1-4 基尔霍夫电压定律
基尔霍夫定律及解析
基尔霍夫定律基尔霍夫定律是分析与计算电路的基本定律,分别称为基尔霍夫电流定律和基尔霍夫电压定律。
电路中几个常用名词如下: 支路;同一电流所流经的路径。
在图 1.11中有三条支路。
节点;三条或三条以上支路连接点。
在图 1.11中有a 、b 两个节点。
回路;由若干支路所组成的闭合路径。
在图 1.11中有abca 、abda 、adbca 三个回路。
网孔;不含支路的闭合路径。
在图 1.11中abca 、abda 两个网孔。
1.3.1 基尔霍夫电流定律(KCL )基尔霍夫电流定律是用来确定电路中任一节点各支路电流间的关系式。
由于电流的连续性,在任一瞬时,流向任一节点的电流之和等于流出该节点电流之和。
即=入I ∑出I ∑ (1.5) 在图 1.11所示电路中,对节点a 可写出I 1+I 2=I 3上述关系式可改写为I 1+I 2―I 3=0即 0=∑I (1.6)基尔霍夫电流定律也可表述为:在任一瞬时,通过电路中任一节点电流的代数和恒等于零。
假定选流入节点的电流取正值,则流出节点的电流取负值。
基尔霍夫电流定律通常应用于节点,还可以应用于任一假想的闭合面。
即在任一瞬时,通过电路中任一闭合面的电流代数和也恒等于零。
如图 1.12所示闭合面包围的三极管电路。
I b +I c =I e或 I b +I c -I e =0`图1.12 KCL 用于闭合面 图1.13例 1.3直流三相供电系统如图 1.13所示,若电流I A =5A ,I B =3A ,试求电流I C 。
解:假想一闭合面将三角形的负载包围起来,则I A +I B +I C =0I C =-I A -I B =-5-3=-8A负号表示电流的实际方向与图中参考方向相反。
图1.11 支路、节点、回路和网孔1.3.2 基尔霍夫电压定律(KVL )基尔霍夫电压定律是确定电路中任一回路各支路电压间的关系式。
对于电路中的任一回路,在任一瞬间,沿闭合回路绕行一周电压升之和等于电压降之和,即=升U ∑降U ∑ (1.7)以图 1.14电路为例,图中电源电压、电流和各元件两端电压的参考方向均已标出,并设定绕行方向,电压的参考方向与绕行方向一致者为电压降,反之电压升。
基尔霍夫定律的验证
基尔霍夫定律的验证
基尔霍夫定律是电路理论中的重要定理,可以用来描述电
路中电流和电压的关系。
它包括基尔霍夫电流定律和基尔
霍夫电压定律两个方面。
基尔霍夫电流定律(KCL):
在一个电路节点内,流入该节点的电流之和等于流出该节
点的电流之和。
基尔霍夫电压定律(KVL):
沿着闭合回路的各个元件电压之和等于零。
为验证基尔霍夫定律,可以选择一个简单的电路进行实验。
1. 设计一个简单的串联电路,包括电源、两个电阻和一个
电流表。
2. 以一定的电源电压给电路供电。
3. 测量电路中各个节点的电流值,确保电流表接在节点上。
4. 计算各个节点的电流之和,验证基尔霍夫电流定律是否
成立。
5. 测量电阻上的电压值,确保电压表接在电阻两端。
6. 沿着电路的闭合回路,测量各个元件上的电压值。
7. 计算各个元件上的电压之和,验证基尔霍夫电压定律是否成立。
通过对电路中电流和电压的测量和计算,可以验证基尔霍夫定律的正确性。
如果实验结果与基尔霍夫定律相吻合,即各个节点的电流之和为零,沿着闭合回路的各个元件电压之和为零,则可以确认基尔霍夫定律的有效性。
基尔霍夫定律
电流源电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。
在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。
在原理图上这类电阻应简化掉。
负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。
由于内阻等多方面的原因,理想电流源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。
实际上,如果一个电流源在电压变化时,电流的波动不明显,我们通常就假定它是一个理想电流源。
信息概述电流源电流源给定的电流,此线路通电流为定值,与你的负载阻值没有关系。
电流源的内阻相对负载阻抗很大,负载阻抗波动不会改变电流大小。
在电流源回路中串联电阻无意义,因为它不会改变负载的电流,也不会改变负载上的电压。
在原理图上这类电阻应简化掉。
负载阻抗只有并联在电流源上才有意义,与内阻是分流关系。
由于内阻等多方面的原因,理想电流源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。
实际上,如果一个电流源在电压变化时,电流的波动不明显,我们通常就假定它是一个理想电流源。
电流特点1、输出的电流恒定不变;2、直流等效电阻无穷大;3、交流等效电阻无穷大。
实际上,如果一个电流源在电压变化时,电流的波动不明显,我们通常就假定它是一个理想电流源。
电流应用电流源,即理想电流源,是从实际电源抽象出来的一种模型,其端钮总能向外提供一定的电流而不论其两端的电压为多少,电流源具有两个基本的性质:第一,它提供的电流是定值I或是一定的时间函数I(t)与两端的电压无关。
第二,电流源自身电流是确定的,而它两端的电压是任意的。
由于内阻等多方面的原因,理想电流源在真实世界是不存在的,但这样一个模型对于电路分析是十分有价值的。
实际上,如果一个电流源在电压变化时,电流的波动不明显,我们通常就假定它是一个理想电流源。
由于电流源的电流是固定的,所以电流源不能断路,电流源与电阻串联时其对外电路的效果与单个电流源的效果相同。
电工定律有哪些
电工定律有哪些在电学领域中,电工定律是描述电流、电压和电阻之间关系的基本规律。
电工定律有许多种,它们被广泛运用于电路分析、设计和实际应用中。
以下是几条最基本的电工定律:欧姆定律欧姆定律是最基本的电工定律之一,描述了电路中电压、电阻和电流之间的关系。
欧姆定律表达了如下关系:电流等于电压与电阻的比值。
即 I = V / R。
其中,I 代表电流,V 代表电压,R 代表电阻。
这个简单又重要的关系式在电路分析和设计中被频繁应用。
基尔霍夫电压定律(KVL)基尔霍夫电压定律是描述闭合电路中电压分配的法则。
它表达了沿着闭合回路的各个分支的电压之和等于零的关系。
换句话说,一个闭合回路中电压升降等于零。
这个定律为我们分析复杂电路提供了有力的工具。
基尔霍夫电流定律(KCL)基尔霍夫电流定律描述了电路中电流的守恒。
它规定了一个节点(连接电路中不同支路的地方)的电流流入等于流出的原则。
换句话说,对于任意节点,流入该节点的电流等于流出该节点的电流之和。
基尔霍夫电流定律被广泛运用于电路分析和设计中。
狄尔克定律狄尔克定律是关于电路中功率的分配定律。
它规定了电路中每个元件所消耗或提供的功率之和等于总功率的原则。
狄尔克定律对于衡量电路中各个元件的功率分配起到重要作用,帮助我们更好地理解电路的功率特性。
诺顿定律和戴维南定律诺顿定律和戴维南定律是电路分析中常用的简化技术。
诺顿定律表明了一个线性电路中的任何两个端口电压源和串联电阻均可互相替代。
而戴维南定律则表明了一个线性电路中的任何两个端口电流源和并联电阻均可互相替代。
这两个定律为电路分析提供了便利,帮助我们简化复杂电路的分析过程。
以上所列的电工定律只是电学领域中的基础知识,深入学习和理解这些电工定律将有助于我们更好地设计和分析电路。
电工定律为电气工程提供了基本的理论框架,帮助工程师解决实际问题和挑战。
熟练掌握这些定律,不仅可以提高我们的工程能力,也有助于更好地理解电路中的电流、电压和功率等基本概念。
1-4 基尔霍夫定律
Uab =US4 −US5 + R4I4 也可根据电位单值性 电位单值性, 也可根据电位单值性,直接写出一段电路的 电压方程式 Uab =Uaf +Ufc +Ucg Uab = R4尔霍夫电压定律
一段电路的电压方程式所表达的关系为: 一段电路的电压方程式所表达的关系为: 总电压( )等于各分段电压( 总电压(U)等于各分段电压(Uk)的代数和。 写作: 写作: U =
。
一、基尔霍夫电流定律
对结点a: 对结点 :
I1 + I5 = I2 + I4
也可改写为: 也可改写为: I1 − I2 − I4 + I5 = 0 点画线闭合面: 对于点画线闭合面 对于点画线闭合面:
I3 + I5 = I4
或 3 − I4 + I5 = 0 I
一、基尔霍夫电流定律
用闭合面电流方程式可简化问题。 用闭合面电流方程式可简化问题。 如图所示,根据基尔霍夫电流定律: 如图所示,根据基尔霍夫电流定律:
1-4 基尔霍夫定律
一、基尔霍夫电流定律
定律内容:对于电路中任一结点, 定律内容:对于电路中任一结点,在任一瞬间流 入该结点的电流等于流出该结点的电流。 入该结点的电流等于流出该结点的电流。 定律也可表述为:流入电路任一结点的电流的代 定律也可表述为: 数和为零。 数和为零。
————结点电流方程式 ∑ I =0 ————结点电流方程式
US1 +US2 3+1.5 I1 = I2 = = A = 0.075A R + R2 30+30 1
Uab = − S1 + R I1 U 1
= −3+30×0.075 V= −0.75V ( )
§1-4基尔霍夫定律
第一章
直流电路
基尔霍夫第一定律可以推广应用于任一假设的闭 合面(广义节点)。
上图电路中闭合面所包围的是一个三角形电路, 它有3个节点。
第一章
直流电路
应用基尔霍夫第一定律可以列出 IA = IAB-ICA IB = IBC-IAB IC = ICA-IBC 上面三式相加得
IA+IB+IC = 0 或 ∑I = 0
基尔霍夫第一定律又称节点电流定律。它 指出:在任一瞬间,流进某一节点的电流之和
恒等于流出该节点的电流之和,即
I
进
I出
【例1-8】I1 = 2A,I2 = -3A,I3 = -2A,试求I4。
解
由基尔霍夫第一定律可知
I1-I2 + I3 -I4 = 0
代入已知值
2-(-3)+(-2)-I4 = 0
∑U = UAB + I2R2 - I1R1 = 0
第一章
直流电路
下图所示电路中,E1=18V,E2=9V, R1=R2=1Ω,R3=4Ω,求各支路电流。
第一章
直流电路
解:(1)标出各支路电流参考方向和独立回路的绕行方向, 应用基尔霍夫第一定律列出节点电流方程。 I 1 +I 2 =I 3 (2)应用基尔霍夫第二定律列出回路电压方程。 对于回路1有E1=I1R1+I3R3 对于回路2有E2=I2R2+I3R3 代入已知值,整理得联立方程 I1 +I2 -I3 =0 I1 +4I3 =18 I2 +4I3 =9 (3)解联立方程得 I1 =6A(实际方向与假设方向相同) I2 =-3A(实际方向与假设方向相反) I3 =3A(实际方向与假设方向相同)
第一章
基尔霍夫电流和电压定律
基尔霍夫电流和电压定律1.引言1.1 概述基尔霍夫电流和电压定律是电路理论中两个基本且重要的定律。
基尔霍夫电流定律(Kirchhoff's Current Law,简称KCL)和基尔霍夫电压定律(Kirchhoff's Voltage Law,简称KVL)是由德国物理学家叶夫·基尔霍夫于19世纪提出的。
它们为我们描述和分析电路中电流和电压的分布、转换和平衡提供了基本原理和方法。
基尔霍夫电流定律是基于电荷守恒原理的一个应用,简要地描述了在闭合电路中电流的分布与平衡关系。
其核心思想是,任何一个节点(即电流的汇聚或分流点)处,流入节点的电流总和等于流出节点的电流总和。
这一定律适用于各种电路,无论是简单的直流电路还是复杂的交流电路。
基尔霍夫电压定律则是基于能量守恒原理,描述了在闭合回路中电压的分布与合成关系。
该定律表明,在电路中沿着任意闭合回路的电压总和等于零。
这意味着电压在电路的不同部分之间存在着特定的关系,通过在回路上分析电压的合成关系,我们可以推导出电路中各个元件的电压非常有用的信息。
基尔霍夫电流和电压定律为我们解决电路中各种问题提供了有力的工具。
无论是计算电路中电流的分布,还是确定电路中各个元件之间的电压关系,这些定律都可以被广泛地应用。
通过理解和掌握基尔霍夫电流和电压定律,我们能更好地分析和设计电路,解决各种实际工程中的问题。
在本文中,我们将详细介绍基尔霍夫电流和电压定律的原理和应用。
首先,我们将阐述这两个定律的描述和基本概念;然后,我们将探讨它们在实际电路中的应用场景;最后,我们将总结这两个定律的重要性和实际应用的意义。
通过本文的阅读,读者将能够深入理解基尔霍夫电流和电压定律,并能够熟练运用它们解决各种电路问题。
文章结构部分的内容如下:1.2 文章结构本文将按照以下顺序介绍基尔霍夫电流和电压定律:2.基尔霍夫电流定律:首先,我们将讨论基尔霍夫电流定律的概念和描述。
我们将解释该定律如何描述电流在一个封闭电路中的分布和转换。
基尔霍夫定律
基尔霍夫定律基尔霍夫定律指的是两条定律,第一条是电流定律,第二条是电压定律。
下面,我们分别讲。
基尔霍夫电流定律基尔霍夫电流定律,英文是Kirchhoff's Current Law,简写为KCL。
基尔霍夫电流定律指出:流入电路中某节点的电流之和等于流出电流之和(Total current entering a junction is equal to total current leaving it)。
用数学符号表达就是:基尔霍夫电流定律其中,Σ符号是求和符号,表示对一系列的数求和,就是把它们一个一个加起来。
举个例子,对于下面这个节点,有两个流入电流,三个流出电流对于上面节点,流入电流之和等于流出电流之和:为了方便记忆,我们将KCL总结为:基尔霍夫电流定律也被称为基尔霍夫第一定律(Kirchhoff's First Law)、节点法则(Kirchhoff's Junction Rule),点法则,因为它是研究电路中某个节点的电流的。
我们可以用张艺谋的电影一个都不能少来助记这条定律。
基尔霍夫电压定律基尔霍夫电压定律,英文是Kirchhoff's Voltage Law,简写为KVL。
基尔霍夫电压定律指出:闭合回路中电压升之和等于电压降之和(In any closed loop network,the total EMF is equal to the sum of Potential Difference drops.)。
如果我们规定电压升为正,电压降为负,基尔霍夫电压定律也可以表达为:闭合电路中电压的代数和为零(Algebraic sum of voltages around a loop equals to zero.)。
用数学符号表达就是:为了方便记忆,我们可以将KVL总结为:基尔霍夫电压定律也被称为基尔霍夫第二定律(Kirchhoff's First Law)、回路法则(Kirchhoff's Loop Rule),网格法则。
基尔霍夫定律
基尔霍夫定律基尔霍夫定律是德国物理学家基尔霍夫提出的。
基尔霍夫定律是电路理论中最基本也是最重要的定律之一。
它概括了电路中电流和电压分别遵循的基本规律。
它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
基本信息基尔霍夫定律Kirchhoff laws是电路中电压和电流所遵循的基本规律,是分析和计算较为复杂电路的基础,1845年由德国物理学家G.R.基尔霍夫(Gustav Robert Kirchhoff,1824~1887)提出。
它既可以用于直流电路的分析,也可以用于交流电路的分析,还可以用于含有电子元件的非线性电路的分析。
运用基尔霍夫定律进行电路分析时,仅与电路的连接方式有关,而与构成该电路的元器件具有什么样的性质无关。
基尔霍夫定律包括电流定律(KCL)和电压定律(KVL),前者应用于电路中的节点而后者应用于电路中的回路。
[1]发现背景基尔霍夫定律是求解复杂电路的电学基本定律。
从19世纪40年代,由于电气技术发展的十分迅速,电路变得愈来愈复杂。
某些电路呈现出网络形状,并且网络中还存在一些由3条或3条以上支路形成的交点(节点)。
这种复杂电路不是串、并联电路的公式所能解决的,刚从德国哥尼斯堡大学毕业,年仅21岁的基尔霍夫在他的第1篇论文中提出了适用于这种网络状电路计算的两个定律,即著名的基尔霍夫定律。
该定律能够迅速地求解任何复杂电路,从而成功地解决了这个阻碍电气技术发展的难题。
基尔霍夫定律建立在电荷守恒定律、欧姆定律及电压环路定理的基础之上,在稳恒电流条件下严格成立。
当基尔霍夫第一、第二方程组联合使用时,可正确迅速地计算出电路中各支路的电流值。
由于似稳电流(低频交流电)具有的电磁波长远大于电路的尺度,所以它在电路中每一瞬间的电流与电压均能在足够好的程度上满足基尔霍夫定律。
因此,基尔霍夫定律的应用范围亦可扩展到交流电路之中。
基本概念1、支路:(1)每个元件就是一条支路。
(2)串联的元件我们视它为一条支路。
基尔霍夫定律kcl和kvl
基尔霍夫定律kcl和kvl
基尔霍夫定律内容
1、基尔霍夫第一定律(KCL)
基尔霍夫第一定律又称基尔霍夫电流定律,简记为KCL,是电流的连续性在集总参数电路上的体现,其物理背景是电荷守恒公理。
基尔霍夫电流定律是确定电路中任意节点处各支路电流之间关系的定律,因此又称为节点电流定律。
2、基尔霍夫第二定律(KVL)
基尔霍夫第二定律又称基尔霍夫电压定律,简记为KVL,是电场为位场时电位的单值性在集总参数电路上的体现,其物理背景是能量守恒。
基尔霍夫电压定律是确定电路中任意回路内各电压之间关系的定律,因此又称为回路电压定律。
基尔霍夫电流定律定义。
在正弦交流电路中,电压与电流的有效值之间符合基尔霍夫定律-概述说明以及解释
在正弦交流电路中,电压与电流的有效值之间符合基尔霍夫定律-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括以下内容:在现代电路中,交流电路是一种非常常见的电路形式。
交流电路与直流电路不同,其特点是电压和电流会随着时间的变化而变化。
为了研究交流电路中电压和电流的关系,科学家们发展了许多理论和定律。
其中,基尔霍夫定律是解决交流电路问题的重要工具之一。
基尔霍夫定律是由德国物理学家叶夫根尼·欧西皮扬诺维奇·基尔霍夫在19世纪中叶提出的。
它包括两个定律:基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律指出:在任何一个电路节点中,进入该节点的电流的代数和等于离开该节点的电流的代数和。
简单来说,电流在电路中的总和守恒。
基尔霍夫电压定律则是指任何一个电路中,绕回路的电压之和等于零。
在本文中,我们将着重探讨正弦交流电路中电压和电流的有效值之间的关系,并展示这种关系是符合基尔霍夫定律的。
有效值是指在交流电路中产生等效效果的电压或电流值。
通过理论推导和数学分析,我们将证明基尔霍夫定律适用于正弦交流电路中电压与电流的有效值之间的关系。
本文的目的就是希望能够深入理解基尔霍夫定律在正弦交流电路中的应用,并通过具体实例和计算结果来验证其准确性。
通过对基尔霍夫定律的研究,我们可以更好地理解和分析交流电路中电压和电流的行为,为实际电路的设计和故障排除提供指导和参考。
1.2文章结构文章结构部分的内容可以包括以下内容:在本文中,我们将探讨在正弦交流电路中,电压与电流的有效值之间符合基尔霍夫定律的关系。
为了更好地理解这个问题,我们将按照以下结构进行论述:第一部分,引言,我们会简要介绍整篇文章的内容和目的。
我们将详细说明基尔霍夫定律在电路中的应用以及有关正弦交流电路的重要性。
第二部分,正文,我们将首先介绍基尔霍夫定律的概念。
我们将解释电流和电压在电路中如何遵循这个定律。
然后,我们会进一步讨论正弦交流电路中电压与电流的有效值之间的关系。
§1-4基尔霍夫定律(3-支路电流法)
由计算结果可知,实际电流的方向与所设的参考方向相反,电源 E2 不是输 出电流,而是 E1 对 E2 充电,I2 是充电电流。
●分组讨论。
【课堂练习】 课堂练习】
方程和 b − (n − 1)个独立的电压方程。 【例 3-2】 如图 3-7 所示电路,已知 E1 = 42 】 V,E2 = 21 V,R1 = 12 Ω,R2 = 3 Ω,R3 = 6 Ω,试求: 各支路电流 I1、I2、I3 。 ●启发思考并解 答。
将已知数代入(1)(2)(3)式得方程组 、 、
I1 + I 2 − I 3 = 0 − 0.6 I 2 + 117 − 130 + I1 = 0 24 I − 117 + 0.6 I = 0 2 3
●联立求解。
●由结果分析性 质。
解联立方程得
I 1 = 10 A;I 2 = −5 A;I = 5 A
【课堂小结】 课堂小结】
图 3-7
例题 3-2
●课堂小结。
支路电流法是基尔霍夫定律在复杂电路中的应用。其求解步骤如下: (1)确定电路的支路数 m,选定各支路电流的正方向; (2)若电路共有 n 个节点,利用基尔霍夫电流定律列出列(n − 1)个独立 的节点电流方程。 (3)利用基尔霍夫电压定律列写出独立回路的电压方程式,一般按网孔选 择的回路,列写的方程都是独立的; (4)解独立方程数目等于 m 个联立方程式,即可求出各支路电流的; (5)利用欧姆定律和基尔霍夫电压定律求出各支路电压。
I1 − I 2 − I 3 = 0 合并以上方程得以下 3 个方程: R1 I1 + R2 I 2 + E3 − E1 = 0 R I − R I − E = 0 2 2 2 3 3
基尔霍夫第一定律
基尔霍夫第一定律第一定律又称基尔霍夫电流定律,简记为KCL,是电流的连续性在集总参数电路上的体现,其物理背景是电荷守恒公理。
基尔霍夫电流定律是确定电路中任意节点处各支路电流之间关系的定律,因此又称为节点电流定律,它的内容为:在任一瞬时,流向某一结点的电流之和恒等于由该结点流出的电流之和,即:基尔霍夫定律在直流的情况下,则有:基尔霍夫定律通常把上两式称为节点电流方程,或称为KCL方程。
它的另一种表示为:基尔霍夫定律在列写节点电流方程时,各电流变量前的正、负号取决于各电流的参考方向对该节点的关系(是“流入”还是“流出”);而各电流值的正、负则反映了该电流的实际方向与参考方向的关系(是相同还是相反)。
通常规定,对参考方向背离(流出)节点的电流取正号,而对参考方向指向(流入)节点的电流取负号。
KCL的应用图KCL的应用所示为某电路中的节点,连接在节点的支路共有五条,在所选定的参考方向下有:基尔霍夫定律KCL定律不仅适用于电路中的节点,还可以推广应用于电路中的任一假设的封闭面。
即在任一瞬间,通过电路中任一假设封闭面的电流代数和为零。
KCL的推广图KCL的推广所示为某电路中的一部分,选择封闭面如图中虚线所示,在所选定的参考方向下有:基尔霍夫定律基尔霍夫第二定律第二定律又称基尔霍夫电压定律,简记为KVL,是电场为位场时电位的单值性在集总参数电路上的体现,其物理背景是能量守恒公理。
基尔霍夫电压定律是确定电路中任意回路内各电压之间关系的定律,因此又称为回路电压定律,它的内容为:在任一瞬间,沿电路中的任一回路绕行一周,在该回路上电动势之和恒等于各电阻上的电压降之和,即:基尔霍夫定律在直流的情况下,则有:基尔霍夫定律通常把上两式称为回路电压方程,简称为KVL方程。
KVL定律是描述电路中组成任一回路上各支路(或各元件)电压之间的约束关系,沿选定的回路方向绕行所经过的电路电位的升高之和等于电路电位的下降之和。
回路的“绕行方向”是任意选定的,一般以虚线表示。
基尔霍夫定律的由来
基尔霍夫定律的由来摘要:一、基尔霍夫定律的概念与背景二、基尔霍夫定律的内容与意义三、基尔霍夫定律的应用与扩展四、基尔霍夫定律的局限性与总结正文:一、基尔霍夫定律的概念与背景基尔霍夫定律,是电学领域中一种描述电路中电流和电压分布关系的基本定律。
它由德国物理学家格奥尔格·罗伯特·基尔霍夫(G.R.Kirchhoff)于1845 年提出。
基尔霍夫定律包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL),它们是电路分析的基础,被广泛应用于电路设计和电子工程领域。
二、基尔霍夫定律的内容与意义1.基尔霍夫电流定律(KCL):在任一集总参数电路中的任一节点,在任一瞬间流出该节点的所有电流的代数和恒为零。
即,进入节点的电流之和等于离开节点的电流之和。
这一定律表明,在电路中,电流的流动是连续的,不会发生中断。
2.基尔霍夫电压定律(KVL):在任一闭合回路中,电压之和等于零。
这意味着,在一个闭合回路中,电压的增减是平衡的。
从电源正极到负极的电压与从负极到正极的电压大小相等,符号相反。
基尔霍夫定律体现了电荷守恒和能量守恒的原则,是电路中电流和电压分布的基本规律。
三、基尔霍夫定律的应用与扩展基尔霍夫定律在电路分析中有广泛的应用,可以用于求解电路中的电流、电压等参数,也可以用于分析电路的稳定性和可靠性。
在实际应用中,基尔霍夫定律可以与其他电路分析方法相结合,如节点分析法、回路分析法、超定电路分析法等,以提高电路分析的效率和准确度。
此外,基尔霍夫定律还可以扩展到其他领域,如热力学、流体力学等,用于描述物质和能量的流动和分布规律。
四、基尔霍夫定律的局限性与总结基尔霍夫定律适用于集总参数电路,即电路本身的最大线性尺寸远小于电路中电流或电压的波长的电路。
对于分布参数电路,基尔霍夫定律不再适用。
尽管基尔霍夫定律有一定的局限性,但它在电路分析中的基础地位不可动摇。
基尔霍夫-定律
电路分析基础
1.2
基尔霍夫电压定律
基尔霍夫定律
沿任意一个回路绕行, 回路中各段电压的代数和恒等于零, 这称为基尔霍夫 电压定律(简称KVL) 。其数学表达式为
应用时应注意以下几点: (1) 必须先选定回路的绕行方向, 可以是顺时针, 也可以是逆时针。各元 件端电压的参考方向也应选定。 (2) 若电压的参考方向与回路的绕行方向一致, 则该项电压的取正号, 反 之则取负号。 (3) 各元件端电压本身的值还有正负之分, 必须注意两套符号的正确使基尔霍夫定律
对于较复杂电路, 可以用基尔霍夫电流定律和基尔霍夫电压定律推导出各种 分析方法, 支路电流法便是其中之一。 支路电流法即为以电路中各支路电流为未知量, 然后应用基尔霍夫电流定律 和电压定律分别对节点和回路列出所需要的方程组, 而后解出各未知支路电 流。
电路与电子技术
电路与电子技术
电路分析基础
1.1
基尔霍夫电流定律
基尔霍夫定律
对电路中的任何节点, 流入该节点电流之和等于从该节点流出电流之和, 这称为基尔霍夫电流定律(简称KCL) 。其数学表达式为
应用基尔霍夫电流定律时应注意以下几点: (1) 首先在电路图中标定各支路电流的参考方向, 若设流入节点的电流 为正, 则流出该节点的电流取负。 (2) 各支路电流的数值本身还有正负之分, 必须注意两套符号的正确使 用。
欧姆定律和基尔霍夫定律公式
欧姆定律和基尔霍夫定律公式欧姆定律和基尔霍夫定律是电学中最基本的定律之一,它们是电路分析和设计的基础。
本文将分别介绍欧姆定律和基尔霍夫定律的公式及其应用。
欧姆定律欧姆定律是描述电流、电压和电阻之间关系的基本定律。
它的公式为:I = V/R其中,I表示电流,单位为安培(A);V表示电压,单位为伏特(V);R表示电阻,单位为欧姆(Ω)。
欧姆定律告诉我们,电流的大小与电压成正比,与电阻成反比。
当电压不变时,电阻越大,电流越小;当电阻不变时,电压越大,电流越大。
欧姆定律的应用非常广泛,例如在电路中计算电流、电压和电阻的大小,以及设计电路中的电阻器、电源等。
基尔霍夫定律基尔霍夫定律是描述电路中电流和电压分布的基本定律。
它包括基尔霍夫电流定律和基尔霍夫电压定律。
基尔霍夫电流定律的公式为:ΣI = 0其中,ΣI表示电路中所有电流的代数和,如果电流从某个节点流入,则为正;如果电流从某个节点流出,则为负。
基尔霍夫电流定律告诉我们,电路中的电流守恒,即电路中所有电流的代数和为零。
基尔霍夫电压定律的公式为:ΣV = 0其中,ΣV表示电路中所有电压的代数和,如果电压沿着某个回路方向为正,则沿着相反方向为负。
基尔霍夫电压定律告诉我们,电路中的电压守恒,即电路中所有电压的代数和为零。
基尔霍夫定律的应用非常广泛,例如在电路中计算电流和电压的分布,以及设计电路中的电源、电容器、电感器等。
总结欧姆定律和基尔霍夫定律是电学中最基本的定律之一,它们是电路分析和设计的基础。
欧姆定律描述了电流、电压和电阻之间的关系,基尔霍夫定律描述了电路中电流和电压的分布。
它们的公式简单易懂,应用广泛,是电学学习的重要内容。
基尔霍夫定律
1、支路:由一个或几个元件 首尾相接构成的无分支电路。 E1
R1
右图中有 3 条支路:
E1和R1串联构成一条支路 E2和R2串联构成一条支路 R3单独构成另一条支路
A E2
R3 R2
B
思考 同一支路中的电流有什么关系?
川庆培训中心、四川石油学校
CCDC Training Center、Sichuan Petroleum School
(一)、基尔霍夫电流定律(节点电流定律KCL)
1、第一种表述:电路中任意节点上,在任一时刻, 流入节点的电流之和,恒等于流出该节点的电流之 和。
即:ΣI入 = ΣI出
在节点A上有:
I1+I3 I2+I4+I5
移项后就得到另一种表述。
川庆培训中心、四川石油学校
CCDC Training Center、Sichuan Petroleum School
2、第二种表述:由电阻和电动势组成的电路,在 任一瞬间,沿闭合回路绕行一周,各电阻上电压 降的代数和恒等于各电源电动势的代数和。
即: ΣIR=ΣE
列方程:
(1)任选回路绕行方向;
(2)电阻上电流方向与绕行方向一致,则电阻上电压降(IR) 取正,反之取负;
(3)沿回路绕行方向,电源电动势的方向(电源内部负极指 向正极的方向)与绕行方向一致,该电动势(E)取正,反之 取负。
川庆培训中心、四川石油学校
CCDC Training Center、Sichuan Petroleum School
举例:求电路中的电流I1和I2
10A
I2
解:对节点A:I1 = -3A + 10A + 5A = 12A
-3A A
基尔霍夫定律
n
uk 0
k 1
列写KVL方程 时,亦需要注 意两套符号
◆在应用该定律列写方程式时,应首先选定回路的绕
行方向(可顺时针方向,也可逆时针方向)。一般规定:
当支路(元件)电压的参考方向与回路的绕行方向一致
时,该电压的前面取“+”号;反之取“-”号。
例
+ u1
+
u4
u2
+
u3 +
u1 u2 + u3 u4 = 0
2、节点:为简便起见,通常把3条或3条(或2条 或2条)以上支路的联接点称为节点。根据这一定义, 右上图所示电路中有2、5两个节点(或1、2、3、4、 5)五个节点 。
3、回路:电路中任意闭合路径称为回路。在右 图所示电路中,共有3条回路,分别由元件1、2、5、 6,元件3、4、5、 6 元件1、2、3、4构成。
uad=u3+u4-u5
将已知数据代入,得
uad=2V+6V-10V=-2V
假想
回路
例 已知右图所示电路中各元件的 电压u1=2V,u2=-3V ,u3=4V, u4=8V ,u5=-6V,试求u6。
解 可以根据KVL求u6 。选定 回路的绕行方向如图。
电路的KVL方程为
-u1+ u2-u3 + u4-u5 + u6
i4
i2 = 4A
= 5 (4) + (3)
i3 = 3A
= 2A
b)割集的定义 割集确切定义为:割集是具有下述性质
的支路的集合,若把集合的所有支路切割 (或移去),电路将成为两个分离部分, 然而,只要少切割(或移去)其中的任一 条支路,则电路仍然是连通的。
基尔霍夫电压定律
《电工技术》知识点:基尔霍夫电压定律基尔霍夫电压定律:在任何电路中的任一回路,在任一时刻,沿着回路(顺或逆时针)循行方向,所有支路各段电压的代数和恒等于零。
基尔霍夫电压定律(KVL)即: u = 0I 1I 2I 3ba+-U S2R 2+-R 3R 1U S112或: u 升= u 降对回路1:I 1 R 1 +I 3 R 3 = U S1I 1 R 1 +I 3 R 3 –U S1 = 0 I 1I 2I 3b a +-U S2R 2+-R 3R 1U S11或-基尔霍夫电压定律(KVL)即: u = 0或: u 升= u 降对回路2:I 2 R 2+I 3 R 3=U S2或基尔霍夫电压定律(KVL )反映了电路中任一回路中各段电压间相互制约的关系。
I 2 R 2+I 3 R 3 –U S2 = 0 基尔霍夫电压定律(KVL)I 1I 2I 3b a +-U S2R 2+-R 3R 1U S12由: u = 0u 升= u 降1.列方程前标注回路循行方向;2.应用 U = 0列方程时,项前符号的确定:如果规定电位降取正号,则电位升就取负号。
3. 开口电压可按回路处理注意:基尔霍夫电压定律(KVL)U S2 =U BE + I 2R 2U BE +I 2R 2–U S2 = 03. 开口电压可按回路处理1对回路1:U S1U BE E+B+–R 1+–U S2R 2I 2_基尔霍夫电压定律(KVL) u 升= u 降由: u = 0基尔霍夫电压定律(KVL)例:如图所示,已知U S2=3V ,R 1=1k Ω,R 2=4kΩ。
当U S1=2V 时,试求U ab 。
回路1U S1+U S2-IR 1-IR 2=0S 1S ()U U I R R212333214101101m A解:–++–U S1R 1U S2I I U a b+–R2ba1回路2 U ab +U S2=IR 2则U ab =IR 2-U S2解:3341011031V基尔霍夫电压定律(KVL)–++–U S1R 1U S2I IU a b+–R2ba2基尔霍夫电压定律(KVL)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4 基尔霍夫电压定律
邹建龙,西安交通大学电气工程学院
1. 基尔霍夫电压定律
基尔霍夫电压定律(Kirchhoff’s Voltage Law, KVL )有两种表述形式:
表述形式一:对电路中任意一个回路而言,沿回路绕向,升压=降压。
图1为KVL 表述形式一示意图。
图中回路绕向均取顺时针方向,当然也可以选逆时针方向,至于选哪种绕向,根据各人喜好来定就可以了。
图中的电压源电压为升压,之所以是升压,是因为升压定义为沿着回路绕向,从负极抬升到正极;电阻电压为降压,是因为对于电阻来说,沿着回路绕向,从正极降低到负极。
基尔霍夫电压定律成立的依据是电场力做功与路径无关。
电场力做功与路径无关的详细证明需要用到电磁场的知识,在“电磁场与波”课程中有详细证明。
为了直观理解电场力做功与路径无关,可以以重力做功与路径无关类比。
我们将一个物体从地面抬起来,然后绕一圈,最后放回地面。
物体在抬升时,重力做负功,物体下降时,重力做正功,最后物体转了一圈回到地面,重力总的做功为零,也就是说正功等于负功。
R u s u s
R u s u 1
R 2
R u s
12R R u u u =+(升压)(降压)
图1 KVL 表述形式一(升压=降压)示意图 表述形式二:对电路中任意一个回路而言,该回路的所有电压的代数和等于零。
这听起来有点莫名其妙,貌似很高深的样子。
其实该结论的得出过程很简单,就是将表述形式一的“升压=降压”,变成“升压−降压=0”。
显然,表述形式一和表述形式二是等价的。
图2给出了KVL 表述形式二(电压代数和=0)的示意图。
由图可见,升压项前取“+”,而降压项前取“−”。
如果将方程两端同时乘以1−,则升压项取负,降压项取正。
以上两种情况是等价的,我们以后一般升压取负,降压取正。
R u s u s
(R u =0 s u 1
R 2
R s
120R
R u u u −=(升压)-(降压)(降压)
图2 KVL 表述形式二(电压代数和=0)示意图
图1和图2中的电压方向都是我们假定的方向,也就是参考方向。
电压参考方向关键是要指定正极和负极,电压参考方向可以任意指定,如何指定一般根据自己的喜好。
关于电压参考方向的详细内容与1.3节中电流参考方向的内容相似,所以此处就不再展开。
2.问与答
问:基尔霍夫电压定律对所有电路都成立吗?
答:
基尔霍夫电压定律不是对所有电路成立。
具体解释与1.3节类似。
问:基尔霍夫电压定律(KVL)和基尔霍夫电流定律(KCL)在电路中的作用如何?
答:
KCL和KVL是电路分析的基础,起着至关重要的作用。
后续所有电路知识点全部都要用到KCL和KVL。
任何一个电路只要列写出KCL方程和KVL方程,同时知晓电路中每个元件的特性,那么就一定可以求解出来。
KCL和KVL在电路中的地位,就如同牛顿定律在力学中的地位那么重要。