06 polyaniline
导电聚苯胺_PAn_的特性及应用
导电聚苯胺(PAn )的特性及应用X陆 珉 吴益华 姜海夏(上海交通大学应用化学系,上海,200240)摘 要 聚苯胺是导电高分子化合物中的一种极有应用前途的高分子材料。
本文旨在介绍导电聚苯胺的各种特性及各个方面的应用前景。
关键词 聚苯胺 导电高分子材料 特性 应用1 引 言自从第一种导电高聚物—掺碘的聚乙炔发现以来,人们又陆继开发出了聚苯胺、聚吡咯、聚噻吩等导电高分子材料。
在众多的高分子材料中,聚苯胺有原料易得、合成简便、耐高温及抗氧化性能良好等众多优点。
聚苯胺是由还原单元和氧化单元构成,其结构式为其中y 值用于表征聚苯胺的氧化-还原程度。
不同的y值对应于不同的结构、组份和颜色及电导率,完全还原型(y =1)和完全氧化型(y =0)都为绝缘体。
只有氧化单元数和还原单元数相等(y =0.5)的中间氧化态通过质子酸掺杂后可变成导体。
聚苯胺的主要缺点是不溶不熔,这成为其应用前景中的致命问题。
现今这一问题已得以解决。
U NI X 公司通过选择合适的有机酸掺杂制得的聚苯胺可溶于一些普通有机溶剂[1,2],且还可获得有一定的热塑性的聚苯胺[3]。
IBM 公司则制得了水溶性的聚苯胺[4](专利技术,未公布)。
由于这一加工问题的解决,聚苯胺能够很容易地制成定向膜或纤维[5]。
因而成为最具开发应用前景的导电高分子材料。
现今,已有A pper -ling Kessler &Co .,A llied Singa l Inc 及A menidem Inc 等公司[6~7]都已开始批量生产聚苯胺(商品名为V ersico n),以聚苯胺为基的许多产品也相继问世。
然而,对于聚苯胺的认识并未止步。
人们正期待着开发出聚苯胺更多的应用领域,欧、美及日本等国在聚苯胺的研究和开发上投入了大量的资金和技术力量,并将其列为本世纪末的重点研究课题。
我国也将聚苯胺的应用研究列入国家自然科学基金资助项目。
本文仅就聚苯胺的特性及应用前景等方面的研究进展,作一扼要介绍。
尼龙6的发展历程:从实验室到全球应用的市场王者
尼龙6的发展历程:从实验室到全球应用的市场王
者
尼龙6的发展史可以追溯到1935年,当时罗瑟斯博士在杜邦公司的实验室中首次合成了尼龙6。
1938年,杜邦公司实现了尼龙6的工业化生产,并命名为nylon(中文音译为尼龙)。
在早期的发展阶段,尼龙6主要被用于制造丝袜和其他纺织品。
随着技术的不断进步,尼龙6的应用领域逐渐扩大,包括制造降落伞、飞机轮胎帘子布、军服等军工产品。
在近10年中,全球的尼龙消费量以年均7.5%左右的速度递增。
尼龙6在全球范围内被广泛应用于化纤和工程塑料领域,特别是在汽车、电子、医疗、食品包装等领域中得到了广泛应用。
目前,全球的尼龙6生产商主要包括英威达、杜邦、首诺、罗地亚、巴斯夫、兰蒂奇、旭化成等公司。
其中,生产规模最大的英威达公司约占全球尼龙6产能的40%,而产能前5位的公司占据全球80%以上的市场份额。
总之,尼龙6作为一种重要的合成纤维和工程塑料,在全球范围内得到了广泛应用。
其发展历程经历了多个阶段,目前已经成为了一个高度发达和成熟的市场。
RoomTemperature:房间温度
Highly Sensitive Rayleigh Wave Hydrogen Sensors with WO3Sensing Layers atRoom Temperature*WANG Cheng(王成),FAN Li(范理),ZHANG Shu-Yi(张淑仪)**,YANG Yue-Tao(杨跃涛),ZHOU Ding-Mao(周丁卯),SHUI Xiu-Ji(水修基)Lab of Modern Acoustics,Institute of Acoustics,Nanjing University,Nanjing210093(Received14July2011)Rayleigh wave hydrogen sensors based on128∘YX-LiNbO3substrates with WO3sensing layers operating at room temperature are studied.The experimental results indicate that the WO3layers obtained by a sol-gel method have much higher sensitivities because the sensing layers produced by the sol-gel method have small grains and high roughness and porosity.It is also confirmed that in the sol-gel method,keeping WO3solutions at low temperature and/or decreasing the viscosity of the solutions can decrease the grain sizes and increase the hydrogen-absorbability of the sensing layer.Under the optimized preparation conditions,the high sensitivity of the hydrogen sensors at room temperature is obtained,in which1%hydrogen in natural air induces the frequency shift of72kHz at the operating frequency of124.2MHz.PACS:07.07.Df,81.20.Fw,43.35.Yb,43.38.Rh DOI:10.1088/0256-307X/28/11/110701Surface acoustic wave(SAW)hydrogen sensors have attracted a great deal of attention so far,in which the sensors have achieved high sensitivity as the sen-sors were often operated at high temperature,such as higher than100∘C.[1−4]However,in these experi-ments,a heater and a thermostat were required,which induced the sensors to be more complicated and un-favorable for miniaturization,and limited their appli-cation at room temperature.Furthermore,the heater can induce extra power loss and risks of fire and ex-plosion.Hydrogen sensors operating at room temperature are greatly desirable.However,the sensitivities of the SAW sensors at room temperature are always very low.Several groups used different types of piezoelectric substrates and sensitive layer materials to improve the sensitivities.For example,a SAW hydrogen sensor made of a piezoelectric substrate of64∘YZ-LiNbO3and a sensing layer of Pt/WO3 has a frequency shift of only2.4kHz at the hydro-gen concentration of4%as the operating frequency at43.6MHz.[5]Moreover,several SAW sensors, such as graphene-like nano-sheets/36∘YX-LiTaO3,[6] polyaniline/WO3/ZnO/64∘YX-LiNbO3,[7]highly or-dered polyaniline nano-fibers/36∘YX-LiTaO3[8]and polypyrrole nanofibers/ZnO/36∘YX-LiTaO3,[9]have also been utilized to increase the sensitivities of the hydrogen sensors at room temperature.However,the sensitivities are still quite low even at lower than 20kHz at1%hydrogen.In addition,Huang et al.[10]put forward SAW hy-drogen sensors based on128∘YX-LiNbO3substrates with ZnO nano-rod layers coated by Pt catalytic films as the sensing layers and obtained a frequency shift of about26kHz at0.6%hydrogen at room temperature with the operating frequency of145MHz.Meanwhile, Atashbar et al.[11]reported a SAW hydrogen sen-sor based on an AlN/64∘YX-LiNbO3substrate with polyaniline nano-fibers as the sensing layer and ob-tained a frequency shift of34.6kHz at1%hydrogen at room temperature with the operating frequency of 108.2MHz.In the last two cases,the sensitivities of the sensors were increased,but improvements still need to be made to increase the sensitivity further by using some new techniques.It is well known that WO3can absorb/react with hydrogen at room temperature to form H x WO3 (0.3<x<0.5)structures.[12,13]Therefore,WO3films are always selected as the sensing layers in hydrogen sensors.Several papers have described the fabrica-tion of WO3thin films,which are typically made by evaporation,[14]sputtering,[15]anodization,[16]electro-deposition[17]and the sol–gel method.[18,19]In this work,we present a kind of Rayleigh wave hydrogen sensor based on128∘YX-LiNbO3substrates with Pt/WO3films as the sensing layers.Because the 128∘YX-LiNbO3substrates have a high electrome-chanical coupling coefficient k2and a velocity-shift coefficient k11m.A large k11m can induce the cen-tral frequency to have a larger shift for surface per-turbations,which is easier to observe in the output inter-digital transducer(IDT).[20]IDTs with the elec-trode pairs of80,periodicity of32µm and aperture of2.5mm operating at frequency about125MHz are used to transmit and receive the Rayleigh waves.The WO3films deposited by the sol-gel method*Supported by the National Natural Science Foundation of China under Grant No11174142,and the National Basic Research Program of China under Grant No2012CB921504.**Correspondence author.Email:***************.cnc○2011Chinese Physical Society and IOP Publishing Ltdare selected as the sensing layers because of the ease of forming films that are homogenous,have high rough-ness and porosity,low crystallinity,and are low cost. The WO3solution is prepared by reacting metallic tungsten powder5g dissolved in20mL hydrogen per-oxide(H2O2).The resulting product,W-peroxy acid, is then esterified by reacting with20mL alcohol,in the process the solution is heated up to about80∘C and stirred for about an hour to form a peroxyester-W derivative and then preserved in a refrigerator. Table1.Preparation condition of WO3sensing layerFabricatingSensor A Sensor B conditionsReacting condition Closed esterification Open esterificationPreserving5∘C10∘CtemperatureSpinning velocity2500rotations/min2500rotations/min Spinning time25s25sLayer thickness350nm350nmOperating∼10∘C∼10∘C temperatureRelative humidity∼35%∼35%In order to obtain the optimized sensitive layers of WO3,two esterification processes are performed.In one process,the mixture sol of W-peroxy acid with 20mL alcohol is put in a closed flask and the sol is preserved in a refrigerator with a temperature of5∘C, which is denoted as sensor A;in the other process,the mixture is put in an open flask and kept at the tem-perature of10∘C,which is more viscous and denoted as sensor B.Then the spinning method is adopted for depositing the sensitive layers of the sol-gel.The fabrication conditions of the WO3sol-gel layers are listed in Table1.Finally,thin Pt films about30nm are deposited on WO3sensing layers by using the rf magnetron sputtering method as catalyst films,which dissociate H2molecules to H atoms.Frequency counterAmplifierPower SupplyHydrogen Generator Hydrogen Sensor Hydrogen Concentration CalibratorNetwork AnalyzerReacting Chamber Fig.1.Experimental system for sensitivity measurement.In the study of the sensitivity of the hydrogen sen-sors,a hydrogen gas generator,which can produce a constant hydrogen flow at the rate of210mL/min,is used to generate hydrogen to be mixed with natu-ral air in different ratios in a chamber.Meanwhile, a hydrogen concentration electrochemical detector is used to measure the concentration of hydrogen.A barometer,a flowmeter and a thermometer are used to monitor the changes of the gas pressure,flow rate and temperature in the chamber.Fig.2.Frequency shift of sensor A under different H2 concentrations at room temperature:(a)measured data at H2concentrations of0.3%,0.5%,1.0%,2.0%and3.0%;(b)frequency shift of sensor(sample A)versus H2concen-tration.Fig.3.Frequency shift of sensor B at H2concentrations of1.0%and2.0%.Several properties and the sensitivities of the sen-sors are characterized at room temperature as follows:(1)As the WO3layer with the Pt catalytic film coated on a glass substrate contacts hydrogen, H x WO3forms and induces the color of the sensing layer to change from light yellow to dark blue depen-dending on the hydrogen concentration increase.This is a simple method for semi-quantitatively displaying the existence and concentration of hydrogen.(2)For quantitatively measuring hydrogen concen-tration,the frequency shift of the Rayleigh wave sen-sor is measured,the experimental system is shown in Fig.1.The sensor is connected to an amplifier with high gain to form a closed-loop oscillator and placedin a transparent chamber for obtaining an isolated en-vironment.A frequency counter is used to measure the frequency and/or frequency shift of the oscilla-tor.Meanwhile,the hydrogen concentration is varied by controlling the hydrogen flow in the chamber and measured by the hydrogen concentration detector.0 Fig.4.Insertion loss and conductance variations of the sensor versus hydrogen concentration at room tempera-ture (sensor A).(n m )(n m )0Sensor A102000.20.40.60.81.00.20.40.60.8Sensor B0.20.20.40.40.60.60.80.81.0 1.04020060(m m )(m m )(m m)(m m)Fig.5.Morphology of the WO 3layer of sensors A and B by an AFM.In the experiments,the stability and noise of the experimental system is measured first of all.The re-sults of the measurements indicate that the tempera-ture changes of the sensors are about 0.06∘C during the experiment process.Based on the temperature coeffi-cient of the substrate,−76ppm/∘C,and the operating frequency,125MHz,the frequency variation induced by the temperature fluctuation is about 570Hz.On the other hand,the background noises of the sensors are also measured,which shows a frequency fluctua-tion of about 1.2kHz at room temperature (∼10∘C).Meanwhile,different gases,such as pure argon and nitrogen,which will not react with the sensing film,are introduced into the experimental chamber to ver-ify that the operating frequency is not changed by the impact of the introduced gases.Fig.6.XRD spectra of the WO 3sensing layers A and B.Then the frequency shifts of the sensors are mea-sured after exposure to various concentrations of hy-drogen balanced in natural air for about 5min,which ensures that the hydrogen fully reacts with the sensing film.The recovery time is also about 5min to ensure that the hydrogen is released from the sensing film of the sensor.The frequency shifts of sensor A measured by the closed-loop oscillator are shown in Fig.2.Figure 2(a)shows that the frequency shifts of about 3kHz,8kHz,72kHz,207kHz and 222kHz are obtained while the hydrogen concentrations mixed in natural air are in-creased as 0.3%,0.5%,1.0%,2.0%and 3.0%,respec-tively.It must be noted that in the 0.3%H 2case,the frequency shifts at about 3kHz may be not pre-cise due to the fact that it is less than 3times of the background noise (about 1.2kHz),but which may dis-play the existence of H 2.Figure 2(b)shows that the frequency shifts with the H 2concentration increasing and then approaches saturation as the H 2concentra-tion increases to quite high.The phenomena illustrate that as WO 3reacts with hydrogen to form H x WO 3,an inverse process,i.e.,H x WO 3decomposes to WO 3and H 2,is accompanied.When both processes are in dynamic equilibrium,the H 2adsorption by the sens-ing film approaches saturation.Figure 3shows the frequency response of sensor B,in which the frequency shift is only about 2kHz when the sensor is exposed in 1%hydrogen.Obviously,the sensitivity of sensor A is much higher than that of sensor B.Therefore,in the preparation of the sols,the chemical contents,preparation conditions and pro-cesses,and environments are very crucial,and which must be rigorously controlled.(3)On the other hand,the sensor can be con-nected directly with a network analyzer to measure the frequency(shift)and also the insertion loss varia-tions.In addition,in order to compare the sensitivi-ties of the SAW sensors with that of other methodolo-gies,a system composed of a voltmeter and a micro-galvanometer is set up to measure the electric conduc-tance variations of the sensors.The variations of the insertion loss and conduc-tance of the sensors are measured in different hydro-gen concentrations.The measured results of sensor A are shown in Fig.4,in which,as the hydrogen concen-trations are0.5%,1%,2%and3%,the insertion loss variations are0.14dB,0.89dB,18.41dB and25.23dB, and the conductance variations are0.009µS,0.017µS, 0.214µS and0.260µS,respectively.From the above results,it is obvious that for the hydrogen concentra-tion of0.3%,a frequency shift of the SAW sensor can be observed,but cannot be sensed in the variations of the insert loss and conductance.Generally,the measuring method based on fre-quency shift possesses advantages in terms of mea-suring very low hydrogen concentrations because the frequency shifts reflect both changes of mass and also conductance effects.Meanwhile,the loop oscillation system has a high precision and resolution.Neverthe-less,the network analyzer has much lower sensitivity for measuring the insertion loss.Therefore,the varia-tions of the insert loss and conductance have sensitiv-ity lower than that of the frequency shift for sensing hydrogen.To understand the effect of the structures of the sensing layers on the sensitivity of the sensors,the morphologies of WO3films of both sensors A and B are obtained by an atomic force microscope(AFM)as shown in Fig.5.It can be seen that the sizes of the nanograins of sensor A are only about40nm,while the sizes in sensor B are about200–400nm.Therefore,the smaller grains can improve the sensitivity of the sens-ing layers because of the larger surface dimension(or surface to volume ratio)to contact with hydrogen.As described above,different preparation processes will induce sols with different viscosties,and a lower con-serving temperature will decrease the viscosity and as-semble velocity of the sol,and then decrease the sizes of grains.On the other hand,for characterizing the crystal structures of the sensing layers,sensing layers A and B are prepared on glass substrates under the same con-ditions corresponding to sensors A and B.Figure6 shows the XRD curves of the WO3films of samples A and B,respectively.The XRD of layer A has a non-crystalline diffraction spectrum,but that of layer B seems to indicate a trend of crystallization.It can be expected that the amorphous structures of the sensing layers have better adsorbability or reactive capacities toward hydrogen than that of the crystalline structure.In summary,room-temperature Rayleigh wave hy-drogen sensors have been fabricated and studied,in which the sensors are composed of128∘YX-LiNbO3 substrates with WO3films obtained by the sol-gel method and covered with a Pt catalyst as the sen-sitive layers.The frequency shifts and variations of the insertion loss and electric conductance of the sen-sors corresponding to different hydrogen concentra-tions are measured at room parable to the last two measuring methodologies,the method based on frequency shift of SAW sensors have some advantages;especially,it has high sensitivity for lower concentrations of hydrogen.As a result,the fabrica-tion process of the WO3sensing layers is optimized, by which the high sensitivity of the frequency shift of72kHz exposed in1%hydrogen diluted in natural air at the operating frequency about125MHz in room temperature is obtained.References[1]Ippolito S J,Kandasamy S,Kalantar-zadeh K,WlodarskiW,Galatsis K,Kiriakidis G,Katsarakis N and Suchea M 2005Sens.Actuators B111-112207[2]Ippolito S J,Kandasamy S,Kalantar-Zadeh K and Wlo-darski W2005Sens.Actuators B108553[3]Ippolito S J,Kandasamy S,Kalantar-zadeh K,WlodarskiW and Holland A2006Smart Mater.Struct.15S131 [4]Fechete A C,Wlodarski W,Kalantar-Zadeh K,Holland AS,Antoszewski J,Kaciulis S and Pandolfi L2006Sens.Ac-tuators B118362[5]Jakubik W P2007Thin Solid Films5158345[6]Arsat R,Breedon M,Shafiei M,Spizziri P G,Gilje S,KanerR B,Kalantar-zadeh K and Wlodarski W2008Chem.Phys.Lett.467344[7]Sadek A Z,Wlodarski W,Shin K,Kaner R B and Kalantar-zadeh K2008Synth.Met.15829[8]Arsat R,Yu X F,Li Y X,Wlodarski W and Kalantar-zadehK2009Sens.Actuators B137529[9]Mashat L A,Tran H D,Wlodarski W,Kaner R B andKalantar-zadeh K2008Sens.Actuators B134826[10]Huang F C,Chen Y Y and Wu T T2009Nanotechnology20065501[11]Atashbar M Z,Sadek A Z,Wlodarski W,Sriram S,Bhaskaran M,Cheng C J,Kaner R B and Kalantar-zadeh K2009Sens.Actuators B13885[12]Schjrmer O F,Wittwer V,Baur G and Brand G1977J.Electrochem.Soc.124794[13]Wittwer V,Schjrmer O F and Schlotter P1978Solid StateCommun.25977[14]Porqueras I and Bertran E2000Thin Solid Films3778[15]Shanak H,Schmitt H,Nowoczin J and Ziebert C2004SolidState Ionics17199[16]Ohtsuka T,Goto N and Sato N1990Electroanal.Chem.287249[17]Steveson K J and Hupp J T1999Electrochem.Solid-StateLett.2497[18]Cronin J P,Tarico D J,Agrawal A and Zhang L1994USpatent277986[19]Cronin J P,Tarico D J,Tonazzi J C,Agrawal A andKennedy S R1993Sol.Energy Mater.Sol.Cells29371 [20]Ou H C and Zaghloul M2010IEEE Electron.Device Lett.31518。
学术干货超疏水那点事儿(江雷院士十年经典文献盘点)
学术⼲货超疏⽔那点事⼉(江雷院⼠⼗年经典⽂献盘点)谈到仿⽣材料或者聊到超疏⽔材料,江雷教授⼀定是必聊的话题。
江雷教授在仿⽣功能界⾯材料的制备及物理化学性质研究等领域是绝对是名副其实的⼤⽜,在2009年当选中科院院⼠时,年仅44岁。
这不,今年2⽉份,江雷教授因在超疏⽔性和亲⽔性涂层⽅⾯的贡献当选为美国国家⼯程院外籍院⼠。
⼈⽣赢家,舍“江”其谁?在超疏⽔材料势头不减当年的今天,我们⼀起跟着江教授,⼀起聊⼀聊超疏⽔那点事吧!坦诚讲,⼩编作为门外汉,并不能很好地判断哪些是超疏⽔⽅⾯的经典⽂献。
好在有数据在,帮助⼩编搜集到了诸多好⽂并加以整理,现在和⼤家分享!⼩编利⽤Web of Science核⼼合集为检索平台,以超疏⽔为主题检索词,对江雷教授近⼗年(2006-2016)的SCI论⽂进⾏了检索(具体检索式见⽂末),除去综述⽂章后,挑选了被引次数≥100,或者年平均被引次数≥20的⽂章进⾏了整理和汇总,希望能给对超疏⽔感兴趣的亲们提供⼀些便利!<2006年>1,⼀步溶液浸渍法制备加⼯稳定的仿⽣超疏⽔表⾯One-step solution-immersion process for the fabrication of stable bionic superhydrophobicsurfaces(Adv. Mater., 2006, 18, 6 DOI: 10.1002/adma.200501794 被引=331次期刊IF=18.96)仿⽣形态发⽣技术对合成纳⽶、微⽶尺度的⽆机晶体和有机/⽆机复合材料⼗分流⾏,能够精确控制材料的尺⼨、形态、取向、组织和复杂形态。
众所周知,形态发⽣过程已经被⽤来制造独特的功能性表⾯,诸如具有⾃清洁功能的超疏⽔表⾯等。
超疏⽔表⾯的制备⽅法多样,⼤多数是对莲花叶⽚表⾯的仿⽣,但都有⼀定的局限性,如⼯作环境受限、材料价格昂贵、耐候性持久性差等。
本⽂,作者介绍了⼀种⾮常简易可⾏的⽅法,构造了⼀种环境稳定性强的脂肪酸⾦属羧酸盐超疏⽔表⾯。
无模板法制备多孔聚苯胺及其电化学性能
兰州 理工大学学报 Journal of Lanzhou University of Technology
文章编号:1673-5196(2021)03002304
Vol. 47 No. 3 Jun2021
无模板法制备多孔聚苯胺及其电化学性能
王海燕*,尚天蓉,马帅帅,王初晗,蒯 浩
采用6700F型电子扫描显微镜(日本)进行样 品形貌的观测•采用FT-Raman Module型傅立叶 变换红外光谱仪(日本)对产物结构进行分析.活性 炭的孔结构特性测试采用北京精微高博科学技术有 限公司生产的JW-BK132F比表面及孔径分布仪. 以产物为活性物质制备电极,mol/L H2SO4水溶 液为电解液组装超级电容器,采用CHI660C电化学 工作站进行电化学测试,在一0.2〜0. 8V扫描. 1.3聚苯胺的制备
犆= 犿X △V
式中:为放电电流,A;△犜为放电时间,;犿为电 极负载活性物质的质量,g;V为放电过程中除去 电压降的电位变化,V.
0
0.2
0.4
0.6
0.8
1.0
相对压强/(P/Po)
图4聚苯胺的吸附-脱附等温曲线 Fig. 4 Adsorption/desorption isothermal curve of polyaniline
proach at a very slow rate, porous polyaniline was prepared without template, and the structure and the electrochemicalpropertiesusingastheelectrode materialofsupercapacitor werestudied Theresults showed that the product presented porous structure looking like a tremella. The distribution of pore diameterwasmainlyinrangeoflessthan10nm.Thechargeanddischargetimewasapproximatelysymmeter distribution curve of polyaniline
pa尼龙材料发展史
pa尼龙材料发展史PA尼龙材料发展史PA尼龙材料是一种高性能的合成材料,具有优异的力学性能、耐磨性、耐腐蚀性和耐高温性能,广泛应用于汽车、电子、航空航天、医疗等领域。
下面我们来了解一下PA尼龙材料的发展史。
20世纪30年代,德国化学家保罗·施莱克发现了尼龙6,这是一种由己内酰胺6单体合成的聚合物。
尼龙6具有优异的力学性能和耐磨性,成为了当时最重要的合成材料之一。
但是,尼龙6的熔点较低,不能满足高温环境下的使用需求。
20世纪40年代,美国化学家卡尔·佛兰克发现了尼龙66,这是一种由己内酰胺6和己内酰胺66单体合成的聚合物。
尼龙66具有更高的熔点和更好的耐高温性能,成为了当时最重要的高性能合成材料之一。
20世纪50年代,美国杜邦公司开发出了PA11和PA12两种新型尼龙材料。
PA11和PA12具有更好的耐腐蚀性和耐磨性,广泛应用于汽车、电子、医疗等领域。
20世纪60年代,日本化学家发明了PA6和PA66两种新型尼龙材料。
PA6和PA66具有更好的力学性能和耐磨性,成为了当时最重要的高性能合成材料之一。
20世纪70年代,美国杜邦公司开发出了PA9T和PA46两种新型尼龙材料。
PA9T和PA46具有更好的耐高温性能和耐腐蚀性,广泛应用于航空航天、电子等领域。
20世纪80年代,日本化学家发明了PA12和PA610两种新型尼龙材料。
PA12和PA610具有更好的耐热性和耐腐蚀性,广泛应用于汽车、电子、医疗等领域。
20世纪90年代以后,PA尼龙材料的发展进入了一个新的阶段。
随着新材料、新工艺、新技术的不断涌现,PA尼龙材料的性能和应用范围得到了进一步提升和拓展。
未来,PA尼龙材料将继续发挥其优异的性能和广泛的应用前景,为人类的生产和生活带来更多的便利和效益。
平纹编织复合材料层合板静态压缩与压-压疲劳性能
平纹编织复合材料层合板静态压缩与压-压疲劳性能张铁纯1*, 杨晨晨1, 王 轩1*, 周春苹2(1.中国民航大学 航空工程学院, 天津 300300;2.航空工业济南特种结构研究所 高性能电磁窗航空科技重点实验室, 济南250023)摘要:采用电液伺服疲劳试验机开展玻璃纤维平纹编织复合材料层合板的静态压缩和压-压疲劳性能实验。
应力比为R =10,拟合出S -N 曲线,基于疲劳实验过程中的刚度退化、能量耗散、循环蠕变与循环软化来表征疲劳损伤演化,结合扫描电子显微镜对断口形貌进行观察。
结果表明:试件的条件疲劳极限为静态压缩强度的66.3%;通过双加权最小二乘法拟合的S -N 曲线具有较高可信度;随着循环次数的增加,试件刚度逐渐下降,各峰值载荷下的能量耗散逐渐增加;在循环加载初期,试件表现出强烈循环蠕变现象,高峰值载荷作用下的试件表现出强烈循环软化行为;试件经过循环加载抵抗变形能力得到增强;断口观察到了基体开裂、纤维/基体界面脱粘、纤维断裂和分层四种失效模式;与疲劳断口相比,静态压缩断口表现出较大的分层损伤。
关键词:复合材料;疲劳;S -N 曲线;刚度退化;能量耗散;断口形貌doi :10.11868/j.issn.1005-5053.2021.000106中图分类号:TB332 文献标识码:A 文章编号:1005-5053(2022)02-0064-09玻璃纤维平纹编织复合材料具有轻质、比强度和比刚度高、透波性好等优点,被广泛应用于航空航天领域,如机载雷达罩、整流罩等部位[1]。
这些结构部位主要受变化的局部空气动力载荷作用,经常处于压-压交变受力状态。
因此,系统研究玻璃纤维平纹编织复合材料的压-压疲劳性能,了解其疲劳损伤规律,对于玻璃纤维平纹编织复合材料在航空航天领域的进一步应用尤为重要。
目前,Wang 等[2]研究了玻璃纤维环氧树脂基复合材料的拉-拉疲劳行为,揭示了不同应力水平下复合材料的疲劳损伤机理。
聚酰胺长丝简述
3、锦纶6分子链节中亚甲基数为5个,在聚酰胺纤维中是比 较少的,大分子之间所形成的氢键多,密度在聚酰胺纤维 中是比较大的。锦纶66分子链节中亚甲基数为6个,虽然 较PA-6多一个,但亚甲基数为偶数,它的大分子间存在更 多的氢键,分子间的作用力也更大。氢键的存在又近一步 引导结晶,故PA-66的结晶度也较PA-6大。
聚酰胺纤维的纺丝
• 采用熔体纺丝
• PA-6,PA66除了纺前处理不同以外,其他纺丝过程基本 相同
一、PA-6的纺前处理及切片干燥 PA-66的切片中单体的含量较少(不到1%),不需脱 单体,可以直接纺丝。
尼龙6的切片含有约10%的单体和低聚物,纺前需要除 去。 (1)直接纺丝纺前脱单体 ❖ 如采用直接纺丝方法,残余单体须在纺前脱去。 ❖ 原理是利用单体与聚合物的挥发性的差别,将单体与 聚合物分离。 ❖ 由于己内酰胺的沸点较高(262.5oC),在工业上采用 中等温度,减压蒸发的方法脱单体。
• 上述因素使锦纶6和其他聚酰胺纤维的热稳定性较差。
• 5、大分子的端基(氨基和羧基)亲水性比较好,所以锦纶 的吸湿性较好,回潮率为3.5%-4.5%,锦纶的公定回潮率为 4.5%。大分子中的亚氨基,可用酸性染料、分散性染料及 其它染料,且易上染色。
• 6、因大分子链上的酰胺基易发生酸解,而导致键的断裂, 使聚合度下降,因此锦纶不耐酸,特别是无机酸。
锦纶6的初始模量比涤纶低得多,纤维容易变形,织物挺括
性较差,制得的轮胎容易产生平点现象,而使汽车在行驶的 最初几公里路内会产生颠簸现象。
• 2、耐热和耐光性差
它的物理机械性能随温度而变化,当温度升高时,强力和伸 长下降,收缩率增加。PA-6熔点为215℃左右,软化点为 170℃左右;PA-66的熔点为255℃左右,软化点为210℃左右。 锦纶6和锦纶66的安全使用温度分别是93℃和130℃,汽车轮 胎帘子线在使用中温度较高,故需加入防0oC • 尼龙6为53~75oC
聚苯胺的合成与掺杂及其对导电性能的研究
iss tudied.B ya ndl arge,in cludingt hee fecto fa ddingu pT i02o nt he
heatst abilityo fP AN film.L abt estss how thatth ei dealc onditionsf oru s
to prepare
聚苯胺材料。实验研究表明,只有在适当的酸度下 (2<PH<4),苯 胺的聚合才按 1,4一偶联方式发生。纳米Ti0:的掺杂极为有效的提高 了聚苯胺的导电性能,在 PAN和纳米 TiO:的重量比为 5:1 时达到
极大值,此时电导率为 0.9S/cmo 碳纤维作为一种很好的增强增韧的 有机掺杂物改善了体系的机械性能和可加工性能。间甲酚的二次掺杂 对聚苯胺导电性能同样有着相当显著的提高。经对比,经掺杂后的最 佳PAN/TiOZ体系比市场上所买的导电态聚苯胺的电导率高出近6倍。
PAN/Ti02fi lms. Th eb o勿 ofth eth esisis d ividedi nto3 s ections.
(1) S t udy o no fd opingto th ec onductivityo fPA Nw illbe e xamined int hef ollow part.T hrought hed opingt estsw ithh ydrochlorica cid, carbon fiber and inorganic oxide,t he efect ofm -cresolo n the conductivityo fP AN isa nalyzeda ndt hec onductivitym echanism ofth e structureo fPA Nd opedw ithd ifferentsu bstancesre vealed.C onsequently, PAN iso btainedw ithg oodp roperty ofc onductivity. Labs tu即 shows thato nlyu ndera ppropriatea cidity (2,< p H<, 4 ),th ep olymerization occursin b yw ayo f1 ,4-polymerization.T hed opingo fT i02e fficiently enhancesth ec onductivityo fPA N,re achingt hem aximum valuew hent he
简述尼龙的发展历程
简述尼龙的发展历程•1926年,美国最大工业公司-杜邦公司的的董事斯蒂恩出于对基础科学的兴趣,开展有关发现新的科学事实的基础研究。
•1928年,卡罗瑟斯博士受聘担任该所有机化学部的负责人,并开始进行高分子聚合的科学研究。
•1930年,卡罗瑟斯用乙二醇和癸二酸缩合制取聚酯,并发现这种聚合物能像棉花糖那样抽出丝来,而且这种纤维状的细丝即使冷却后还能继续拉伸,拉伸长度可以达到原来的几倍,经过冷拉伸后纤维的强度和弹性大大增加。
•1935年2月28日,卡罗瑟斯首次由己二胺和己二酸合成出的聚酰胺6/6。
这种聚酰胺不溶于普通溶剂,熔点为263℃,高于通常使用的熨烫温度,拉制的纤维具有丝的外观和光泽,在结构和性质上也接近天然丝,其耐磨性和强度超过当时任何一种纤维。
•1938年,卡罗瑟斯进一步改进了合成聚酰胺的方法,并将其产品用作黄铜的替代品。
•1939年,杜邦公司获得了聚酰胺6/6的专利权,并开始进行工业化生产。
•1940年,杜邦公司开始销售聚酰胺纤维,并将其命名为“尼龙”(Nylon),成为了家喻户晓的名词。
•1941年,尼龙长丝、缝纫线和地毯纱先后投放市场。
•1944年,尼龙纤维织品开始批量生产。
•1950年,杜邦公司推出了新型的共聚酰胺纤维,命名为“尼龙66”。
•1953年,开发出了一种新的制备尼龙薄膜的方法,使得尼龙薄膜可以用于食品包装等领域。
•1957年,开发出了一种名为“Spandex”的弹性纤维,它具有高弹性、良好的耐化学性和耐磨性。
•1960年代,开发出了尼龙纤维的染色技术,使得尼龙织品可以具有更多的颜色和图案。
•1970年代,开发出了尼龙的中空纤维膜,用于海水淡化、气体分离等工业过程。
•1980年代至今,尼龙纤维的应用领域不断扩大,包括纺织、工程塑料、汽车零部件、医疗用品等各个领域。
同时,杜邦公司也不断推出新的尼龙品种和产品,以满足不断变化的市场需求。
第九章 聚氨酯纤维
化纤工艺学
第九章 聚氨酯弹性纤维
基甲酰胺为溶剂。其沸点较低,便于纺丝时的溶剂挥发。 从喷丝孔挤出的原液细流进入直径30~50cm、长3~6m 的纺丝甬道。在甬道内热空气流的作用下,丝条细流内 的溶剂迅速挥发,并被热空气流带走,丝条中聚氨酯浓 度不断提高直至凝固。同时,丝条被拉伸变细。
化纤工艺学
第九章 聚氨酯弹性纤维
化纤工艺学
第九章 聚氨酯弹性纤维
第三节
一、纺丝成形
聚氨酯弹性纤维的生产
1. 干法纺丝 应用最广泛的聚氨酯弹性纤维的纺丝方法。产量约 为世界聚氨酯弹性纤维总产量的80%。美国杜邦公司、 德国拜耳公司都采用干法纺丝。 聚合物中的硬链段多采用二苯基甲烷4,4ˊ-二异氰 酸酯;软链段选用聚四氢呋喃的为多。若以聚酯型的二 元醇为原料,纺丝时的脱溶剂将有一定困难。常用二甲
化纤工艺学
第九章 聚氨酯弹性纤维
双 层 氨 纶 包 覆 纱 纺 制 示 意 图
1-喂入辊 2-氨纶丝 3-导丝器 4--带子 5-空心锭子 6-包覆丝 7-双边筒子 8-气圈 9-牵伸辊 10-压伸 11-往复导丝器 12-卷取辊 13-包覆纱筒子 14-衬锭
扩链剂是含有活泼氢原子的双官能团低分子量化合
化纤工艺学
第九章 聚氨酯弹性纤维
物,大多数扩链剂选用二胺、二醇、肼等。 二胺扩链剂有间苯二胺、乙二胺、1,2 -二氨基丙烷 等,二元醇有1,4-丁二醇、乙二醇、丙二醇、二乙二醇 等,芳香族二胺所制的纤维耐热性高,脂肪族二胺所制 的纤维强力和弹性好。 二元醇制成的纤维物理机械性能略差。
化纤工艺学
第九章 聚氨酯弹性纤维
第九章 聚氨酯弹性纤维
化纤工艺学
第九章 聚氨酯弹性纤维 第一节 概述 一、聚氨酯弹性纤维的发展概况
聚苯胺的发展及其防腐性能研究
聚苯胺的发展及其防腐性能研究许颖蕊;李丽华;张金生;刘宁;王晶【摘要】聚苯胺由于其良好的性能受到广泛的关注.首先综述了聚苯胺在国内外的发展的概况,以聚苯胺的独特性能、化学结构、聚合机理以及聚合工艺作为出发点,研究了聚苯胺的防腐机理及其应用,并且对将来聚苯胺的生产工艺流程和新型的聚苯胺复合材料的防腐涂层制备技术的研究方向进行了展望.%Polyaniline has attracted much attention because of its excellent properties. In this paper, development of polyaniline at home and abroad was reviewed, and then chemical structure, unique properties, polymerization process and polymerization mechanism of polyaniline were discussed, anticorrosion mechanism of polyaniline and its application were studied, and the research direction of future polyaniline production process and new types of polyaniline anti-corrosion coating preparation technology was forecasted.【期刊名称】《当代化工》【年(卷),期】2017(046)011【总页数】4页(P2285-2288)【关键词】聚苯胺;掺杂;防腐;涂料【作者】许颖蕊;李丽华;张金生;刘宁;王晶【作者单位】辽宁石油化工大学,辽宁抚顺 113001;辽宁石油化工大学,辽宁抚顺113001;辽宁石油化工大学,辽宁抚顺 113001;辽宁石油化工大学,辽宁抚顺113001;辽宁石油化工大学,辽宁抚顺 113001【正文语种】中文【中图分类】TQ325经研究表明了聚苯胺(PAIN)由于具有良好的结构多样性、高导电性和特殊的掺杂机制等特点已经成为广泛应用的导电聚合物之一[1]。
聚苯胺复合中空微球的制备及其吸波性能研究
第42卷第6期2023年12月沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报JournalofShenyangLigongUniversityVol 42No 6Dec 2023收稿日期:2023-02-28基金项目:辽宁省科学技术基金项目(2022JH2/101300111)ꎻ沈阳市科技计划项目(22-322-3-18)作者简介:肖世纪(2000 )ꎬ男ꎬ硕士研究生ꎮ通信作者:赵海涛(1976 )ꎬ女ꎬ教授ꎬ研究方向为纳米功能材料ꎮ文章编号:1003-1251(2023)06-0055-06聚苯胺复合中空微球的制备及其吸波性能研究肖世纪ꎬ赵海涛ꎬ王余莲(沈阳理工大学材料科学与工程学院ꎬ沈阳110159)摘㊀要:以石墨烯和苯胺为主要原料ꎬ采用空心玻璃微球表面原位聚合法制备聚苯胺/还原石墨烯/二氧化硅(PANI/RGO/SiO2)复合中空微球ꎮ分别采用X射线衍射仪(XRD)㊁扫描电镜(SEM)㊁傅里叶变换红外光谱(FTIR)和网络矢量分析仪对PANI/RGO/SiO2复合中空微球的结构㊁形貌㊁介电和吸波性能进行研究ꎮ结果表明:合成的聚苯胺完整包覆在SiO2空心玻璃微球表面ꎬ石墨烯呈半透明薄纱状覆盖在聚苯胺表面ꎻPANI/RGO/SiO2复合中空微球的吸波性能比PANI/SiO2好ꎬ石墨烯能改善复合材料对电磁波的吸收性能ꎬ且随石墨烯质量分数的增加ꎬ复合中空微球的吸波能力增强ꎻ当石墨烯的质量分数为5%㊁吸波层厚度为4mm时ꎬ样品在6.32GHz处达到最强反射损耗为-34.06dBꎮ关㊀键㊀词:聚苯胺ꎻ石墨烯ꎻ复合中空微球ꎻ吸波性能中图分类号:TB332文献标志码:ADOI:10.3969/j.issn.1003-1251.2023.06.008PreparationandMicrowaveAbsorbingPropertiesofPolyanilineCompositeHollowMicrospheresXIAOShijiꎬZHAOHaitaoꎬWANGYulian(ShenyangLigongUniversityꎬShenyang110159ꎬChina)Abstract:PANI/RGO/SiO2compositehollowmicrospheresarepreparedbyin ̄situpoly ̄merizationonthesurfaceofhollowmicrosphereswithgrapheneandanilineasmainrawmaterials.ThestructureꎬmorphologyꎬdielectricandabsorbingpropertiesofPANI/RGO/SiO2hollowmicrospheresarestudiedbyX ̄raydiffraction(XRD)ꎬscanningelectronmicros ̄copy(SEM)ꎬFouriertransforminfraredspectroscopy(FTIR)andnetworkvectoranalyzer.Theresultsshowthatthesynthesizedpolyanilineiswrappedaroundthesurfaceofsilicaꎬandgrapheneiscoveredonthesurfaceofpolyanilineinasemi ̄transparentyarnshape.Themi ̄crowaveabsorptionperformanceofPANI/RGO/SiO2hollowmicrospherematerialisbetterthanthatofpurePANI/SiO2material.Grapheneimprovestheabsorptionperformanceofthecompositetoelectromagneticwaveꎬandtheabsorptioneffectofthecompositehollowmicro ̄spheresisbetterwiththeincreaseofgraphenecontent.Whenthemassfractionofgrapheneis5%andthethicknessoftheabsorbinglayeris4mmꎬthesamplereachesthestrongestre ̄flectionlossof-34.06dBat6.32GHz.Keywords:polyanilineꎻgrapheneꎻcompositehollowmicrospheresꎻelectromagneticparame ̄ter㊀㊀武器装备通过吸波材料可以避免被对方的监测系统捕获ꎮ目前ꎬ吸波材料的研究和应用大多针对雷达波段进行ꎬ通过吸波材料对通信波的转化和消除ꎬ达到降低通信波反射的目的[1-2]ꎮ我国对雷达吸波材料的研究还不是很成熟ꎬ研究雷达吸波材料对提高我国军事实力有着重大而深远的意义[3-5]ꎮ聚苯胺(PANI)作为一种导电材料ꎬ具有优良的导电性及稳定性ꎬ合成方法简便ꎬ合成原料易得ꎬ是新兴的轻质吸波材料[6-7]ꎮ石墨烯作为一种新型材料ꎬ具有优良的力学和电性能ꎬ在吸波领域受到广泛关注[8-9]ꎮ利用石墨烯和聚苯胺两者的协同效应能改善单组分的吸波性能ꎬ因此制备性能优异的新型吸波材料成为研究热点[10-12]ꎮ程祥珍等[13]采用原位氧化聚合法制备聚苯胺-石墨烯纳米复合材料ꎬ当吸波层厚度为2mm时ꎬ聚苯胺在电磁波频率为15.8GHz处达到最大反射损耗-28.6dBꎮYu等[14]通过原位聚合的方法在石墨烯表面合成聚苯胺ꎬ制备了石墨烯-聚苯胺纳米棒复合材料ꎬ电磁波频率在7~17.6GHz的反射损耗均低于-20dBꎮ袁宝国等[15]以还原氧化石墨烯为基底ꎬ以聚苯胺纳米纤维为附着层ꎬ制备了聚苯胺纳米纤维/还原氧化石墨烯复合吸波材料ꎬ复合材料在电磁波频率为14.6GHz处达到最大反射损耗值为-17.1dBꎬ并且在10.0~16.4GHz频率范围内均达到有效吸收ꎮ空心微球具有特殊的多孔道空心球结构ꎬ能很好地吸收电磁波ꎬ可以在吸收体-空气之间提供丰富的界面ꎬ从而促进界面极化ꎮ庞建锋等[16]以溶胶-凝胶自蔓延燃烧法与原位掺杂聚合法相结合的方式制备了漂珠/钡铁氧体/聚苯胺复合材料ꎬ当吸波层厚度为3.0mm㊁电磁波频率为7.1GHz时ꎬ样品的反射损耗峰值为-33.74dBꎮ徐怀良[17]通过溶剂热法制备了Fe2O3空心半球/还原石墨烯(RGO)ꎬ当吸波层厚度为2.0mm㊁电磁波频率为12.9GHz时ꎬ样品的反射损耗峰值为-24dBꎮ目前对聚苯胺/还原石墨烯/二氧化硅(PANI/RGO/SiO2)复合中空微球研究的报道不多ꎬ本文以石墨烯(GO)和苯胺(An)为主要原料ꎬ采用空心微球表面原位聚合法制备PANI/RGO/SiO2复合中空微球ꎬ通过调整石墨烯的含量ꎬ改变材料的电磁参数ꎬ得到复合中空微球在不同频段最佳的吸波性能ꎬ并对其制备条件㊁介电和吸波性能进行研究ꎮ1㊀实验部分1.1㊀主要原料空心玻璃(SiO2)微球ꎬ河南铂润铸造材料有限公司ꎻ浓硫酸ꎬ北京化学试剂公司ꎻ苯胺(An)ꎬ天津福晨化学试剂厂ꎻ过硫酸铵((NH4)2S2O8)ꎬ北京化学试剂公司ꎻ丙酮ꎬ北京化学试剂公司ꎻ无水乙醇ꎬ天津市富宇精细化工有限公司ꎻ石墨烯ꎬ炽和新材料科技南京有限公司ꎻ水合肼ꎬ天津福晨化学试剂厂ꎮ以上试剂均为分析纯ꎮ1.2㊀PANI/RGO/SiO2复合中空微球的制备将适量空心SiO2微球加入浓度为98%的硫酸溶液中ꎬ45ħ水浴加热并进行磁力搅拌ꎬ2h后抽滤㊁干燥ꎬ得到磺化SiO2微球ꎬ保存待用ꎮ取蒸馏水和An加入三口烧瓶中搅拌ꎬ加入浓度为1mol/L盐酸ꎬ然后加入磺化SiO2微球ꎬ继续搅拌0.5hꎮ将4.56g(NH4)2S2O8与50mL去离子水配置成溶液ꎬ向体系内滴加(NH4)2S2O8溶液ꎬ继续反应6.0hꎬ使聚合反应充分进行ꎮ取出产物并加入丙酮ꎬ静置后抽滤㊁干燥ꎬ最后将所得固体取出ꎬ用研钵磨成粉状ꎬ得到PANI/SiO2复合中空微球ꎬ保存待用ꎮ称取适量PANI/SiO2复合中空微球ꎬ添加到蒸馏水中进行超声分散ꎻ取GO分散液滴加到PANI/SiO2溶液中ꎬ超声0.5hꎻ量取水合肼和适量的浓氨水加入混合溶液中ꎬ将混合溶液倒入三65沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷口烧瓶中ꎬ在98ħ水浴加热下继续反应1.0hꎮ反应结束后ꎬ抽滤干燥得到PANI/RGO/SiO2复合中空微球ꎮ1.3㊀样品的表征与性能测试采用扫描电镜(S ̄3400N型ꎬ日本日立)观察粉体的形貌ꎬ加速电压20kVꎻ采用衍射仪(PW ̄3040型ꎬ马尔文帕纳科)进行物相分析ꎬ衍射仪参数为CuKα辐射ꎬ波长λ=0.15406nmꎬ管压45kVꎬ管流50mAꎬ扫描速率5ʎ/minꎬ步长为0.02ʎꎬ扫描范围10~70ʎꎻ采用傅里叶变换红外光谱仪(WQF ̄410型ꎬ北分瑞利)进行红外光谱分析ꎬ表征范围500~4000cm-1ꎻ采用矢量网络分析仪(HP8510Bꎬ惠普)测试试样在2~18GHz频率范围的复介电常数和反射率ꎮ2㊀结果与讨论2.1㊀PANI/SiO2微球的表征2.1.1㊀盐酸浓度对形貌的影响(NH4)2S2O8和An的物质的量比为1ʒ1㊁反应时间5h㊁反应温度0ħ的条件下制备PANI/SiO2复合中空微球ꎬ研究盐酸浓度对复合微球形貌的影响ꎮ盐酸浓度分别为0.7㊁1.0㊁1.3㊁1.6mol/Lꎬ制备的复合中空微球的扫描电镜照片如图1所示ꎮ图1㊀不同盐酸浓度下制备PANI/SiO2的SEM照片Fig.1㊀SEMmicrographsofPANI/SiO2preparedatdifferentconcentrationsofhydrochloricacid㊀㊀如图1(a)所示ꎬ当盐酸浓度为0.7mol/L时ꎬ中空玻璃微球表面很少包覆上聚苯胺颗粒ꎮ增大盐酸浓度ꎬ如图1(b)所示ꎬ聚苯胺颗粒能够规整地包覆在玻璃微球表面ꎮ继续增大盐酸浓度ꎬ如图1(c)所示ꎬ玻璃微球表面上有较多颗粒状聚苯胺生成ꎮ进一步增大盐酸浓度ꎬ如图1(d)所示ꎬ产物中未包覆到玻璃微球表面的聚苯胺开始增多ꎮ这可能是由于盐酸浓度增加ꎬ聚苯胺聚合速率加快ꎬ以至于苯胺还没来得及扩散到玻璃微球表面ꎬ就已经开始聚合反应ꎬ所以产物中复合微球之间出现颗粒状聚苯胺ꎮ2.1.2㊀An浓度对形貌的影响固定盐酸浓度为1.0mol/L㊁反应温度为0ħ㊁反应时间5h的条件下ꎬAn与(NH4)2S2O8的物质的量比分别为0.7ʒ1㊁1ʒ1㊁1.3ʒ1㊁1.6ʒ1ꎬ制备的PANI/SiO2复合中空微球的扫描电镜照片如图2所示ꎮ图2㊀An与(NH4)2S2O8不同物质的量比下制备PANI/SiO2的SEM照片Fig.2㊀SEMmicrographsofPANI/SiO2preparedatdifferentmolarratiosofAnand(NH4)2S2O8㊀㊀由图2(a)可知ꎬ当An所占比例较小时ꎬSiO2微球表面出现了局部非常细小的聚苯胺ꎬ聚苯胺能够规整地包覆在玻璃微球表面ꎮ增加An比例ꎬ如图2(b)所示ꎬ聚苯胺颗粒增多ꎮ进一步增大An比例ꎬ如图2(c)所示ꎬSiO2微球表面颗粒状聚苯胺增多ꎬ复合微球之间开始出现聚苯胺颗粒ꎮ继续增大An比例ꎬ如图2(d)所示ꎬ复合微球之间未包覆上的聚苯胺颗粒增多ꎮ这可能是由于随着反应体系中An浓度的增大ꎬSiO2含量相对减少ꎬ因此提供苯胺聚合的活性位点也减少ꎬ在(NH4)2S2O8作用下ꎬAn自由基随意生长ꎬ形成的聚苯胺分子有的包覆在SiO2微球表面ꎬ有的则自由堆积ꎮ2.1.3㊀PANI/SiO2的红外表征PANI/SiO2的红外光谱如图3所示ꎮ由图375第6期㊀㊀㊀肖世纪等:聚苯胺复合中空微球的制备及其吸波性能研究可知ꎬ在波数为1510cm-1和1552cm-1处出现的吸收峰分别对应苯环和醌环的C=C伸缩振动吸收峰ꎬ在波数1240cm-1和1212cm-1处出现的吸收峰分别对应苯环和醌环上C-N的弯曲振动峰ꎮ在1129cm-1和810cm-1处的峰则对应于1ꎬ4-二取代芳香环中C-H键在面内和面外的弯曲振动峰ꎮ说明聚苯胺成功包覆在空心玻璃微球表面ꎮ图3㊀PANI/SiO2的红外光谱图Fig.3㊀FTIRspectraofPANI/SiO22.2㊀PANI/RGO/SiO2复合中空微球的表征2.2.1㊀GO含量对复合中空微球形貌的影响GO浓度为10mg/mLꎬ其他反应条件不变ꎬGO的质量分数分别为2%㊁3%㊁4%㊁5%时制备的PANI/RGO/SiO2复合微球扫描电镜照片如图4所示ꎮ由图4(a)可见ꎬ当GO质量分数为2%时ꎬ复合微球表面覆盖一层半透明薄纱状石墨烯ꎮGO质量分数为3%时ꎬ复合微球表面大部分能被GO包覆ꎮGO质量分数为4%时ꎬGO图4㊀不同GO含量的PANI/RGO/SiO2的SEM照片Fig.4㊀SEMmicrographsofPANI/RGO/SiO2withdifferentGOcontent基本上能够包覆在复合微球表面ꎮ当GO含量增加到5%时ꎬGO能够完整地包覆在复合微球表面ꎬ且复合微球分散性良好ꎮ2.2.2㊀PANI/RGO/SiO2的XRD表征图5为GO㊁RGO和PANI/RGO/SiO2的XRD谱图ꎮ图5㊀GO㊁RGO和PANI/RGO/SiO2的XRD谱图Fig.5㊀XRDpatternsofGOꎬRGOandPANI/RGO/SiO2㊀㊀由图5可知ꎬ对于GOꎬ10.14ʎ处的衍射峰对应其(001)晶面ꎬ说明GO片层上大量的含氧官能团破坏了原来的单晶石墨晶体形态ꎬ增加了晶体的无序性ꎮ对于RGOꎬ10.14ʎ处的衍射峰消失ꎬ在23.6ʎ和42.9ʎ处出现两个新的衍射峰ꎬ这是由于GO还原为RGO后ꎬ降低了晶体的完整性ꎮ对于PANI/RGO/SiO2复合材料ꎬ除了RGO的特征峰外ꎬ在20.06ʎ和25.23ʎ处出现宽衍射峰ꎬ这是聚苯胺里存在一定比例的非晶态成分所致[18]ꎬ表明聚苯胺与GO成功合成复合材料ꎮ2.3㊀PANI/RGO/SiO2复合中空微球的电磁参数和吸波性能分析㊀㊀介电损耗正切值(tanδe)代表材料对电磁波介电损耗能力的大小ꎮPANI/RGO/SiO2复合中空微球的介电损耗正切值如图6所示ꎮ由图6可见ꎬtanδe值在电磁波频率为12~18GHz之间有上升趋势ꎬ说明PANI/RGO/SiO2复合中空微球对这个频段的电磁波具有较强的介电损耗ꎮ当PANI/RGO/SiO2复合中空微球中GO的质量分数为3%时ꎬtanδe在0.43~0.60之间ꎻ当GO的质量分数为4%时ꎬtanδe在0.64~0.72之间ꎻ当GO的质量分数为5%时ꎬtanδe在0.63~0.84之间ꎬ变化范围最大ꎬ此时复合微球中对于电磁波能量的介电损耗能力最强ꎮ85沈㊀阳㊀理㊀工㊀大㊀学㊀学㊀报㊀㊀第42卷图6㊀PANI/RGO/SiO2复合中空微球的介电损耗正切值Fig.6㊀DielectriclosstangentofPANI/RGO/SiO2compositeshollowmicrospheres㊀㊀PANI/RGO/SiO2复合中空微球的反射损耗(RL)如图7所示ꎮRL表示材料对固定频率电磁波的损耗能力ꎬ是表征材料吸波性能的一项指标ꎬ反射损耗越小ꎬ材料的吸波性能越好[19]ꎮ由图7可知ꎬPANI/SiO2复合中空微球吸波能力比较弱ꎬ没有达到有效吸收ꎬ当吸波层厚度为4mm时ꎬ最佳RL仅为-2.0dBꎮPANI/RGO/SiO2复合中空微球的吸波性能比PANI/SiO2材料要好ꎬ当GO的质量分数为3%时ꎬ除了吸波层厚度为1mm的样品ꎬ其他厚度样品的反射损耗在某些频段下都低于-10dBꎬ达到有效吸收ꎮ吸波层厚度为4mm时ꎬ在6GHz处反射损耗可图7㊀不同GO含量的PANI/RGO/SiO2复合中空微球反射损耗图Fig.7㊀ReflectionlosspatternsofPANI/RGO/SiO2compositehollowmicrosphereswithdifferentGOcontent达到-17.64dBꎮ当GO的质量分数为4%时ꎬ同样除了吸波层厚度为1mm的样品ꎬ其他厚度样品的反射损耗在某些频段下均达到有效吸收ꎮ吸波层厚度为4mm时ꎬ在5.68GHz处反射损耗可达到-16.11dBꎮ当GO的质量分数为5%时ꎬ同样除了吸波层厚度1mm的样品ꎬ其他厚度样品的反射损耗在某些频段均达到有效吸收ꎮ吸波层厚度为4mm时ꎬ在6.32GHz处反射损耗可达到-34.06dBꎮGO的加入提高了复合微球对电磁波的吸收性能ꎬ且随着GO含量的增加ꎬ吸收效果更好ꎮ一方面ꎬGO具有较高的介电常数ꎬ复合材料中加入GO以后ꎬ能够调节复合材料的电磁参数ꎬ提高材料的阻抗匹配性能ꎮ另一方面ꎬGO与聚苯胺形成的交联导电网络和多重界面有利于增强介质中的极化弛豫ꎬ可以进一步消耗电磁波ꎮ95第6期㊀㊀㊀肖世纪等:聚苯胺复合中空微球的制备及其吸波性能研究3㊀结论本文以GO和An为主要原料ꎬ采用空心玻璃微球表面原位聚合法制备了PANI/RGO/SiO2复合中空微球ꎬ并对其结构㊁介电性能和吸波性能进行研究ꎬ得到如下结论ꎮ1)当盐酸或An浓度较高时ꎬPANI在空心玻璃微球表面包覆完整ꎮ随着GO浓度的增加ꎬGO对PANI的包覆越来越好ꎮ2)当GO的质量分数为5%时ꎬPANI/RGO/SiO2复合中空微球对电磁波能量的介电损耗能力最强ꎮ3)PANI/RGO/SiO2复合中空微球的吸波性能比PANI/SiO2材料好ꎬ当GO的质量分数为5%ꎬ样品吸波层厚度为4mm时ꎬ在6.32GHz处反射损耗最强ꎬ达到-34.06dBꎮ参考文献(References):[1]DASPꎬDEOGHAREABꎬMAITYSR.Synergistical ̄lyimprovedthermalstabilityandelectromagneticin ̄terferenceshieldingeffectiveness(EMISE)ofin ̄situsynthesizedpolyaniline/sulphurdopedreducedgra ̄pheneoxide(PANI/S ̄RGO)nanocomposites[J].Ce ̄ramicsInternationalꎬ2022ꎬ48(8):11031-11042. [2]赵宏阳.低密度空心炭微球的制备及其复合材料性能研究[D].上海:华东理工大学ꎬ2016.㊀㊀ZHAOHYꎬPreparationoflow ̄densityhollowcarbonmicrospheresandresultingcompositematerials[D].Shanghai:EastChinaUniversityofScienceandTech ̄nologyꎬ2016.(inChinese)[3]曹斌全ꎬ王静.聚苯胺/氧化石墨烯复合材料研究进展[J].浙江化工ꎬ2022ꎬ53(7):10-15.㊀㊀CAOBQꎬWANGJ.Researchprogressofpolyani ̄line/grapheneoxidecomposites[J].ZhejiangChemi ̄calIndustryꎬ2022ꎬ53(7):10-15.(inChinese) [4]李想.导电聚苯胺及其复合材料的制备和吸波性能研究[D].杭州:浙江理工大学ꎬ2020.㊀㊀LIX.Preparationandmicrowaveabsorptionpropertiesofconductivepolyanilineanditsnanocomposites[D].Hangzhou:ZhejiangSci ̄TechUniversityꎬ2020.(inChinese)[5]刘进.石墨烯/聚苯胺复合吸波剂的制备及其电磁性能研究[D].大连:大连理工大学ꎬ2017.㊀㊀LIUJ.Researchonpreparationandelectromagneticchar ̄actersofgraphene/polyanilineabsorber[D].Dalian:DalianUniversityofTechnologyꎬ2017.(inChinese) [6]XUHFꎬZHANGHJꎬLVTꎬetal.StudyonFe3O4/polyanilineelectromagneticcompositehollowspherespreparedagainstsulfonatedpolystyrenecolloidtem ̄plate[J].ColloidandPolymerScienceꎬ2013ꎬ291(7):1713-1720.[7]郑鹏轩ꎬ张婕妤ꎬ田晓菡ꎬ等.聚苯胺复合吸波材料的研究进展[J].化学推进剂与高分子材料ꎬ2018ꎬ16(3):25-28ꎬ50.㊀㊀ZHENGPXꎬZHANGJYꎬTIANXHꎬetal.Researchprogressofpolyanilinecompositewaveabsorptionma ̄terials[J].ChemicalPropellants&PolymericMateri ̄alsꎬ2018ꎬ16(3):25-28ꎬ50.(inChinese) [8]王彩霞ꎬ张鲁鲁ꎬ罗蕙敏ꎬ等.石墨烯吸波材料的研究进展与发展方向[J].染整技术ꎬ2020ꎬ42(4):1-8.㊀㊀WANGCXꎬZHANGLLꎬLUOHMꎬetal.Researchprogressanddevelopmentdirectionofgrapheneab ̄sorbingmaterials[J].TextileDyeingandFinishingJournalꎬ2020ꎬ42(4):1-8.(inChinese) [9]MANNARꎬSRIVASTAVASK.Reducedgrapheneoxide/Fe3O4/polyanilineternarycompositesasasupe ̄riormicrowaveabsorberintheshieldingofelectro ̄magneticpollution[J].ACSOmegaꎬ2021ꎬ6(13):9164-9175.[10]YANJꎬHUANGYꎬWEICꎬetal.Covalentlybondedpolyaniline/graphenecompositesashigh ̄performanceelectromagnetic(EM)waveabsorptionmaterials[J].CompositesPartA:AppliedScienceandManufactur ̄ingꎬ2017ꎬ99:121-128.[11]温俊园ꎬ谢志勇ꎬ胡海霞ꎬ等.轻薄可控聚苯胺/还原氧化石墨烯复合材料吸波性能研究[J].炭素技术ꎬ2020ꎬ39(3):25-29ꎬ53.㊀㊀WENJYꎬXIEZYꎬHUHXꎬetal.Themicrowaveabsorbingpropertiesofthinandcontrollablepolyani ̄line/reducedgrapheneoxidecomposites[J].CarbonTechniquesꎬ2020ꎬ39(3):25-29ꎬ53.(inChinese) [12]LIUYZꎬLIYFꎬSUFYꎬetal.Easyone ̄stepsynthe ̄sisofN ̄dopedgrapheneforsupercapacitors[J].Ener ̄gyStorageMaterialsꎬ2016ꎬ2:69-75.(下转第68页)extractingmixedaminoacidsasanenvironment ̄friendlycorrosioninhibitorforindustrialpickling[J].JournalofHazardousMaterialsꎬ2014ꎬ279:38-45. [10]ZAPATA ̄LORÍAADꎬPECH ̄CANULMA.Corro ̄sioninhibitionofaluminumin0.1MHClsolutionbyglutamicacid[J].ChemicalEngineeringCommunica ̄tionsꎬ2014ꎬ201(7):855-869.[11]OUBAAQAMꎬOUAKKIMꎬRBAAMꎬetal.Insightintothecorrosioninhibitionofnewamino ̄acidsasef ̄ficientinhibitorsformildsteelinHClsolution:experi ̄mentalstudiesandtheoreticalcalculations[J].JournalofMolecularLiquidsꎬ2021ꎬ334:116520.[12]鞠玉琳ꎬ李焰.气相缓蚀剂的研究进展[J].中国腐蚀与防护学报ꎬ2014ꎬ34(1):27-36.㊀㊀JUYLꎬLIY.Researchprogressofvaporphaseinhibi ̄tors[J].JournalofChineseSocietyforCorrosionandProtectionꎬ2014ꎬ34(1):27-36.(inChinese) [13]张大全.气相缓蚀剂的研究开发及应用中若干问题的探讨[J].上海电力学院学报ꎬ2019ꎬ35(1):1-7.㊀㊀ZHANGDQ.Keyissuesregardingdevelopmentofvolatilecorrosioninhibitorsandtheirapplication[J].JournalofShanghaiUniversityofElectricPowerꎬ2019ꎬ35(1):1-7.(inChinese)[14]何毅ꎬ杨冉冉ꎬ王雅洁ꎬ等.蛋氨酸衍生物缓蚀剂的合成与性能研究[J].化学通报ꎬ2016ꎬ79(3):248-253.㊀㊀HEYꎬYANGRRꎬWANGYJꎬetal.Studyonsyn ̄thesisandpropertyofthemethioninederivativecorro ̄sioninhibitor[J].Chemistryꎬ2016ꎬ79(3):248-253.(inChinese)[15]MENDONCAGLFꎬCOSTASNꎬFREIREVNꎬetal.Understandingthecorrosioninhibitionofcarbonsteelandcopperinsulphuricacidmediumbyaminoacidsusingelectrochemicaltechniquesalliedtomolec ̄ularmodellingmethods[J].CorrosionScienceꎬ2017ꎬ115:41-55.[16]MATOSJBꎬPEREIRALPꎬAGOSTINHOSMLꎬetal.Effectofcysteineontheanodicdissolutionofcop ̄perinsulfuricacidmedium[J].JournalofElectroana ̄lyticalChemistryꎬ2004ꎬ570(1):91-94.(责任编辑:宋颖韬)(上接第60页)[13]程祥珍ꎬ刘进ꎬ段玉平.聚苯胺-石墨烯复合材料的吸波性能[J].安全与电磁兼容ꎬ2017(3):59-61ꎬ66.㊀㊀CHENGXZꎬLIUJꎬDUANYP.AbsorbingpropertiesofPANI ̄graphenecomposites[J].Safety&EMCꎬ2017(3):59-61ꎬ66.(inChinese)[14]YUHLꎬWANGTSꎬWENBꎬetal.Graphene/polya ̄nilinenanorodarrays:synthesisandexcellentelectro ̄magneticabsorptionproperties[J].JournalofMateri ̄alsChemistryꎬ2012ꎬ22(40):21679-21685. [15]袁宝国ꎬ张德宾ꎬ徐国芬ꎬ等.聚苯胺纳米纤维/还原氧化石墨烯复合吸波材料的制备与性能[J].聊城大学学报(自然科学版)ꎬ2021ꎬ34(6):43-49.㊀㊀YUANBGꎬZHANGDBꎬXUGFꎬetal.PreparationandpropertiesofPANInanofibers/RGOcompositeab ̄sorbingmaterial[J].JournalofLiaochengUniversity(NaturalScienceEdition)ꎬ2021ꎬ34(6):43-49.(inChinese)[16]庞建峰ꎬ李建.漂珠/钡铁氧体/聚苯胺复合材料的制备及吸波性能研究[J].电子元件与材料ꎬ2012ꎬ31(3):40-44.㊀㊀PANGJFꎬLIJ.Preparationandwave ̄absorbingprop ̄ertiesstudyofcenosphere/bariumferrite/polyanilinecomposites[J].ElectronicComponentsandMaterialsꎬ2012ꎬ31(3):40-44.(inChinese)[17]徐怀良.四氧化三铁/还原氧化石墨烯复合材料的制备及其微波吸收性能和锂电性能研究[D].合肥:安徽大学ꎬ2012.㊀㊀XUHL.Preparationꎬmicrowaveabsorptionandlithi ̄umionbatteriesperformanceofFe3O4/r ̄Gocompos ̄ites[D].Hefei:AnhuiUniversityꎬ2012.(inChinese) [18]朱院强.聚苯胺复合电极材料制备及超级电容性能研究[D].兰州:兰州理工大学ꎬ2021.㊀㊀ZhuYQ.Preparationofpolyanilinecompositeelec ̄trodematerialandresearchonsupercapacitorperform ̄ance[D].Lanzhou:LanzhouUniversityofTechnolo ̄gyꎬ2021.(inChinese)[19]张杰ꎬ刘元军.聚苯胺多元复合吸波材料的最新研究进展[J].印染助剂ꎬ2023ꎬ40(3):5-12.㊀㊀ZHANGJꎬLIUYJ.Latestresearchprogressofpolya ̄nilinecompositeabsorbingmaterials[J].TextileAux ̄iliariesꎬ2023ꎬ40(3):5-12.(inChinese)(责任编辑:徐淑姣)。
add-船用缆绳绳缆
常用:7×7、7×19、7×23 耐磨,同直径中强度最大、最坚硬,
多用于作静索(桅支索) T= 50 D2(kg),S = 8.3 D2(kg)
②半硬钢丝绳(semiflexible wire rope)
常用:6×7、6×19、6×37、6×61 可用作静索和动索,海船上较多用作拖缆或系 船缆
改良丙纶缆1.10~1.21(估算中可取均值1.15) 尼龙缆1.19~1.33(估算中可取均值1.26) 复合缆2.0
②估算强度时应考虑的四大因素
a.新旧、损伤及曝晒时间 b.插接:T下降10% c.打结:T下降50% d.编织绳只有同直径编绞绳或拧绞绳T的70%
三、使用保养:
弹性 摩擦力(防熔化以及新绳问题) 防高温日晒(易老化) 安全使用(防割裂、防回弹、防断缆) 清洁及盘放
四、使用保养
1.正确开启新绳: 大直径:吊起转放;
2.
小规格:抽芯
3.受潮:影响强度、易腐烂、收缩
4.防腐蚀:海水和泥沙(以及酸、碱、干性油、油漆)
5.正确盘放:右搓绳应顺对针方向盘绳(其他?)
6.受力:应控制在安全强度内
第二节 化学纤维绳
Section 2 Synthetic fiber rope
T= 48 D2(kg),S= 8 D2(kg)
③软钢丝绳(flexible wire rope)
常用:6×12、6×24、6×30等 同直径钢丝绳最柔软、最轻、但强度最小; 因使用方便,多用于作动索
T= 40 D2(kg),S= 6.5 D2(kg) 或 T= 420 D2(N)(对6×24软钢丝绳而言)
钢
丝
绳
结
构
电化学方法制备聚苯胺膜及其表征
Fig. 1 C V and SEM image of Pan i d eposited in 0. 5 m ol/L H2 SO4 solution
由图 1( a) 可见, 曲线的斜率反映了相应的反应 速度, 斜率越大Байду номын сангаас 反应速度越快. 与最初的周期相比, 各曲线的斜率逐渐减小, 表明反应速度减慢, 从而导 致膜的紧密度减小, 膜具有松散的结构; 而且在以后
由图 2( a) 可见, 当硫酸浓度为 1. 0 m o l/L 时, 各伏安曲线之间的距离很小, 而且各伏安曲线的斜 率较大, 合成速度较快, 导致得到的膜结构致密. 同 时, 由于聚苯胺具有良好的均匀结构及颗粒尺寸, 因 此, 颗粒形成的速度在周期之间似乎不变 ( 见图 2( b) ).
上述实验表明, 只有在以硫酸为介质的条件下 合成聚苯胺膜, 且硫酸浓度为 1. 0 m ol /L 左右时, 才 可能得到具有良好结构且颗粒尺寸均匀的聚合膜.
shu. edu. cn
第 5期
阮孟财, 等: 电化学方法制备聚苯胺膜及其表征
# 531#
的聚苯胺复合膜在导电性、形态和性能等方面都有 较大的差异. 与化学法相比 [ 14] , 电化学法合成具有 以下优点: 反应设备通用, 反应条件温和, 易于控 制; 产品纯度高, 污染小; ! 电化学聚合与电化 学掺杂可以一步完成等.
薄膜. 利用循环伏安法 ( cyc lic vo ltam etry, C V )、扫描电子显 微镜 ( scann ing electron m icroscope, SEM )、X 射线 衍射测
尼龙6纺丝
尼龙6纺丝
1.纺丝的生产技术:
2.纺丝的种类:
(1)FDY (FULLY DRAWN YARN全拉伸丝)
用纺丝拉伸联合机或4000米/分以上高速纺制取的拉伸而未有捻度的长丝。
可以直接用于纺织加工。
FDY面料手感顺滑柔软,经常被用于织造仿真丝面料。
(2)DTY(Draw texturing yarn 拉伸变形丝)
DTY也称为涤纶低弹丝,是在加弹机器上进行连续或同时拉伸、经过加捻器变形加工后的成品丝。
一般用于平织,针织,包覆,加捻等。
(3)POY(Pre-oriented yarn 预取向丝)
指经高速纺丝获得的取向度在未取向丝和拉伸丝之间的未完全拉伸的化纤长丝。
强度较FDY略差。
与未拉伸丝相比,它具有一定程度的取向,稳定性好,经拉伸和假捻变形加工后生产DTY。
3.纺丝的光泽度:
为了消除纤维的光泽,采用在熔体中加入二氧化钛(T iO 2)的方式以消减纤维的光泽。
(1)有光(bright)二氧化钛(TiO2)含量0%
(2)半削光(semi dull) 二氧化钛(TiO2)含量0.3%
(3)削光(full dull) 二氧化钛(TiO2)含量> 0.3%
4.纺丝的规格:
例:200D/24F #F222 BR
(1)D代表denier(丹尼数)是纤维的纤度单位,即在标准状态下,以9000米长纤维的克重表示,如100克重即为100旦(100D)
(2)F代表filament(条数)表示纺丝时使用喷丝板的孔数,也表示该规格的纺丝所具有的单丝根数。
条数越多手感越好。
(3)#F222为生产批号(每个机台/每批次切片),要注意不同批号不可混用。
氨纶与莱卡
氨纶(spandex)与莱卡(LYCRA)氨纶纤维是聚氨基甲酸酯纤维的简称,商品名称有莱克拉(Lycra、美国、英国、荷兰、加拿大、巴西)、尼奥纶(Neolon、日本)、多拉斯坦(Dorlastan、德国)等。
首先由德国Bayer公司于1937年研究成功,美国杜邦公司于1959年开始工业化生产。
目前已有近40个工厂、七行生产,年总产量约为10万吨左右,我国现有生产能力l万吨左右。
氨纶是一种合成纤维,组成物质含有85%以上组分的聚氨基甲酸酯。
氨纶纤维共有两个品种,一种是由芳香双异氨酸酶和含有羟基的聚酯链段的镶嵌共聚物(简称聚酯型氨纶),另一种是由芳香双异氰酸酯与含有羟基的聚醚链段镶嵌共聚物(简称聚醚型氨纶)。
氨纶纤维与弹力聚烯烃纤维和弹力复合纤维统称弹力纤维。
具有高断裂伸长(400%以上) 、低模量和高弹性回复率的合成纤维。
多嵌段聚氨酯纤维的中国商品名称。
又称弹性纤维。
氨纶具有高延伸性(500%~700%)、低弹性模量(200%伸长,0.04~0.12克/旦)和高弹性回复率(200%伸长,95%~99%)。
除强度较大外,其他物理机械性能与天然乳胶丝十分相似。
它比乳胶丝更耐化学降解,具有中等的热稳定性,软化温度约在200℃以上。
用于合成纤维和天然纤维的大多数染料和整理剂,也适用于氨纶的染色和整理。
氨纶耐汗、耐海水并耐各种干洗剂和大多数防晒油。
长期暴露在日光下或在氯漂白剂中也会退色,但退色程度随氨纶的类型而不同,差异很大。
氨纶纤维所以具有如此高的弹力是因为它的高分子链是由低熔点、无定型的"软"链段为母体和嵌在其中的高熔点、结晶的"硬"链段所组成。
柔性链段分子链间以一定的交联形成一定的网状结构,由于分子链间相互作用力小,可以自由伸缩,造成大的伸长性能。
刚性链段分子链结合力比较大,分子链不会无限制地伸长,造成高的回弹性。
氡纶长丝的横截面大部分为狗骨形(dog-bone-shaped)也有一些长丝表面光滑或呈锯齿状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Journal of Colloid and Interface Science298(2006)87–93/locate/jcisCoating of zinc ferrite particles with a conducting polymer,polyaniline Jaroslav Stejskal a,∗,Miroslava Trchováa,Jitka Brodinováb,Petr Kalenda b,Svetlana V.Fedorova c,Jan Prokešd,Josef Zemek ea Institute of Macromolecular Chemistry,Academy of Sciences of the Czech Republic,16206Prague6,Czech Republicb Faculty of Chemical Technology,University of Pardubice,53210Pardubice,Czech Republicc Lumex,St.Petersburg198005,Russiad Faculty of Mathematics and Physics,Charles University in Prague,12116Prague2,Czech Republice Institute of Physics,Academy of Sciences of the Czech Republic,16253Prague6,Czech RepublicReceived3June2005;accepted15December2005Available online18January2006AbstractParticles of zinc ferrite,ZnO·Fe2O3,were coated with polyaniline(PANI)phosphate during the in situ polymerization of aniline in an aqueous solution of phosphoric acid.The PANI–ferrite composites were characterized by FTIR spectroscopy.X-ray photoelectron spectroscopy was used to determine the degree of coating with a conducting polymer.Even a low content of PANI,1.4wt%,resulted in the45%coating of the particles’surface.On the other hand,even at high PANI content,the coating of ferrite surface did not exceeded90%.This is explained by the clustering of hydrophobic aniline oligomers at the hydrophilic ferrite surface and the consequent irregular PANI coating.The conductivity increased from 2×10−9to6.5S cm−1with increasing fraction of PANI phosphate in the composite.The percolation threshold was located at3–4vol%of the conducting component.In the absence of any acid,a conducting product,1.4×10−2S cm−1,was also obtained.As the concentration of phosphoric acid increased to3M,the conductivity of the composites reached1.8S cm−1at10–14wt%of PANI.The ferrite alone can act as an oxidant for aniline;a product having a conductivity0.11S cm−1was obtained after a one-month immersion of ferrite in an acidic solution of aniline.©2005Elsevier Inc.All rights reserved.Keywords:Conductivity;Conducting polymer;Ferrite;FTIR spectra;Percolation;Polyaniline;Surface coating1.IntroductionMaterials comprising a ferromagnetic component and a con-ducting polymer have recently been investigated in several stud-ies that concentrated on the preparation of nano-colloidal iron-oxides,γ-Fe2O3[1,2]and Fe3O4[3–11],and their subsequent modification with conducting polymers,specifically polyani-line(PANI)or polypyrrole.Most of the papers have reported the magnetic and electrical properties of the resulting nano-sized composite materials.Less attention has been paid to the coating of larger micro-meter-sized magnetic particles.Several studies only concerned the surface modification of ferrites with conducting polymers.*Corresponding author.Fax:+420296809410.E-mail address:stejskal@imc.cas.cz(J.Stejskal).Ferrites have the general formula M O·Fe2O3,where M is an el-ement in a bivalent state,e.g.,M2+=Fe2+,Co2+,Ni2+,Mn2+, Zn2+,Mg2+,etc.,or a combination of them.Nickel–cobalt ferrites have been coated electrochemically with polypyrrole and used as composite electrodes for hydrogen peroxide for-mation[12].Manganese–zinc ferrite particles of micrometer size have recently been coated with PANI by using a chemi-cal oxidation of aniline[13].It was observed that the magnetic properties of a ferrite were influenced by a coating of a conduct-ing polymer.This was explained as the result of an electronic interaction occurring at the interface between the conducting polymer and the ferromagnetic material.The structure of the interface is thus of interest,and is investigated in the present paper.Conducting polymers,viz.PANI,may improve the corrosion protection of metals[14].Iron oxides,e.g.,γ-Fe2O3,Fe3O4,or ferrites,have fundamental importance in the study of iron corro-0021-9797/$–see front matter©2005Elsevier Inc.All rights reserved. doi:10.1016/j.jcis.2005.12.03488J.Stejskal et al./Journal of Colloid and Interface Science298(2006)87–93sion.They are currently used as components in formulations ofcorrosion-protective materials.The coating of iron oxides withconducting polymers is a logical extension in the design of newanti-corrosion pigments.Inorganic oxides have often been coated with conductingpolymers.Silica gel[15],titanium dioxide[16,17],aluminumoxide[18],cerium oxide[19],and copper oxide[20]may serveas examples.The coating is produced in situ during the poly-merization of aniline[15],and this technique is also applicableto iron oxides and ferrites.In this study,the coating of zinc fer-rite powder with PANI is reported and analyzed.The materialsso formed are potential candidates in the corrosion protection ofmetals.More detailed information on the nature of the coating,an interface between ferrite and conducting polymer,is neededfor the understanding of its performance.2.Experimental2.1.Preparation of ferriteAn equimolar mixture of zinc and ferric oxides was thor-oughly homogenized in an agate mortar and calcinated inunglazed corundum pot in an electric high-speed furnace op-erating at1100◦C for2h at ambient atmosphere.The cal-cinated zinc ferrite,ZnO·Fe2O3,was leached with water andwet-ground in a vibration ball-mill for5h at390rpm,followedby washing with water,and drying in a desiccator.2.2.Coating of ferrite with polyanilineIn thefirst series of experiments,the PANI–ferrite com-posites of various compositions were prepared.To portions offerrite(2g),various volumes(5,10,20,30,50,75,100,and200ml)of freshly prepared reaction mixture(0.1M aniline,0.125M ammonium peroxydisulfate in0.4M phosphoric acid)were added at20◦C.The mixture was stirred during the poly-merization of aniline,which was completed within1h.Nextday,the ferrite coated with PANI was separated on a paperfil-ter,rinsed with0.4M phosphoric acid and with acetone,anddried at60◦C in a vacuum oven.In the second series,the effect of the acidity of the reactionmedium was assessed.The ferrite(2g)was coated with PANIin50ml of reaction mixtures based on0–3M phosphoric acid.The precipitates were similarly separated,rinsed with the cor-responding acid,then acetone,and similarly dried.2.3.CharacterizationThe content of PANI in the coated ferrites was deter-mined as an ash.The weight fractions of PANI were con-verted into volume fractions by using densities of zinc ferrited f=4.90g cm−3,and PANI phosphate,d PANI=1.45g cm−3. Due to a large difference in the densities of the components,the volume fraction of PANI in the composite is considerablylarger than the corresponding weight fraction.Infrared spectra in the range of400–4000cm−1wererecorded at64scans per spectrum at2cm−1resolution using a fully computerized Thermo Nicolet NEXUS870FTIR spec-trometer(Nicolet,USA)with a DTGS TEC detector.Samples were dispersed in potassium bromide and compressed into pel-lets.Spectra were corrected for the moisture and carbon dioxide in the optical path.The X-ray photoelectron spectroscopic(XPS)measurements were carried out in an ADES-400spectrometer(VG Scientific, UK)equipped with a hemispherical angle-resolved energy an-alyzer operating with pass energy of100eV and using Mg Kα(1253.6eV)and Al Kα(1486.6eV)excitation sources.Wide-survey and narrow-scan spectra(C1s,O1s,Fe2p,Zn2p,N1s, S2p,and P2p)were recorded for qualitative and quantitative analysis,respectively.All spectra were measured at the normal emission angle.To avoid the expected ion-beam-induced mod-ifications of composition and bonding in the analyzed volume, the sample surfaces were analyzed without any cleaning.The energy positions were referenced to the Cu2p peak at932.6eV and Au4f peak at84.0eV binding energy.The overall energy resolution for the XPS measurements reached0.8eV.Atomic concentrations were determined from background-subtracted peak areas corrected for the photoelectron cross-sections[21], the inelastic mean free paths[22],and the experimentally de-termined transmission function of the hemispherical energy-analyzer[23].Conductivity was determined by a four-point van der Pauw method using a Keithley237High-V oltage Source Measure-ments Unit and a Keithley2010Multimeter equipped with a 2000-SCAN10Channel Scanner Card on samples compressed into pellets,13mm in diameter and ca.1mm thick.The density of the PANI was evaluated by weighing the pellets in air and immersed in decane with a Sartorius R160P bal-ance.3.ResultsThe oxidation of aniline in an acidic aqueous medium yields PANI(Fig.1)[24,25].When the reaction mixture contains a ferrite powder,composite materials of both components are ob-tained(Fig.2).Phosphoric acid has been selected as a medium for the present study because a phosphate counter-ion in the PANI is beneficial in anti-corrosion applications[14].The con-ductivity and electrical stability of PANI phosphate are also good[26].The dependence of the composite density on the volume fraction of PANI in the composite is linear,as expected,con-firming the internal integrity of the experimental data(Fig.3). The FTIR spectra prove that PANI has been produced.The typ-ical bands of protonated PANI phosphate located at1561cm−1 (with a second maximum at1574cm−1and a shoulder at 1603cm−1),1483,1304,1242,1130,879,and802cm−1are observed(Fig.4).Strong bands located in ferrite spectra at551 and430cm−1decrease as the fraction of the PANI in the com-posites increases.The peaks are visible even at a high content of PANI,e.g.,at41wt%PANI,because the penetration depth of the IR radiation is of the order of micrometer,i.e.,it is much larger than the thickness of the PANI coating,which is ex-pected to be of the order of100nm and lower[27,28].ThisJ.Stejskal et al./Journal of Colloid and Interface Science 298(2006)87–9389Fig.1.Polyaniline (emeraldine)protonated with an acid,HA.Fig.2.SEM micrographs of (a)original ferrite and ferrite containing (b)1.8wt%(45%coating)and (c)22.7wt%(79%coating)of PANI at low (left)and large (right)magnifications.also suggests that the coating of ferrite with PANI need not be complete.The shape of the quinone-ring-deformation mode in PANI phosphate changes from a single peak at 1583cm −1(with a shoulder at 1603cm −1)for a low fraction of PANI phos-phate (2wt%)to typical two maxima at 1561and 1574cm −1(again with a shoulder at 1603cm −1)for a high content of PANI phosphate (41wt%).The position of the benzene-ring-deformation mode in PANI phosphate is red-shifted from 1498to 1483cm −1.A similar shift has been observed during the conversion of the non-conducting PANI base to a protonated conducting emeraldine form of PANI [29,30].The degree of the surface coverage of ferrites with PANI was quantified by analysis of the Fe 2p peak shape and the shape of extended background behind the peak.The method relies on the fact that the energy distribution of emitted electrons depends on the in-depth concentration profile and is able to differentiate among thin and thick homogeneous overlayers,buried layers,three-dimensional island structures on different substrates,etc.The theoretical framework of the technique is described in de-tail in the literature [31].The validity of the technique has been established through systematic experimental investigations and comparison to measurements on the same samples by Ruther-ford backscattering spectrometry,ion scattering spectrometry,and atomic force microscopy [31–34].The corresponding spec-tra processing is presently facilitated by the commercial soft-ware package QUASES-Tougaard [35].The technique is de-90J.Stejskal et al./Journal of Colloid and Interface Science 298(2006)87–93Fig.3.The densities of composites containing various volume fractions of PANIphosphate.Fig.4.FTIR spectra of ferrite coated with PANI phosphate.The content of PANI phosphate (wt%)is denoted at each spectrum.scribed in more detail elsewhere [36].Typical Fe 2p spectra with an extended inelastic background are shown in Fig.5.From the QUASES-Tougaard analysis it follows that (1)sur-faces under study are partially covered by PANI,and (2)the PANI thickness exceeds the information depth of the method.For the Fe 2p photoelectrons with kinetic energy of 540eV trav-eling through the PANI overlayer,their inelastic mean free path (IMFP)reaches 1.7nm [37].Therefore,the PANI overlayer thickness exceeds 5.1nm.In other words,the Fe 2p photoelec-trons originate from PANI uncovered surfaces.The results of QUASES-Tougaard analysis are shown in Fig.5together with the results of nitrogen atomic percentage calculated by quanti-tative analysis from photoelectron spectra described above.The results of conductivity measurement are summarized in Figs.5and 6,and discussedbelow.Fig.5.The Fe 2p and Fe LMM electron spectra recorded for uncoated and partly PANI-coated (79%and 91%)ferrites.Fig.6.The dependence of the degree of ferrite-surface coating and nitrogen atomic content at the surface on the composition of the PANI–ferrite composite.4.Discussion4.1.The coating of ferrite with polyanilineAny surface in contact with the reaction mixture used for the polymerization of aniline becomes coated with a thin PANI film.It is assumed that aniline oligomers are produced at first [28].Because of their reduced solubility in water,they ad-sorb at the available interfaces.The adsorbed species start the growth of PANI chains,and that is why the polymerization at the interface is preferred to the corresponding process in the whole volume of the reaction mixture [30,38].The polymeriza-tion of aniline is auto-accelerated [39],i.e.,PANI formation isJ.Stejskal et al./Journal of Colloid and Interface Science298(2006)87–9391preferred at the spots where some PANI has already been pro-duced.This leads to a proliferation of the PANIfilm nucleated at the interface[28].This result is consistent with the QUASES-Tougaard analysis of PANI coverage and also with the results of quantitative analysis of nitrogen content.The latter is pro-portional to the PANI coverage.When a powdered material is introduced into the reaction mixture,the surfaces of the individual particles serve as tem-plate areas for the growth of PANI.This is the case with fer-rite particles.The degree of coating is suitably evaluated by XPS(Fig.6)from the decrease of the signal assigned to iron atoms.A low amount of conducting component PANI,1.8wt% PANI(=4.5vol%PANI)results in45%coating of the ferrite surface.Obviously,the coating is thin and is not discernible in the SEM micrographs(Fig.2).When the amount of PANI becomes greater,the degree of coating increases but is never complete(Fig.6).A similar observation has been made when silica particles[36,40]or organic polymer microparticles[41–43]have been used as templates for coating.It seems that hydrophilic objects are more difficult to coat completely with conducting polymers,than hydrophobic surfaces[44].This is probably connected with the better and uniform adsorption of hydrophobic oligomers at the hydrophobic substrate surface.At hydrophilic surfaces,oligomers are likely to produce droplet-like clusters,resulting in the subsequent patchy coating of the surface with a conducting polymer.The granular PANI deposits are visible at the surface of ferrite particles at a larger content of PANI(Fig.2c),probably because of the secondary nucleation of PANI growth on the already existing PANI[28].Some aggre-gates of ferrite particles,held together with PANI,are also seen in SEM micrographs(Fig.2c).The presence of PANI precip-itate in the composites has not been found.This indicates that the growth of PANI at the surface of particles is preferred to a precipitation polymerization of aniline,in accordance with the earlier results obtained with the coating of silica particles[15].4.2.Conductivity of PANI–ferrite compositesThe conductivity of surface-modified ferrites is important for electric applications,and electromagnetic-radiation shield-ing by the composites[13],while for the corrosion protection the conductivity is of secondary interest.The zinc ferrite is non-conducting,its conductivity being2×10−9S cm−1.The conductivity of a PANI-coated ferrite exhibits typical percola-tion behavior(Fig.7).This means that the conductivity starts to grow exponentially,after the volume fraction of conducting component exceeds a so-called percolation threshold,up to the conductivity of neat PANI prepared in0.4M phosphoric acid, 6.5S cm−1.The percolation limit is estimated to be located at 3–4vol%of PANI.A quantitative analysis could not be per-formed,because the samples of low PANI content,specially prepared for this purpose,could not be compressed into pellets, so their conductivity could only be estimated on powders.The percolation limit for polymer microparticles coated with a con-ducting polymer has often been found to be below10vol%of the conducting component[40,44,45].The experimental values of the percolation parameters for the PANI–ferritecomposite Fig.7.The conductivity of PANI–ferrite composites containing various volume fractions of PANI phosphate.Table1The properties of ferrite coated with polyaniline in aqueous solutions of phos-phoric acid of various molar concentrations,[H3PO4]a[H3PO4](mol L−1)Composition(wt%PANI)Density(g cm−3)Conductivity(S cm−1)Coating(%) 010.23.980.01475.1 0.212.73.820.3380.6 0.412.03.610.1372.60.613.93.701.0590.11.011.73.831.0193.11.514.43.611.5582.32.012.93.701.6986.03.012.43.681.8388.5a0.1M aniline was oxidized at20◦C with0.125M ammonium peroxydisul-fate.We refer to the PANI prepared in the presence of phosphoric acid as to PANI phosphate.This need not be precise,because PANI can be protonated with dihydrogen phosphate counter-ions,as many indications suggest.found in the present case thus confirm the coating of the parti-cles;the percolation threshold for mixtures of ferrite and PANI would be considerably higher[46].4.3.The coating of ferrite in media of various aciditiesThe acidity of the reaction medium affects the polymer-ization of aniline;for this reason,this parameter has been taken into account in the coating of ferrites.Aqueous solutions of phosphoric acid of various concentrations were therefore used as reaction media.In the absence of acid,the polymer-ization proceeds surprisingly well,with good yield and coat-ing level(Table1).The conductivity of the composite was 1.4×10−2S cm−1,i.e.,the same as that of neat PANI prepared under the same reaction conditions in the absence of ferrite[26]. When phosphoric acid was present in the reaction mixture,the effect of the acidity was relatively weak.The content of PANI in the composite and the degree of coating are comparable in all cases.The conductivity increased with increasing acid concen-tration to the level of1–2S cm−1.This is a relatively high value, considering the10–14wt%content of PANI in the composite.92J.Stejskal et al./Journal of Colloid and Interface Science298(2006)87–93The conductivity of neat PANI prepared in1.2M phosphoric acid was4.8S cm−1[26].4.4.Coating without an external oxidantCoating the ferrites with a conducting polymer can also be achieved also without using a conventional oxidant,like am-monium peroxydisulfate.Iron(III)compounds themselves act as oxidants,the oxidation of pyrrole with iron(III)chloride to polypyrrole being an example[10,47].The self-induced poly-merization of pyrrole on iron(III)-oxide particles,α-Fe2O3,has also been reported[48].When a zinc ferrite powder was immersed in a solution of aniline in1M hydrochloric acid in the absence of ammonium peroxydisulfate,and the suspension was occasionally shaken, the ferrite powder darkened in a period of days.In the case of polypyrrole,Partch et al.[48]and later Chen et al.[10] concluded that the polymerization was initiated directly at the oxide surface.This seems to be also the case with PANI,where the polymerization at surfaces is preferred to the same process in the surrounding aqueous phase[38].After one month,the coated ferrite was separated on afilter and dried.It had a good conductivity,0.11S cm−1.Although the polymerization was slow,yet it is feasible.A green PANIfilm also developed on the glass walls of the reaction vessel,demonstrating that iron(III) ions were present in the liquid phase,i.e.,the ferrite partly dis-solved in the acid.The ferrite mass-loss was marginal,and was compensated by the deposited PANI.5.ConclusionsEven a low amount of PANI,1.8wt%,produced on the zinc ferrite particles during the in situ polymerization of ani-line,results in a high degree of coating,45%.On the other hand,the coverage was always incomplete,even at high PANI content>80vol%.This is likely to be beneficial for the appli-cation of the surface-modified ferrite in corrosion protection, because of the potential synergism of ferrite and conducting polymer.The conductivity of composites exhibits percolation behavior,the threshold being located at ca.3–4vol%of the conducting component.Despite incomplete coating with PANI, the conductivity of PANI–ferrite composites was of the order of 10−4–10−1S cm−1above10vol%PANI content.A composite having a conductivity of1.4×10−2S cm−1 was produced when aniline was oxidized in the absence of any acid.Increasing the concentration of phosphoric acid in the reaction mixture to3M increased the conductivity of the com-posite to1.8S cm−1at12wt%content of PANI.The ferrite itself can act as an oxidant of aniline,and the PANI coating is slowly obtained on its surface in strongly acidic aniline solution in the absence of ammonium peroxydisulfate.AcknowledgmentsAuthors thank the Grant Agency of the Academy of Sciences of the Czech Republic(A4050313,A400500504,and A VOZ 10100521),Grant Agency of the Czech Republic(202/06/0419and202/06/0459),and the Ministry of Education,Youth and Sports of the Czech Republic(MSM0021620834)for thefi-nancial support.References[1]Q.-L.Yang,J.Zhai,L.Feng,Y.-L.Song,M.-X.Wan,L.Jiang,W.-G.Xu,Q.-S.Li,Synth.Met.135–136(2003)819.[2]K.Sunderland,P.Brunetti,L.Spinu,J.Fang,Z.Wang,W.Lu,Mater.Lett.58(2004)3136.[3]B.Z.Tang,Y.Geng,m,B.Li,X.Jing,X.Wang,F.Wang,A.B.Pakhomov,X.X.Zhang,Chem.Mater.11(1999)1581.[4]D.K.Kim,Y.Zhang,W.V oit,K.V.Rao,M.Muhammed,J.Magn.Magn.Mater.225(2001)30.[5]F.Yan,G.Xue,J.Chen,Y.Lu,Synth.Met.123(2001)17.[6]J.G.Deng,X.B.Ding,W.C.Zhang,Y.X.Peng,J.H.Wang,X.P.Long,P.Li,A.S.C.Chan,Polymer43(2002)2179.[7]K.Suri,S.Annapoorni,R.P.Tandon,C.Rath,V.K.Aggrawal,Curr.Appl.Phys.3(2003)209.[8]W.Chen,X.Li,G.Xue,Z.Wang,W.Zou,Appl.Surf.Sci.218(2003)215.[9]Z.Zhang,M.Wan,Synth.Met.132(2003)205.[10]A.Chen,H.Wang,X.Li,Synth.Met.145(2004)153.[11]J.C.Aphesteguy,S.E.Jacobo,Physica B354(2004)224.[12]H.Nguyen-Cong,V.de la Garza Guadaarrama,J.L.Gautier,P.Chartier,Electrochim.Acta48(2003)2389.[13]N.E.Kazantseva,J.Vilˇcáková,V.Kˇr esálek,P.Sáha,I.Sapurina,J.Ste-jskal,J.Magn.Magn.Mater.269(2004)30.[14]P.Zarras,J.D.Stenger-Smith,Y.Wei(Eds.),Electroactive Polymers forCorrosion Control,ACS Symp.Ser.,vol.843,American Chemical Soci-ety,Washington,DC,2003.[15]J.Stejskal,M.Trchová,S.Fedorova,I.Sapurina,J.Zemek,Langmuir19(2003)3019.[16]S.-J.Su,N.Kuramoto,Synth.Met.114(2000)147.[17]H.Xia,Q.Wang,Chem.Mater.14(2002)2158.[18]Z.Wang,M.Chen,H.-L.Li,Mater.Sci.Eng.A328(2002)33.[19]C.-L.Huang,E.Matijevi´c,J.Mater.Res.10(1995)1327.[20]C.-L.Huang,R.E.Partch,E.Matijevi´c,J.Colloid Interface Sci.170(1995)275.[21]J.H.Scofield,J.Electron Spectrosc.Relat.Phenom.8(1976)129.[22]S.Tanuma,C.J.Powell,D.R.Penn,Surf.Interface Anal.21(1994)165.[23]P.Jiricek,Czech.J.Phys.44(1994)261.[24]A.G.MacDiarmid,A.J.Epstein,Faraday Discuss.Chem.Soc.88(1989)317.[25]J.Stejskal,R.G.Gilbert,Pure Appl.Chem.74(2002)857.[26]J.Stejskal,D.Hlavatá,P.Holler,M.Trchová,J.Prokeš,I.Sapurina,Polym.Int.53(2004)294.[27]J.Stejskal,I.Sapurina,J.Prokeš,J.Zemek,Synth.Met.105(1999)195.[28]I.Sapurina,A.Riede,J.Stejskal,Synth.Met.123(2001)503.[29]J.Stejskal,I.Sapurina,M.Trchová,J.Prokeš,I.Kˇr ivka,E.Tobolková,Macromolecules31(1998)2218.[30]M.Trchová,I.Šedˇe nková,J.Stejskal,Synth.Met.154(2005)1.[31]S.Tougaard,Surf.Interface Anal.26(1998)249.[32]A.C.Simonsen,M.Schleberger,S.Tougaard,J.L.Hansen,rsen,Thin Solid Films338(1999)165.[33]T.H.Andersen,S.Tougaard,rsen,K.Almdal,I.Johannsen,J.Electron Spectrosc.Relat.Phenom.121(2001)93.[34]A.P.Grosvenor,B.A.Kobe,N.S.McIntyre,S.Tougaard,W.N.Lennard,Surf.Interface Anal.36(2004)632.[35]S.Tougaard:QUASES:Software Package for Quantitative XPS/AES ofSurface Nano-Structures by Peak Shape Analysis,Version4.4,QUASES Tougaard ApS,Odense,1999.[36]K.Olejnik,J.Zemek,J.Stejskal,Acta Phys.Slovaca53(2003)121.[37]B.Lesiak,A.Jablonski,J.Zemek,M.Trchová,J.Stejskal,Langmuir16(2000)1415.[38]S.Fedorova,J.Stejskal,Langmuir18(2002)5630.[39]K.Tzou,R.V.Gregory,Synth.Met.47(1992)267.J.Stejskal et al./Journal of Colloid and Interface Science298(2006)87–9393[40]J.Stejskal,O.Quadrat,I.Sapurina,J.Zemek,A.Drelinkiewicz,M.Hasik,I.Kˇr ivka,J.Prokeš,Eur.Polym.J.38(2002)631.[41]M.Omastová,J.Pavlinec,J.Pionteck,F.Simon,Polym.Int.43(1997)109.[42]A.B.Slimane,K.Boukerma,M.Chabut,M.M.Chehimi,Colloids Surf.A240(2004)45.[43]N.Kohut-Svelko,S.Reynaud,R.Dedryvere,H.Martinez,D.Gonbeau,J.Francois,Langmuir21(2005)1575.[44]D.B.Cairns,M.A.Khan,C.Perruchot,A.Riede,S.P.Armes,Chem.Mater.15(2003)233.[45]L.Y.Wang,Y.-J.Lin,W.-Y.Chiu,Synth.Met.119(2001)155.[46]H.Scher,R.Zallen,J.Chem.Phys.53(1970)3759.[47]M.Omastová,M.Trchová,J.Pionteck,J.Prokeš,J.Stejskal,Synth.Met.143(2004)153.[48]R.Partch,S.G.Gangolli,E.Matijevi´c,W.Cai,S.Arajs,J.Colloid Inter-face Sci.144(1991)27.。