初三数学第一学期期末试卷
最新初三第一学期数学期末试卷(含答案解析)
初三第一学期数学期末试卷一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.(3分)在下列函数中,y是x的反比例函数的是()A.y=3x B.y=C.y=D.y=【分析】根据反比例函数的定义回答即可.【解答】解:A、该函数是正比例函数,故本选项错误;B、该函数是正比例函数,故本选项错误;C、该函数是符合反比例函数的定义,故本选项正确;D、y是(x﹣1)反比例函数,故本选项错误;故选:C.【点评】本题考查了正比例函数及反比例函数的定义,注意区分:正比例函数的一般形式是y=kx(k≠0),反比例函数的一般形式是(k≠0).2.(3分)下列几何体的左视图和俯视图相同的是()A.B.C.D.【分析】分别画出各种几何体的左视图和俯视图,进而进行判断即可.【解答】解:选项A中的几何体的左视图和俯视图为:选项B中的几何体的左视图和俯视图为:选项C中的几何体的左视图和俯视图为:选项D中的几何体的左视图和俯视图为:因此左视图和俯视图相同的是选项D中的几何体.故选:D.【点评】本题考查简单几何体的三视图,掌握三视图的画法是得出正确结论的前提.3.(3分)二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(﹣2,3)B.(2,3)C.(1,﹣3)D.(1,3)【分析】根据二次函数的顶点式解析式写出即可.【解答】解:∵二次函数y=2(x﹣1)2+3,∴顶点坐标是(1,3).故选:D.【点评】本题主要考查了二次函数的性质,二次函数图象的顶点式解析式,如果y=a(x﹣h)2+k,那么函数图象的顶点坐标为(h,k),需要熟记并灵活运用.4.(3分)小明制作了5张卡片,上面分别写了一个条件:①AB=BC;②AB⊥BC;③AD=BC;④AC⊥BD;⑤AC=BD.从中随机抽取一张卡片,能判定▱ABCD是菱形的概率为()A.B.C.D.【分析】根据菱形的判定方法确定能得到菱形的方法,然后利用概率公式求解即可.【解答】解:能判断▱ABCD是菱形的有:①AB=BC、④AC⊥BD,所以从中随机抽取一张卡片,能判定▱ABCD是菱形的概率为,故选:B.【点评】考查了菱形的判定方法及概率公式,能够了解菱形的判定方法是解答本题的关键,难度不大.5.(3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.6.(3分)已知抛物线y=(x﹣1)2+2上有三点(﹣2,y1),(﹣1,y2),(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y3>y2>y1C.y2>y3>y1D.y2>y1>y3【分析】分别把(﹣2,y1),(﹣1,y2),(2,y3)代入解析式求解.【解答】解:把(﹣2,y1),(﹣1,y2),(2,y3)代入y=(x﹣1)2+2得y1=6.5,y2=4,y3=2.5,∴y1>y2>y3,故选:A.【点评】本题考查二次函数图象上点的坐标特征,解题关键是掌握二次函数与方程的关系.7.(3分)如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°【分析】连接AD,先根据圆周角定理得出∠A及∠ADB的度数,再由直角三角形的性质即可得出结论.【解答】解:连接AD,∵AB为⊙O的直径,∴∠ADB=90°.∵∠BCD=40°,∴∠A=∠BCD=40°,∴∠ABD=90°﹣40°=50°.故选:B.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.8.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣2,0),对称轴为直线x=1,下列结论:①abc<0;②2a﹣b=0;③b2﹣4ac>0;④无论m为何值时,总有am2+bm≤a+b;⑤9a+c>3b,其中正确的结论序号为()A.①②③B.①③④C.①③④⑤D.②③④【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可得c>0,∵x=﹣=1,∴ab<0,∴abc<0,故①正确;②∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,即2a+b=0,故②错误;③∵抛物线与x轴有两个不同的交点,∴b2﹣4ac>0,故③正确;④当x=1时,函数有最大值,∴a+b+c≥am2+bm+c,∴am2+bm≤a+b,即无论m为何值时,总有am2+bm≤a+b.故④正确;⑤∵当x=﹣3时,y<0,∴9a﹣3b+c<0,即9a+c<3b,故⑤错误;故选:B.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,Δ=b2﹣4ac>0时,抛物线与x轴有2个交点;Δ=b2﹣4ac=0时,抛物线与x 轴有1个交点;Δ=b2﹣4ac<0时,抛物线与x轴没有交点.9.(3分)如图,AB是⊙O的直径,线段BC与⊙O的交点D是BC的中点,DE⊥AC于点E,连接AD,①AD⊥BC;②∠EDA=∠B;③OA=AC;④DE是⊙O的切线,则上述结论中正确的个数是()A.1B.2C.3D.4【分析】根据圆周角定理和切线的判定,采用排除法,逐条分析判断.【解答】解:∵AB是直径,∴∠ADB=90°,∴AD⊥BC,故①正确;连接DO,∵点D是BC的中点,∴CD=BD,又∵∠ADC=∠ADB=90°,AD=AD,∴△ACD≌△ABD(SAS),∴AC=AB,∠C=∠B,∵OD=OB,∴∠B=∠ODB,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE是圆O的切线,故④正确;∵AB为圆O的直径,∴∠ADB=90°,∵∠EDA+∠ADO=90°,∠BDO+∠ADO=90°,∴∠EDA=∠ODB,∵∠ODB=∠B,∴∠EDA=∠B,选项②正确;由D为BC中点,且AD⊥BC,∴AD垂直平分BC,∴AC=AB,又OA=AB,∴OA=AC,选项③正确;故选:D.【点评】此题考查了切线的判定,证明切线时连接OD是解这类题经常连接的辅助线.10.(3分)如图,正方形ABCD的边长为2cm,动点P,Q同时从点A出发,在正方形的边上,分别按A →D→C,A→B→C的方向,都以1cm/s的速度运动,到达点C运动终止,连接PQ,设运动时间为xs,△APQ的面积为ycm2,则下列图象中能大致表示y与x的函数关系的是()A.B.C.D.【分析】根据题意结合图形,分情况讨论:①0≤x≤2时,根据S△APQ=AQ•AP,列出函数关系式,从而得到函数图象;②2≤x≤4时,根据S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【解答】解:①当0≤x≤2时,∵正方形的边长为2cm,∴y=S△APQ=AQ•AP=x2;②当2<x≤4时,y=S△APQ=S正方形ABCD﹣S△CP′Q′﹣S△ABQ′﹣S△AP′D,=2×2﹣(4﹣x)2﹣×2×(x﹣2)﹣×2×(x﹣2)=﹣x2+2x所以,y与x之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A选项图象符合.故选:A.【点评】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.二、填空题(每小题3分,共15分)11.(3分)在函数y=中,自变量x的取值范围是x≠2.【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.【解答】解:要使分式有意义,即:x﹣2≠0,解得:x≠2.故答案为:x≠2.【点评】本题主要考查函数自变量的取值范围,考查的知识点为:分式有意义,分母不为0.12.(3分)请写出一个函数表达式,使其图象在第一、三象限且关于原点对称:y=.【分析】根据正比例函数和反比例函数的性质可得,所有k>0的正比例函数y=kx和反比例函数y=的图象都符合题意.【解答】解:由题意得,所有k>0的正比例函数y=kx和反比例函数y=的图象都在第一、三象限且关于原点对称,故答案为:y=(答案不唯一).【点评】此题考查了正比例函数和反比例函数图象性质的应用能力,关键是能准确理解以上知识.13.(3分)如图,在△ABC中,∠B=30°,AC=2,cos C=.则AB边的长为.【分析】如图,作AH⊥BC于H.解直角三角形求出AH,再根据AB=2AH即可解决问题.【解答】解:如图,作AH⊥BC于H.在Rt△ACH中,∵∠AHC=90°,AC=2,cos C=,∴=,∴CH=,∴AH===,在Rt△ABH中,∵∠AHB=90°,∠B=30°,∴AB=2AH=,故答案为.【点评】本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.14.(3分)如图,以BC为直径作⊙O,A,D为圆周上的点,AD∥BC,AB=CD=AD=2.若点P为BC 垂直平分线MN上的一动点,则阴影部分周长的最小值为2+2.【分析】根据对称的性质可知阴影部分的周长的最小值为AC+CD,求出AC的长即可.【解答】解:连接AC,根据对称的意义可知,PD+PC的最小值为AC,∵AD∥BC,AB=CD=AD=2,∴==,∴∠ABC=2∠ACB,∵BC为直径,∴∠BAC=90°,∴∠ACB=30°,∠ABC=60°,∴AC=•AB=2,所以阴影部分周长的最小值为AC+CD=2+2,故答案为:2+2.【点评】本题考查轴对称的性质,圆周角定理,理解轴对称的性质是解决问题的关键.15.(3分)在矩形ABCD中,AB=2,BC=4,点E在边BC上,连接DE,将△CDE沿DE折叠,若点C的对称点C'到AD的距离为1,则CE的长为或2.【分析】当点C'落在矩形ABCD的内部,过点C'作C'M⊥AD于点M,当点C'落在矩形ABCD的外部,过点C'作C'G⊥AD于点G,则C'G=1,由直角三角形的性质可得出答案.【解答】解:如图1,当点C'落在矩形ABCD的内部,过点C'作C'M⊥AD于点M,∵将△CDE沿DE折叠,∴AB=DC=C'D=2,∠CDE=∠C'DE,∵C'M=1,∴,∴∠C'DM=30°,∴∠C'DC=60°,∴∠CDE=∠C'DC=30°,∴CE=CD×tan30°=2×=;如图2,当点C'落在矩形ABCD的外部,过点C'作C'G⊥AD于点G,C'E与AD交于点H,则C'G=1,同理CD=C'D=2,∴∠C'DG=30°,∴∠C'HD=60°,∵矩形ABCD中,AD∥BC,∴∠C'HD=∠HEC=60°,∴∠DEC=∠HEC=30°,∴CE=2.综上可得,CE的长为或2.故答案为:或2.【点评】本题考查了矩形的判定与性质、折叠的性质、三角函数、勾股定理、直角三角形的性质、角平分线的性质等知识,熟练掌握折叠的性质是解题的关键.三、解答题(本题共8个小题,满分75分)16.(8分)计算:(1)2﹣2﹣2cos30°+tan60°+(π﹣3.14)0;(2)2cos245°+tan60°•tan30°﹣cos60°.【分析】(1)分别进行负整数指数幂、特殊角的三角函数值、零指数幂等运算,然后合并;(2)将特殊角的三角函数值代入求解.【解答】解:(1)原式=﹣2×++1==;(2)原式=2×()2+﹣=2×+1﹣=1+1﹣=.【点评】本题考查了实数的运算及特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.17.(9分)随着中央电视台《朗读者》节目的播出,“朗读”被越来越多的同学所喜爱,某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:A.积极参与;B.一定参与;C.可以参与;D.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比A18aB2040%C m16%D48%合计b100%请你根据以上信息,解答下列问题:(1)a=36%,b=50;(2)请求出m的值并将条形统计图补充完整;(3)“朗读”活动中,七年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率.【分析】(1)“一定参与”的有20人,占调查人数的40%,可求出调查人数b,进而求出“A积极参与”所占的百分比;(2)求出“C组可以参与”的人数,将条形统计图补充完整即可;(3)画树状图,共有12种等可能的结果,其中所选两人都是女生的结果有2种,再由概率公式求解即可.【解答】解:(1)b=20÷40%=50(人),则a=18÷50=36%,故答案为:36%,50;(2)m=50×16%=8,补全条形统计图如图所示;(3)画树状图如下:共有12种等可能的结果,其中所选两人都是女生的结果有2种,∴所选两人都是女生的概率为=.【点评】此题考查的是用树状图法求概率以及条形统计图和统计表.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.18.(9分)2021年“五一”期间,修复后的安阳老城东南城墙及魁星阁与市民见面,这一始建于北魏天兴元年(公元398年)的建筑,在1600多年后,以崭新的面貌向世人展示历史印记,古代安阳“魁星取水”景观即将重现.某数学学习小组利用卷尺和自制的测角仪测量魁星阁顶端距离地面的高度,如图所示,他们在地面一条水平步道FB上架设测角仪,先在点F处测得魁星阁顶端A的仰角是26°,朝魁星阁方向走20米到达G 处,在G处测得魁星阁顶端A的仰角是45°.若测角仪CF和DG的高度均为1.5米,求魁星阁顶端距离地面的高度(图中AB的值).(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,≈1.41,结果精确到0.1米)【分析】解直角三角形求出AG即可解决问题.【解答】解:由题意知,∠ADE=45°,∠ACE=26°,FG=CD=20米,CF=DG=1.5米,设AE=x米,在Rt△ADE中,∵AE=x米,∠ADE=45°,∴ED=AE=x米,∴CE=CD+ED=(20+x)米,在Rt△ACE中,∵tan26°==,∴tan26°(20+x)=x,即0.49×(20+x)≈x,解得x≈19.22(米),∴AB=AE+BE≈19.22+1.5=20.7(米).答:铁塔的高度AB约为20.7米.【点评】本题考查解直角三角形的应用,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.19.(9分)如图,点D在以AB为直径的⊙O上,AD平分∠BAC,DC⊥AC,过点B作⊙O的切线交AD 的延长线于点E.(1)求证:直线CD是⊙O的切线.(2)求证:CD•BE=AD•DE.【分析】(1)连接OD,由角平分线的定义得到∠CAD=∠BAD,根据等腰三角形的性质得到∠BAD=∠ADO,求得∠CAD=∠ADO,根据平行线的性质得到CD⊥OD,于是得到结论;(2)连接BD,根据切线的性质得到∠ABE=∠BDE=90°,根据相似三角形的性质即可得到结论.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∴AC∥OD,∵CD⊥AC,∴CD⊥OD,∴直线CD是⊙O的切线;(2)连接BD,∵BE是⊙O的切线,AB为⊙O的直径,∴∠ABE=∠BDE=90°,∵CD⊥AC,∴∠C=∠BDE=90°,∵∠CAD=∠BAE=∠DBE,∴△ACD∽△BDE,∴=,∴CD•BE=AD•DE.【点评】本题考查了相似三角形的判定和性质,角平分线的定义.圆周角定理,切线的判定和性质,正确的作出辅助线是解题的关键.20.(9分)如图,反比例函数y=的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,4),点B的坐标为(n,2).(1)求反比例函数和一次函数的解析式;(2)点E为x轴上一个动点,若S△AEB=5,试求点E的坐标.【分析】(1)把点A的坐标代入反比例函数解析式,求出反比例函数的解析式,把点B的坐标代入已求出的反比例函数解析式,得出n的值,然后根据待定系数法求得直线AB的解析式;(2)设点E的坐标为(a,0),则点C(6,0),得出CE=|a﹣6|,根据S△AEB=S△AEC﹣S△BEC=5,求出a的值,从而得出点E的坐标.【解答】解:(1)把点A(2,4)代入y=得4=,解得m=8,∴反比例函数的表达式为y=,点B(n,2)代入y=得2=,解得n=4,∴点B的坐标为(4,2),∵直线y=kx+b过点A(2,4),B(4,2),∴,解得,∴一次函数的表达式为y=﹣x+6;(2)设点E的坐标为(a,0),在y=﹣x+6中,令y=0,则﹣x+6=0,解得x=6,∴点C(6,0),∴CE=|a﹣6|,∵S△AEB=S△AEC﹣S△BEC=5,∴×|a﹣6|×(4﹣2)=5,∴|a﹣6|=5,解得a1=11,a2=1,∴点E的坐标为(11,0)或(1,0).【点评】本题考查了反比例函数和一次函数的交点问题,用待定系数法求一次函数和反比例函数的解析式,三角形的面积,解此题的关键:(1)熟练掌握待定系数法;(2)得到关于a的方程.21.(10分)在平面直角坐标系xOy中,点A的坐标为(0,5),点B的坐标为(5,5),抛物线y=x2﹣4x+a ﹣1的顶点为C.(1)若抛物线经过点B时,求顶点C的坐标.(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围.【分析】(1)将(5,5)代入解析式求出a,然后将抛物线解析式化为顶点式求解.(2)分别求出顶点落在AB上,抛物线经过点A,B时a的值,结合图象求解.【解答】解:(1)将(5,5)代入y=x2﹣4x+a﹣1得5=25﹣20+a﹣1,解得a=1,∴y=x2﹣4x+a﹣1=x2﹣4x=(x﹣2)2﹣4,∴点C坐标为(2,﹣4).(2)∵y=x2﹣4x+a﹣1=(x﹣2)2+a﹣5,∴抛物线开口向上,顶点坐标为(2,a﹣5),当抛物线顶点落在线段AB上时,a﹣5=5,解得a=10,当抛物线经过点A(0,5)时,5=a﹣1,解得a=4,当抛物线经过点B(5,5)时,a=1,∴1≤a<5或a=10满足题意.【点评】本题考查二次函数的性质,解题关键是掌握二次函数图象与系数的关系,掌握二次函数与方程的关系.22.(10分)小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是﹣1<a<0.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象?写出平移过程,并直接写出当2<y1≤3时,自变量x的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数y1=﹣(|x﹣2|﹣1)2+3的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=a有四个实数根,则a的取值范围是﹣1<a<0.故答案为函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<a<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移2个单位,向上平移3个单位可得到函数y1=﹣(|x﹣2|﹣1)2+3的图象,当2<y1≤3时,自变量x的取值范围是0<x<4且x≠2.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.23.(11分)已知△AOB和△MON都是等腰直角三角形,∠AOB=∠MON=90°.(1)如图1,连接AM,BN,求证:AM=BN;(2)将△MON绕点O顺时针旋转.①如图2,当点M恰好在AB边上时,求证:AM2+BM2=2OM2;②当点A,M,N在同一条直线上时,若OA=4,OM=3,请直接写出线段AM的长.【分析】(1)通过代换得对应角相等,再根据等腰直角三角形的性质得对应边相等,利用“SAS”证明△AOM≌△BON,即可得到AM=BN;(2)①连接BN,根据等腰直角三角形的性质,利用“SAS”证明△AOM≌△BON,得对应角相等,对应边相等,从而可证∠MBN=90°,再根据勾股定理,结合线段相等进行代换,即可证明结论成立;②分点N在线段AM上和点M在线段AN上两种情况讨论,连接BN,设BN=x,根据勾股定理列出方程,求出x的值,即可得到BN的长,BN的长就是AM的长.【解答】(1)证明:∵∠AOB=∠MON=90°,∴∠AOB+∠AON=∠MON+∠AON,即∠AOM=∠BON,∵△AOB和△MON都是等腰直角三角形,∴OA=OB,OM=ON,∴△AOM≌△BON(SAS),∴AM=BN;(2)①证明:连接BN,∵∠AOB=∠MON=90°,∴∠AOB﹣∠BOM=∠MON﹣∠BOM,即∠AOM=∠BON,∵△AOB和△MON都是等腰直角三角形,∴OA=OB,OM=ON,∴△AOM≌△BON(SAS),∴∠MAO=∠NBO=45°,AM=BN,∴∠MBN=90°,∴MB2+BN2=MN2,∵△MON是等腰直角三角形,∴MN2=2ON2,∴AM2+BM2=2OM2;②解:如图3,当点N在线段AM上时,连接BN,设BN=x,由(1)可知△AOM≌△BON,可得AM=BN且AM⊥BN,在Rt△ABN中,AN2+BN2=AB2,∵△AOB和△MON都是等腰直角三角形,OA=4,OM=3,∴MN=6,AB=8,∴(x﹣6)2+x2=82,解得:x=3+(负根已经舍去),∴AM=BN=3+,如图4,当点M在线段AN上时,连接BN,设BN=x,由(1)可知△AOM≌△BON,可得AM=BN且AM⊥BN,在Rt△ABN中,AN2+BN2=AB2,∵△AOB和△MON都是等腰直角三角形,OA=4,OM=3,∴MN=6,AB=8,∴(x+6)2+x2=(8)2,解得:x=﹣3(负根已经舍去),∴AM=BN=﹣3,综上所述,线段AM的长为+3或﹣3.【点评】本题属于几何变换综合题,考查了等腰直角三角形的性质,全等三角形的判定与性质,图形的旋转,勾股定理等知识点,抓住图形旋转中不变的量,巧妙构造直角三角形是解决问题的关键.。
2022-2023学年人教版九年级数学第一学期期末测试卷含答案
第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题(每题5分,共45分)1.(5分)下列新冠疫情防控标识图案中,中心对称图形是( )A.B.C.D.2.(5分)下列为一元二次方程的是( )A.02=+-c bx axB.0232=-+x x C.01322=+-x x D.0222=+y x3.(5分)已知关于x 的一元二次方程x m x 442=-有两个不相等的实数根,则m 的取值范围是( )A.1->mB.2<mC.0≥mD.0<m4.(5分)方程0)3)(2(=+-x x 的解是( )A.2=xB.3-=xC.3,221==x xD.3,221-==x x 5.(5分)如图,AB 是☉O 的弦,点C 在圆上,已知∠AOB=100°,则∠C=( )A.40°B.50°C.60°D.80°6.(5分)抛物线2)4(32++=x y 的顶点坐标是( ) A.(2,4) B.(2,-4) C.(4,2) D.(-4,-2)7.(5分)目前我国已建立了比较完善的经济困难学生资助体系.某校前年发放给每个经济困难学生389元,今年发放了438元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438)13892=+x (B.389)14382=+x (C.438)21389=+x (D.389)21438=+x (8.(5分)对于二次函数2)1(2+-=x y 的图像,下列说法正确的是( ) A.开口向下B.对称轴是直线1-=xC.顶点坐标是(1,2)D.当1>x 时,y 随x 的增大而减小9.(5分)当0>ab 时,2ax y =与b ax y +=的图象大致是( )A. B. C. D.二、 填空题 (每题 5 分 ,共30分 )10.(5分)点A(-2,3)关于原点对称的点的坐标是________.11.(5分)已知关于x 的方程0322=++k x x 的一个根是-1,则k=________. 12.(5分)如图,四边形ABCD 为☉O 的内接四边形,已知∠BOD=100°,则∠BCD 的度数为____.13.(5分)一个不透明袋子中装有10个球,其中有5个红球,3个白球,2个黑球,这些球除颜色外无其它差别,从袋子中随机取出个球,则它是白球的概率是________.14.(5分)若562)1(--+=m m x m y 是二次函数,则m=________.第3页,共14页第4页,共14页装订线内不许答题15.(5分)如图,抛物线与x 轴交于点A(-1,0),顶点坐标(1,n),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论正确的有________.(填编号)①03<b a +;②134-≤≤-a ;③对于任意实数m ,bm am b a +≥+2恒成立;④关于x 的方程12+=++n c bx ax 有两个相等的实数根.三、 解答题 (本题共计 8 小题 ,共计75分 )16. (8分) 解方程:(1)033(=-+-x x x ); (2)0142=--x x . 17. (7分) 关于x 的方程0232=+-m x x 的一个根为-1,求方程的另一个根及m 的值.18. (8分) 如图所示,每个小正方形的边长为1个单位长度,作出△ABC 关于原点对称的图形△A 1B 1C 1,并写出A 1,B 1,C 1的坐标.19. (10分) 如图,某小区规划在一个长为40米、宽为26米的矩形场地ABCD 上修建三条同样宽度的马路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积都是144m 2,求马路的宽.第5页,共4页 第6页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(10分) 为了解长垣市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)此次调查中接受调查的人数为________人; (2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分) 如图,在△ABC 中,点O 是AB 边上一点,OB=OC,∠B=30°,过点A 的 ☉O 切BC 于点D ,CO 平分∠ACB .(1)求证:AC 是☉O 的切线; (2)若BC=12,求☉O 的半径长;(3)在(2)的条件下,求阴影部分的面积.22. (10分) 某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价0.1元,其销售量就要减少1件,问涨价多少元时,才能使每天所赚的利润达到360元?23.(12分) 如图,在平面直角坐标系中,抛物线422++=ax ax y 与x 轴交于点 A(-4,0),B(2,0),与y 轴交于点C .经过点B 的直线b kx y +=与y 轴交于点D(0,2),与抛物线交于点E .(1)求抛物线的解析式及点C 的坐标;(2)若点P 为抛物线的对称轴上的动点,当△AEP 的周长最小时,求点P 的坐标; (3)若点M 是直线BE 上的动点,过M 作MN ∥y 轴交抛物线于点N ,判断是否存在点M ,使以点M 、N ,C ,D 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.第7页,共14页 第8页,共14页装订线内不许答题2022-2023学年第一学期期末质量监测试卷答案九年级 数学学科一、选择题(每题5分,共45分)1.A2.C3.A4.D5.B6.D7.A8.C9.D二、 填空题 (每题 5 分 ,共30分 )10.(2,-3) 11.2± 12.130° 13.10314. 7 15.①②③三、 解答题 (本题共计 8 小题 ,共计75分 )16.解:(1)0)3()3(=-+-x x x分解因式得:0)1)(3=+-x x (————————2分 可得03=-x 或01=+x解得:1,321-==x x ————————4分 (2)5142=--x x移项得:642=-x x ————————1分配方法得:10442=+-x x 即10)22=-x (————————2分 开方得:102±=-x解得:10210221-=+=x x , ————————4分 17.解:把 代入方程,得,解得,————————3分设方程的另一个根为,则,————————5分所以,即方程的另一个根为.————————7分18.解:关于原点的对称图形如图,————————5分根据图形可知:,,.————————8分19.解:设马路的宽为米 ————————1分依题意可列方程————————4分整理得 ————————6分 解得,(舍去) ————————9分答:马路的宽为2米.————————10分第9页,共4页第10页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(1)∵非常满意的有18人,占,∴此次调查中接受调查的人数:(人).故答案为:50 ————————2分 (2)此次调查中结果为满意的人数为:(人)补全条形统计图如下:————————4分(3)144 ————————6分 (4)画树状图:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:. ————————10分21.(1)证明:∵∴又∵ 平分∴ ∴∴∴是的切线. ————————3分(2)解:如图,连接,设交于点,设半径为r .∵ 切于点, ∴.又∵,, ∴AC=6,,由勾股定理得AB=36∴ 在直角三角形OCD 中,由勾股定理得 r 2+62=(36-r)2解得 r=32 ————————6分 (3)解:∵, ∴————————10分第11页,共14页 第12页,共14页装订线内不许答题22.解:设涨价元时,才能使每天所赚的利润达到元. ————————1分————————4分 ,, ————————7分 解得. ————————9分答:涨价元时,才能使每天所赚的利润达到元. ————————10分23.解:(1),点的坐标为————————4分(2)如图,由,可得对称轴为.∵ 的边是定长,∴ 当的值最小时,的周长最小.点关于的对称点为点,∴ 当点是与直线的交点时,的 值最小. ∵ 直线经过点∴ ’解得∴ 直线:令,得,∴ 当的周长最小时,点的坐标为————————8分(3)存在.点的坐标为或————————12分第13页,共4页 第14页,共4页…………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………点场号名座位号。
2022-2023学年北京东城区初三第一学期数学期末试卷及答案
2022-2023学年北京东城区初三第一学期数学期末试卷及答案一、选择题(每题2分,共16分)1. 若关于的一元二次方程有一个根为,则的值为( ) x 220x x m -+=0m A. 2 B. 1C. 0D.1-【答案】C 【解析】【分析】将代入方程,即可求解.0x =220x x m -+=【详解】解:∵关于的一元二次方程有一个根为, x 220x x m -+=0∴, 0m =故选:C .【点睛】本题考查了一元二次方程的解的定义,将代入方程是解题的关键. 0x =2. 下列图形中是中心对称图形的是( ) A. 正方形 B. 等边三角形C. 直角三角形D. 正五边形 【答案】A 【解析】【分析】根据中心对称图形的概念求解即可. 【详解】解:A 、是中心对称图形,本选项正确; B 、不是中心对称图形,本选项错误; C 、不是中心对称图形,本选项错误; D 、不是中心对称图形,本选项错误. 故选A .【点睛】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,绕对称中心旋转180度后与原图形重合.3. 关于二次函数的最大值或最小值,下列说法正确的是( ) 22(4)6y x =-+A. 有最大值4 B. 有最小值4C. 有最大值6D. 有最小值6 【答案】D 【解析】【分析】根据二次函数的解析式,得到a 的值为2,图象开口向上,函数22(4)6y x =-+有最小值,根据定点坐标(4,6),即可得出函数的最小值.【详解】解:∵在二次函数中,a=2>0,顶点坐标为(4,6), 22(4)6y x =-+∴函数有最小值为6. 故选:D .【点睛】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a 的符号和根据顶点坐标求出最值.4. 一只不透明的袋子中装有3个黑球和2个白球,这些除颜色外无其他差别,从中任意摸出3个球,下列事件是确定事件的为( ) A. 至少有1个球是黑球 B. 至少有1个球是白球 C. 至少有2个球是黑球 D. 至少有2个球是白球【答案】A 【解析】【分析】列出摸出的三个球的颜色的所有可能情况即可.【详解】根据题意可得,摸出的三个球的颜色可能为:两个白球,一个黑球;一个白球,两个黑球;三个黑球,则可知摸出的三个球中,至少有一个黑球, 故必然事件是至少有一个黑球, 故选:A .【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5. 某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A. 180(1﹣x)2=461B. 180(1+x )2=461C. 368(1﹣x)2=442D. 368(1+x )2=442【答案】B 【解析】【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x ,根据“2月份的180万只,4月份的产量将达到461万只”,即可得出方程. 【详解】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程:180(1+x )2=461, 故选:B .【点睛】本题考查了一元二次方程的实际应用,理解题意是解题关键.6. 如图,在中,是直径,弦的长为5,点D 在圆上,且, 则O AB AC 30ADC ∠=︒O 的半径为( )A. B. 5C. D.2.57.510【答案】B 【解析】【分析】连接,由题意易得,在中解三角形求解. BC 30ABC ADC ∠=∠=︒Rt ACB 【详解】连接,BC30ABC ADC ∴∠=∠=︒在中,是直径, O AB ,90ACB ∴∠=︒在中,Rt ACB ,,90ACB ∠=︒30ABC ∠=︒5AC =210AB AC ==5OA =故选:B .【点睛】本题主要考查圆周角定理及含直角三角形的性质;熟练掌握圆周角定理及含30︒直角三角形的性质是解题的关键.30︒7. 抖空竹在我国有着悠久的历史,是国家级的非物质文化遗产之一.如图,AC ,BD 分别与⊙O 切于点C ,D ,延长AC ,BD 交于点P .若,⊙O 的半径为6cm ,则图中的120P ∠=︒ CD长为( )A. π cmB. 2π cmC. 3π cmD. 4π cm【答案】B 【解析】【分析】连接OC 、OD ,利用切线的性质得到,根据四边形的内角和90OCP ODP ∠=∠=︒求得,再利用弧长公式求得答案. 60COD ∠=︒【详解】连接OC 、OD ,分别与相切于点C ,D ,,AC BD Q O ∴,90OCP ODP ∠=∠=︒,120360P OCP ODP P COD ∠=︒∠+∠+∠+∠=︒, ∴,60COD ∠=︒的长, CD∴6062(cm)180ππ⨯==故选:B【点睛】此题考查圆的切线的性质定理,四边形的内角和,弧长的计算公式,熟记圆的切线的性质定理及弧长的计算公式是解题的关键.8. 如图,正方形和的周长之和为,设圆的半径为,正方形的边长为ABCD O 20cm cm x ,阴影部分的面积为.当x 在一定范围内变化时,y 和S 都随x 的变化而变化,cm y 2cm S 则y 与x ,S 与x 满足的函数关系分别是( )A. 一次函数关系,一次函数关系B. 一次函数关系,二次函数关系 C .二次函数关系,二次函数关系D. 二次函数关系,一次函数关系【答案】B 【解析】【分析】根据圆的周长公式和正方形的周长公式先得到,再根据152y x π=-+得到,由此即可得到答案.S S S =-阴影正方形圆2215254S x x πππ⎛⎫=--+ ⎪⎝⎭【详解】解:∵正方形和的周长之和为,圆的半径为,正方形的边ABCD O 20cm cm x 长为, cm y ∴, 4220y x π+=∴, 152y x π=-+∵,S S S =-阴影正方形圆∴,22222211552524S y x x x x x ππππππ⎛⎫⎛⎫=-=-+-=--+ ⎪ ⎪⎝⎭⎝⎭∴y 与x ,S 与x 满足的函数关系分别是一次函数关系,二次函数关系, 故选B .【点睛】本题考查二次函数与一次函数的识别、正方形的周长与面积公式,理清题中的数量关系,熟练掌握二次函数与一次函数的解析式是解答的关键. 二、填空题 (每题2分,共16分)9. 在平面直角坐标系中,抛物线与y 轴交于点C ,则点C 的坐标为xOy 245y x x =-+_________. 【答案】 (0,5)【解析】【分析】令,代入抛物线,得到点C 的纵坐标,即可得解. 0x =245y x x =-+【详解】解:依题意,令,得到,0x =5y =故抛物线与y 轴交于点C 的坐标为, 245y x x =-+(0,5)故答案为 :(0,5)【点睛】本题考查了二次函数与y 轴交点问题,令,即可得到抛物线与y 轴交点的纵0x =坐标. 10. 把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线2112y x =+的解析式为_______. 【答案】 21(1)22y x =+-【解析】【分析】直接根据“上加下减,左加右减”进行计算即可. 【详解】解:抛物线, 2112y x =+向左平移1个单位长度,再向下平移3个单位长度, 得到 ()211132y x =++-即 ()21122y x =+-故答案为:. ()21122y x =+-【点睛】本题主要考查函数图像的平移;熟记函数图像的平移方式“上加下减,左加右减”是解题的关键.11. 请写出一个常数c 的值,使得关于x 的方程有两个不相等的实数根,则220x x c ++=c 的值可以是____________.【答案】0,(答案不唯一,即可). 1c <【解析】【分析】利用一元二次方程根的判别式求出c 的取值范围即可得到答案. 【详解】解:因为方程有两个不相等的实数根, 220x x c ++=所以 2Δ240c =->解得1c <故答案为:0,(答案不唯一,即可)1c <【点睛】本题主要考查了一元二次方程根的判别式;熟知一元二次方程根的判别式是解题的关键.12. 2022年3月12日是我国第44个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,在同等条件下,对这种幼树进行大量移植,并统计成活情况,下表是这种幼树移植过程中的一组统计数据:幼树移植数(棵)100 1000 5000 8000 10000 15000 20000 幼树移植成活数(棵)87 893 4485 7224 8983 13443 18044 幼树移植成活的频率0.870 0.893 0.897 0.903 0.898 0.896 0.902 估计该种幼树在此条件下移植成活的概率是______.(结果精确到0.1)【答案】0.9【解析】【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】∵幼树移植数20000时,幼树移植成活的频率是0.902,∴估计该种幼树在此条件下移植成活的概率为0.902,精确到0.1,即为0.9,故答案为:0.9.【点睛】本题考查了用大量试验得到的频率可以估计事件的概率,大量反复试验下频率稳定值即概率.13. 以▱ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为_____.【答案】(2,﹣1)【解析】【分析】根据平行四边形是中心对称图形,再根据▱ABCD对角线的交点O为原点和点A的坐标,即可得到点C的坐标.【详解】解:∵▱ABCD对角线的交点O为原点,A点坐标为(﹣2,1),∴点C的坐标为(2,﹣1),故答案为:(2,﹣1).【点睛】此题考查中心对称图形的顶点在坐标系中的表示.14. 如图,在⊙O中,AB切⊙O于点A,连接OB交⊙O于点C,过点A作AD∥OB交⊙O于点D ,连接CD .若∠B=50°,则∠OCD 的度数等于___________.【答案】20°##20度 【解析】【分析】连接OA ,如图,根据切线的性质得到∠OAB=90°,则利用互余可计算出∠AOB=40°,再利用圆周角定理得到∠ADC=20°,然后根据平行线的性质得到∠OCD 的度数.【详解】解:连接OA ,如图,∵AB 切⊙O 于点A , ∴OA⊥AB, ∴∠OAB=90°, ∵∠B=50°,∴∠AOB=90°-50°=40°, ∴∠ADC=∠AOB=20°, 12∵AD∥OB,∴∠OCD=∠ADC=20°. 故答案为:20°.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.15. 《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积(弦×失+失²).弧田(图中阴影部分)由圆弧和其所对的弦所12=围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.现有圆心角为,半径等于4米的弧田,按照上述公式计算出弧田的面积约为______ 米120︒.)21.73≈【答案】 8.92【解析】【分析】由题意可知于D ,交圆弧于C ,由题意得米,解得OC AB ⊥4AO =120AOB ∠=︒米,再求出,最后由勾股定理得到,由垂径定理求出即可得122OD OA ==CD AD AB 出结果.【详解】解:如图,由题意可知,,,(米),120AOB ∠=︒AB CD ⊥4OA OB ==, 30,90DAO ADO ∴∠=︒∠=︒12AD BD AB ==(米)122OD OA ∴==(米)422CD OC OD ∴=-=-=AD ∴===(米)2AB AD ∴==弧田面积 ∴()212AB CD CD =⨯+()21222=⨯+2=+(平方米)8.92≈故答案为:8.92【点睛】本题考查了勾股定理以及垂径定理的应用;熟练掌握垂径定理是解答本题的关键.16. 我们给出如下定义:在平面内,点到图形的距离是指这个点到图形上所有点的距离的最小值.在平面内有一个矩形,中心为O ,在矩形外有一点P ,,,4,2ABCD AB AD ==3OP =当矩形绕着点O 旋转时,则点P 到矩形的距离d 的取值范围为__________.【答案】 32d ≤≤【解析】【分析】根据题意分别求出当过的中点E 时,此时点P 与矩形上所有点的OP AB ABCD 连线中,;当过顶点A 时,此时点P 与矩形上所有点的连线中,;d PE =OP ABCD d PA =当过顶点边中点F 时,此时点P 与矩形上所有点的连线中,,即OP AD ABCD d PF =可求解.【详解】解:如图,当过的中点E 时,此时点P 与矩形上所有点的连线中,OP AB ABCD ,, d PE =112OE AD ==∴;2d PE OP OE ==-=如图,当过顶点A 时,此时点P 与矩形上所有点的连线中,,OP ABCD d PA =矩形,中心为O ,,4,2ABCD AB AD ==∴,2,90BC AD B ==∠=︒∴, AC ==∴ 12OA AC ==∴;3d AP OP OA ==-=-如图,当过顶点边中点F 时,此时点P 与矩形上所有点的连线中,OP AD ABCD ,, d PF =122OF AB ==∴;1d PF OP OF ==-=综上所述,点P 到矩形的距离d 的取值范围为.32d ≤≤故答案为:32d ≤≤【点睛】本题考查矩形的性质,旋转的性质,根据题意得出临界点时点d 的值是解题的关键.三、解答题(共68分,17-22题,每题5分,23-26题,每题6分,27-28题,每题7分)17. 下面是小美设计的“过圆上一点作圆的切线”的尺规作图过程.已知:点A 在上.O 求作:的切线.O AB作法: ①作射线;OA ②以点A 为圆心,适当长为半径作弧,交射线于点C 和点D ;OA ③分别以点C ,D 为圆心,大于长为半径作弧,两弧交点B ; 12CD ④作直线.AB 则直线即为所求作的的切线.AB O 根据小美设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接,.BC BD 由作图可知,, .AC AD =BC =∴ .BA OA ∵ 点A 在上,O ∴直线是的切线( ) (填写推理依据) .AB O 【答案】(1)见解析;(2);;经过半径的外端并且垂直于这条半径的直线是圆的切线.BD ⊥【解析】【分析】(1)依据题意,按步骤正确尺规作图即可;(2)结合作图,完成证明过程即可.【小问1详解】补全图形如图所示,【小问2详解】证明:连接,.BC BD由作图可知,,.AC AD =BC BD =∴,BA OA ⊥∵ 点A 在上,O ∴直线是的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线,AB O 故答案为:;;经过半径的外端并且垂直于这条半径的直线是圆的切线BD ⊥【点睛】本题考查了尺规作图能力和切线的证明;能够按要求规范作图是解题的关键.18. 如图,是的直径,弦于点E ,,若,求的AB O CD AB ⊥2CD OE =4AB =CD 长.【答案】.CD =【解析】【分析】由垂径定理得到,推出,在中,利用勾股定理即CE DE =CE OE =Rt COE △可求解.【详解】解:如图,连接. OC∵是的直径,弦于点E ,AB O CD AB ⊥∴.CE DE =又∵,2CD OE =∴.CE OE =∵,4AB =∴.2OC =在中,,Rt COE △222CE OE OC +=∴CE =∴.CD =【点睛】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键.19. 下面是小聪同学用配方法解方程:的过程,请仔细阅读后,2240x x p --=()0p >解答下面的问题.2240x x p --=解:移项,得:.①224x x p -=二次项系数化为1,得:.② 222p x x -=配方,得.③ 2212p x x -+=即. 2(1)2p x -=∵,0p >∴ 1x -=∴ 11x =+11x =(1)第②步二次项系数化为1的依据是什么?(2)整个解答过程是否正确?若不正确,说出从第几步开始出现的错误,并直接写出此方程的解.【答案】(1)等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等(2)不正确,解答从第③步开始出错, 1x =2x =【解析】【分析】(1)根据等式的性质2即可写出依据;(2)根据配方法解一元二次方程的步骤即可求解. 【小问1详解】等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;【小问2详解】不正确,解答从第③步开始出错,正确的步骤为:配方,得.③ 22112p x x -+=+即 22(1)2p x +-=∵,0p >∴.④ 1x -=∴.⑤ 1x =2x =此方程的解为. 1x =2x =【点睛】本题考查等式的性质和解一元二次方程,解题的关键是读懂材料,明确每一步的做题依据.20. 如图,已知抛物线L :y =x 2+bx+c 经过点A(0,﹣5),B(5,0).(1)求b ,c 的值;(2)连结AB ,交抛物线L 的对称轴于点M .求点M 的坐标;【答案】(1),;(2)交点M 的坐标为(2,-3).4b =-5c =-【解析】【分析】(1)将点A 、点B 坐标代入函数解析式,求解方程组即可;(2)设直线AB 的解析式为:,将点A 、点B 坐标代入函数解析式求解确()0y kx b k =+≠定解析式,然后根据(1)中确定二次函数解析式,求出其对称轴,求两条之间交点即可确定点M 的坐标.【详解】解:(1)将点A 、点B 坐标代入函数解析式可得:, 50255c b c -=⎧⎨=++⎩解得:, 45b c =-⎧⎨=-⎩∴,;4b =-5c =-(2)设直线AB 的解析式为:,()0y kx b k =+≠将点A 、点B 坐标代入函数解析式可得:, 505b k b-=⎧⎨=+⎩解得:, 15k b =⎧⎨=-⎩∴一次函数解析式为:,5y x =-由(1)得二次函数解析式为:,245y x x =--对称轴为:, 22b x a=-=直线与的交点为M ,5y x =-2x =∴当时,,2x ==3y -∴交点M 的坐标为(2,-3).【点睛】题目主要考查利用待定系数法确定二次函数与一次函数解析式,两条直线的交点问题,二次函数的基本性质,理解题意,熟练运用待定系数法确定解析式是解题关键.21. 如图,在边长均为1个单位长度的小正方形组成的网格中,点,,均为格点(每A B O 个小正方形的顶点叫做格点).(1)作点关于点的对称点;A O 1A (2)连接,将线段绕点顺时针旋转得到线段,点的对应点为,1AB 1A B 1A 90︒11A B B 1B 画出旋转后的线段;11A B (3)连接,,求出的面积(直接写出结果即可).1AB 1BB 1ABB 【答案】(1)见解析 (2)见解析(3)8【解析】【分析】(1)根据网格的特点作出点关于点的对称点;A O 1A(2)根据题意,画出旋转后的线段,即可求解;11A B (3)根据网格的特点,以及三角形面积公式求得面积即可求解.【小问1详解】解:如图所示,点即为所求;1A 【小问2详解】解:如图所示,线段即为所求;11A B 【小问3详解】解:如图所示,. 118282ABB S =⨯⨯= 【点睛】本题考查了画中心对称图形,画旋转图形,网格中求三角形面积,数形结合是解题的关键.22. 2022年3月23日,“天宫课堂”第二课在中国空间站开讲,神舟十三号飞行乘组航天员翟志刚、王亚平、叶光富讲了又一堂精彩的太空科普课.这场充满奇思妙想的太空授课,让科学的种子在亿万青少年的心里生根发芽.小明和小亮对航天知识产生了极大兴趣,他们在中国载人航天网站了解到,航天知识分为“梦圆天路”、“飞天英雄”、“探秘太空”、“巡天飞船”等模块.他们决定先从“梦圆天路”、“飞天英雄”、“探秘太空”三个模块中随机选择一个进行学习,分别设这三个模块为A ,B ,C ,用画树状图或列表的方法求出小明和小亮选择相同模块的概率. 【答案】 13【解析】【分析】先画出树状图,从而可得所有等可能的结果,再找出小明和小亮选择相同模块的结果,然后利用概率公式计算即可得. 【详解】解:由题意,画树状图如下:由图可知,所有等可能的结果共有9种,其中,小明和小亮选择相同模块的结果有3种. 则小明和小亮选择相同模块的概率为, 3193P ==答:小明和小亮选择相同模块的概率为. 13【点睛】本题考查了利用列举法求概率,正确画出树状图是解题关键.23. 已知关于x 的一元二次方程. ()22120x m x m +++-=(1)求证:无论m 取何值,此方程总有两个不相等的实数根;(2)当该方程的判别式的值最小时,写出m 的值,并求出此时方程的解.【答案】(1)见解析 (2),m =122,1x x =-=【解析】【分析】(1)判断判别式的符号,即可得证;(2)求出判别式的值最小时的m 的值,再解一元二次方程即可.【小问1详解】证明:∵,22(21)4(2)49m m m ∆=+-⨯-=+∵,20m ≥∴.2Δ490m =+>∴无论m 取何值,方程总有两个不相等的实数根.【小问2详解】解:由题意可知,当时,的值最小.0m =249m ∆=+将代入,得0m =2(21)20x m x m +++-=220x x +-=解得:.122,1x x =-=【点睛】本题考查一元二次方程的判别式与根的个数的关系,以及解一元二次方程.熟练掌握判别式与根的个数的关系,以及解一元二次方程的方法,是解题的关键.24. 掷实心球是中考体育考试项目之一,实心球投掷后的运动轨迹可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从投掷到着陆的过程中,实心球的竖直高度(单位:y m)与水平距离(单位:m)近似满足函数关系.某位同学进行了两x 2()y a x h k =-+(0)a <次投掷.(1)第一次投掷时,实心球的水平距离与竖直高度的几组数据如下:x y 水平距离x/m 0 2 4 6 8 10竖直距离y/m 1.67 2.632.95 2.63 1.670.07根据上述数据,直接写出实心球竖直高度的最大值,并求出满足的函数关系;2()y a x h k =-+(0)a <(2)第二次投掷时,实心球的竖直高度y 与水平距离近似满足函数关系x .记实心球第一次着地点到原点的距离为,第二次着地点到原点20.09( 3.8) 2.97y x =--+1d 的距离为,则_____ (填“>”“=”或“<”).2d 1d 2d 【答案】(1),2.9520.08(4) 2.95y x =--+(2)>【解析】【分析】(1)先根据表格中的数据找到顶点坐标,即可得出实心球竖直高度的最大值,并利用待定系数法得到抛物线解析式;(2)设着陆点的纵坐标为0,分别代入第一次和第二次的函数关系式,求出着陆点的横坐标即为 和,然后进行比较即可.1d 2d 【小问1详解】解:由表格数据可知,抛物线的顶点坐标为, (42.95),所以实心球竖直高度的最大值为,2.95设抛物线的解析式为:,2(4) 2.95y a x =-+将点代入,得, (01.67),1.67162.95a =+解得,0.08a =-∴抛物线的解析式为:;20.08(4) 2.95y x =--+【小问2详解】解:第一次抛物线解析式为,20.08(4) 2.95y x =--+令,得到(负值舍去), 0y =4x =+第二次抛物线的解析式为,20.09( 3.8) 2.97y x =--+令,得到(负值舍去)0y = 3.8x =+, 4 3.8+>+ ,12d d ∴>故答案为:>【点睛】本题主要考查了二次函数的应用,待定系数法求函数关系式,解题的关键是读懂题意,列出函数关系式.25. 如图,点在以为直径的上,平分交于点D ,交于点E ,C AB O CD ACB ∠O AB 过点D 作交F .DF AB CO(1)求证:直线是的切线;DF O(2)若°,DF 的长.30A ∠=AC =【答案】(1)见解析 (2) FD =【解析】【分析】(1)连接,证明可得结论;OD DF OD AB OD ⊥⊥,,(2)再中,,,得到,,再在Rt ACB △30A ∠=︒AC =4AB =2OD =Rt ODF △中,由,继而求得;60F ∠=︒FD 【小问1详解】证明:连接. OD∵ 是的直径,平分,AB O CD ACB ∠ AD DB∴=∴ .90AOD BOD ∠=∠=︒又∵ ,FD AB ∥∴ .90ODF BOD ∠=∠=︒即 .OD DF ⊥∴ 直线为的切线.DF O 【小问2详解】解:∵ 是的直径,AB O ∴.90ACB ∠=︒又∵,,30A ∠=︒AC =∴ .4AB =∴ .2OD =∵ ,AO CO =30ACO A ∴∠=∠=︒∴ .60COB A ACO ∠=∠+∠=︒∵ ,DF AB ∴ ,60F ∠=︒,30FOD ∴∠=︒设则,,FD x =22OF FD x ==又,2OD =在中,由勾股定理得:,Rt ODF △22224x x +=解得:, x =故 FD =【点睛】本题属于圆综合题,考查了垂径定理,圆周角定理,平行线的判定,特殊角的直角三角形性质,等知识,解题的关键是学会添加常用辅助线解决问题.26. 已知二次函数. ()2430y ax ax a =-+≠(1)求该二次函数的图象与y 轴交点的坐标及对称轴.(2)已知点都在该二次函数图象上,()()()()12343,1,12,,,,,y y y y --①请判断与的大小关系: (用“”“”“”填空);1y 2y 1y 2y >=<②若,,,四个函数值中有且只有一个小于零,求a 的取值范围.1y 2y 3y 4y 【答案】(1)抛物线与y 轴交点的坐标为,对称轴()0,32x =(2)①; ② =3154a -≤<-【解析】【分析】(1),可得抛物线与y 轴交点的坐标,再根据抛物线对称轴公式解答,即可0x =求解;(2)①根据题意可得点关于直线对称,即可求解;②根据题意可得点()()12,3,1,y y 2x =在对称轴的左侧,点在对称轴的右侧,然后分两种情况:()()()2341,,,1,2,y y y --()13,y 当时,当时,即可求解.0a >a<0【小问1详解】解:令,则,0x =3y =∴抛物线与y 轴交点的坐标为 .()0,3对称轴. 422a x a-=-=【小问2详解】解:① ∵函数图象的对称轴为直线,2x =∴点关于直线对称,()()12,3,1,y y 2x =∴,12y y =故答案为:;=②∵函数图象的对称轴为直线,,2x =3112>>->-∴点在对称轴的左侧,点在对称轴的右侧.()()()2341,,,1,2,y y y --()13,y 当时,在对称轴的左侧,y 随x 的增大而减小,0a >∴,不合题意.1234y y y y =<<当时,在对称轴的左侧,y 随x 的增大而增大,则,a<01234y y y y =>>,,,四个函数值可以满足,1y 2y 3y 4y 12340y y y y >=≥>∴,340,0y y ≥<即当时,,当时,.=1x -3430y a a =++≥2x =-44830y a a =++<解得 . 3154a -≤<-【点睛】本题考查了二次函数图象与性质,掌握二次函数图象与性质是解题的关键.27.如图,是等腰直角三角形,,为延长线上一点,ABC 90ACB AC BC ∠=︒=,D AC 连接,将线段绕点逆时针旋转得到线段,过点作于点,BD BD D 90︒DE E EFAC ⊥F 连接. AE(1)依题意补全图形;(2)比较与的大小,并证明;AF CD (3)连接,为的中点,连接,用等式表示线段之间的数量BE G BE CG CD CG BC ,,关系,并证明.【答案】(1)见解析 (2),见解析AF CD =(3),见解析BC CD =【解析】【分析】(1)根据旋转的性质画图即可;(2)根据旋转的性质以及等腰直角三角形可以得到全等三角形,再根据全等三角形的性质即可求出结论;(3)根据题意画出已知图形,再根据图形得到全等三角形,利用全等三角形的性质和等腰直角三角形的性质即可求出结论.【小问1详解】解:补全图形如图所示【小问2详解】解:,理由如下:AF CD =∵EF AD ⊥∴90EFD ∠=︒∵90ACB ∠=︒∴EFD BCD ∠=∠∵90ACB ∠=︒∴90CBD CDB ∠∠=︒+由题意可知,90BDE ∠=︒∴90EDF BDC ∠∠=︒+∴EDF CBD ∠=∠在和中EFD △DCB △EDF CBD EFD DCB ED BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴≌EFD △()AAS DCB ∴EF CD DF BC ==,∵BC AC =∴AC DF =∴AF CD =【小问3详解】解: 理由如下:BC CD =连接,DGFG∵ ,为的中点,DE BD =G BE 90BDE ∠=︒∴EG BG DG ==,90DGB ∠=︒∵90EFD DGE ∠=∠=︒∴GEF CDG ∠=∠在和中EFG DCG △EF DC GEF CDG EG DG =⎧⎪∠=∠⎨⎪=⎩∴≌ EFG SAS DCG ()∴,FG CG =EGF DGC ∠=∠∴90EGF EGC DGC EGC ∠+∠=∠+∠=︒即90CGF ∠=︒∴为等腰直角三角形CGF △∴CF =∵ ,BC AC AF CF ==+AF CD =∴BC CD =+【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等相关知识点,掌握全等三角形的性质和旋转的性质是解题的关键.28. 在平面直角坐标系中,我们给出如下定义:将图形M 绕直线上某一点P 顺时xOy 3x =针旋转,再关于直线对称,得到图形N ,我们称图形N 为图形M 关于点P 的二次90︒3x =关联图形.已知点.()0,1A (1)若点P 的坐标是,直接写出点A 关于点P 的二次关联图形的坐标________;()3,0(2)若点A 关于点P 的二次关联图形与点A 重合,求点P 的坐标(直接写出结果即可);(3)已知的半径为1,点A 关于点P 的二次关联图形在上且不与点A 重合. O O 若线段,其关于点P 的二次关联图形上的任意一点都在及其内部,求此时 P 点1AB =O 坐标及点B 的纵坐标的取值范围.B y 【答案】(1)()2,3(2)()3,2-(3),, ()3,3-12102B y ≤≤【解析】【分析】(1)根据二次关联图形的定义分别找到和,过点作轴于点D ,可A 'A ''A 'A D x '⊥证得,从而得到,即可求解;AOP PDA ' ≌1,3OA PD OP A D '====(2)根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,过点P 作轴于点PE y ⊥E ,过点作轴交延长线于点F ,坐标为m ,表达点的坐标,可得出结论;A 'A F x '⊥EP A '(3)由(2)可知,点的坐标,由A 关于点P 的二次关联图形在上且不与点A 重合A ''O 可得出点的坐标,由线段,其关于点P 的二次关联图形上的任意一点都在及A ''1AB =O 其内部,找到临界点,可得出的坐标,进而可得出点B 的坐标,即可得出的取值B ''B ''B y 范围.【小问1详解】如图1,根据二次关联图形的定义分别找到和,过点作轴于点D ,A 'A ''A 'A D x '⊥∴90A DP AOP '∠=∠=︒由旋转可知,,90,APA AP A P ''∠=︒=∴,90APO A PD A PD PA D '''∠+∠=∠+=︒∴,APO PA D '∠=∠∴,()AAS AOP PDA ' ≌∴,1,3OA PD OP A D '====∴,()4,3A '∵点和关于直线对称,A 'A ''3x =∴点,()2,3A ''即点A 关于点P 的二次关联图形的坐标为;()2,3故答案为:()2,3【小问2详解】解:根据题意得:点P 位于x 轴的下方,设点P 的纵坐标为m ,如图,过点P 作轴于点E ,过点作轴交延长线于点F ,PE y ⊥A 'A F x '⊥EP由(1)得: ,AEP PFA ' ≌∴,1,3AE PF m EP A F '==-==∴,()4,3A m m '-+根据题意得:点A 和点关于直线对称,A '3x =∴,46m -=解得:,2m =-∴点P 的坐标为,()3,2-【小问3详解】解:设点P 的纵坐标为n ,由(2)得:,()4,3A n n '-+∴,()2,3A n n ''++∵在上,A ''O ∴,()()22231n n +++=解得:(舍去)或,2n =-3-∴点P 的坐标为,()3,3-∵,其关于点P 的二次关联图形上的任意一点都在及其内部,1AB =AB O 此时点是一个临界点,连接,如图, B ''OB∵,1OA A B OB ''''''''===∴是等边三角形,OA B '''' 过点作轴于点M ,则, B ''B M x ''⊥12A M OM ''==∴ B M ''=∴, 1,2B ⎛''- ⎝∴, 13,2B ⎛' ⎝∴, 12B ⎫⎪⎭由对称性得:另一个点的坐标为, 12B ⎛⎫ ⎪ ⎪⎝⎭∴的取值范围为. B y 102B y ≤≤【点睛】本题属于新定义类问题,主要考查轴对称最值问题,等边三角形的性质与判定,圆的定义等相关知识,关键是理解给出新定义,画出对应的图形.。
人教版2022~2023学年九年级数学第一学期期末学业监测试卷【含答案】
人教版2022~2023学年九年级数学第一学期期末学业监测试卷(分值:120分)一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.(3分)下列说法:①三点确定一个圆;②垂直于弦的直径平分弦;③三角形的内心到三条边的距离相等;④圆的切线垂直于经过切点的半径.其中正确的个数是()A.0B.2C.3D.42.(3分)如图,底边长为2的等腰Rt△ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转45°得到△OA1B1,则点A1的坐标为()A.(1,﹣)B.(1,﹣1)C.()D.(,﹣1)3.(3分)如图,点A、C、B在⊙O上,已知∠AOB=∠ACB=α.则α的值为()A.135°B.120°C.110°D.100°4.(3分)如图,⊙O的半径为5,点O到直线l的距离为7,点P是直线l上的一个动点,PQ与⊙O相切于点Q,则PQ的最小值为()A.B.C.2D.25.(3分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.6.(3分)若A(3,y1),B(5,y2),C(﹣2,y3)是抛物线y=﹣x2+4x+k上的三点,则y1、y2、y3的大小关系为()A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y3>y1>y27.(3分)下列方程中,关于x的一元二次方程是()A.3(x+1)2=2(x+1)B.C.ax2+bx+c=0D.x2+2x=x2﹣1 8.(3分)如图,在矩形ABCD中,AB=3,BC=4,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()A.B.2C.D.39.(3分)在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是()A.垂直B.相等C.垂直且相等D.不再需要条件10.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.B.5C.D.二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(4分)用配方法解方程x2﹣2x﹣7=0时,配方后的形式为.12.(4分)如图,把△ABC绕点A逆时针旋转42°,得到△AB′C′,点C′恰好落在边AB上,连接BB′,则∠B′BC′的大小为.13.(4分)如图,点P在反比例函数y=(x<0)的图象上,PA⊥x轴于点A,△PAO的面积为5,则k的值为.14.(4分)已知==,则=.15.(4分)如图,双曲线上有一点A,过点A作AB⊥x轴于点B,△AOB的面积为2,则该双曲线的表达式为.16.(4分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=1,BD=4,则CD=.17.(4分)如图,在梯形ABCD中,AD∥BC,AC,BD交于点O,S△AOD:S△COB=1:9,则S△DOC:S△BOC=.18.(4分)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.三、解答题:(共9道题,总分88分)19.(8分)解方程(1)2x2﹣2x﹣5=0;(2)(y+2)2=(3y﹣1)2.20.(8分)已知,如图,AB和DE是直立在地面上的两根立柱,AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.21.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.22.(10分)已知甲同学手中藏有三张分别标有数字,,1的卡片,乙同学手中藏有三张分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.23.(10分)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.24.(10分)如图,已知A (﹣4,n),B (2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式的解集(请直接写出答案).25.(10分)某商场礼品柜台元旦期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?26.(10分)如图,P1、P2是反比例函数(k>0)在第一象限图象上的两点,点A1的坐标为(2,0),若△P1OA1与△P2A1A2均为等边三角形.(1)求此反比例函数的解析式;(2)求A2点的坐标.27.(12分)(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD 上的点,且∠EAF=∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.答案一、精心选一选(本大题共10小题,每小题3分,共30分.每小题给出四个答案,其中只有一个是正确的)1.C2.B3.B4.C5.D6.C7.A8.A9.B10.A二、你能填得又快又准吗?(共8小题,每题4分,共32分)11.(x﹣1)2=8.12.69°13.﹣1014.15.y=﹣.16.217.1:318.三、解答题:(共9道题,总分88分)19.解:(1)∵a=2,b=﹣2,c=﹣5,∴△=(﹣2)2﹣4×2×(﹣5)=48>0,∴方程有两个不相等的实数根,∴x==,即x1=,x2=,(2)移项得(y+2)2﹣(3y﹣1)2=0,分解因式得(4y+1)(3﹣2y)=0,解得y1=﹣,y2=.20.解:(1)连接AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE 的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC∽△DEF.∴,∴∴DE=10(m).说明:画图时,不要求学生做文字说明,只要画出两条平行线AC和DF,再连接EF即可.21.解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.22.解:(1)画树状图得:∵(a,b)的可能结果有(,1)、(,3)、(,2)、(,1)、(,3)、(,2)、(1,1)、(1,3)及(1,2),∴(a,b)取值结果共有9种;(2)∵当a=,b=1时,△=b2﹣4ac=﹣1<0,此时ax2+bx+1=0无实数根,当a=,b=3时,△=b2﹣4ac=7>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=2>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=1时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,当a=,b=3时,△=b2﹣4ac=8>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4ac=3>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=1时,△=b2﹣4ac=﹣3<0,此时ax2+bx+1=0无实数根,当a=1,b=3时,△=b2﹣4ac=5>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=2时,△=b2﹣4ac=0,此时ax2+bx+1=0有两个相等的实数根,∴P(甲获胜)=P(△>0)=>P(乙获胜)=,∴这样的游戏规则对甲有利,不公平.23.证明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC,又∵△ABE是等边三角形,EF⊥AB,∴AB=2AF∴AF=BC,在Rt△AFE和Rt△BCA中,,∴Rt△AFE≌Rt△BCA(HL),∴AC=EF;(2)∵△ACD是等边三角形,∴∠DAC=60°,AC=AD,∴∠DAB=∠DAC+∠BAC=90°又∵EF⊥AB,∴EF∥AD,∵AC=EF,AC=AD,∴EF=AD,∴四边形ADFE是平行四边形.24.解:(1)∵B(2,﹣4)在y=上,∴m=﹣8.∴反比例函数的解析式为y=﹣.∵点A(﹣4,n)在y=﹣上,∴n=2.∴A(﹣4,2).∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解之得.∴一次函数的解析式为y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C (﹣2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =×2×2+×2×4=6.(3)不等式的解集为:﹣4<x <0或x >2.25.解:设每张贺年卡应降价x 元,现在的利润是(0.3﹣x )元,则商城多售出100x ÷0.1=1000x 张.(0.3﹣x )(500+1000x )=120,解得x 1=﹣0.3(降价不能为负数,不合题意,舍去),x 2=0.1.答:每张贺年卡应降价0.1元.26.解:(1)作P 1B ⊥OA 1于点B ,∵等边△P 1OA 1中,OA 1=2,∴OB=1,P 1B=,把P 1点坐标(1,)代入, 解得:,∴; (2)作P 2C ⊥A 1A 2于点C ,∵等边△P 2A 1A 2,设A 1C=a ,则P 2C=,OC=2+a ,把P 2点坐标(2+a ,)代入, 即:, 解得,(舍去), ∴OA 2=2+2a=, ∴A 2(,0).27.解:(1)EF=BE+DF;证明:如图1,延长FD到G,使DG=BE,连接AG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故EF=BE+DF;(2)EF=BE+DF仍然成立.证明:如图2,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)如图3,连接EF,延长AE、BF相交于点C,∵∠AOB=20°+90°+(90°﹣60°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣20°)+(60°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=583米.。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)
A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
2024年北京东城区初三上学期期末考数学试卷和答案
东城区2023—2024学年第一学期期末统一检测初三数学2024.1一、选择题(每题2分,共16分)1.下列四个交通标志图案中,是中心对称图形的是2.若3x =是关于x 的方程22=0x x m --的一个根,则m 的值是A .-15B .-3C .3D .153.关于二次函数22(1)2y x =-+,下列说法正确的是A .当x =1时,有最小值为2B .当x =1时,有最大值为2C .当x =-1时,有最小值为2D .当x =-1时,有最大值为24.在下列事件中,随机事件是A .投掷一枚质地均匀的骰子,向上一面的点数不超过6B .从装满红球的袋子中随机摸出一个球,是白球C .通常情况下,自来水在10℃结冰D .投掷一枚质地均匀的骰子,向上一面的点数为25.如图,正方形ABCD 的边长为6,且顶点A ,B ,C ,D 都在⊙O 上,则⊙O 的半径为A.3B.6C.32D.626.北京2022年冬奥会以后,冰雪运动的热度持续.某地雪场第一周接待游客7000人,第三周接待游客8470人.设该地雪场游客人数的周平均增长率为x ,根据题意,下面所列方程正确的是A .27000(1)8470x +=B .270008470x =C .7000(1+2)8470x =D .37000(1)8470x +=7.如图,某汽车车门的底边长为1m ,车门侧开后的最大角度为72°.若将一扇车门侧开,则这扇车门底边扫过区域的最大面积是A .2πm 10B .2πm5C .22πm5D .24πm58.⊙O 是△ABC 的内切圆,与AB ,BC ,AC 分别相切于点D ,E ,F .若⊙O 的半径为2,△ABC 的周长为26,则△ABC 的面积为A.3B.24C.26D.52二、填空题(每题2分,共16分)9.把抛物线22y x =向下平移3个单位长度,所得到的抛物线的解析式为.10.若一元二次方程261=0x x +-经过配方,变形为()23x n +=的形式,则n 的值为.11.为了解某小麦品种的发芽率,某农业合作小组在相同条件下对该小麦做发芽试验,试验数据如下表:种子个数n 550100200500100020003000发芽种子个数m 4449218947695118982851发芽种子频率m n0.8000.8800.9200.9450.9520.9510.9490.950(1)估计该品种小麦在相同条件下发芽的概率为(结果保留两位小数);(2)若在相同条件下播种该品种小麦种子10000个,则约有个能发芽.12.在平面直角坐标系xOy 中,已知点A 的坐标为(1,2),点B 与点A 关于原点对称,则点B 的坐标为_____________.13.已知二次函数2+8+3y x x =-,当x >m 时,y 随x 的增大而减小,则m 的值可以是____________(写出一个即可).14.如图,A ,B ,C 是⊙O 上的三个点,若∠ACB=40°,则∠OBA 的大小是_____________°.15.如图1,一名男生推铅球,铅球的运动路线近似是抛物线的一部分.铅球出手位置的高度为35m,当铅球行进的水平距离为4m 时,高度达到最大值3m.铅球的行进高度y (单位:m)与水平距离x (单位:m)之间的关系满足二次函数.若以最高点为原点,过原点的水平直线为x 轴,建立如图2所示的平面直角坐标系xOy ,则该二次函数的解析式为2121x y -=.若以过出手点且与地面垂直的直线为y 轴,y 轴与地面的交点为原点,建立如图3所示的平面直角坐标系xOy ,则该二次函数的解析式为.16.某单位承担了一项施工任务,完成该任务共需A ,B ,C ,D ,E ,F ,G 七道工序.施工要求如下:①先完成工序A ,B ,C ,再完成工序D ,E ,F ,最后完成工序G ;②完成工序A 后方可进行工序B ;工序C 可与工序A ,B 同时进行;③完成工序D 后方可进行工序E ;工序F 可与工序D ,E 同时进行;④完成各道工序所需时间如下表所示:工序A B C D E F G 所需时间/天11152817163125(1)在不考虑其它因素的前提下,该施工任务最少_____________天完成.(2)现因情况有变,需将工期缩短到80天.工序A ,C ,D 每缩短1天需增加的投入分别为5万元,4万元,6万元,其余工序所需时间不可缩短,则所增加的投入最少是_____________万元.三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解方程:()()3121x x x +=+.18.如图,在Rt △ACB 中,∠C =90°.求作:⊙O ,使得△ACB 的三个顶点都在⊙O 上.作法:①作边AB 的垂直平分线,交AB 于点O ;②以点O 为圆心,OA 长为半径作圆.则⊙O 为所求作的圆.(1)利用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OC .由作图可知,OB =OA=12AB .∴点B 在⊙O 上.在Rt △ACB 中,∠ACB =90°,∴OC =12________()(填推理依据).∴OC =OA .∴点C 在⊙O 上.∴△ACB 的三个顶点都在⊙O 上.19.在平面直角坐标系xOy 中,二次函数2y x bx =+的图象过点A (3,3).(1)求该二次函数的解析式;(2)用描点法画出该二次函数的图象;(3)当0x <<3时,对于x 的每一个值,都有2kx x bx +>,直接写出k 的取值范围.20.某班开展“讲数学家故事”的活动.下面是印有四位中国数学家纪念邮票图案的卡片A,B,C,D,卡片除图案外其它均相同.将四张卡片背面朝上,洗匀后放在桌面上,小明同学从中随机抽取两张,讲述卡片上数学家的故事.(1)请写出小明抽到的两张卡片所有可能出现的结果;(2)求小明抽到的两张卡片中恰好有数学家华罗庚邮票图案的概率.21.如图,AB 是⊙O 的弦,半径OD ⊥AB 于点C .若AB =16,CD =2,求⊙O 的半径的长.22.已知关于x 的一元二次方程()222120x m x m -++-=(1)当该方程有两个不相等的实数根时,求m 的取值范围;(2)当该方程的两个实数根互为相反数时,求m 的值.23.如图,在边长均为1个单位长度的小正方形组成的网格中,O ,B 为格点(每个小正方形的顶点叫做格点),OA =3,OB =4,且∠AOB=150°.线段OA 关于直线OB 对称的线段为O A ',将线段OB 绕点O 逆时针旋转45︒得到线段OB '.(1)画出线段O A ',OB ';(2)将线段OB 绕点O 逆时针旋转角()4590αα︒<<︒得到线段OC ',连接A C ''.若=5A C '',求∠B OC ''的度数.24.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠ACB 的平分线CD 交⊙O 于点D.过点D 作DE ∥AB ,交CB 的延长线于点E .(1)求证:直线DE 是⊙O 的切线;(2)若∠BAC =30°,22BC =,求CD 的长.25.食用果蔬前,适当浸泡可降低农药的残留.某小组针对同种果蔬研究了不同浸泡方式对某种农药去除率的影响.方式一:采用清水浸泡.记浸泡时间为t分钟,农药的去除率为y1%,部分实验数据记录如下:方式二:采用不同浓度的食用碱溶液浸泡相同时间.记食用碱溶液的浓度为x%,农药的去除率为y2%,部分实验数据记录如下:结合实验数据和结果,解决下列问题:(1)通过分析以上实验数据,发现可以用函数刻画方式一中农药的去除率y1(%)与浸泡时间t(分)之间的关系,方式二中农药的去除率y2(%)与食用碱溶液的浓度x(%)之间的关系,请分别在下面的平面直角坐标系中画出这两个函数的图象:(2)利用方式一的函数关系可以推断,降低该种农药残留的最佳浸泡时间约为__________分钟.(3)方式一和方式二的函数关系可以推断,用食用碱溶液浸泡含该种农药的这种果蔬时,要想不低于清水浸泡的最大去除率,食用碱溶液的浓度x %中,x 的取值范围可以是_____________.26.在平面直角坐标系xOy 中,点(2,c )在抛物线2(0)y ax bx c a =++>上,设该抛物线的对称轴为直线x t =.(1)求t 的值;(2)已知11()M x y ,,22()N x y ,是该抛物线上的任意两点,对于11m x m <<+,212m x m +<<+,都有12y y <,求m 的取值范围.27.在△ABC 中,AB =AC ,∠BAC =120°,D 为BC 上一点,连接DA ,将线段DA 绕点D 顺时针旋转60°得到线段DE .(1)如图1,当点D 与点B 重合时,连接AE ,交BC 于点H ,求证:AE ⊥BC ;(2)当BD ≠CD 时(图2中BD <CD ,图3中BD >CD ),F 为线段AC 的中点,连接EF .在图2,图3中任选一种情况,完成下列问题:①依题意,补全图形;②猜想∠AFE 的大小,并证明.28.在平面直角坐标系xOy 中,已知点P 和直线1l ,2l ,点P 关于直线1l ,2l “和距离”的定义如下:若点P 到直线1l ,2l 的距离分别为1d ,2d ,则称1d +2d 为点P 关于直线1l ,2l 的“和距离”,记作d .特别地,当点P 在直线1l 上时,1d =0;当点P 在直线2l 上时,2d =0.(1)在点1P (3,0),2P (-1,2),3P (4,-1)中,关于x 轴和y 轴的“和距离”为3的点是________;(2)若P 是直线3y x =-+上的动点,则点P 关于x 轴和y 轴的“和距离”d 的最小值为________;(3)已知点A (0,3),⊙A 的半径为1,点P 是⊙A 上的动点,直接写出点P 关于x 轴和直线y +6的“和距离”d 的取值范围.东城区2023—2024学年度第一学期期末统一检测初三数学参考答案及评分标准2024.1一、选择题(每题2分,共16分)题号12345678答案BCADCABC二、填空题(每题2分,共16分)9.223y x =-10.1011.0.95950012.(-1,-2)13.答案不唯一,m ≥4即可14.5015.21251233y x x =-++16.86,38三、解答题(共68分,17-21题,每题5分,22题6分,第23题5分,第24-26题,每题6分,27-28题,每题7分)17.解:移项,得()()31210.x x x +-+=因式分解,得()()1320.x x +-=……………………………..1分于是得10x +=,或320.x -=……………………………..3分所以方程的两个根分别为1=-1x ,22.3x =……………………………..5分18.解:(1)作图如下,------------------------3分(2)AB直角三角形斜边上的中线等于斜边的一半.------------------------5分19.解:(1)∵点A (3,3)在抛物线二次函数2y x bx =+的图象上,∴2333b =+.解得2b =-.∴二次函数的解析式为22y x x =-.------------------------2分(2)列表:x …-10123…y…3-13…描点,连线------------------------4分(3)当k ≥1.------------------------5分20.解:(1)所有可能出现的结果共6种:AB ,AC ,AD ,BC ,BD ,CD .…………3分(2)记抽到的2张卡片中恰好有数学家华罗庚邮票图案为事件M ,M 包含的结果有3种,即AC ,BC ,CD ,且6种可能的结果出现的可能性相等,所以()31==62P M …………5分21.解:连接OA .∵半径OD ⊥AB 于点C ,AB =16,∴∠ACO =90°,AC =12AB =8,………2分设OA =r ,则OC =2r -.在Rt △AOC 中,根据勾股定理,得222OA AC OC =+,即2228(2)r r =+-.………4分解得17r =.∴⊙O 的半径的长17.………5分22.解:(1)∵关于x 的一元二次方程22(21)20x m x m -++-=有两个不相等的实数根,∴[]()2222=(21)4244148490m m m m m m ∆-+--=++-+=+> (2)分解得94m >-.∴m 的取值范围是94m >-.………..3分(2)由(1)可知,49m ∆=+.由求根公式,得()1212m x +=,()2212m x +=.………..5分∵该方程的两个实数根互为相反数,∴12+0x x =.∴()()2121+21022m m m +++=+=.解得1=2m -,符合题意.∴当方程的两个实数根互为相反数时,1=2m -.………..6分23.解:(1)如图.……………….2分(2)如图,在△A OC ''中,==3OA OA ',==4OC OB ',=5A C '',∴222=A C OA OC ''''+.∴△A OC ''是直角三角形.∴=90.A OC ''︒∠………………..3分∵∠AOB =150°,OA OA OB '与关于直线对称,∴=150.A OB '︒∠………………..4分∴=60C OB '︒∠,即=60α︒.∴=604515B OC C OB B OB '''''-=︒-︒=︒∠∠∠.………………..5分24.(1)证明:如图1,连接OD .∵AB 是⊙O 的直径,∴∠ACB=90°.∵CD 平分∠ACB ,∴∠ACD =∠BCD=45°.---------------1分∴∠ABD =∠ACD=45°.∵OD =OB ,∴∠ODB =∠OBD =45°.--------------2分∵DE ∥AB ,∴∠BDE =∠OBD =45°.∴∠ODE =∠ODB+∠BDE=90°.∴OD ⊥DE .∵OD 为⊙O 的半径,∴直线DE 是⊙O 的切线.------------------3分(3)如图2,过点B 作BF ⊥CD 于点F .∴∠BFC =∠BFD =90°.∵∠BCD =45°.∴∠CBF =45°.图1∴BF CF =.------------------4分在Rt △BFC 中,BC =根据勾股定理,得=2BF CF =.∵ BCBC =,∴∠CDB =∠BAC =30°.------------------5分∴2=4.BD BF =在Rt △BFD 中,根据勾股定理,得DF∴CD CF DF =+------------------6分25.解:(1)画图如下,---------------------------------------------------------------------2分(2)10-------------------------------------------4分(3)答案不唯一,如7x ≤≤12.---------------------------6分26.解:(1)由题意可知,42a b c c ++=,∴2b a =-.∴12bt a=-=.---------------------------2分(2)∵0a >,1t =,∴当1x >时,y 随x 的增大而增大,当1x <,时y 随x 的增大而减小.---------------------------3分①当1m ≥时,∵11m x m <<+,212m x m +<<+,∴121x x <<.∴12y y <,符合题意.---------------------------4分②当112m <≤时,有3122m +<,(i )当111x m <+≤时,∵212m x m +<<+,∴121x x <≤.∴12y y <.(ii )当11m x <<时,设11()M x y ,关于抛物线对称轴1x =的对称点为01()M 'x y ,,则01x >,011=1x x --.∴012x x =-.∵112m <≤,∴0312x <<.∵3122m +≤<,212m x m ++<<∴232x >.∴02312x x <<<.∴12y y <.∴当112m <≤时,符合题意.---------------------------5分③当102m <≤时,3112m +<≤,令11=2x ,23=2x ,则12=y y ,不符合题意.④当102m -<≤时,有1112m +<≤,令1=0x ,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑤当112m -<-≤时,1012m +<≤,令11=2x -,2=1x ,则12=1x x <,∴.12>y y ,不符合题意.⑥当1m <-时,1221x x m <<+<,∴.12>y y ,不符合题意.综上所述,m的取值范围是12m ≥.---------------------------6分27.(1)证明:∵AB =AC ,∠BAC =120°,∴∠ABC =∠C =30°.将线段DA 绕点D 顺时针旋转60°得到线段DE ,∴DE =DA ,∠ADE =60°.∴△ADE 是等边三角形.∴∠BAE =60°.∴∠AHB =90°.∴BC ⊥AE.………..3分(2)解:选择图2:①补全图形如图所示:………..4分②猜想∠AFE =90°.………..5分证明:如图,过点A 作AH ⊥BC 于H ,连接AE .则∠AHB =∠AHC =90°.∵AB =AC ,∠BAC =120°,∴∠CAH =12∠BAC =60°,∠C =30°.∴AH =12AC .∵F 为线段AC 中点,∴AF =12AC .∴AH =AF .由(1)可知△ADE 是等边三角形.∴∠DAE =60°=∠CAH ,AD=AE.∴∠DAH =∠EAF.在△ADH 和△AEF 中,.DAH EA AD AE AH AF F ∠==⎧∠⎪⎨⎪=⎩,,∴△ADH ≌△AEF (SAS ).∴∠AFE =∠AHD =90°.………7分选择图3:①补全图形如图所示:②(选择图3的答案与选择图2的答案一致)28.解:(1)P 1,P 2.………2分(2)3.………4分(3)71122d ≤≤.………7分。
2024年北京朝阳区初三九年级上学期期末数学试题和答案
张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。
人教版九年级上册数学期末检测试卷(含答案)
人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。
( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。
若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。
10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。
2022-2023学年人教版九年级数学第一学期期末测试题含答案
第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题。
(每题5分,共45分)1.在下列图形中,是中心对称图形的是( )A.B.C.D.2.下列事件属于必然事件的是( )A.打开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数0<a ,则02<aD.新疆的冬天不下雪3.若关于x 的一元二次方程01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45≤k B.45>kC.45<k 且1≠kD.45≤k 且1≠k4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+xD.7)4(2=+x5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-B.)3,1(C.)3,1(--D.)3,1(-6.如图,在圆O 中,所对的圆周角50=∠ACB ,若P 为上一点,55=∠AOP ,则=∠POB ( ) A.30B.45 C.55D.60第6题图 第7题图7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( ) A.2648cm ΠB.2432cm ΠC.2324cm ΠD.2216cm Π8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )A.B. C. D.9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A.10890)1050)(20180=--+xx ( B.10890)1018050)(20=---x x (C.180902050)108050(=⨯---x xD.108902050)1050)(180=⨯--+xx (二、 填空题。
2024年北京燕山区初三上学期期末考数学试卷和答案
燕山地区2023—2024学年第一学期九年级期末考试数学试卷2024.1一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.....1.下列图案是我国国产品牌汽车的标识,其中是中心对称图形的是A .B .C .D .2.已知点P 在半径为r 的⊙O 内,且OP =3,则r 的值可能为A .1B .2C .3D .43.下列函数中,当0x >时,y 随x 的增大而减小的是A .y =xB .y =1x +C .y =2x D .y =2x -4.一个小球在如图所示的地板上自由滚动,并随机停留在某块方砖上.如果每一块方砖除颜色外完全相同,则小球最终停留在白砖上的概率是A .13B .49C .59D .235.如图,点A ,B 在⊙O 上,点C 是劣弧AB ︵的中点,∠AOC =80°,则∠CDB 的大小为A .40°B .45°C .60°D .80°6.电影《志愿军:雄兵出击》于国庆档上映,首周累计票房约3.5亿元,第三周累计票房约6.8亿元.若每周累计票房的增长率相同,设增长率为x ,根据题意可列方程为A .23.5 6.8x =B .3.5(1 6.8)x +=C .23.5(1) 6.8x +=D .23.5(1) 6.8x -=7.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点都在格点上,则△ABC 外接圆的圆心坐标为A .(3,2)B .(2,3)C .(2,2)D .(3,3)8.平面直角坐标系xOy 中,已知二次函数y =ax 2+bx (a ≠0)的部分图象如图所示,给出下面三个结论:①a •b >0;②二次函数y =ax 2+bx (a ≠0)有最大值4;③关于x 的方程ax 2+bx =0有两个实数根14=-x ,20=x .上述结论中,所有正确结论的序号是A .①②B .①③C .②③D .①②③二、填空题(共16分,每题2分)9.平面直角坐标系xOy 中,与点P (-4,1)关于原点对称的点的坐标是.10.一元二次方程(3)3x x x -=-的解是.11.将抛物线212y x =向左平移1个单位长度,得到抛物线的解析式为.12.已知某二次函数的图象开口向上,且顶点坐标为(1,3),则这个二次函数解析式可以是.13.如图,P A ,PB 是⊙O 的两条切线,切点为A ,B ,若∠AOB =90°,P A =3,则⊙O 的半径为.14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AD ,若OE =3,CD =8,则AD 的长为.15.在一个不透明的盒子中共装有40个球,其中有a 个红球,这些球除颜色外无其他差别.为估计a 的值,小颖做摸球试验,她将盒子里面的球充分搅匀,任意摸出1个球记下颜色再放回,不断重复上述过程,记录实验数据如下:摸球的次数n 2050100200300400500摸到红球的次数m133262117181238301摸到红球的频率mn0.650.640.620.5850.6030.5950.602根据以上数据,估计a 的值约为.16.2023年第19届杭州亚运会的举办带热了吉祥物“宸宸、琮琮和莲莲”的销售.某网店经营亚运会吉祥物玩偶礼盒装,每盒进价为30元.当地物价部门规定,该礼盒销售单价最高不能超过50元/盒.在销售过程中发现该礼盒每周的销量y (件)与销售单价x (元)之间近似满足函数关系:2180-y x =+(30≤x ≤50).(1)设该网店每周销售该礼盒所获利润为w (元),则w 与x 的函数关系式为;(2)该网店每周销售该礼盒所获最大利润为元.(第14题)(第13题)宸宸琮琮莲莲三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明,演算步骤或证明过程.17.解方程:220+-=.41x x18.已知250-,求代数式22=x x-x x x-+-的值.3(2)(1)19.2023年7月31日,北京遭遇140年以来最大的暴雨,房山地区受灾严重.为了做好防汛救灾工作,某社区特招募志愿工作者,小东和小北积极报名参加,根据社区安排,志愿者被随机分到A组(信息登记),B组(物资发放),C组(垃圾清运)的其中一组.(1)小东被分配到A组是事件(填“必然”,“随机”或“不可能”);小东被分配到A组的概率是.(2)请用列表或画树状图的方法,求出小东和小北被分配到同一组的概率.20.如图,将△ABC绕点B逆时针旋转得到△DBE,点C的对应点E恰好落在AB上.(1)若BC=6,BD=9,求线段AE的长.(2)连接AD,若∠C=110°,∠BAC=40°,求∠BDA的度数.21.阅读下面的材料一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家阿尔·花拉子米在他的代表作《代数学》中记载了求一元二次方程正数解的几何解法,我国三国时期的数学家赵爽在其所著《勾股圆方图注》中也给出了类似的解法.以x2+10x=39为例,花拉子米的几何解法步骤如下:①如图1,在边长为x的正方形的两个相邻边上作边长分别为x和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形;②一方面大正方形的面积为(x+)2,另一方面它又等于图中各部分面积之和,因为x2+10x=39,可得方程(x+)2=39+,则方程的正数解是x =.根据上述材料,解答下列问题.(1)补全花拉子米的解法步骤②;(2)根据花拉子米的解法,在图2的两个构图①②中,能够得到方程x 2-6x =7的正数解的正确构图是(填序号).22.已知关于x 的一元二次方程22(2)0x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,请你写出一个满足条件的m 值,并求出此时方程的根.23.已知二次函数23(0)+y ax bx a =+≠的图象经过点A (1,0),B (3,0).(1)求该函数的解析式;(2)当x >3时,对于x 的每一个值,函数y x n =+的值小于二次函数23+y ax bx =+的值,结合函数图象,直接写出n 的取值范围.24.如图,在△ABC 中,∠ACB =90°,点D 在AB 上,以AD 为直径作⊙O 与BC 相切于点E ,连接DE 并延长交AC 的延长线于点F .(1)求证:AF =AD ;(2)若CE =4,CF =2,求⊙O 的半径.图1①②25.学校组织九年级学生进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况.在两种不同的场景A 和场景B 下做对比实验,设实验过程中,该试剂挥发时间为x 分钟时,在场景A ,B 中的剩余质量分别为y 1,y 2(单位:克).下面是某研究小组的探究过程,请补充完整:记录y 1,y 2与x 的几组对应值如下:x (分钟)05101520…y 1(克)2523.52014.57…y 2(克)252015105…(1)在同一平面直角坐标系xOy 中,描出上表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(2)进一步探究发现,场景A 的图象是抛物线的一部分,y 1与x 之间近似满足函数关系210.04+y x bx c =-+.场景B 的图象是直线的一部分,y 2与x 之间近似满足函数关系2y ax c =+(a ≠0).请分别求出场景A ,B 满足的函数关系式;(3)查阅文献可知,该化学试剂的质量不低于4克时,才能发挥作用.在上述实验中,记该化学试剂在场景A ,B 中发挥作用的时间分别为x A ,x B ,则x A x B (填“>”,“=”或“<”).26.在平面直角坐标系xOy 中,点M (-1,m ),N (3,n )在抛物线2y ax bx c =++(a >0)上,设抛物线的对称轴为x =t .(1)若m =n ,求t 的值;(2)若c <m <n ,求t 的取值范围.27.如图,△ABC 为等边三角形,点M 为AB 边上一点(不与点A ,B 重合),连接CM ,过点A 作AD ⊥CM 于点D ,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连接BE .(1)依题意补全图形,直接写出∠AEB 的大小,并证明;(2)连接ED 并延长交BC 于点F ,用等式表示BF 与FC 的数量关系,并证明.28.在平面直角坐标系xOy 中,对于⊙C 和⊙C 外一点P 给出如下定义:连接CP 交⊙C 于点Q ,作点P 关于点Q 的对称点P′,若点P′在线段CQ 上,则称点P 是⊙C 的“关联点”.例如,图中P 为⊙C 的一个“关联点”.(1)⊙O 的半径为1.①如图1,在点A (2-,0),B (2,2),D (0,3)中,⊙O 的“关联点”是;②已知点M 在直线323y x =-上,且点M 是⊙O 的“关联点”,求点M 的横坐标m 的取值范围.(2)直线31()y x =--与x 轴,y 轴分别交于点E ,点F ,⊙T 的圆心为T (t ,0),半径为2,若线段..EF ..上所有点....都是⊙T 的“关联点”,直接写出t 的取值范围.图1备用图燕山地区2023—2024学年第一学期九年级期末考试数学试卷答案及评分参考2024年1月阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。
北京市海淀区2023~2024学年第一学期初三期末数学参考答案
海淀区九年级第一学期期末练习数学试卷参考答案第一部分 选择题一、选择题 (共16分,每题2分)第二部分 非选择题二、填空题(共16分,每题2分)9.231y x =− 10.旋转11.1(答案不唯一) 12.最大值 13.18 14.3π 1516.(1)17,(2)15三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17. 解:方程化为210x x +−=.111a b c ===−,,.24b ac ∆=−2141(1)50=−⨯⨯−=>.方程有两个不相等的实数根x = ,即 1x =2x = 18. 解:∵22310a a −+=, ∴2231a a −=−.∴原式22693a a a a =−+++2239a a =−+ 19=−+ 8=.19. 证明:∵将△ABC 绕点A 逆时针旋转得到△AB'C', ∴△ABC ≌△AB'C'.∴AB AB'=,45B AB'C'∠=∠=︒. ∴45AB'B B ∠=∠=︒.∴454590BB'C AB'B AB'C'∠=∠+∠=︒+︒=︒. ∴BB'C'B'⊥.20. 解:(1)∵关于x 的方程2220x mx m n −+−=有两个不相等的实数根, ∴∆22(2)4()0m m n =−−−>. 解得 0n >.(2)∵n 为符合条件的最小整数, ∴1n =.∴方程可化为22210x mx m −+−=. 解方程,得 11x m =−,21x m =+. ∵1(1)20m m +−−=>, ∴11m m +>−.∵该方程的较大根是较小根的2倍, ∴12(1)m m +=−. ∴3m =. 21.(1)作图如下:(2) ① PB ;② ∠PBA ;③ 经过半径的外端并且垂直于这条半径的直线是圆的切线.22.(1)12. (2)解:画树状图如下:由树状图可知,所有可能出现的结果共有12种,即(红,绿),(红,黄1),(红,黄2),(绿,红),(绿,黄1),(绿,黄2),(黄1,红),(黄1,绿),(黄1,黄2),(黄2,红),(黄2,绿),(黄2,黄1),并且它们出现的可能性相等. 其中,摸出的两个球恰好是一个红球和一个黄球(记事件A )的结果有4种,即(红,黄1),(红,黄2),(黄1,红),(黄2,红).∴41()123P A ==. 23. 解:(1)∵抛物线经过点(0,2)A 和(3,1)B −,∴2,931,c b c =⎧⎨++=−⎩ 得42.b c =−⎧⎨=⎩,∴抛物线的表达式为242y x x =−+. (2) 12t −<<.24. (1)22816y x x =−+, 04x ≤≤;(2)(3)2,8.25. 解:(1)∵CM ∥AD ,∴CDA MCD α∠=∠=.∴22COA CDA α∠=∠=.(2)∵CM 与半圆O 的切线相切于点C ,∴OC CM ⊥. ∴90ECO ∠=︒. 即90DCO MCD ∠+∠=︒. ∵CD ∥AB ,∴2DCO COA α∠=∠=. ∴390α=︒.∴30α=︒.∴60DCO ∠=︒.∵OE CD ⊥于F ,∴90CFO ∠=︒.∴90906030COE DCO ∠=︒−∠=︒−︒=︒.∴ 2OE CE =.∵AB 为直径,6AB =, ∴3OC =.在Rt △OCE 中,由勾股定理得222OC CE OE +=. ∴2223(2)CE CE +=.∴CE =. 26.解:(1)① 4b a =−; ② m n >.理由如下: 由① ,4b a =−,∴224y ax bx c ax ax c =++=−+.∵点(1,)A m −,点(3,)B n 在抛物线24(0)y ax ax c a =−+>上, ∴45m a a c a c =++=+, 9123n a a c a c =−+=−+.∵0a >, ∴53a a >−.∴53a c a c +>−+. ∴m n >. (2)解法一:∵0a >,∴当x t ≥时,y 随x 的增大而增大,当x t ≤时,y 随x 的增大而减小. ① 当1t ≤−时,∵034x <<, ∴013t x ≤−<<.∴m n p <<,不符合题意. ② 当13t −<≤时,设点(1,)A m −关于抛物线对称轴x t =的对称点为点(,)A A x m '',则A x t '>,(1)A t x t '−−=−. ∴21A x t '=+.(ⅰ)当11t −<≤时, ∵11t −<≤,034x << ∴012+13t x <≤<. ∴m n p <<,不符合题意. (ⅱ)当312t <<时, 令021x t =+,则m p =,不符合题意. (ⅲ)当332t ≤≤时, ∵332t ≤≤,034x <<, ∴0342+1t x t ≤<<≤. ∴m p n >>,符合题意. ③当3t >时,令03x t <<,且034x <<,则n p >,不符合题意.综上所述,t 的取值范围是332t ≤≤. 解法二:∵0a >,∴当x t ≥时,y 随x 的增大而增大,当x t ≤时,y 随x 的增大而减小. ∵当034x <<时,都有p n >, ∴03t x ≤<. ① 当1t ≤−时, ∵13t ≤−<,∴n m >,不符合题意.② 当13t −<≤时,设点(1,)A m −关于抛物线对称轴x t =的对称点为点''(,)A A x m ,则'A x t >,'(1)A t x t −−=−. ∴'21A x t =+. ∵ m p >,∴021t x +>.∵当034x <<时,都有m p >, ∴214t +≥. ∴32t ≥. ∴332t ≤≤.综上所述,t 的取值范围是332t ≤≤. 27.(1)证明:∵AB AC =,∴B C ∠=∠.∵EDC B ∠=∠,∴EDC C ∠=∠.∴.ED EC = (2)① 依题意补全如下图.② 延长EF 至点M ,使MF EF =,连接BM ,AM ,AE .∵点F 是BD 的中点, ∴BF FD =.又∵MFB EFD ∠=∠, ∴△FMB ≌△FED .∴MB ED =,MBF EDF ∠=∠. ∵ED EC =, ∴MB EC =.∵AF EF ⊥,FM EF =, ∴AM AE =. 又∵AB AC =, ∴△AMB ≌△AEC . ∴ABM C ∠=∠.设C α∠=,则ABM ABC EDC α∠=∠=∠=. ∴2MBC α∠=. ∵MBF EDF ∠=∠, ∴MB ∥DE .∴2DEC MBC α∠=∠=. ∵180DEC EDC C ∠+∠+∠=︒, ∴2180ααα++=︒. ∴=45α︒.∴45.ABC C ∠=∠=︒ ∴90.BAC ∠=︒28.(1)① 23P P ,;② 依题意可知,点(2,0)T ,点Q 2TQ ≤≤. ∵OP 与以TQ 为半径的⊙T 相切于点P ,∴OP TP ⊥,TP TQ =. ∴90OPT ∠=︒.∴点P 在以OT 为直径的⊙D 2TP ≤≤,其中点(1,0)D .∴符合条件的点P 组成的图形为EOF (点O 除外),其中点(1,1)E ,(1,1)F −,如图.当直线y x b =+与D 相切时,设切点为G ,与x 轴交点为H ,则DG ⊥直线y x b =+,45GHD ∠=︒.由1DG =,可得DH =∴(1H .将(1H 代入y x b =+中可得1b .当直线y x b =+过点(0,0)时,0b =,此时直线y x b =+也经过点(1,1).当直线y x b =+过点(1,1)−时,2b =−. ∵直线y x b =+上存在伴随切点,∴b 的取值范围是21b −≤≤.(2t ≤≤t ≤≤.。
初三期末数学试卷及答案
一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √2B. 3/4C. 1.618D. 22. 已知 a、b 是方程x² - 5x + 6 = 0 的两个根,则 a + b 的值是()A. 5B. 2C. 6D. 03. 下列函数中,y 是 x 的正比例函数的是()A. y = 2x + 3B. y = 3x² - 2x + 1C. y = 2xD. y = x³ + 2x² - 3x4. 在平面直角坐标系中,点 A(2,3)关于原点对称的点是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)5. 下列各式中,正确的是()A. 5a + 2b = 2a + 5bB. 3a - 2b = 2a - 3bC. 2a + 3b = 3a + 2bD. 4a - 5b = 5a - 4b6. 若 |x| = 5,则 x 的值可以是()A. 5B. -5C. 0D. ±57. 下列各式中,绝对值最小的是()A. |2|B. |-3|C. |1/2|D. |-1/3|8. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 105°C. 135°D. 165°9. 已知函数 y = kx + b(k≠0),当 x = 1 时,y = 3;当 x = 2 时,y = 5,则函数的解析式是()A. y = 2x + 1B. y = 3x + 1C. y = 2x - 1D. y = 3x - 110. 下列各式中,分式有意义的条件是()A. x - 1 = 0B. x + 1 = 0C. x - 1 ≠ 0D. x + 1 ≠ 0二、填空题(每题5分,共25分)11. 已知 a = -2,b = 3,则 2a - 3b 的值是 _______。
九年级初三数学期末考试卷
一、选择题(每题5分,共50分)1. 若m和n是实数,且m + n = 0,则下列等式中正确的是()A. m² = n²B. m² > n²C. m > nD. m < n2. 已知等差数列{an}中,a1 = 2,d = 3,则第10项a10等于()A. 27B. 30C. 33D. 363. 已知函数f(x) = 2x - 1,则f(-3)的值为()A. -7B. -5C. 1D. 34. 下列哪个不是一元二次方程?()A. x² + 2x + 1 = 0B. x² - 3x + 4 = 0C. x³ + 2x² - 3x - 6 = 0D. 2x² - 3x + 1 = 05. 已知三角形ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°6. 若等比数列{an}中,a1 = 2,q = 3,则第5项a5等于()A. 18B. 27C. 36D. 547. 下列哪个不是等差数列?()A. 1, 4, 7, 10, ...B. 1, 3, 5, 7, ...C. 1, 2, 4, 8, ...D. 1, 2, 3, 4, ...8. 已知函数f(x) = x² - 4x + 4,则f(2)的值为()A. 0B. 2C. 4D. 89. 若等差数列{an}中,a1 = 3,d = -2,则第10项a10等于()A. -17B. -15C. -13D. -1110. 下列哪个不是一元二次方程的解?()A. x = 1B. x = 2C. x = -3D. x = 0二、填空题(每题5分,共50分)1. 若x² - 5x + 6 = 0,则x的值为__________。
2022-2023学年北京丰台区初三第一学期数学期末试卷及答案
2022-2023学年北京丰台区初三第一学期数学期末试卷及答案一、选择题(本题共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徽和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( ) A. B. C. D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的定义即可求解.【详解】解:A .图形是轴对称图形,不是中心对称图形,故不符合题意;B .图形既不是轴对称图形也不是中心对称图形,故不符合题意;C .图形既是轴对称图形也是中心对称图形,故符合题意;D .图形是轴对称图形,不是中心对称图形,故不符合题意;故选:C .【点睛】本题考查了轴对称图形和中心对称图形的概念,熟练掌握轴对称图形和中心对称图形的概念是解题的关键.2. 如图,四边形ABCD 内接于,若,则的度数为( )O 130C ∠=︒BOD ∠A. 50°B. 100°C. 130°D. 150° 【答案】B【解析】【分析】根据圆内接四边形的性质求出∠A 的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD 内接于⊙O,∴∠A+∠DCB=180°,∵∠DCB=130°,∴∠A=50°,由圆周角定理得,=2∠A=100°,BOD ∠故选:B .【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.3. 对于二次函数的图象的特征,下列描述正确的是( )()21y x =--A. 开口向上B. 经过原点C. 对称轴是y 轴D. 顶点在x 轴上【答案】D【解析】【分析】根据二次函数的性质判断即可.2()y a x h =-【详解】在二次函数中,()21y x =--∵,10a =-<∴图像开口向下,故A 错误;令,则,0x =2(01)10y =--=-≠∴图像不经过原点,故B 错误;二次函数的对称轴为直线,故C 错误;()21y x =--1x =二次函数的顶点坐标为,()21y x =--(1,0)∴顶点在x 轴上,故D 正确.故选:D .【点睛】本题考查二次函数的性质,掌握二次函数相关性质是解题的关键.2()y a x h =-4. 若关于x 的一元二次方程有一个根是,则a 的值为()2210a x a x a -+-=1x =( )A.B. 0C. 1D. 或1 1-1-【答案】A【解析】【分析】把代入方程得出,再求出方程的解即可. 1x =()2210a x a x a -+-=【详解】∵关于x 的一元二次方程有一个根是 ()2210a x a x a -+-=1x =∴210a a a -+-=解得1a =±∵一元二次方程 ()2210a x a x a -+-=∴10a -≠∴1a ≠∴1a =-故选:A .【点睛】此题主要考查了一元二次方程的解,注意二次项系数不能为零.5. 在Rt△ABC 中,∠C=90°,AC =8,BC =6,两等圆⊙A,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( )A. πB. π 258254C. π D.π 25162532【答案】B【解析】【详解】∵Rt△ABC 中,∠ACB=90°,AC=8,BC=6=10,∴S 阴影部分=.故选B . 2905253604ππ⨯=6. 某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是( ) A. B. C. D. 1361181612【答案】C【解析】【分析】此题需要两步完成,可采用列表法,列举出所有情况,看两次摸到的球相同的情况数占总情况数的多少即可.【详解】解:列表得:(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(2,6)(2,5)(2,4)(2,3)(2,2)(2,1)(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(5,6)(5,5)(5,4)(5,3)(5,2)(5,1)(6,6)(6,5)(6,4)(6,3)(6,2)(6,1)两次摸到的球相同的情况数占总情况数的概率 61366==故答案为:C【点睛】此题考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件,解题需要注意是放回实验还是不放回实验,列举出所有情况是解题关键.7. 如图,A ,B ,C 是某社区的三栋楼,若在AC 中点D 处建一个5G 基站,其覆盖半径为300 m ,则这三栋楼中在该5G 基站覆盖范围内的是( )A. A ,B ,C 都不在B. 只有BC. 只有A ,CD. A ,B ,C【答案】D【解析】 【分析】根据三角形边长然后利用勾股定理逆定理可得为直角三角形,由直角三角ABC ∆形斜边上的中线性质即可得.【详解】解:如图所示:连接BD ,∵,,,300AB =400BC =500AC =∴,222AC AB BC =+∴为直角三角形,ABC ∆∵D 为AC 中点,∴,250AD CD BD ===∵覆盖半径为300 ,∴A、B 、C 三个点都被覆盖,故选:D .【点睛】题目主要考查勾股定理逆定理,直角三角形斜边中线的性质等,理解题意,综合运用两个定理是解题关键.8. 抛物线的顶点为,且经过点,其部分图象如图所示.对2y ax bx c =++()2,A m ()5,0B 于此抛物线有如下四个结论:①;②;③;④若此抛物线经0ac <0a b c -+>90m a +=过点,则一定是方程的一个根.其中所有正确结论的序号是(),C t n 4t +2ax bx c n ++=( )A. ①②B. ①③C. ③④D. ①④【答案】B【解析】 【分析】利由抛物线的开口方向和位置可对①进行判断;利用抛物线的对称性得到抛物线与x 轴的一个交点坐标为(-1,0),代入解析式则可对②进行判断;由抛物线的顶点坐标以及对称轴可对③进行判断;抛物线的对称性得出点的对称点是,则可对④(),C t n ()4,-C t n 进行判断.【详解】解:∵抛物线开口向下,∴a<0,∵抛物线与y 轴交于正半轴,∴c>0,∴,故①正确;0ac <∵抛物线的顶点为,且经过点,2y ax bx c =++()2,A m ()5,0B ∴抛物线与x 轴的另一个交点坐标为(-1,0),2y ax bx c =++∴,故②错误;0a b c -+=∵抛物线的对称轴为直线x=2,∴,即:b=-4a , 22b a-=∵,0a b c -+=∴c=b-a=-5a,∵顶点,()2,A m ∴,即:, 244ac b m a -=()()24544a a a m a⋅---=∴m=-9a,即:,故③正确;90m a +=∵若此抛物线经过点,抛物线的对称轴为直线x=2,(),C t n ∴此抛物线经过点,()4,-C t n ∴,()()244-+-+=a t b t c n ∴一定是方程的一个根,故④错误.4t -2ax bx c n ++=故选B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置.二、填空题(本题共16分,每小题2分)9. 在平面直角坐标系中,点关于原点对称的点是B ,则线段AB 的长为______.()3,2A -【答案】【解析】【分析】直接利用关于原点对称点的性质得出点B 的坐标,再根据平面上两点间的距离公式得出答案.【详解】关于原点对称的点是()3,2A - ()3,2B -,AB ∴==故答案为:【点睛】此题主要考查了关于原点对称点的性质及平面上两点间的距离公式,正确记忆横纵坐标的关系是解题关键. 关于原点对称的两点,横坐标和纵坐标都互为相反数.10. 将抛物线先向上平移一个单位长度,再向下平移一个单位,得到的抛物线的表22y x =达式为______.【答案】22y x =【解析】【分析】根据“左加右减,上加下减”的法则进行解答即可.【详解】抛物线先向上平移一个单位长度,再向下平移一个单位,22y x =得到的抛物线的函数表达式为:,222112y x x =+-=故答案为:.22y x =【点睛】本题考查的是二次函数的图象与几何变换,解题的关键是熟知二次函数图象平移的法则.11. 用一个半径为2的半圆作一个圆锥的侧面,这个圆锥的底面圆的半径为______.【答案】1【解析】【分析】先求出扇形的弧长,然后根据扇形的弧长等于圆锥底面圆的周长,设圆锥的底面圆的半径为r ,列出方程求解即可得.【详解】解:∵半径为2的半圆的弧长为:, 12222ππ⨯⨯=∴围成的圆锥的底面圆的周长为2π设圆锥的底面圆的半径为r ,则: ,22r ππ=解得:,1r =故答案为:1.【点睛】题目主要考查圆锥与扇形之间的关系,一元一次方程的应用,熟练掌握圆锥与扇形之间的关系是解题关键.12. 点,在抛物线上,则,的大小关系为:__________()11,A y -()22,B y 22y x =1y 2y 1y(填“>”,“=”或“<”).2y 【答案】<【解析】【分析】由抛物线开口向上可得距离对称轴越远的点y 值越大,从而求解.【详解】解:由可得抛物线开口向上,对称轴为y 轴,22y x =∵,1020--<-∴点A 离y 轴的距离小于B 离y 轴的距离,∴,12y y <故答案为:<.【点睛】本题考查二次函数的性质,解题的关键是掌握二次函数的性质及比较函数值大小的方法.13. 如图,分别切于点A ,B ,Q 是优弧上一点,若,则的PA PB ,O AB 40P ∠=︒Q ∠度数是________.【答案】70°##70度【解析】【分析】连接,根据切线性质可得,再根据四边形的内角OA OB 、90OAP OBP ∠=∠=︒和为360°求得,然后利用圆周角定理求解即可.AOB ∠【详解】解:如图所示,连接,OA OB 、∵分别切于点A ,B ,PA PB ,O ∴,90OAP OBP ∠=∠=︒又∵,40P ∠=︒∴,360909040140AOB ∠=︒-︒-︒-︒=︒∴, 7201Q AOB ∠=∠=︒故答案为:70°.【点睛】本题考查切线性质、四边形内角和为360°、圆周角定理,熟练掌握切线性质和圆周角定理是解答的关键.14. 正三角形的内切圆半径、外接圆半径和高的比为___________.【答案】1:2:3.【解析】【分析】画出图形,连接OB,连接AO并延长交BC于点D,得到直角三角形BOD,利用30°角所对的直角边等于斜边的一半,得到R=2r,然后求出h与r的关系,计算r,R与h的比.【详解】解:如图:在直角三角形BOD中,∠OBD=30°,∴R=2r,AD是BC边上的高h,OA=OB,∴h=R+r=3r.∴r:R:h=r:2r:3r=1:2:3.即正三角形的内切圆半径、外接圆半径和高的比为1:2:3.【点睛】本题考查的是正多边形和圆,连接OB,连接AO并延长得到直角三角形,利用直角三角形求出R,r和h的比值.15. 社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分析可以推断“摸出黑球”的概率约为_______.【答案】0.2【解析】【分析】根据“摸出黑球的频率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率.【详解】解:由图可知,摸出黑球的概率约为0.2,故答案为:0.2.【点睛】本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率.16. 某游乐园的摩天轮(如图1)有均匀分布在圆形转轮边缘的若干个座舱,人们坐在座舱中可以俯瞰美景,图2是摩天轮的示意图.摩天轮以固定的速度绕中心顺时针方向转动,O 转一圈为分钟.从小刚由登舱点进入摩天轮开始计时,到第12分钟时,他乘坐的座舱18P 到达图2中的点_________处(填,,或),此点距地面的高度为_______m .A B C D【答案】 ①. C ②. 78【解析】【分析】根据转一圈需要18分钟,到第12分钟时转了圈,即可确定出座舱到达了哪个23位置;再利用垂径定理和特殊角的锐角三角函数求点离地面的高度即可.【详解】∵转一圈需要18分钟,到第12分钟时转了圈 23∴乘坐的座舱到达图2中的点C 处如图,连接BC,OC,OB,作OQ⊥BC 于点E由图2可知圆的半径为44m , 120BOC ∠=︒即44OB OC OQ ===∵OQ⊥BC∴ 111206022EOC BOC ∠=∠=⨯︒=︒∴ 1cos 6044222OE OC =︒=⨯= ∴442222QE OQ OE =-=-=∴点C 距地面的高度为 m1002278-=故答案为C,78【点睛】本题主要考查解直角三角形,掌握垂径定理及特殊角的锐角三角函数是解题的关键.三、解答题(共68分,本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)17. 解方程:.229100x x -+=【答案】或 152x =22x =【解析】【分析】利用十字相乘因式分解,进而即可求解.【详解】,229100x x -+=, (25)(2)0x x --=∴或,250x -=20x -=解得:或. 152x =22x =【点睛】本题主要考查解一元二次方程,熟练掌握“十字相乘法”是解题的关键.18. 已知:如图,A 为上的一点.O求作:过点A 且与相切的一条直线.O 作法:①连接OA ;②以点A 为圆心,OA 长为半径画弧,与的一个交点为B ,作射线OB ;O ③以点B 为圆心,OA 长为半径画弧,交射线OB 于点P (不与点O 重合);④作直线PA .直线PA 即为所求.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接BA .由作法可知.BO BA BP ==∴点A 在以OP 为直径的圆上.∴( )(填推理的依据).90OAP ∠=︒∵OA 是的半径,O ∴直线PA 与相切( )(填推理的依据).O 【答案】(1)图见解析;(2)直径所对的圆周角是直角,切线的判定定理【解析】【分析】(1)根据所给的几何语言作出对应的图形即可;(2)根据圆周角定理和切线的判定定理解答即可.【详解】解:(1)补全图形如图所示,直线AP 即为所求作;(2)证明:连接BA ,由作法可知,BO BA BP ==∴点A 在以OP 为直径的圆上,∴(直径所对的圆周角是直角),90OAP ∠=︒∵OA 是的半径,O ∴直线PA 与相切(切线的判定定理),O 故答案为:直径所对的圆周角是直角,切线的判定定理.【点睛】本题考查基本作图-画圆、圆周角定理、切线的判定定理,熟知复杂作图是在基本作图的基础上进行作图,一般是结合几何图形的性质,因此熟练掌握基本图形的性质和切线的判定是解答的关键.19. 已知关于的一元二次方程.x 2(2)10x m x m +-+-=(1)求证:方程总有两个实数根;(2)若,且此方程的两个实数根的差为3,求的值.0m <m 【答案】(1)见解析;(2)3m =-【解析】【分析】(1)证明一元二次方程的判别式大于等于零即可;(2)用m 表示出方程的两个根,比较大小后,作差计算即可.【详解】(1)证明:∵一元二次方程,2(2)10x m x m +-+-=∴()()2241m m ∆=---==.24444m m m -+-+2m ∵,20m ≥∴.0∆≥∴ 该方程总有两个实数根. (2)解:∵一元二次方程,2(2)10x m x m +-+-=解方程,得,.11x =-21x m =-∵ ,0m <∴ .11m ->-∵该方程的两个实数根的差为3,∴ .1(1)3m ---=∴.3m =-【点睛】本题考查了一元二次方程根的判别式,方程的解法,熟练掌握判别式,并灵活运用实数的非负性是解题的关键.20. 在平面直角坐标系中,抛物线经过点. xOy ()231y a x =--()2,1(1)求该抛物线的表达式;(2)将该抛物线向上平移______个单位后,所得抛物线与x 轴只有一个公共点.(3)当时,结合函数图象,直接写出y 的取值范围.04x ≤≤【答案】(1)()=--2y 2x 31(2)1(3)117y -≤≤【解析】【分析】(1)将代入抛物线解析式,即可求出的值,进而求出抛物线的表达式.()2,1a (2)利用顶点坐标的位置,判断抛物线向上平移的单位即可.(3)利用函数的顶点和函数图象轴的交点,以及代入特殊点作二次函数的图象即可求得y y 的取值范围【小问1详解】∵ 抛物线经过点, ()231y a x =--()2,1∴ ,11a -=解得:,2a =∴ 该抛物线的表达式为.()=--2y 2x 31【小问2详解】由(1)知抛物线的表达式为()=--2y 2x 31∴抛物线的顶点坐标为,()3,1-∵抛物线与轴只有一个公共点, x∴只需向上平移个单位,顶点变为,此时满足题意,1()3,0∴将该抛物线向上平移个单位后,所得抛物线与x 轴只有一个公共点,1故答案为:1.【小问3详解】函数图象如下图所示: ()=--2y 2x 31通过图象可知当时,;0x =17y =当时,;3x =1y =-当时,;4x =1y =∴当时,04x ≤≤117y -≤≤【点睛】本题主要是考查了待定系数法求解二次函数表达式、函数图象的平移和二次函数图象,熟练利用待定系数法求解函数表达式,根据顶点坐标的平移确定函数图象整体平移的情况,会画二次函数的图象是解决该题的关键.21. 一个不透明的袋中装有2个红球、1个白球,这些球除颜色外,没有任何其他区别.有如下两个活动:活动1:从袋中随机摸出一个球,记录下颜色,然后从袋中剩余的球中再随机摸出一个球,摸出的两个球都是红球的概率记为;1P 活动2:从袋中随机摸出一个球,记录下颜色,然后把这个球放回袋中并摇匀,重新从袋中随机摸出一个球,两次摸出的球都是红球的概率记为.2P 请你猜想,的大小关系,并用画树状图或列表的方法列出所有可能的结果,验证你的1P 2P 猜想.【答案】,验证过程见解析12P P <【解析】【分析】首先根据题意分别根据列表法列出两个活动所有情况,再利用概率公式即可求得答案.【详解】活动1:红球1 红球2 白球 红球1 (红1,红2) (红1,白) 红球2(红2,红1) (红2,白) 白球 (白,红1) (白,红2)∵共有6种等可能的结果,摸到两个红球的有2种情况,∴摸出的两个球都是红球的概率记为 12163P ==活动2:红球1 红球2 白球 红球1 (红1,红1) (红1,红2) (红1,白) 红球2(红2,红1) (红2,红2) (红2,白) 白球 (白,红1) (白,红2) (白,白) ∵共有9种等可能的结果,摸到两个红球的有4种情况,∴摸出的两个球都是红球的概率记为 249P =∴12P P <【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.重点需要注意球放回与不放回的区别.22. 某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元.为了扩大销售,增加赢利,商场决定采取适当的降价措施.经调查发现,在一定范围内,每件衬衫的价格每降低1元,商场每天可多售出2件.如果商场通过销售这批衬衫每天要赢利1200元,每件衬衫的价格应降低多少元?【答案】每件衬衫应降价20元【解析】【分析】设每件衬衫应降价元,则每件所得利润为元,但每天多售出件即售出x (40)x -2x 件数为件,因此每天赢利为元,进而可根据题意列出方程求解.(202)x +(40)(202)x x -+【详解】解:设每件衬衫应降价元,x 根据题意得,(40)(202)1200x x -+=整理得22604000x x -+=解得:,.120x =210x =因为要扩大销售,故每件衬衫应降20元.答:每件衬衫应降价20元.【点睛】本题主要考查了一元二次方程的应用,根据题意列出方程是解题的关键.23. 某篮球队员的一次投篮命中,篮球从出手到命中行进的轨迹可以近似看作抛物线的一部分,表示篮球距地面的高度(单位:m )与行进的水平距离(单位:m )之间关系的图象y x 如图所示.已知篮球出手位置与篮筐的水平距离为4.5m ,篮筐距地面的高度为3.05m ;A 当篮球行进的水平距离为3m 时,篮球距地面的高度达到最大为3.3m .(1)图中点表示篮筐,其坐标为_______,篮球行进的最高点的坐标为________;B C (2)求篮球出手时距地面的高度.【答案】(1)(4.5,3.05),(3,3.3);(2)2.3米【解析】【分析】(1)根据题意,直接写出坐标即可;(2)设抛物线的解析式为:,从而求出a 的值,再把x=0()()233.30y a x a =-+≠代入解析式,即可求解.【详解】(1)由题意得:点坐标为(4.5,3.05),的坐标为(3,3.3),B C 故答案是:(4.5,3.05),(3,3.3);(2)设抛物线的解析式为:,()()23 3.30y a x a =-+≠把点坐标(4.5,3.05),代入得, B ()233.3y a x =-+()23.054.53 3.3a =-+解得:, 19a =-∴ ()213 3.39y x =--+当x=0时,, ()2103 3.3 2.39y =--+=答:篮球出手时距地面的高度为2.3米.【点睛】考查了二次函数的应用,利用二次函数的顶点式,求出函数解析式是解题的关键.24. 如图, AC 与⊙O 相切于点C , AB 经过⊙O 上的点D ,BC 交⊙O 于点E ,DE∥OA,CE 是⊙O 的直径.(1)求证:AB 是⊙O 的切线;(2)若BD =4,CE =6,求AC 的长.【答案】(1)见解析;(2)6【解析】【分析】(1)连接OD ,根据平行线的性质得出∠ODE=∠AOD,∠DEO=∠AOC,根据等腰三角形的性质得出∠OED=∠ODE,即可得出∠AOC=∠AOD,进而证得△AOD≌△AOC(SAS ),得到∠ADO=∠ACB=90°,即可证得结论;(2)由题意,先得到OD=3,然后利用勾股定理求出BO ,由切线长定理得到AD=AC ,再根据勾股定理,即可求出答案.【详解】(1)证明:连接OD ,如图:∵OE=OD,∴∠OED=∠ODE,∵DE∥OA,∴∠OED=∠AOC,∠ODE=∠AOD,∴∠AOC=∠AOD.在△AOD 和△AOC 中,AO AO AOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩∴ △AOD≌△AOC,∴ ∠ADO=∠ACO.∵AC 与⊙O 相切于点C ,∴ ∠ADO=∠ACO=90°,又∵OD 是⊙O 的半径,∴AB 是⊙O 的切线;(2)解:∵CE=6,∴OE=OD=OC=3.在Rt△ODB 中,BD=4,OD=3,∴,222BD OD BO +=∴BO=5,∴BC=BO+OC=8.∵⊙O 与AB 和AC 都相切,∴AD=AC.在Rt△ACB 中,,222AC BC AB +=即:,2228(4)AC AC +=+解得:AC=6;【点睛】本题考查了切线的判定和性质,平行线的性质,三角形全等的判定和性质,勾股定理,熟练掌握性质定理是解题的关键.25. 阅读理解:某“数学兴趣小组”根据学习函数的经验,对函数的图象和性质进行了探221y x x =-++究,探究过程如下,请补充完整:(1)自变量x 的取值范围是全体实数,x 与y 的几组对应数值如下表: x … 3- 52- 2- 1- 0 1 2 52 3…y … 2- 14- m 2 1 2 1 14- 2-… 其中______;m =(2)在平面直角坐标系中,描出以上表中各对对应值为坐标的点,根据描出的点,画xOy 出该函数的图象;(3)根据函数图象,回答下列问题:①当时,则y 的取值范围为______.11x -≤<②直线经过点,若关于x 的方程有4个互不相等的实数y kx b =+()1,2221x x kx b -++=+根,则b 的取值范围是______.【答案】(1)1(2)见解析 (3)①;②12y ≤≤12b <<【解析】【分析】(1)把代入函数解析式即可得的值;2x =-m (2)描点、连线即可得到函数的图象;(3)①根据(2)画出的函数图象得到函数的图象关于y 轴对称;当221y x x =-++时,根据函数图象可得到;11x -≤<12y ≤≤②根据函数的图象即可得到b 的取值范围是.12b <<【小问1详解】将代入函数得: 2x =-221y x x =-++.()222214411m =--+⨯-+=-++=故答案为:1【小问2详解】根据表格:x … 3- 52- 2- 1- 0 1 2 52 3… y … 2- 14- 1 2 1 2 1 14- 2-… 描点法作出函数的图象如下图所示:221y x x =-++【小问3详解】①根据函数图象可知:当时,y 的取值范围是;1<1x ≤-12y ≤≤故答案为:;12y ≤≤②由函数图象知:∵关于x 的方程有个互不相等的实数根, 221x x kx b -++=+4∴b 的取值范围是.12b <<故答案为:;.12y ≤≤12b <<【点睛】本题考查了抛物线与x 轴的交点,二次函数的图象和性质,正确的识别图象是解题的关键.26. 在平面直角坐标系中,抛物线. xOy ()21y ax a x =-+(1)若抛物线过点,求抛物线的对称轴;()2,0(2)若,为抛物线上两个不同的点.()11,M x y ()22,N x y ①当时,,求a 的值;124x x +=-12y y =②若对于,都有,求a 的取值范围.122x x >≥-12y y <【答案】(1)抛物线的对称轴1x =(2)①② 15a =-105a -≤<【解析】【分析】(1)抛物线经过点,可得,解得,()21y ax a x =-+()2,0042(1)a a =-+1a =则抛物线为,利用抛物线的对称轴公式即可求解;22y x x =-(2)①由,为抛物线上两个不同的点,时,可()11,M x y ()22,N x y 124x x +=-12y y =得二次函数图像的对称轴为直线,利用抛物线对称轴公式可得的2x =-(1)22a a -+-=-a 值;②对于任意的,随的增大而减小,分类讨论和时的取值范围,当2x ≥-y x 0a >a<0a 时不能满足对于,都有,当时可以满足对于,0a >122x x >≥-12y y <a<0122x x >≥-都有的条件,使得即可,从而可得a 的取值范围. 12y y <(1)22a a-+-≤-【小问1详解】解:函数图像经过点, ()2,0,042(1)a a ∴=-+,1a ∴=,22y x x ∴=-, 2122b a -∴-=-=抛物线的对称轴是;∴1x =【小问2详解】解:①时,124x x +=- 12y y =二次函数图像的对称轴为直线,∴2x =-, (1)22a a-+∴-=-; 15a ∴=-②由题意可得,对于任意的,随的增大而减小,2x ≥-y x 当时,抛物线开口向上,对称轴为, 0a >(1)110222a x a a-+=-=+>在对称轴左侧,在直线的右侧可满足题意,而在对称轴右侧则有都有2x =-122x x >≥-,故不可能;12y y >0a >当时,,在对称轴右侧,都有,当抛物线对称轴在直线a<0()11,M x y ()22,N x y 12y y <左侧,即抛物线对称轴,, 2x =-(1)112222a x a a -+=-=+≤-整理得:, 15a ≥-. ∴105a -≤<【点睛】此题考查了抛物线解析式与对称轴,解一元一次方程,抛物线的性质,利用抛物线增减性结合对称轴列不等式,掌握抛物线解析式和对称轴公式是解题关键.27. 在正方形中,点E 在射线上(不与点B 、C 重合),连接,,将ABCD BC DB DE DE 绕点E 逆时针旋转得到,连接.90︒EF BF(1)如图1,点E 在边上.BC ①依题意补全图1;②若,,求的长;6AB =2EC =BF (2)如图2,点E 在边的延长线上,用等式表示线段,,之间的数量关系,BC BD BE BF 并证明.【答案】(1)①见解析;②BF =(2),证明见解析 BF BD +=【解析】【分析】(1)①根据题意作图即可;②过点F 作,交的延长线于H ,证明得到,FH CB ⊥CB DEC EFH △≌△2EC FH ==,则,在中,利用勾股定理即可求解;6CD BC EH ===2HB EC ==Rt FHB △(2)过点F 作,交的延长线于H ,证明得到,FH CB ⊥CB DEC EFH △≌△EC FH =,则,和都是等腰直角三角形,由此利用CD BC EH ==HB EC HF ==DCB △BHF 勾股定理求解即可.【小问1详解】①如图所示,即为所求;②如图所示,过点F 作,交的延长线于H ,FH CB ⊥CB∵四边形是正方形,ABCD ∴,,6CD AB ==90C ∠=︒∵,90DEF C ∠=∠=︒∴,,90DEC FEH ∠+∠=︒90DEC EDC ∠+∠=︒∴,FEH EDC ∠=∠在和中,DEC EFH △,90H C FEH EDC EF DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴,DEC EFH △≌△∴,,2EC FH ==6CD BC EH ===∴,2HB EC ==∴在中,Rt FHB △BF ===【小问2详解】结论:,理由如下:BF BD +=过点F 作,交的延长线于H ,FH CB ⊥CB∵四边形是正方形,ABCD ∴,,CD AB =90DCE ∠=︒∵,90DEF DCE ∠=∠=︒∴,,90DEC FEH ∠+∠=︒90DEC EDC ∠+∠=︒∴,FEH EDC ∠=∠在和中,DEC EFH △,90FHE DCE FEH EDC EF DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴,DEC EFH △≌△∴,,EC FH =CD BC EH ==∴,HB EC HF ==∴和都是等腰直角三角形,DCB △BHF ∴,,BD ===BF ==∵,EH BH BE +=∴.BF BD +=【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,解题的关键在于能够正确作出辅助线,构造全等三角形.28. 如图1,对于的顶点P 及其对边上的一点Q ,给出如下定义:以P 为圆心,PMN MN 为半径的圆与直线的公共点都在线段上,则称点Q 为关于点P 的内联PQ MN MN PMN 点.在平面直角坐标系中:xOy (1)如图2,已知点,点B 在直线上. ()70A ,1y x =+①若点,点,则在点O ,C ,A 中,点______是关于点B 的内联点; ()3,4B ()30C ,AOB ②若关于点B 的内联点存在,求点B 纵坐标n 的取值范围;AOB (2)已知点,点,将点D 绕原点O 旋转得到点F ,若关于点E 的()2,0D ()4,2E EOF 内联点存在,直接写出线段EF 长度的取值范围.【答案】(1)①O,C②18n ≤≤(2)EF ≤≤【解析】【分析】(1)①分别以B 为圆心,、、为半径作圆,观察图像根据线段与BO BC BA OA 圆的交点位置,可得结论;②如图,当点时,此时以为半径的圆与线段有唯一的公共点,此时点O 是()10B ,OB OA 关于点B 的内联点;当点时,以为半径的圆,与线段有公共点,此AOB (7,8)'B AB 'OA 时点A 是关于点B 的内联点;AOB (2)如下图,过点E 作轴于H ,过点F 作轴于N ,利用相似三角形的性质EH x ⊥FN y ⊥求出点F 的坐标,再根据对称性求出的坐标,当时,设交于P ,再F 'OF EF ''''⊥OH F E ''求出的坐标,结合图像可得出结论.F ''【小问1详解】①如下图中,根据点Q 为关于点P 的内联点的定义,观察图象可知,点O ,点C 是PMN AOB 关于点B 的内联点故答案为:O ,C ;②如下图中,当点时,此时以为半径的圆与线段有唯一的公共点,此时点O ()10B ,OB OA 是关于点B 的内联点,AOB 当点时,以为半径的圆,与线段有公共点,此时点A 是关于点B 的(7,8)'B AB 'OA AOB 内联点,观察图像可知,满足条件的n 的值为;18n ≤≤【小问2详解】如下图,过点E 作轴于H ,过点F 作轴于N ,EH x ⊥FN y ⊥∵(4,2)E ∴,,4OH =2EH =∴OE ==当时,点O 是关于点E 的内联点,OF OE ⊥OEF ∵,90EOF NOH ∠=∠=︒∴EOF EOH ∠=∠∵90FNO OHE ∠=∠=︒∴,FNO EHO ∴, OF FN ON OE EH OH ==, 24FN ON ==∴, FN =ON =∴, (F∴此时EF =观察图象可知当时,满足条件;4EF ≤≤作点F 关于点O 的对称点, F '此时EF '=当时,设交于P ,OF EF ''''⊥OH F E ''∵,,,90EF O EHO ''∠=∠=︒OE EO =EH OF ''=∴,OHE EF O ''≅ ∴,EOH OEF ''∠=∠∴,设,PE OP =PE OP t ==在中,则有,Rt PEH 2222(4)t t =+-解得, 52t =∴,, 52OP =32PH PF ''==可得,86(,55F ''-此时EF ''=观察图象可知,当EF ≤≤综上所述,满足条件的的取值范围为EF EF ≤≤【点睛】本题属于圆综合题,考查了一次函数的性质,解直角三角形,全等三角形的判定和性质以及相似三角形的判定和性质等,解题的关键是理解题意,学会寻找特殊点,特殊位置解决问题,属于中考压轴题.。
2022-2023学年福建省厦门市九年级上学期期末数学试卷及参考答案
2022-2023学年福建省厦门市初三数学第一学期期末试卷一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确) 1.O 的半径为4,点A 在O 内,则OA 的长可以是( ) A .3B .4C .5D .62.抛物线2(1)3y x =−+的对称轴是( ) A .1x =B .1x =−C .3x =D .3x =−3.如图,圆上依次有A ,B ,C ,D 四个点,AC ,BD 交于点P ,连接AB ,CD ,则图中与C ∠相等的角是( )A .A ∠B .B ∠C .D ∠D .APD ∠4.如图,正方形ABCD 的对角线AC ,BD 交于点O ,点M 在AOD ∆内,将点M 绕点O 逆时针旋转90︒,则M 的对应点M '在( )A .AOB ∆内B .BOC ∆内C .COD ∆内D .DOA ∆内5.某园林公司购进某种树苗,为了解该种树苗的移植成活率,现对购进的第一批树苗进行随机抽样并统计,结果如图所示.若该公司第二批还需移植成活1800棵该种树苗,根据统计结果,则第二批树苗购买量较为合理的是( )A .1620棵B .1800棵C .2000棵D .2093棵6.点(0,5)A ,(4,5)B 是抛物线2y ax bx c =++上的两点,则该抛物线的顶点可能是( ) A .(2,5)B .(2,4)C .(5,2)D .(4,2)7.将一个关于x 的一元二次方程配方为2()x m p +=,若23±是该方程的两个根,则p 的值是( ) A .2B .4C .3D .38.在平面直角坐标系xOy 中,ABC ∆是以BC 为底边的等腰三角形,(1,)A a ,(,3)B b ,(,3)C b t +,其中24t <<.关于点B 的位置,下列描述正确的是( ) A .在y 轴上 B .在第一象限 C .在第二象限D .随a 的变化而不同二、填空题(本大题有8小题,每小题4分,共32分)9.一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,投掷此骰子,朝上一面的点数为奇数的概率是 .10.已知1x =是方程230x mx −+=的解,则m 的值为 .11.在O 中有两个三角形:AOB ∆和COD ∆,点A ,B ,C ,D 依次在O 上,如图4所示.若这两个三角形关于过点O 的直线l 成轴对称,则点B 关于直线l 的对称点是 .12.如图,在ACB ∆中,90C ∠=︒,10AB =,8AC =,D 是AC 的中点,点B ,E 关于点D 成中心对称,则AE 的长为 .13.某小区有1300个住户,为了解小区居民的生活垃圾量(单位:)kg ,物业公司某日在该小区内随机抽取4栋楼的住户进行调查,结果如表所示.所抽取的居民楼A 栋B 栋C 栋D 栋住户数30 30 40 30 该栋所有住户当日产生的生活垃圾总量()kg 40457035根据如表,估计该小区居民当日生活垃圾总量为 .14.小桐竖直向上抛出一个小球,小球只在重力作用下的高度h (单位:)m 随时间t (单位:)s 变化的图象是抛物线的一部分,如图所示.小球出手时的高度是 .15.我国东汉初年的数学典籍《周髀算经》中总结了对几何工具“矩”(即直角形状的曲尺,如图1所示)的使用之道,其中就有“环矩以为圆”的方法.我国许多数学家对该方法作了如下更具体的描述:如图2所示,在平面内固定两个钉子A ,B ,保持“矩”的两边始终紧靠两钉子的内侧,转动“矩”,则“矩”的顶点C 的运动路线将会是一个圆.依此描述,请用你学过的一个数学概念或定理解释“环矩以为圆”这种方法的道理: .16.已知0b >,抛物线21y ax bx c =−+与x 轴交于A ,B 两点(A 在B 的左侧),抛物线22y ax bx c =++与x 轴交于C ,D 两点(C 在D 的左侧),其中A ,B ,C ,D 的横坐标分别为A x ,B x ,C x ,D x ,若当0B x x <<时,120y y <<,则当210y y <<时,x 的取值范围是 . 三、解答题(本大题有9小题,共86分)17.解方程:2250x x +−=.18.如图,四边形ABCD 是平行四边形,点E 、F 在对角线BD 上,AE ,CF 分别平分BAD ∠和DCB ∠,证明:BE DF =.19.先化简,再求值;224(1)244a a a a a −−÷+++,其中52a . 20.某市为减少汽车尾气污染,改善空气质量,鼓励市民选择新能源汽车作为出行的交通工具,并大力推进新能源汽车充电基础设施建设.据统计,该市2020年新建100座充电站,2022年新建169座.求该市这两年新建充电站的数量的年平均增长率.21.小梧是某校一名七年级新生,新学期开始,他打算每天早上和同小区里的几位新同学一起上学.小梧和同学计划每天早上7:00出发搭乘公共交通工具前往该学校,并在7:50前入校.几位同学通过查询出行软件,发现有三条路线可供选择,他们约定开学后的两周内分三组体验不同的路线并进行记录,结果如表所示. 路线 上学路上所用的时间(单位:)min 第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天 第9天 第10天 一 43 44 43 44 52 45 43 45 46 45 二 42 41 44 54 41 41 51 42 52 42 三47534446474847464745(1)根据如表,求体验路线一的同学这10天平均每天上学路上所用的时间; (2)请你为小梧和他的同学选择一条较为合理的上学路线,并说明理由.22.在ABC ∆中,90C ∠=︒,(045)CAB αα∠=<<︒,将ABC ∆绕点A 逆时针旋转,旋转角(180)βαβ<<︒,记点B ,C 的对应点分别为D ,E .(1)若ABC ∆和线段AD 如图所示,请在图中作出ADE ∆(要求:尺规作图,不写作法,保留作图痕迹); (2)M 是AB 的中点,N 是点M 旋转后的对应点,连接MN ,CD ,BD ,则是否存在β与α的某种数量关系,使得无论α取何值时,都有MN CD =?若存在,请说明理由,并直接写出此时BC 与BD 的数量关系;若不存在,也请说明理由.23.如果一个矩形有两个顶点在某抛物线上,那么称该矩形是该抛物线的“半接矩形”.矩形ABCD 在第一象限,点(,)B m n 在抛物线2y x bx c =++(记为抛物线)T 上.(1)矩形ABCD 是正方形,(1,3)A ,1m =,3b =−,4c =,直接写出点C ,D 的坐标,并证明;矩形ABCD 是抛物线T 的“半接矩形”;(2)(,1)A m n +,点C 在AB 边的右侧,3BC =,矩形ABCD 是抛物线T 的“半接矩形”,若矩形ABCD 的一条对称轴是2bx =−,将该矩形平移,使得平移后的矩形1111A B C D 仍是抛物线T 的“半接矩形”,请探究矩形ABCD 如何平移.24.ABC ∆内接于O ,AB AC =,67.5ABC ∠=︒,BC 的长为22π,点P 是射线BC 上的动点(2)BP m m =.射线OP 绕点O 逆时针旋转45︒得到射线OD ,如图所示.点Q 是射线OD 上的点,点Q 与点O 不重合,连接PQ ,PQ n =.(1)求O 的半径;(2)当2222n m m =−+时,在点P 运动的过程中,点Q 的位置会随之变化,记1Q ,2Q 是其中任意两个位置,探究直线12Q Q 与O 的位置关系.25.(14分)某景区正在修建一条到主景点的步行道及步行道两侧的游客休息区、沿途小观景点等附属设施.把步行道的入口记为A ,步行道上某点P 到入口A 的道路长度记为l (单位:)m ,把从入口A 处到P 处的步行道面积与此段步行道两侧的所有附属设施的占地面积之和记为S (单位:2)m .设P 处的步行道宽度为x (单位:)m ,根据景区对主景点的规划,步行道出口的宽度为2m .用矩形面积估计不规则图形的面积是一种比较有效的方法.因此,景区管委会近似地用一边长为l ,另一边长为()(x n n +为常量,0n >,n 的单位为)m 的矩形的面积表示S .景区管委会在目前已修建的720m 的步行道上选取了部分有代表性的地点进行测算,数据如表所示. l (单位:)m 30 60 180 360 540 720 S (单位:2)m 177.5 350 990 1800 2430 2880 Sl(单位:)m 5.925.835.554.54根据以上信息,在合理估计的基础上,解决下列问题: (1)写出当450l =时Sl的值,并说明理由; (2)当2n =时,求l 与x 的函数解析式(不需要写出x 的取值范围);(3)若景区可按此方式继续修建步行道及附属设施,请你通过计算说明常量n 至少为多少.答案与解析一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确) 1.解:O 的半径为4,点A 在O 内,4OA ∴<,即只有选项A 符合题意,选项B 、选项C 、选项D 都不符合题意; 故选:A .2.解:抛物线2(1)3y x =−+是抛物线的顶点式,根据抛物线的顶点式可知抛物线2(1)3y x =−+的对称轴是直线1x =, 故选:A .3.解:B ∠和C ∠对的弧是同一弧AD ,∴与C ∠相等的角是B ∠, 故选:B .4.解:如图,连接OM ,在OM 左侧作OM OM '⊥,且OM OM =',四边形ABCD 为正方形,AC BD ∴⊥,即90AOD AOB ∠=∠=︒,由旋转的性质得,90MOM ∠'=︒,90MOA AOM ∠+∠'=︒,90AOM DOM ∠+∠=︒, AOM DOM ∴∠'=∠,点M 在AOD ∆内, 90AOM DOM ∴∠'=∠<︒,∴则M 的对应点M '在AOB ∆内. 故选:A .5.解:由表格可知,随着树苗移植数量的增加,树苗移植成活率越来越稳定. 当移植总数为550时,成活率为0.9,于是可以估计树苗移植成活率为0.9, 则该市需要购买的树苗数量约为:18000.92000÷=(棵). 故选:C .6.解:点(0,5)A ,(4,5)B 的纵坐标相等,∴点(0,5)A ,(4,5)B 关于对称轴对称, ∴对称轴为直线0422x +==, 即直线2x =,抛物线的顶点在对称轴上,∴顶点的纵坐标不等于5. 故选:B .7.解:2()x m p +=,开方得:x m +=解得:1x m =−+2x m =−2±是该方程的两个根,3p ∴=, 故选:D .8.解:ABC ∆是以BC 为底边的等腰三角形,∴点A 在BC 的垂直平分线上, ∴12b b t++=, 整理得:12t b =−, 24t <<,∴122t <<,则1102t−<−<, 10b ∴−<<,∴点B 在第二象限. 故选:C .二、填空题(本大题有8小题,每小题4分,共32分) 9.解:骰子六个面中奇数为1,3,5, P ∴(向上一面为奇数)3162==. 故答案为:12. 10.解:把1x =代入230x mx −+=得,130m −+=,解得4m =. 故答案为:4.11.解:如图所示:AOB ∆和COD ∆关于过点O 的直线l 成轴对称,因为BC ⊥直线l ,且OB OC =, 所以点B 关于直线l 的对称点是C . 故答案为:C .12.解:在ACB ∆中,90C ∠=︒,10AB =,8AC =,则由勾股定理知:22221086BC AB AC =−=−=. D 是AC 的中点,点B ,E 关于点D 成中心对称, ADE ∴∆与CDB ∆关于点O 成中心对称,6AE BC ∴==.故答案为:6.13.解:抽取的住户每户产生的生活垃圾每日平均为:40457035193030403013+++=+++,则该小区有1300个住户当日生活垃圾总量约为:1913001900()13kg ⨯=, 故答案为:1900kg .14.解:由函数图象可得,抛物线的顶点坐标为(1,6.05), 设抛物线的解析式为2(1) 6.05y a x =−+, 抛物线经过(2.1,0),2(2.11) 6.050a ∴−+=,5a ∴=−,∴抛物线的解析式为25(1) 6.05y x =−−+, 当0x =时, 1.05y =,∴小球出手时的高度1.05m .故答案为:1.05m .15.解:连接AB ,取AB 中点O ,连接OC , 90ACB ∠=︒, 12OC AB ∴=, ∴动点C 到O 的距离是定值,∴ “矩”的顶点C 的运动路线将会是一个圆.∴应用数学概念或定理解释“环矩以为圆”这种方法的道理:圆是所有到定点的距离等于定长的点的集合. 故答案为:圆是所有到定点的距离等于定长的点的集合.16.解:由题意得:抛物线21y ax bx c =−+与抛物线22y ax bx c =++关于y 轴对称,都经过y 轴上的点(0,)c . A 在B 的左侧,C 在D 的左侧,∴点A 与点D 关于y 轴对称,点B 与点C 关于y 轴对称, 当0a >时, 0b >,∴抛物线21y ax bx c =−+的对称轴在y 轴的右侧,抛物线22y ax bx c =++的对称轴在y 轴的左侧,如图,当A B x x x <<时,10y <, 当0B x x <<时,120y y <<,∴此种情形不合题意舍去; 当0a <时, 0b >,∴抛物线21y ax bx c =−+的对称轴在y 轴的左侧,抛物线22y ax bx c =++的对称轴在y 轴的右侧,如图,当0B x x <<时,120y y <<,符合题意,∴当210y y <<时,x 的取值范围是0C x x <<.故答案为:0C x x <<.三、解答题(本大题有9小题,共86分) 17.解:2250x x +−=225x x +=, 2216x x ++=,2(1)6x +=,1x +=11x =−+21x =−−18.证明:四边形ABCD 是平行四边形,//AB CD ∴,AB CD =,BAD BCD ∠=∠.ABE CDF ∴∠=∠. AE ,CF 分别平分BAD ∠和DCB ∠, ∴12BAE BAD ∠=∠,12DCF BCD ∠=∠. BAD BCD ∠=∠,BAE DCF ∴∠=∠.在BAE ∆与DCF ∆中,BAE DCF AB CDABE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()BAE DCF ASA ∴∆≅∆.BE DF ∴=.19.解:原式22(2)4244a a a a a a +−−=÷+++ 22(2)(2)2(2)a a a a a a +−+−=÷++ 2222a a a +=⋅+− 22a =−,当2a =时,原式5==. 20.解:设新建充电站的数量的年平均增长率为x ,根据题意得:2100(1)169x +=.解得:10.3x =,2 2.3x =−(舍去).答:该市这两年新建充电站的数量的年平均增长率为0.3.21.解:(1)根据表格,体验路线一的同学这10天平均每天上学路上所用的时间为:4344434452454345464545()10min +++++++++=.(2)由(1)可知,体验路线一的同学这10天平均每天上学路上所用的时间为45min .由题可得,体验路线二、三的同学这10天平均每天上学路上所用的时间分别为: 4241445441415142524245()10min +++++++++=, 4753444647484746474547()10min +++++++++=. 由表格数据,可知这10天体验路线一、二、三的同学迟到的概率分别为110,310,110. 根据上述数据,可以估计: 由路线一、二、三上学所用的平均时间分别为45min ,45min ,47min ,而迟到的概率分别为110,310,110. 考虑到学校对入校时间的要求,小梧和他的同学选择平均用时较短且迟到概率较低的路线一较为合理.22.解:(1)如图:ADE ∆即为所求;(2)当2βα=时,MN CD =.理由:如图,2βα=,BAC AC ∴∠=∠,AB AD =,AC AC =,()ACB ACD SAS ∴∆≅∆,90ACB ACD ∴∠=∠=︒,BC CD =,B ∴,C ,D 共线,AM MB =,AN ND =,12MN BD CD ∴==,此时2BD BC =.23.解:(1)矩形ABCD 是正方形,(1,3)A , ∴点C 的坐标为(2,2),点D 的坐标为(2,3). 由3b =−,4c =知:抛物线T 的表达式为234y x x =−+, 所以当2x =时,2y =.所以点C 在抛物线T 上.又因为点B 在抛物线T 上,所以矩形ABCD 是抛物线T 的“半接矩形”.(2)因为点(,)B m n ,(,1)A m n +,所以B A x x m ==,B A y y ≠,所以AB x ⊥轴,11A B AB y y n n =−=+−=.因为在矩形ABCD 中,点C 在AB 边的右侧, 所以BC y ⊥轴,AD y ⊥轴,CD x ⊥轴.所以1CD AB ==.因为3BC =,所以(3,)C m n +,(3,1)D m n ++.因为点B ,C 关于2b x =−对称, 所以(3)22b m m ++−=,即23b m =−−①. 所以抛物线的解析式为2y x bxc =++,因为点B 在抛物线T 上,把(,)B m n 代入2y x bx c =++,可得2m bm c n ++=,把①代入,得 2(23)m m m c n −++=②.因为平移后矩形1111A B C D 仍是抛物线T 的半接矩形,所以有以下情况:第一种情况:点1A ,1D 在抛物线T 上.则11A D 与BC 重合.因此将矩形ABCD 向下平移1个单位长度,则矩形1111A B C D 仍是抛物线T 的半接矩形. 第二种情况:点1B ,1D 在抛物线T 上.由图形平移前后关系,可知:矩形ABCD ≅矩形1111A B C D . 所以113B C BC ==,111C D CD ==.设1B 的坐标为(,)p q ,则1D 的坐标为(3,1)p q ++.将点1B ,1D 坐标分别代入2y x bx c =++,可得2q p bp c =++④,21(3)(3)q p b p c +=++++⑤. 由⑤−④,得:1693p b =++⑥.将①代入⑥,得1693(23)p m =++−−,即16p m =+. 将①,②,16p m =+都代入④,可得1736q n =−. 所以将矩形ABCD 先向下平移1736个单位长度后,再向右平移16个单位长度,得到的矩形1111A B C D 仍是抛物线T 的“半接矩形”.第三种情况:点1A ,1C 在抛物线T 上.根据对称性,可知将矩形ABCD 先向下平移1736个单位长度后,再向左平移16个单位,得到的矩形1111A B C D 仍是抛物线T 的“半接矩形”.显然,不存在其他情况.综上,要使得平移后的矩形1111A B C D 仍是抛物线T 的“半接矩形”,矩形ABCD 有三种平移方式.分别是:向下平移1个单位长度;先向下平移1736个单位长度后,再向右平移16个单位长度;先向下平移1736个单位长度后,再向左平移16个单位长度. 24.解:(1)连接OB ,OC ,设O 的半径为r ,AB AC =,67.5ABC ∠=︒,67.5ABC ACB ∴∠=∠=︒.18045A ABC ACB ∴∠=︒−∠−∠=︒.A ∠与BOC ∠同对BC ,290BOC A ∴∠=∠=︒.BC 的长=,∴901802r π=.∴r =(2)结论直线12Q Q 与O 相切.理由:连接CQ ,过点O 作OE BC ⊥于E ,过点Q 作QF BC ⊥于F .由(1)得,OB OC ==90BOC ∠=︒,∴2OB ==.OE BC ⊥于E , ∴112BE EC BC ===,112OE BC BE EC ====. BP m =, 1EP BP BE m ∴=−=−.在Rt OEP ∆中,222OP OE EP =+,22221(1)22OP m m m ∴=+−=−+.PQ n =,2222n m m =−+,22PQ OP ∴=,即PQ OP =.45POQ PQO ∴∠=∠=︒.90OPQ ∴∠=︒.90QPF OPE ∴∠+∠=︒.又Rt POE ∆,90POE OPE ∠+∠=︒,QPF POE ∴∠=∠.在Rt POE ∆与Rt QPF ∆中,90OEP PFQ ∠=∠=︒,QPF POE ∠=∠,OP PQ =, Rt POE Rt QPF(AAS)∴∆≅∆,2BP m =,1QF PE m ∴==−,1PF OE ==.()211CF CP PF BP BC PF m m ∴=+=−+=−+=−. CF QF ∴=.∴在Rt QCF ∆中,45FCQ FQC ∠=∠=︒.即点Q 在过点C ,且与射线BP 夹角为45︒的射线上. 1Q ,2Q 是点Q 的任意两个位置,∴直线12Q Q 即为直线CQ .在Rt OEC ∆中,OE EC =,45EOC ECO ∴∠=∠=︒.90OCQ ∴∠=︒,即OC CQ ⊥.点C 在O 上,∴直线CQ 与O 相切.∴直线12Q Q 与O 相切.25.解:(1)当450l =时,4.75S l =. 理由如下:由表三可知,表中的数值大致符合“l 每增加180,S l 减少0.5”的规律, 当360l =时,5S l=, ∴当450l =时,4.75S l =; (2)解:因为景区管委会近似地用一边长为l ,另一边长为()x n +的矩形的面积表示S , ()S l x n ∴=+. 由表三数值可以估计,S l 是l 的一次函数. 设S kl m l=+,由表三可知,函数图象经过点(360,5),(720,4). 代入可得得36057204k m k m +=⎧⎨+=⎩,解得13606k m ⎧=−⎪⎨⎪=⎩, 即16360S l l =−+. 经验证,表三数值所对应的l 与S l 的值都满足或近似满足函数解析式. 又因为()S l x n =+, 所以S x n l =+. 即16360l x n −+=+. 当2n =时,可得3601440l x =−+, ∴当2n =时,求l 与x 的函数解析式为3601440l x =−+;(3)解:由(2)得16360S l l =−+,即216360S l l =−+. 因为10360−<, 抛物线开口向下,对称轴1080l =, 所以当1080l =时,S 最大. 由实际情境可知,占地面积S 最大时,道路长度l 最大. 所以满足此关系式的l 的最大值是1080,即1080l . 由(2)得16360l x n −+=+. 当2x =即在出口处时,14360n l =−+,此时l 表示该景区可修建的步行道全长. 又因为1080l ,所以1n .。
初三期末数学试卷真题
一、选择题(每题5分,共25分)1. 下列数中,是平方数的是()A. 7B. 16C. 23D. 292. 已知一元二次方程x² - 4x + 3 = 0,则该方程的解为()A. x = 1 或 x = 3B. x = 2 或 x = 2C. x = 3 或 x = 1D. x = 0 或 x = 33. 在直角坐标系中,点P(2,3)关于y轴的对称点为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)4. 下列函数中,是反比例函数的是()A. y = x + 2B. y = 2xC. y = 2/xD. y = x²5. 一个长方形的长是宽的3倍,若长方形的周长是24cm,则长方形的长是()A. 6cmC. 10cmD. 12cm二、填空题(每题5分,共25分)6. 若 a + b = 7,ab = 12,则a² + b² = _______。
7. 在△ABC中,∠A = 45°,∠B = 60°,则∠C = _______°。
8. 已知二次函数y = ax² + bx + c(a ≠ 0),若a > 0,则该函数的图像开口向上;若a < 0,则该函数的图像开口向下。
9. 一次函数 y = kx + b(k ≠ 0)中,k > 0表示函数图像随着x的增大而增大;k < 0表示函数图像随着x的增大而减小。
10. 若等边三角形的边长为a,则其面积为 _______。
三、解答题(每题15分,共45分)11. (15分)已知一元二次方程2x² - 5x + 2 = 0,求该方程的解。
12. (15分)在△ABC中,∠A = 30°,∠B = 45°,AB = 6cm,求△ABC的面积。
13. (15分)已知一次函数 y = kx + b(k ≠ 0),当x = 1时,y = 2;当x = 2时,y = 4,求该函数的解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018—2019学年度第一学期九年级数学期末测试
数学试卷
(总分:150分时间:120分钟)
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中恰
有一项是符合题目要求的,请将正确选项前的字母代号写在相应位置
....上)
1.体育课上,九年级2名学生各练习10次立定跳远,要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生立定跳远成绩的(▲)
A.方差B.平均数C.中位数 D.众数
2.方程x2x+2=0的根的情况为(▲)A.有一个实数根B.有两个相等的实数根
C.有两个不相等的实数根D.没有实数根
3.将抛物线y=(x + l )2-2的图象绕其顶点旋转180,则旋转后的函数关系式()A.y=(x -l )2-2 B.y=-(x -l )2-2
C.y=-(x + l )2-2 D.y=-(x - l )2+2
4. 若二次函数()21
y x m
=--,当x≤1时,y随x的增大而减小,则m的取值范围是………………( )
5.如果关于x的一元二次方程(m-1)x2+2x+1=0有两个不相等的实数根,那么m的取值范围是(▲ )
A.m>2 B.m<2 C.m>2且m≠1 D.m<2且m≠1 6.如图,AB为⊙O的直径,点C、D在⊙O上,∠BAC=50°,则∠ADC为(▲ )A.40° B.50° C.80° D.100°7.已知二次函数y=2(x-3)2+1,则下列说法正确的是(▲)A.其图象的开口向下B.其图象的对称轴为直线x=-3
C.其最小值为1 D.当x<3时,y随x的增大而增大
8.如图,四边形ABCD是边长为1 的正方形,四边形EFGH是边长为2的正方形,点D 与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F→H方向平移至
点B与点H重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重
叠部分的面积为y,则能大致反映y与x之间函数关系的图象是(▲)
班
级
姓
名
考
场
考
号
…
…
…
…
…
…
…
…
…
…
…
…
…
装
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
订
…
…
…
…
…
…
…
…
…
…
…
…
线
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
G
H
(F)
B
C
D
C
H
F
B D
E E
A A
二、填空题(本大题共10小题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题纸的相应位置....
上) 9.用半径为2cm 的半圆围成一个圆锥的侧面,这个圆锥的底面半径是 ▲ . 10.若y =(a -1)x 2+3x +a 2-1的图象经过原点,则a 的值为 ▲ .
11.如图,一块含有30º角的直角三角板ABC ,在水平桌面上绕点C 按顺时针方向旋转到
A ’
B ’
C 的位置。
若BC=10cm ,则线段AB 从开始到结束所扫过的面积为 . 12.如图,将半径为4cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长度为
▲ cm .
13.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上,点A 、B 的读数分别为86°、30°,则∠ACB 的大小为 ▲ .
14.若数据3, -1,x, 4, 6的极差为8,则x= ▲ . 15.已知652=-x x ,则52102+-x x = ▲ .
16.把抛物线y =x 2-2x +2的图象向左平移2个单位,再向下平移3个单位,所得图象上有三点A (-2,y 1),B (1,y 2),C (2,y 3),则y 1,y 2,y 3的大小关系为 ▲ .(用>号连接)
17.如图,二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,
点B 坐标(-1,0),对称轴是过点(1,0)且平行于y 的直线.下面的四个结论: ①OA =3;②a +b +c <0;③ac >0;④b 2﹣4ac >0.其中正确的结论是 ▲ . 18.如图,在平面直角坐标系中,O 为原点,每个小方格的边长为1个单位长度,A (1,3)、B (3,1)为第一象限内两点,连接AB,将线段AB 绕点O 旋转一周,则所形成的图形的面积为 ▲ (结果保留π).
三 、 解答题(本大题共有9小题,共96分.请在答题纸的指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步
骤)
19.(本题9分)解方程
(1)2310x x -+=( 配方法) (2)2410x x +-=(公式法)(3)(x +1)2=3x +3
20. (本题满分8分)已知二次函数2
16y ax bx =++的图象经过点(-2,40)和点(6,-8) (1)分别求a 、b 的值,并指出二次函数图象的顶点、对称轴; (2)当26x -≤≤时,试求二次函数y 的最大值与最小值.
21.(本题9分)某次考试中, A 、B 、C 、D 、E 五位同学的数学、英语成绩如下表所示:
B
第12题 第13题 B O x
y
A C -1 1 第17题
(1)求这五位同学数学成绩的标准差和极差;
(2)为了比较同一学生不同学科考试成绩的好与差,可采用“标准分”进行比较,标准
分大的成绩更好;已知: 标准分=(个人成绩-平均分)÷成绩的标准差
请通过计算说明A 同学在这次考试中,数学与英语哪个学科考得更好?
22.(本题10分)如图,一个运动员推铅球,铅球刚出手时离地面1
2
3
米,铅球在空中运行的路线是抛物线,铅球离运动员4米处到达最高点,已知最高点离地面3米. (1)求抛物线的解析式;
(2)求这个运动员这次的成绩.
23.(本题12分)已知:如图,在△ABC 中,BC =AC ,以BC 为直径的⊙O 与边AB 相交于点D ,
DE ⊥AC ,垂足为点E .
(1)求证:点D 是AB 的中点;
(2)判断DE 与⊙O 的位置关系,并证明你的结论;
(3)若⊙O 的半径为9
,AB =12,求DE 的长.
24.(本题12分)某商场购进一批单价为16元的日用品.若按每件23
元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y (件)与价格x (元/件)之间满足一次函数. (1)试求y 与x 之间的函数关系式.
(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的
毛利润w 最大?每月的最大毛利润为多少?
(3)若要使某月的毛利润为1800元,售价应定为多少元?
25.(本题满分12分)如图,在Rt △ABC 中,B ∠=90︒,BC =C ∠=30︒.点D
从点C 出发沿CA 方向以每秒2个单位长的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以每秒1个单位长的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒(0t >).过点D 作DF BC
⊥第22题
图(13)
于点F ,连接DE 、EF .
(1)求证:四边形AEFD 是平行四边形;
(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,说明理由. (3)当t 为何值时,△DEF 为直角三角形?请直接写出t 的值.
26.(本题满分12分)如图,已知抛物线y =ax 2
+bx +3与x 轴交于A 、B 两点,过点A 的直线
l 与抛物线交于点C ,其中A 点的坐标是(1,0),C 点坐标是(4,3). (1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D ,使△BCD 的周长最小?若存在,求出
点D 的坐标,若不存在,请说明理由;
(3)若点E 是(1)中抛物线上的一个动点,且位于直线AC 的下方,试求△ACE 的最大
面积及E 点的坐标.
27.(12分)已知:如图,抛物线2(0)y ax bx c a =++≠的顶点C 在以D (―2,―2)为圆心,4为半径的圆上,且经过⊙D 与x 轴的两个交点A 、B ,连结AC 、BC 、OC 。
(1)求点C 的坐标; (2)求图中阴影部分的面积;
(3)在抛物线上是否存在点P ,使DP 所在直线
平分线段OC ?若存在,求出点P 的坐标; 若不存在,请说明理由。
(第23题)
F
E。