的三角形不是等腰三角形D .有 2 个不同样极点的外角相等的三角形是等腰三角形5.△ ABC 的 3 边分别为 a ,b , c ,满足〔 a-24 〕 2+〔 b-25 〕 2+c 2 +49=14c ,那么△ ABC?的形状为〔 B〕A .锐角三角形B.直角三角形C.钝角三角形D .形状不确定6. 2 条直线 y 1 =ax+b 与 y 2=bx+a 在同一坐标系中的图像可能是以以下图中的〔A 〕7.如图, D 、 E 分别是△ ABC 的边 BC 、AC 上的点,假设 AB=AC , AD=AE ,那么〔 B 〕 A .当∠ B 为定值时,∠ CDE 为定值 B .当∠α为定值时,∠ CDE 为定值 C .当∠β为定值时,∠ CDE 为定值 D .当∠γ为定值时,∠ CDE 为定值 .8、如图,每个小正方形的边长为 1 个单位,对于 A 、 B 的地址,以下说法错误的选项是〔B 〕A 、B 向左平移 2 个单位再向下移2 个单位与 A 重合 B 、 A 向左平移2 个单位再向下移2 个单位与B 重合C 、 B 在 A 的东北方向且相距 2 2 个单位D 、假设点 B 的坐标为〔 0, 0〕,那么点 A 的坐标为〔- 2,- 2〕 AB9.如图, AB // CD , AC 与 BD 交于点 O ,那么图中面积相等的三角形有〔C 〕A .1 对B .2 对C .3对D .4 对ODC〔第 9题〕10、为激励居民节约用水, 北京市出台了新的居民用水收费标准: (1) 假设每个月每户居民用水不高出 4立方米,那么按每立方米2米计算; (2)假设每个月每户居民用水高出 4立方米,那么高出局部按每立方米米计算 (不高出局部仍按每立方米 2元计算 )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版八年级数学上一次函数期末专项训练试卷
一、选择题:
1、下列函数中是正比例函数的是( )
A .8y x =
B .28y =
C .2(1)y x =-
D .1)3
x y =- 2、函数y=kx-2中,y 随x 的增大而减小,则它的图象可以是( )
3、如图1,一次函数的图象经过A 、B 两点,则这个一次函数的解析式为( )
A .322y x =-
B .122y x =-
C .122y x =+
D .322
y x =+
4、若函数y=kx+b(k 、b 都是不为零的常数)的图象如图2所示,那么当y >0时,x 的取值范围为( )
A .x >1
B .x >2
C .x <1
D .x <2
5、若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( )
(A )一象限 (B )二象限 (C )三象限 (D )四象限
6、若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).
(A )k<
13 (B )13<k<1 (C )k>1 (D )k>1或k<13
7、要得到y =32x-4的图像,可把直线y = 32x ( ). (A )向左平移4个单位 (B )向右平移4个单位 (C )向上平移4个单位(D )向下平移4个单位
8、“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到了终点。
用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则下列图象中与故事相吻合的是………( )
A .
B .
C .
D .
9、若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为 ( )
(A )y 1>y 2 (B )y 1=y 2 (C )y 1<y 2 (D )不能确定
10、在直角坐标系中,已知A (1,1),在x 轴上确定点P ,使△AOP 为
等腰三角形,则符合条件的点P 共有( )
(A )1个 (B )2个 (C )3个 (D )4个
二、填空题
1、已知一次函数y=-6x+1,当-3≤x ≤1时,y 的取值范围是________.
2、函数y=-3x+2的图像上存在点P ,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.
3、已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.
4、某一次函数的图像经过点(-1,2),且函数y 的值随x 的增大而减小,请你写出一个符合上述条件的函
数关系式:_________.
5、已知直线y=-2x+m 不经过第三象限,则m 的取值范围是_________.
6、y=23
x 与y=-2x+3的图像的交点在第_________象限. 7、过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________.
8、设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为S k (k=1,2,3,……,2008),那么S 1+S 2+…+S 2008=_______.
三、解答题
1、已知一次函数y=ax+b 的图象经过点A (2,0)与B (0,4).(1)求一次函数的解析式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数y 的值在-4≤y ≤4范围内,求相应的y 的值在什么范围内
2、如图3,在边长为2的正方形ABCD 的一边BC 上的点P 从B 点运动到C 点,设PB=x ,梯形APCD 的面积为S .
(1)写出S 与x 的函数关系式;
(2)求自变量x 的取值范围;
(3)画出函数图象.
3、为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行“一户一表”的“阶梯电价”,分三个档次收费,第一档是用电量不超过180千瓦时实行“基本电价”,第二、三档实行“提高电价”,具体收费情况如右折线图,请根据图象回答下列问题;
(1)档用地阿亮是180千瓦时时,电费是元;
(2)第二档的用电量范围是;
(3)“基本电价”是元/千瓦时;
(4)小明家8月份的电费是328.5元,
这个月他家用电多少千瓦时?
4、网络时代的到来,很多家庭都接入了网络,电信局规定了拨号入网的两种收费方式,用户可以任选其一:A:计时制:0.05元/分;B:全月制:54元/月(限一部个人住宅电话入网)。
此外B种上网方式要加收通信费0.02元/分.
(1)某用户某月上网的时间为x小时,两种收费方式的费用分别为y1(元)、y2(元),写出y1、y2与x之间的函数关系式。
(2)在上网时间相同的条件下,请你帮该用户选择哪种方式上网更省钱?
5、小明在暑期社会实践活动中,以每千克0.8元的价格从批发市场购进若干千克西瓜到市场上去销售,在销售了40千克西瓜之后,余下的每千克降价0.4元,全部售完.销售金额与售出西瓜的千克数之间的关系如图4所示.请你根据图象提供的信息完成以下问题:
(1)求降价前销售金额y(元)与售出西瓜x(千克)之间的函数关系式.
(2)小明从批发市场共购进多少千克西瓜?
(3)小明这次卖瓜赚了多少钱?
6、A ,B 两地相距1100米,甲从A 地出发,乙从B 地出发,相向而行,甲比乙先出发2分钟,乙出发7分钟后与甲相遇.设甲、乙两人相距y 米,甲行进时间为t 分钟,y 与t 之间的函数关系式如图所示.请你结合图象探究:
(1)甲的行进速度为每分钟 米, m= 分钟;
(2)求直线PQ 对应的函数表达式;
(3)求乙的行进速度.
7、某服装厂现有A 种布料70m ,B 种布料52m ,现计划用这两种布料生产M 、N 两种型号的时装80套。
已知做一套M 型号的时装需要A 种布料0.6m ,B 种布料0.9m,可获利45元;做一套N 型号的时装需要A 种布料1.1m ,B 种布料0.4 m ,可获利50元。
若设生产N 型号的时装套数为x ,用这批布料生产这两种型号的时装所获的总利润为y 元。
(1)求y 与x 的函数关系式, (2)求出x 的取值范围;
(3)该服装厂在生产这批时装中,当生产N 型号的时装多少套时,所获利润最大?最大利润是多少?
8、如图,直线6y kx =+与x 轴y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。
(1)求k 的值;
(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;
(3)探究:当点P 运动到什么位置时,△OPA 的面积为278
,并说明理由。