《数字信号处理》课后上机题#优选.
数字信号处理,第5章课后习题答案
第五章习题与上机题5.1 已知序列12()(),0 1 , ()()()nx n a u n a x n u n u n N =<<=--,分别求它们的自相关函数,并证明二者都是偶对称的实序列。
解:111()()()()()nn mx n n r m x n x n m a u n au n m ∞∞-=-∞=-∞=-=-∑∑当0m ≥时,122()1mmnx n ma r m aaa∞-===-∑ 当0m <时,122()1m mnx n a r m aaa -∞-===-∑ 所以,12()1mx ar m a =-2 ()()()()N x n u n u n N R n =--=22210121()()()()()1,0 =1,00, =()(1)x NN n n N mn N n m N r m x n x n m Rn R n m N m N m N m m Nm N m R m N ∞∞=-∞=-∞--=-=-=-=-⎧=--<<⎪⎪⎪⎪=-≤<⎨⎪⎪⎪⎪⎩-+-∑∑∑∑其他从1()x r m 和2()x r m 的表达式可以看出二者都是偶对称的实序列。
5.2 设()e()nTx n u n -=,T 为采样间隔。
求()x n 的自相关函数()x r m 。
解:解:()()()()e()e ()nTn m T x n n r m x n x n m u n u n m ∞∞---=-∞=-∞=-=-∑∑用5.1题计算1()x r m 的相同方法可得2e()1e m Tx Tr m --=-5.3 已知12()sin(2)sin(2)s s x n A f nT B f nT ππ=+,其中12,,,A B f f 均为常数。
求()x n 的自相关函数()x r m 。
解:解:()x n 可表为)()()(n v n u n x +=的形式,其中)2sin()(11s nT f A n u π=,=)(n v 22sin(2)s A f nT π,)(),(n v n u 的周期分别为 s T f N 111=,sT f N 221=,()x n 的周期N 则是21,N N 的最小公倍数。
数字信号处理课后答案 第7章高西全
h(n)=hd(n)RN(n)= δ(n − α ) −
sin[ωc (n − α )] R N ( n) π(n − α )
为了满足线性相位条件: h(n)=h(N-1-n) 要求满足
N −1 α= 2
(3) N必须取奇数。 因为N为偶数时(情况2), H(ejπ)=0, 不能实现高通。 根据题中对过渡带宽度的要求, 4π π N应满足: , 即N≥40。 取N=41。 ≤ N 10 6. 理想带通特性为
解: (1) 由所给h(n)的取值可知,h(n)满足h(n)=h(N-1 -n), 所以FIR滤波器具有A类线性相位特性:
N −1 θ (ω ) = −ω = −2.5ω 2
由于N=6为偶数(情况2), 所以幅度特性关于ω=π点奇对称。 (2) 由题中h(n)值可知, h(n)满足h(n)=-h(N-1-n), 所以FIR滤波器具有B类线性相位特性: π N −1 π θ (ω ) = − − ω = − − 3ω 2 2 2 由于7为奇数(情况3), 所以幅度特性关于ω=0, π, 2π三点奇对 称。
e − jωa jω H d (e ) = 0
ωc ≤ | ω | ≤ π
其它
(1) 求出该理想高通的单位脉冲响应hd(n); (2) 求出加矩形窗设计的高通FIR滤波器的单位脉冲响 应h(n)表达式, 确定α与N的关系; (3) N的取值有什么限制?为什么? 解: (1) 直接用IFT[Hd(ejω)]计算:
N −1 (2) 为了满足线性相位条件, 要求 a = , N为 2 π 矩形窗函数长度。 因为要求过渡带宽度∆β≤ rad, 所以要 8 4π π 求 , 求解得到N≥32。 加矩形窗函数, 得到h(n): ≤ N 8 sin[ωc (n − a )] h(n) = hd (n) ⋅ RN (n) = R N ( n) π (n − a )
数字信号处理课后答案+第4章(高西全丁美玉第三版)
6*. 按照下面的IDFT算法编写MATLAB语言 IFFT程 序, 其中的FFT部分不用写出清单, 可调用fft函数。 并分 别对单位脉冲序列、 矩形序列、 三角序列和正弦序列进行 FFT和IFFT变换, 验证所编程序。
解: 为了使用灵活方便, 将本题所给算法公式作为函 数编写ifft46.m如下: %函数ifft46.m %按照所给算法公式计算IFET function xn=ifft46(Xk, N) Xk=conj(Xk); %对Xk取复共轭 xn=conj(fft(Xk, N))/N; %按照所给算法公式计算IFFT 分别对单位脉冲序列、 长度为8的矩形序列和三角序列 进行FFT, 并调用函数ifft46计算IFFT变换, 验证函数 ifft46的程序ex406.m如下:
快速卷积时, 需要计算一次N点FFT(考虑到H(k)= DFT[h(n)]已计算好存入内存)、 N次频域复数乘法和 一次N点IFFT。 所以, 计算1024点快速卷积的计算时间Tc 约为
Fs <
1024 = 15 625 次 /秒 65536 × 10−6
Fs 15625 = = 7.8125 kHz 2 2
1 x ( n) = IDFT[ X ( k )] = [DFT[ X * ( k )]]* N
%程序ex406.m %调用fft函数计算IDFT x1n=1; %输入单位脉冲序列x1n x2n=[1 1 1 1 1 1 1 1]; %输入矩形序列向量x2n x3n=[1 2 3 4 4 3 2 1]; %输入三角序列序列向量x3n N=8; X1k=fft(x1n, N); X2k=fft(x2n, N); X3k=fft(x3n, N); %计算x1n的N点DFT %计算x2n的N点DFT %计算x3n的N点DFT
《数字信号处理》第三版课后答案(完整版)
西安电子 ( 高西全丁美玉第三版 ) 数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列 (n) 及其加权和表示 题 1 图所示的序列。
解:x( n)(n4) 2 (n 2) ( n 1)2 (n)(n 1) 2 (n 2) 4 ( n 3)0.5(n 4)2 (n 6)2n 5, 4 n 12. 给定信号: x( n)6,0n 40, 其它(1)画出 x( n) 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示 x(n) 序列;(3)令 x 1( n) 2x(n 2) ,试画出 x 1( n) 波形;(4)令 x 2 (n) 2x(n 2) ,试画出 x 2 (n) 波形;(5)令 x 3 (n) 2x(2 n) ,试画出 x 3 (n) 波形。
解:( 1) x(n) 的波形如 题 2 解图(一) 所示。
( 2)x(n)3 ( n 4)(n 3) (n 2) 3 ( n 1) 6 (n) 6 (n 1)6 ( n 2)6(n 3) 6 (n 4)( 3) x 1 (n) 的波形是 x(n) 的波形右移 2 位,在乘以 2,画出图形如 题 2 解图(二) 所示。
( 4) x 2 (n) 的波形是 x(n) 的波形左移 2 位,在乘以 2,画出图形如 题 2 解图(三) 所示。
( 5)画 x 3 (n) 时,先画 x(-n) 的波形,然后再右移2 位, x3 ( n) 波形如 题 2 解图(四) 所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1) x( n)Acos(3n) ,A 是常数;78(2)x(n)j ( 1n)e 8。
解:(1)w 3214T=14 ;7,,这是有理数,因此是周期序列,周期是w3(2)w 1 , 216 ,这是无理数,因此是非周期序列。
8w5. 设系统分别用下面的差分方程描述,x(n) 与 y(n) 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理课后习题答案完整版
数字信号处理课后习题答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】数字信号处理(姚天任江太辉)第三版课后习题答案第二章判断下列序列是否是周期序列。
若是,请确定它的最小周期。
(1)x(n)=Acos(685ππ+n )(2)x(n)=)8(π-ne j(3)x(n)=Asin(343ππ+n )解 (1)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),得出=ω85π。
因此5162=ωπ是有理数,所以是周期序列。
最小周期等于N=)5(16516取k k =。
(2)对照复指数序列的一般公式x(n)=exp[ωσj +]n,得出81=ω。
因此πωπ162=是无理数,所以不是周期序列。
(3)对照正弦型序列的一般公式x(n)=Acos(ϕω+n ),又x(n)=Asin(343ππ+n )=Acos(-2π343ππ-n )=Acos(6143-n π),得出=ω43π。
因此382=ωπ是有理数,所以是周期序列。
最小周期等于N=)3(838取k k =在图中,x(n)和h(n)分别是线性非移变系统的输入和单位取样响应。
计算并列的x(n)和h(n)的线性卷积以得到系统的输出y(n),并画出y(n)的图形。
解 利用线性卷积公式y(n)=∑∞-∞=-k k n h k x )()(按照折叠、移位、相乘、相加、的作图方法,计算y(n)的每一个取样值。
(a) y(0)=x(O)h(0)=1y(l)=x(O)h(1)+x(1)h(O)=3y(n)=x(O)h(n)+x(1)h(n-1)+x(2)h(n-2)=4,n ≥2 (b) x(n)=2δ(n)-δ(n-1)h(n)=-δ(n)+2δ(n-1)+ δ(n-2)y(n)=-2δ(n)+5δ(n-1)= δ(n-3) (c) y(n)=∑∞-∞=--k kn k n u k u a)()(=∑∞-∞=-k kn a=aa n --+111u(n) 计算线性线性卷积 (1) y(n)=u(n)*u(n) (2) y(n)=λn u(n)*u(n)解:(1) y(n)=∑∞-∞=-k k n u k u )()(=∑∞=-0)()(k k n u k u =(n+1),n ≥0即y(n)=(n+1)u(n) (2) y(n)=∑∞-∞=-k k k n u k u )()(λ=∑∞=-0)()(k kk n u k u λ=λλ--+111n ,n ≥0即y(n)=λλ--+111n u(n)图所示的是单位取样响应分别为h 1(n)和h 2(n)的两个线性非移变系统的级联,已知x(n)=u(n), h 1(n)=δ(n)-δ(n-4), h 2(n)=a n u(n),|a|<1,求系统的输出y(n). 解 ω(n)=x(n)*h 1(n) =∑∞-∞=k k u )([δ(n-k)-δ(n-k-4)]=u(n)-u(n-4)y(n)=ω(n)*h 2(n) =∑∞-∞=k kk u a )([u(n-k)-u(n-k-4)]=∑∞-=3n k ka,n ≥3已知一个线性非移变系统的单位取样响应为h(n)=a n -u(-n),0<a<1 用直接计算线性卷积的方法,求系统的单位阶跃响应。
《数字信号处理》第三版课后习题答案
《数字信号处理》第三版课后习题答案数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3)0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-??=≤≤其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列;(3)令1()2(2)x n x n =-,试画出1()x n 波形;(4)令2()2(2)x n x n =+,试画出2()x n 波形;(5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6()6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14;(2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理教程课后习题及答案
解:(1 )
n
y(n) = ∑ x(m ) m = −∞
n
y1 (n ) = T [x1 (n )] = ∑ x1 (m ) m = −∞
y2 (n ) = T [x2 (n )] =
n
∑ x2 (m )
m = −∞
n
ay1(n)+ by2 (n) = ∑[ax1(m) + bx2 (n)] m = −∞
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
=
x(n)sin⎜⎝⎛
2π 9
+
π 7
⎟⎠⎞
ay1(n)+ by2 (n)
=
ax1(n
)
sin(
2π 9
+
π 7
)
+
bx2
(n)
sin(
2π 9
+
π 7
)
7. 试判断以下每一系统是否是(1)线性,(2)移不变的?
( ) T[x(n
−
m )] =
x(n
−
m)sin
2π 9
+
π 7
( ) y(n
− m)=
4
第一章 离散时间信号与系统
1 .直接计算下面两个序列的卷积和 y( n ) = x( n )* h( n )
《数字信号处理》第三版课后习题答案
数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列()n δ及其加权和表示题1图所示的序列。
解:()(4)2(2)(1)2()(1)2(2)4(3) 0.5(4)2(6)x n n n n n n n n n n δδδδδδδδδ=+++-+++-+-+-+-+-2. 给定信号:25,41()6,040,n n x n n +-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n 序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n 序列; (3)令1()2(2)x n x n =-,试画出1()x n 波形; (4)令2()2(2)x n x n =+,试画出2()x n 波形; (5)令3()2(2)x n x n =-,试画出3()x n 波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)()3(4)(3)(2)3(1)6() 6(1)6(2)6(3)6(4)x n n n n n n n n n n δδδδδδδδδ=-+-+++++++-+-+-+-(3)1()x n 的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n 的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n 时,先画x(-n)的波形,然后再右移2位,3()x n 波形如题2解图(四)所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; (2)12,168w wππ==,这是无理数,因此是非周期序列。
5. 设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理上机实验答案(第三版,第十章)1
第十章 上机实验数字信号处理是一门理论和实际密切结合的课程,为深入掌握课程内容,最好在学习理论的同时,做习题和上机实验。
上机实验不仅可以帮助读者深入的理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。
本章在第二版的基础上编写了六个实验,前五个实验属基础理论实验,第六个属应用综合实验。
实验一 系统响应及系统稳定性。
实验二 时域采样与频域采样。
实验三 用FFT 对信号作频谱分析。
实验四 IIR 数字滤波器设计及软件实现。
实验五 FIR 数字滤波器设计与软件实现实验六 应用实验——数字信号处理在双音多频拨号系统中的应用任课教师根据教学进度,安排学生上机进行实验。
建议自学的读者在学习完第一章后作实验一;在学习完第三、四章后作实验二和实验三;实验四IIR 数字滤波器设计及软件实现在。
学习完第六章进行;实验五在学习完第七章后进行。
实验六综合实验在学习完第七章或者再后些进行;实验六为综合实验,在学习完本课程后再进行。
10.1 实验一: 系统响应及系统稳定性1.实验目的(1)掌握 求系统响应的方法。
(2)掌握时域离散系统的时域特性。
(3)分析、观察及检验系统的稳定性。
2.实验原理与方法在时域中,描写系统特性的方法是差分方程和单位脉冲响应,在频域可以用系统函数描述系统特性。
已知输入信号可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应,本实验仅在时域求解。
在计算机上适合用递推法求差分方程的解,最简单的方法是采用MA TLAB 语言的工具箱函数filter 函数。
也可以用MATLAB 语言的工具箱函数conv 函数计算输入信号和系统的单位脉冲响应的线性卷积,求出系统的响应。
系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。
重点分析实验系统的稳定性,包括观察系统的暂态响应和稳定响应。
系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响应。
或者系统的单位脉冲响应满足绝对可和的条件。
数字信号处理上机答案(含程序及图片)第三版高西全著
数字信号处理上机答案(含程序及图片)第三版高西全丁玉美著数字信号处理实验一内容一a=0.8;ys=0;A=[1,-0.9];B=[0.05,0.05];xn=[1,zeros(1,50)];x1n=[1 1 1 1 1 1 1 1 zeros(1,50)];x2n=ones(1,128);xi=filtic(B,A,ys);hn=filter(B,A,xn,xi)n=0:length(hn)-1;subplot(2,2,1);stem(n,yn,'.')title('(a) 系统单位脉冲响应h(n)');xlabel('n');ylabel(hn);y1n=filter(B,A,x1n,xi);n=0:length(y1n)-1;subplot(2,2,2);y='y1(n)'; stem(n,y1n,'.')title('(b) 系统对R8(n)的响应y1(n)');xlabel('n');ylabel(yn);y2n=filter(B,A,x2n,xi);n=0:length(y2n)-1;subplot(2,2,4);y='y2(n)'; stem(n,y2n,'.')title('(c) 系统对u(n)的响应y2(n)');xlabel('n');ylabel(yn);20400.020.040.060.080.1nh (n )(a) 系统单位脉冲响应h(n)020400.20.40.6ny 1(n )(b) 系统对R8(n)的响应y1(n)501000.20.40.60.81ny 2(n )(c) 系统对u(n)的响应y2(n)内容二x1n=[1 1 1 1 1 1 1 1 ];h1n=[ones(1,10) zeros(1,10)]; h2n=[1 2.5 2.5 1 zeros(1,10)]; y21n=conv(h1n,x1n); y22n=conv(h2n,x1n); M1=length(y21n)-1; M2=length(y22n)-1; n1=0:1:M1; n2=0:1:M2;n11=0:length(h1n)-1; n22=0:length(h2n)-1;subplot(2,2,1); tstem(n11,h1n); title('(d) 系统单位脉冲响应h1(n)'); xlabel('n');ylabel(h1(n));subplot(2,2,2); stem(n1,y21n,'fill'); title('(e) h1(n)与R8(n)的卷积y21(n)'); xlabel('n');ylabel(y21(n));subplot(2,2,3); tstem(n22,h2n); title('(f) 系统单位脉冲响应h2(n)'); xlabel('n');ylabel(h2(n));subplot(2,2,4); stem(n1,y22n,'fill'); title('(g) h2(n)与R8(n)的卷积y22(n)'); xlabel('n');ylabel(y22(n));5101500.51nh 1(n )(d) 系统单位脉冲响应h1(n)010202468ny 21(n )(e) h1(n)与R8(n)的卷积y21(n)510123nh 2(n )(f) 系统单位脉冲响应h2(n)510152002468ny 22(n )(g) h2(n)与R8(n)的卷积y22(n)内容三谐振器对u(n)的响应a=0.8;ys=0;xn=[1,zeros(1,250)];B=[1/100.49,-1/100.49];A=[1,-1.8237,0.9801]; xi=filtic(B,A,ys); yn=filter(B,A,xn,xi) n=0:length(yn)-1;subplot(1,1,1);stem(n,yn,'.')谐振器对正弦信号的响应a=0.8;ys=0;xsin=sin(0.014*n)+sin(0.4*n);B=[1/100.49,-1/100.49];A=[1,-1.8237,0.9801]; xi=filtic(B,A,ys); yn=filter(B,A,xsin,xi) n=0:length(yn)-1;subplot(1,1,1);stem(n,yn,'.')50100150200250-0.01-0.008-0.006-0.004-0.00200.0020.0040.0060.0080.0150100150200250-0.5-0.4-0.3-0.2-0.100.10.20.30.40.5数字信号处理实验三实验(1)x1n=[ones(1,4)]; X1k8=fft(x1n,8); X1k16=fft(x1n,16); N=8;f=2/N*(0:N-1); figure(1);subplot(1,2,1);stem(f,abs(X1k8),'.'); title('(la) 8µãDFT[x_1(n)]');xlabel('\omega/\pi¡¯);ylabel(¡®|(e^j^\omega)|'); N=16;f=2/N*(0:N-1);subplot(1,2,2);stem(f,abs(X1k16),'.'); title('(la) 16µãDFT[x_1(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');实验(1-2,1-3)M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb];x3n=[xb,xa];X2k8=fft(x2n,8);X2k16=fft(x2n,16);X3k8=fft(x3n,8);X3k16=fft(x3n,16);figure(2);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X2k8),'.');title('(2a) 8µãDFT[x_2(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); subplot(2,2,3);stem(f,abs(X3k8),'.');title('(3a) 8µãDFT[x_3(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X2k16),'.');title('(2a) 16µãDFT[x_2(n)]');xlabel('');ylabel('');subplot(2,2,4);stem(f,abs(X3k16),'.');title('(3a) 16µãDFT[x_3(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');实验(2-1,2-2)N=8;n=0:N-1;x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n,8);X4k16=fft(x4n,16);X5k8=fft(x5n,8);X5k16=fft(x5n,16);figure(3);N=8;f=2/N*(0:N-1);subplot(2,2,1);stem(f,abs(X4k8),'.');title('(4a) 8µãDFT[x_4(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); subplot(2,2,3);stem(f,abs(X5k8),'.');title('(5a) 8µãDFT[x_5(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=16;f=2/N*(0:N-1);subplot(2,2,2);stem(f,abs(X4k16),'.');title('(4a) 16µãDFT[x_4(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); subplot(2,2,4);stem(f,abs(X5k16),'.');title('(5a) 16µãDFT[x_5(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');实验(3)Fs=64;T=1/Fs;N=16;n=0:N-1;nT=n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT); X8k16=fft(x8n,16);N=16;f=2/N*(0:N-1);figure(4);subplot(2,2,1);stem(f,abs(X8k16),'.');title('(8a) 16µãDFT[x_8(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=32;n=0:N-1;nT=n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT); X8k32=fft(x8n,32);N=32;f=2/N*(0:N-1);figure(4);subplot(2,2,2);stem(f,abs(X8k32),'.');title('(8a) 32µãDFT[x_8(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|'); N=64;n=0:N-1;nT=n*T;x8n=cos(8*pi*nT)+cos(16*pi*nT)+cos(20*pi*nT); X8k64=fft(x8n,64);N=64;f=2/N*(0:N-1);figure(4);subplot(2,2,3);stem(f,abs(X8k64),'.');title('(8a) 64µãDFT[x_8(n)]');xlabel('\omega/\pi');ylabel('|(e^j^\omega)|');数字信号处理实验四内容一function st=mstgN=800Fs=10000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T;k=0:N-1;f=k/Tp; fc1=Fs/10; fm1=fc1/10; fc2=Fs/20; fm2=fc2/10; fc3=Fs/40; fm3=fc3/10;xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); st=xt1+xt2+xt3; fxt=fft(st,N); subplot(3,1,1)plot(t,st);grid;xlabel('t/s');ylabel('s(t)');axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形') subplot(3,1,2)stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱') axis([0,Fs/5,0,1.2]);xlabel('f/Hz');ylabel('幅度')0.0010.0020.0030.0040.0050.0060.0070.0080.0090.01-10123t/ss (t )(a) s(t)的波形20040060080010001200140016001800200000.51(b) s(t)的频谱f/Hz幅度内容二Fs=10000;T=1/Fs;st=mstg;%低通滤波器设计与实现fp=280;fs=450;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N,rp,rs,wp);y1t=filter(B,A,st);figure(2);subplot(3,1,1);[H,w]=freqz(B,A,1000);m=abs(H);plot(w/pi,20*log(m/max(m)));grid on;title('低通滤波损耗函数曲线'); xlabel('w/pi ');ylabel('幅度'); axis([0,1,0,1.2*max(H)])yt='y1(t)'; subplot(3,1,2); plot(t,y1t);title('低通滤波后的波形');xlabel('t/s');ylabel(y1(t));%带通滤波器设计与实现fpl=440;fpu=560;fsl=275;fsu=900;wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N,rp,rs,wp);y2t=filter(B,A,st);figure(3);subplot(3,1,1);[H,w]=freqz(B,A,1000);m=abs(H);plot(w/pi,20*log(m/max(m)));grid on;title('带通滤波损耗函数曲线'); xlabel('w/pi ');ylabel('幅度'); axis([0,1,0,1.2*max(H)])yt='y2(t)'; subplot(3,1,2); plot(t,y2t);title('带通滤波后的波形');xlabel('t/s');ylabel(y2(t));%高通滤波器设计与实现fp=890;fs=600;wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60;[N,wp]=ellipord(wp,ws,rp,rs);[B,A]=ellip(N,rp,rs,wp,'high');y3t=filter(B,A,st);figure(4);subplot(3,1,1);[H,w]=freqz(B,A,1000);m=abs(H);plot(w/pi,20*log(m/max(m)));grid on;title('高通滤波损耗函数曲线'); xlabel('w/pi ');ylabel('幅度'); axis([0,1,0,1.2*max(H)])yt='y3(t)'; subplot(3,1,2); plot(t,y3t);title('高通滤波后的波形');xlabel('t/s');ylabel(y3(t));低通滤波器损耗函数及其分离出的调幅信号y1(t)带通滤波器损耗函数及其分离出的调幅信号y2(t)高通滤波器损耗函数及其分离出的调幅信号y3(t)数字信号处理实验五1、function xt=xtg(N)Fs=1000;T=1/Fs;Tp=N*T;t=0:T:(N-1)*T;fc=Fs/10;f0=fc/10;mt=cos(2*pi*f0*t);ct=cos(2*pi*fc*t);xt=mt.*ct;nt=2*rand(1,N)-1;fp=150; fs=200;Rp=0.1;As=60;fb=[fp,fs];m=[0,1];dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)];[n,fo,mo,W]=remezord(fb,m,dev,Fs);hn=remez(n,fo,mo,W);yt=filter(hn,1,10*nt);xt=xt+yt;fst=fft(xt,N);k=0:N-1;f=k/Tp;subplot(3,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)');axis([0,Tp/5,min(xt),max(xt)]);title('(a) 信号加噪声波形')subplot(3,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b) 信号加噪声的频谱')axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度')2、xt=xtg;N=1000;Fs=1000;T=1/Fs;Tp=N*T;k=0:N-1;f=k/Tp;t=0:T:(N-1)*T;fp=120;fs=150;Rp=0.1;As=60;Fs=1000;wc=(fp+fs)/Fs;B=2*pi*(fs-fp)/Fs;M=ceil(11*pi/B);hn=fir1(M-1,wc,blackman(M));Hw=abs(fft(hn,N));ywt=fftfilt(hn,xt,N);figure;subplot(2,1,1);plot(f,20*log10(Hw)/max(Hw));grid onxlabel('f/Hz');ylabel('幅度(dB )');title('(a)低通滤波器的幅频特性')axis([0,500,-160,5]);subplot(2,1,2);plot(t,ywt);grid onxlabel('t/s');ylabel('y_1(t)');title('(b)滤除噪声后的信号波形')050100150200250300350400450500-150-100-500f/Hz幅度(d B )(a)低通滤波器的幅频特性00.10.20.30.40.50.60.70.80.91-1-0.50.51t/s y 1(t )(b)滤除噪声后的信号波形。
《数字信号处理》课后上机题.doc
实验报告第一章:时域离散信号和时域离散系统*16.已知两个系统的差分方程分别为(1) y(n)=0.6y(n-1)-0.08y(n-2)+x(n)(2) y(n)=0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)分别求出所描述的系统的单位脉冲响应和单位阶跃响应.解:(可附程序)(1)系统差分方程的系数向量为B1=1,A1=[1,-0.6,0.08](2)系统差分方程的系数向量为B2=[2,0,-1],A2=[1,-0.7,0.1]调用MATLAB函数filter计算两个系统的单位脉冲响应和单位阶跃响应的程序%B1=1;A1=[1,-0.6,0.08];%设差分方程(1)系数向量B2=[2,0,-1];A2=[1,-0.7,0.1];%设差分方程(2)系数向量%系统1xn=[1,zeros(1,30)];ys=0;%xn=单位脉冲序列,长度N=31xi=filtic(B1,A1,ys);%由初始条件计算等效初始条件输入序列xihn1=filter(B1,A1,xn,xi);%调用filter解差分方程,求系统输出信号hn1n=0:length(hn1)-1;subplot(2,2,1);stem(n,hn1,'.')title('(a)系统1的系统单位脉冲响应');xlabel('n');ylabel('h(n)')xn=ones(1,30);%xn=单位阶跃序列,长度N=31sn1=filter(B1,A1,xn,xi);%调用filter解差分方程,求系统输出信号sn1n=0:length(sn1)-1;subplot(2,2,2);stem(n,sn1,'.')title('(b)系统1的单位阶跃响应');xlabel('n');ylabel('s(n)')%系统2xn=[1,zeros(1,30)];%xn=单位脉冲序列,长度N=31xi=filtic(B2,A2,ys);%由初始条件计算等效初始条件输入序列xihn2=filter(B2,A2,xn,xi);%调用filter 解差分方程,求系统输出信号hn2 n=0:length(hn2)-1;subplot(2,2,3);stem(n,hn2,'.')title('(a)系统2的系统单位脉冲响应'); xlabel('n');ylabel('h(n)') xn=ones(1,30);%xn=单位阶跃序列,长度N=31 sn2=filter(B2,A2,xn,xi);%调用filter 解差分方程,求系统输出信号sn2 n=0:length(sn2)-1;subplot(2,2,4);stem(n,sn2,'.') title('(b)系统2的单位阶跃响应'); xlabel('n');ylabel('s(n)') (结果展示):1020300.51(a)系统1的系统单位脉冲响应nh (n )1020300123(b)系统1的单位阶跃响应ns (n )102030-1012(a)系统2的系统单位脉冲响应nh (n )10203001234(b)系统2的单位阶跃响应ns (n )第二章:时域离散信号和系统的频域分析*30.假设系统函数如下式: 5147.13418.217.198.33)3)(9()(234-++--+=z z z z z z z H 试用MATLAB 语言判断系统是否稳定. 解:(可附程序):%调用roots 函数求极点,并判断系统的稳定性 A=[3,-3.98,1.17,2.3418,-1.5147]; %H(z)的分母多项式系数。
数字信号处理课后答案全+第1章(高西全丁美玉第三版)
② 0≤n≤3时, y(n)= 1=n+1
m =0
∑
3
③ 4≤n≤7时, y(n)= 1=8-n
= −4
∑ m n
y(n)的波形如题8解图(一)所示。
(2) y(n) =2R4(n)*[δ(n)-δ(n-2)]=2R4(n)-2R4(n-2) =2[δ(n)+δ(n-1)-δ(n+4)-δ(n+5)]
(4) y(n)=x(n-n0) (5) y(n)=ex(n)
(4)假设n0>0, 系统是因果系统, 因为n时刻输出只 和n时刻以后的输入有关。 如果|x(n)|≤M, 则|y(n)|≤M, 因 此系统是稳定的。 (5) 系统是因果系统, 因为系统的输出不取决于x(n) 的未来值。 如果|x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM, 因此 系统是稳定的。 7. 设线性时不变系统的单位脉冲响应h(n)和输入序列
−1 4
(3) x1(n)的波形是x(n)的波形右移2位, 再乘以2, 画 出图形如题2解图(二)所示。 (4) x2(n)的波形是x(n)的波形左移2位, 再乘以2, 画出 图形如题2解图(三)所示。 (5) 画x3(n)时, 先画x(-n)的波形(即将x(n)的波形以纵轴 为中心翻转180°), 然后再右移2位, x3(n)波形如题2解图 (四)所示。
先确定求和域。 由R4(m)和R5(n-m)确定y(n)对于m的 非零区间如下: 0≤m≤3 -4≤m≤n
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
n
最后结果为 0
n<0或n>7
y(n)=
n+1 0≤n≤3
《数字信号处理》课后上机题
title(’(a)系统1的系统单位脉冲响应’);
xlabel('n');ylabel(’h(n)')
xn=ones(1,30);
%xn=单位阶跃序列,长度N=31
sn1=filter(B1,A1,xn,xi);
%调用filter解差分方程,求系统输出信号sn1
解:(可附程序)
Fs=80000;
T=1/Fs;
wp=2*pi*4000/Fs;
ws=2*pi*20000/Fs;
rp=0。5;rs=45;
[N,wc]=buttord(wp/pi,ws/pi,rp,rs)
[B,A]=butter(N,wc)
clf;
mpplot(B,A,rs);
function mpplot(B,A,rs)
if nargin<3 ymin=—80;else ymin=-rs—20;end;
[H,W]=freqz(B,A,1000);
m=abs(H);
p=angle(H);
subplot(2,1,1);
plot(W/pi,20*log10(m/max(m)));grid on;
xlabel('\omega/\pi');ylabel(’幅度(dB)’)
(结果展示):
yn =
2 -1 —2 2 -2 —1 2
ycn =
2.0000 -1.0000 -2。0000 2。0000 -2。0000 —1.0000 2.0000
第四章:快速傅里叶变换(FFT)
*6.按照下面的IDFT算法编写MATLAB语言IFFT程序,其中的FFT部分不用写出清单,可调用fft函数。并分别对单位脉冲序列,矩形序列,三角序列和正弦序列进行FFT和IFFT,验证所编程序.
数字信号处理课后答案 第2章高西全
( −1) n x( n) = 2
n = −3
(4) 因为傅里叶变换的实部对应序列的共轭对称部分, 即
Re [ X (e jω )] =
n = −∞
∑
∞
x e ( n ) e − j ωn
1 xe (n) = ( x(n) + x(− n)) 2
按照上式画出xe(n)的波形如题5解图所示。
题5解图
2. 已知
jω
n = −∞
∑
∞
x( n′)e − j2ωn′ = X (e j2ω )
| ω |< ω0
1, X (e ) = 0,
ω0 <| ω | ≤ π
求X(ejω)的傅里叶反变换x(n)。
解:
1 x ( n) = 2π
∫ωe
−
0
ω0
jωn
sin ω0 n dω = πn
3. 线性时不变系统的频率响应(频率响应函数) H(ejω)=|H(ejω)|ejθ(ω), 如果单位脉冲响应h(n)为实序列, 试 证明输入x(n)=A cos(ω0n+ϕ)的稳态响应为
∑
∗
∞
x(n′)e − jω ( n + n0 ) = e − jωn0 X (e jω )
′
n = −∞
∑ x ( n )e
邹理和《数字信号处理上》课后习题答案
n = −∞
∑ x ( n) z
∞
−n
(1) Z [δ (n − n0 )] = a )n0 ≥ 0
n = −∞
∑ δ (n − n ) z
0
∞
−n
= z − n0
ROC :| Z |≠ 0且 | z |∈ R b) n 0 < 0 ROC :| z |≥ 0除去 + ∞ 零点出现在无穷远处
需要其他考研资料
数字信号处理(邹理和编)
课后习题答案
第 1 页,共 84 页
第一章 离散时间系统与 z 变换 1.解:P(t)是一个周期函数,可以用傅氏级数来表示
P (t ) = am = 1 T
m = −∞
∑a ∫
T /2 ∞
∞
m
e jmΩ s t 1 τ − jmΩ st 1 e dt = (1 − e − jmΩ sτ ) ∫ 0 T jm 2π
=
m = −∞
∑
1 (1 − e − jmΩ sτ )X a ( jΩ − jmΩ s ) j 2 mπ
2.解:
x s1 (t ) = x a1 (t ) P(t ) = x s 2 (t ) = x a 2 (t ) P (t ) = x s 3 (t ) = x a 3 (t ) P (t ) =
y ( n ) = 0 .5 n u ( n ) ⊗ R 5 ( n ) a )0 ≤ n < 4时, y (n) = 2 − 2 n b)n ≥ 4时, y (n) = 31 ⋅ 2 n y (n) = 0.5 n u (n) ⊗ R5 (n)
6.解:
需要其他考研资料
发邮件到:huntsmanydw@
n =0 +∞
数字信号处理课后习题答案 全全全
1
1 >
. . z
z
(3) , | | 0.5
1 0.5
1
1 <
. . z
z
(4)
, | | 0
1 0.5
1 (0.5 )
1
1 10
>
.
.
.
.
z
z
z
1.8 (1) ) , 0
1
( ) (1 2
1 3 3
3.014 2.91 1.755 0.3195
0.3318 0.9954 0.9954 0.3318
1 0.9658 0.5827 0.1060
z z z
z z z
z z z
z z z
. . .
. . .
. . .
. . .
. + .
=
= . . +
= . . . +
..
.
..
. π
2.13
0,1,2, , 1
( ) ( )
= .
=
k N
Y rk X k
..
2.14
Y(k) = X ((k)) R (k) k = 0,1, ,rN .1 N rN ..
2.15 (1) x(n) a R (n) N
= n y(n) b R (n) N
= n
(2) x(n) =δ (n) y(n) = Nδ (n)
2.16 ( )
1
1 a R N
a N
n
. N
数字信号处理上机考试试题参考
数字信号处理上机考试试题参考1.对于由下列系统函数描述的线性时不变系统,求:(1)零-极点图;(2)输入)()3/cos(3)(n u n n x π=时的输出)(n y 。
(1),因果系统(2),稳定系统2.已知一个因果、线性、时不变系统由下列差分方程描述:)1()2()1()(-+-+-=n x n y n y n y(1)画出该系统的单位脉冲响应;(2)判断该系统是否稳定?3.已知因果系统)(2)2(5.0)1(8.0)(n x n y n y n y +-+-=(1)画出零极点图;(2)画出)(ωj e H 的幅度和相位;(3)求脉冲响应)(n h 。
4.一个数字滤波器的差分方程为:)2(81.0)1(9.0)1()()(---+-+=n y n y n x n x n y(1)用freqz 函数画出该滤波器的幅频和相频曲线,注意在3/πω=和πω=时的幅度和相位值;(2)产生信号)cos(5)3/sin()(n n n x ππ+=的200个点并使其通过滤波器,画出输出波形)(n y 。
把输出的稳态部分与)(n x 比较,讨论滤波器如何影响两个正弦波的幅度和相位。
5.对于下列序列,计算(a )N 点循环卷积)()()(213n x n x n x N ⊗=,(b )线性卷积)(*)()(214n x n x n x =,(c )误差序列)()()(43n x n x n e -=。
(1)}1,1,1,1{)(1=n x ,)()4/cos()(62n R n n x π=;8=N(2)}1,1,1,1{)(1--=n x ,}0,1,0,1{)(2-=n x ;5=N(3))()/2cos()(161n R N n n x π=,)()/2sin()(162n R N n n x π=;32=N(4))()8.0()(101n R n x n =,)()8.0()(102n R n x n -=;15=N6.给定序列)(1n x 和)(2n x 为:}2,1,1,2{)(1=n x ,}1,1,1,1{)(2--=n x(1)计算N=4,7,8时的循环卷积)()(21n x n x N ⊗(2)计算线性卷积)(*)(21n x n x ;(3)利用计算结果,求出在N 点区间上线性卷积和循环卷积相等所需要的最小N 值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
subplot(2,2,2);stem(n,sn1,'.')
title('(b)系统1的单位阶跃响应');
xlabel('n');ylabel('s(n)')
%系统2
xn=[1,zeros(1,30)];
%xn=单位脉冲序列,长度N=31
xi=filtic(B2,A2,ys);
实验报告
第一章:时域离散信号和时域离散系统
*16.已知两个系统的差分方程分别为
(1) y(n)=0.6y(n-1)-0.08y(n-2)+x(n)
(2) y(n)=0.7y(n-1)-0.1y(n-2)+2x(n)-x(n-2)
分别求出所描述的系统的单位脉冲响应和单位阶跃响应.
解:(可附程序)
(1)系统差分方程的系数向量为
subplot(2,2,1);stem(n,hn1,'.')
title('(a)系统1的系统单位脉冲响应');
xlabel('n');ylabel('h(n)')
xn=ones(1,30);
%xn=单位阶跃序列,长度N=31
sn1=filter(B1,A1,xn,xi);
%调用filter解差分方程,求系统输出信号sn1
%设差分方程(2)系数向量
%系统1
xn=[1,zeros(1,30)];
ys=0;
%xn=单位脉冲序列,长度N=31
xi=filtic(B1,A1,ys);
%由初始条件计算等效初始条件输入序列xi
hn1=filter(B1,A1,xn,xi);
%调用filter解差分方程,求系统输出信号hn1
n=0:length(hn1)-1;
if nargin<3 ymin=-80;else ymin=-rs-20;end;
[H,W]=freqz(B,A,1000);
m=abs(H);
p=angle(H);
subplot(2,1,1);
plot(W/pi,20*log10(m/max(m)));grid on;
xlabel('\omega/\pi');ylabel('幅度(dB)')
B1=1,A1=[1,-0.6,0.08]
(2)系统差分方程的系数向量为
B2=[2,0,-1],A2=[1,-0.7,0.1]
调用MATLAB函数filter计算两个系统的单位脉冲响应和单位阶跃响应的程序%B1=1;A1=[1,-0.6,0.08];
%设差分方程(1)系数向量
B2=[2,0,-1];A2=[1,-0.7,0.1];
解:(可附程序)
hn=[5,5,5,3,3,3];
r=0.95;
Hk=fft(hn,6);
for k=1:3
hk(k)=Hk(k);Wk(k)=exp(-j*2*pi*(k-1)/6);
endห้องสมุดไป่ตู้
H0=Hk(1)
H3=Hk(4)
r0k=2*real(hk)
r1k=-2*real(r*hk.*Wk)
(结果展示):
function xn=ifft46(Xk,N)
Xk=conj(Xk); %对Xk取复共轭
xn=conj(fft(Xk,N))/N; %按照所给算法公式计算
(结果展示):
X1k =
1 1 1 1 1 1 1 1
X2k =
8 0 0 0 0 0 0 0
X3k =
Columns 1 through 4
20.0000 -5.8284 - 2.4142i 0 -0.1716 - 0.4142i
解:(可附程序)
Fs=80000;
T=1/Fs;
wp=2*pi*4000/Fs;
ws=2*pi*20000/Fs;
rp=0.5;rs=45;
[N,wc]=buttord(wp/pi,ws/pi,rp,rs)
[B,A]=butter(N,wc)
clf;
mpplot(B,A,rs);
function mpplot(B,A,rs)
H0 =
24
H3 =
2
r0k =
48 4 0
r1k =
-45.6000 3.8000 0
第六章:无限脉冲响应数字滤波器的设计
*14.设计一个工作于采样频率80kHz的巴特沃斯低通数字滤波器,要求通带边界频率为4kHz,通带最大衰减为0.5dB,阻带边界频率为20kHz,阻带最小衰减为45dB.调用MATLAB工具箱函数buttord和butter设计,并显示数字滤波器系统函数H(z)的系数,绘制损耗函数和相频特性曲线.
第三章:离散傅里叶变换(DFT)
*24.给定两个序列: ={2,1,1,2}, ={1,-1,-1,1}.
(1)直接在时域计算 与 的卷积;
(2)用DFT计算 与 的卷积,总结出DFT的时域卷积定理.
解:(可附程序)
x1n=[2 1 1 2];x2n=[1 -1 -1 1];
%时域直接计算卷积yn:
Columns 5 through 8
0 -0.1716 + 0.4142i 0 -5.8284 + 2.4142i
x1n =
1 0 0 0 0 0 0 0
x2n =
1 1 1 1 1 1 1 1
x3n =
1 2 3 4 4 3 2 1
第五章:时域离散系统的网络结构
*19.假设滤波器的系统函数为
在单位圆上采样六点,选择r=0.95,试画出它的频率采样结构,并在计算机上用DFT求出频率采样结构中的有关系数.
解:(可附程序)
%调用fft函数计算IDFT
x1n=1; %输入单位脉冲序列x1n
x2n=[1 1 1 1 1 1 1 1]; %输入矩形序列向量x2n
x3n=[1 2 3 4 4 3 2 1]; %输入三角序列序列向量x3n
N=8;
X1k=fft(x1n,N);%计算x1n的N点的DFT
X2k=fft(x2n,N)%计算x2n的N点的DFT
yn=conv(x1n,x2n)
%用DFT计算卷积ycn:
M1=length(x1n);
M2=length(x2n);
N=M1+M2-1;
X1k=fft(x1n,N); %计算x1n的N点DFT
X2k=fft(x2n,N); %计算x2n的N点DFT
Yck=X1k.*X2k;
ycn=ifft(Yck,N)
%由初始条件计算等效初始条件输入序列xi
hn2=filter(B2,A2,xn,xi);
%调用filter解差分方程,求系统输出信号hn2
n=0:length(hn2)-1;
subplot(2,2,3);stem(n,hn2,'.')
title('(a)系统2的系统单位脉冲响应');
xlabel('n');ylabel('h(n)')
xn=ones(1,30);
%xn=单位阶跃序列,长度N=31
sn2=filter(B2,A2,xn,xi);
%调用filter解差分方程,求系统输出信号sn2
n=0:length(sn2)-1;
subplot(2,2,4);stem(n,sn2,'.')
title('(b)系统2的单位阶跃响应');
axis([0,1,ymin,5]);
title('低通滤波器幅频特性曲线')
subplot(2,1,2);
plot(W/pi,p/pi);
xlabel('\omega/\pi');ylabel('y_w(t)/\pi');grid on;
title('滤除噪声后的信号波形')
(结果展示):
N =
4
wc =
0.1702
B =
0.0028 0.0111 0.0166 0.0111 0.0028
A =
1.0000 -2.6103 2.7188 -1.3066 0.2425
最新文件----------------仅供参考--------------------已改成word文本---------------------方便更改
X3k=fft(x3n,N)%计算x3n的N点的DFT
x1n=ifft46(X1k,N) %调用ifft46函数计算X1k的IDFT
x2n=ifft46(X2k,N) %调用ifft46函数计算X2k的IDFT
x3n=ifft46(X3k,N) %调用ifft46函数计算X3k的IDFT
%按照所给算法公式计算IFFT
p=roots(A) %求H(z)的极点
pm=abs(p); %求H(z)的极点的模
if max(pm)<1
disp('系统因果稳定')
else
disp('系统因果不稳定')
end
(结果展示):
p =
-0.7486
0.6996 + 0.7129i
0.6996 - 0.7129i
0.6760
系统因果稳定
xlabel('n');ylabel('s(n)')
(结果展示):
第二章:时域离散信号和系统的频域分析
*30.假设系统函数如下式:
试用MATLAB语言判断系统是否稳定.
解:(可附程序):