人教版数学七年级上册第2章整式的加减能力训练
人教版七年级数学上册第二章整式的加减专项练习100题
人教版七年级数学上册第二章整式的加减专项练习100题1.3(a+5b)-2(b-a)2.3a-(2b-a)+b3.2(2a^2+9b)+3(-5a^2-4b)4.(x^3-2y^3-3x^2y)-(3x^3-3y^3-7x^2y)5.3x^2-[7x-(4x-3)-2x^2]6.(2xy-y)-(-y+yx)7.5(a^2b-3ab^2)-2(a^2b-7ab)8.(-2ab+3a)-2(2a-b)+2ab9.(7m^2n-5mn)-(4m^2n-5mn)10.(5a^2+2a-1)-4(3-8a+2a^2)11.-x^2y+xy^212.2(a-1)-(2a-3)+313.-2(ab-3a^2)-[2b^2-(5ab+a^2)+2ab]14.(x^2-xy+y)-3(x^2+xy-2y)15.3x^2-[7x-(4x-3)-2x^2]16.a^2b-[2(a^2b-2a^2c)-(2bc+a^2c)]17.-2y^3+(3xy^2-x^2y)-2(xy^2-y^3)18.2(2x-3y)-(3x+2y+1)19.-(3a^2-4ab)+[a^2-2(2a+2ab)]20.-2m-3n-9p21.x^y22.-6a-1523.8a^2-18a+1024.-5ab^225.-4a^3+6a^2+126.-2ab+5a^2-2b^227.028.-2x^2+3x+1/229.x^2-3x+330.9a+4b31.4a^232.2a^2b-233.a^2-3a+334.-2xy-y^235.1/2 ab36.037、2x - (3x - 2y + 3) - (5y - 2);改写为:2x - 3x + 2y - 1 - 5y + 2,简化合并同类项:-6y - x + 1.38、-(3a + 2b) + (4a - 3b + 1) - (2a - b - 3);改写为:-3a - 2b + 4a - 3b + 1 - 2a + b + 3,简化合并同类项:-a - 4.39、4x^3 - (-6x^3) + (-9x^3);改写为:4x^3 + 6x^3 - 9x^3,简化合并同类项:x^3.40、3 - 2xy + 2yx^2 + 6xy - 4x^2y;改写为:3 + 4xy - 2x^2y,简化合并同类项。
人教版数学七年级上册第二章整式的加减单元检测题(含答案)
人教版数学七年级上学期第二章整式的加减测试一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+82.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 44.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,35.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 26.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 247.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.16.化简:-2a2-[3a2-(a-2)]=___________.三、解答题17.完成下表18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.答案与解析一、选择题1.化简-16(x-0.5)的结果是( )A. -16x-0.5B. -16x+0.5C. 16x-8D. -16x+8【答案】D【解析】【分析】根据去括号法则及乘法分配律解答即可.【详解】由去括号法则及乘法分配律可得:-16(x-0.5)=-16x+8.故选D.【点睛】本题考查了去括号法则及乘法分配律,熟练运用去括号法则及乘法分配律是解决问题的关键.2.以下判断正确的是( )A. 单项式xy没有系数B. -1是单项式C. 23x2是五次单项式D. 是单项式【答案】B【解析】【分析】根据单项式的有关概念进行解答即可.【详解】A、单项式xy的系数是1,故错误;B、-1是单项式,故正确;C、23x2是2次单项式,故错误;D、是分式,故错误.故选:B.【点睛】本题考查了单项式,单项式的系数,次数,熟记单项式的系数,次数的定义是解题的关键.3.已知整式x2y的值是2,则5x2y+5xy-7x-(4x2y+5xy-7x)的值是( )A. -4B. -2C. 2D. 4【答案】C【解析】【分析】原式去括号合并后,将已知整式的值代入计算即可求出值.【详解】∵x2y=2,∴原式=5x2y+5xy-7x-4x2y-5xy+7x=x2y=2.故选:C.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.4.单项式-32xy2z3的系数和次数分别是( )A. -1,8B. -3,8C. -9,6D. -9,3【答案】C【解析】分析:根据单项式系数和次数的定义求解.详解:单项式﹣32xy2z3的系数和次数分别是﹣9,6.故选C.点睛:本题考查了单项式的系数和次数,注意单项式中数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.如果-33a m b2是7次单项式,则m的值是( )A. 6B. 5C. 4D. 2【答案】B【解析】【分析】根据单项式次数的定义来求解.所有字母的指数和叫做单项式的次数.【详解】根据单项式次数的定义,所有字母的指数和为7,即m+2=7,则m=5.故选:B.【点睛】灵活掌握单项式次数的定义,根据题意列方程,是解题的关键.6.当a=-5时,多项式a2+2a-2a2-a+a2-1的值为( )A. 29B. -6C. 14D. 24【答案】B【解析】【分析】先对原式合并同类项,再把a=-5代入化简后的式子计算即可.【详解】原式=a-1,当a=-5时,原式=-5-1=-6.故选:B.【点睛】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.7.已知a<b,那么a-b和它的相反数的差的绝对值是( )A. b-aB. 2b-2aC. -2aD. 2b【答案】B【解析】试题分析:a﹣b的相反数是b﹣a,可得a﹣b和它的相反数为:(a﹣b)﹣(b﹣a)=2a﹣2b,又因为a<b,可知2a ﹣2b<0,所以|(a﹣b)﹣(b﹣a)|=2b﹣2a.解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.考点:整式的加减.8.下面不是同类项的是( )A. -2与12B. 2m与2nC. -2a2b与a2bD. -x2y2与12x2y2【答案】B【解析】【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,结合选项即可得出答案.【详解】A、-2与12是同类项,所以A选项错误;B、在2m与2n中,字母不相同,它们不是同类项,所以B选项正确;C、﹣2a2b与a2b是同类项,所以C选项错误;D、与是同类项,所以D选项错误.故选B.【点睛】此题考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,难度一般.二、填空题9.若单项式2x2y m与−x n y3的和仍为单项式,则m+n的值是___________.【答案】5【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程m=3,n=2,再代入代数式计算即可.【详解】由题意知单项式2x2y m与−x n y3是同类项,∴n=2,m=3,∴m+n=5,故答案为:5.【点睛】本题考查同类项的知识,注意掌握同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.10.若单项式-a2x b m与a n b y-1可合并为a2b4,则xy-mn=___________.【答案】-3【解析】【分析】因为单项式-a2x b m与a n b y-1可合并为a2b4,而只有几个同类项才能合并成一项,非同类项不能合并,可知此三个单项式为同类项,由同类项的定义可先求得x、y、m和n的值,从而求出xy-mn的值.【详解】∵单项式-a2x b m与a n b y-1可合并为a2b4,则此三个单项式为同类项,则m=4,n=2,2x=2,y-1=4,x=1,y=5,则xy-mn=1×5-4×2=-3.【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关.11.把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,排在第三项的是___________.【答案】-5a2b【解析】【分析】先把多项式2ab2-5a2b-7+a3b3按字母b的降幂排列,然后找出符合条件的项即可.【详解】多项式2ab2-5a2b-7+a3b3按字母b的降幂排列为:a3b3+2ab2-5a2b-7.故答案为:-5a2b.【点睛】本题主要考查的是多项式概念,掌握多项式按照某一字母的升降幂排列的方法是解题的关键.12.若a2m−5b2与-3ab3-n的和为单项式,则m+n=___________.【答案】4【解析】【分析】直接利用合并同类项法则得出关于m,n的等式进而求出答案.【详解】∵a2m−5b2与-3ab3-n的和为单项式,∴2m-5=1,2=3-n,解得:m=3,n=1.故m+n=4.故答案为:4.【点睛】此题主要考查了单项式,正确把握合并同类项法则是解题关键.13.把(x-1)当做一个整体,合并3(x-1)2-2(x-1)3-5(1-x)2+(1-x)3的结果为___________.【答案】-2(x-1)2-3(x-1)3【解析】【分析】根据互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数,可化成同类项,根据合并同类项,可得答案.【详解】原式=3(x-1)2-2(x-1)3-5(x-1)2-(x-1)3=-2(x-1)2-3(x-1)3,故答案为:-2(x-1)2-3(x-1)3.【点睛】本题考查了合并同类项,利用互为相反数的偶次幂相等,互为相反数的奇次幂互为相反数化成同类项是解题关键.14.如果在数轴上表示a,b 两个实数的点的位置如图所示,那么|a﹣b|+|a+b|化简的结果为_____.【答案】-2a【解析】【分析】先由数轴上a,b的位置判断出其符号,再根据其与原点的距离距离判断出a,b绝对值的大小,代入原式求值即可.【详解】由数轴可a<0,b>0,a<b,|a|>b,所以a-b<0,a+b<0,∴|a-b|+|a+b|=-a+b-a-b=-2a,故答案为:-2a.【点睛】本题考查了数轴的概念、整式的加减、绝对值的性质等,熟练掌握正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值还是0是解题的关键.15.数a在数轴上的位置如图所示,式子|a-1|-|a|的化简结果是___________.【答案】1【解析】先根据点a在数轴上的位置判断出a的符号,再去绝对值符号,合并同类项即可.解:∵由图可知,a<0,∴a﹣1<0,∴原式=1﹣a+a=1.故答案为:1.16.化简:-2a2-[3a2-(a-2)]=___________.【答案】-5a2+a-2【解析】【分析】去括号,然后合并同类项即可.【详解】-2a2-[3a2-(a-2)]= -2a2-[3a2-a+2]= -2a2-3a2+a-2=-5a2+a-2.故答案为:-5a2+a-2【点睛】本题考查整式的化简,注意去括号时符号的变化.三、解答题17.完成下表【答案】详见解析.【解析】【分析】根据单项式的系数和次数的定义解答即可.【详解】x的系数是1,次数是1;-2mn的系数是-2,次数是2;的系数是,次数是4.填表如下:【点睛】此题考查了单项式的有关定义,熟练掌握单项式的系数和次数的的定义是解答此题的关键.18.若-mx2y|n-3|是关于x、y的10次单项式,且系数是8,求m+n的值.【答案】m+n=3或m+n=-13.【解析】【分析】利用单项式的定义得出m的值,进而利用单项式次数的定义得出n的值,进而得出答案.【详解】因为-mx2y|n-3|是关于x、y的10次单项式,且系数是8,所以m=-8,且2+|n-3|=10,解得n=11或-5,则m+n=3或m+n=-13.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数的定义是解题关键.19.去括号,合并同类项:(1)(x-2y)-(y-3x);(2)3a2−[5a−(a−3)+2a2]+4.【答案】(1)4x-3y;(2)a2-a+1.【解析】【分析】(1)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变;(2)去括号时注意去括号后符号的变化,然后找出同类项,根据合并同类项得法则,即系数相加作为系数,字母和字母的指数不变.【详解】(1)(x-2y)-(y-3x)=x-2y-y+3x=4x-3y;(2)3a2−[5a−(a−3)+2a2]+4=3a2−(5a−a+3+2a2)+4=3a2−5a+a-3-2a2+4=a2-a+1.【点睛】解决本题是要注意去括号时符号的变化,并且不要漏乘.有多个括号时要注意去各个括号时的顺序.20.已知小明的年龄是m岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的还多1岁,求这三名同学的年龄的和【答案】这三名同学的年龄的和是(4m-5)岁.【解析】解:因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为岁.又因为小华的年龄比小红的年龄的还多1岁,所以小华的年龄为(岁),则这三名同学的年龄的和为答:这三名同学的年龄的和是岁.21.已知(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,求a2-3ab+b2的值.【答案】-5.【解析】【分析】根据单项式及单项式次数的定义,可得出a、b的值,代入代数式即可得出答案.【详解】∵(a-3)x2y|a|+(b+2)是关于x,y的五次单项式,∴,解得:,则a2-3ab+b2=9-18+4=-5.【点睛】本题考查了单项式的知识,属于基础题,掌握单项式的定义及单项式次数的定义是解答本题的关键。
人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)
一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。
人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)
3.计算
(1) 2 x 5y 43x 4 y
(2) 4x2 y 3xy 23xy 2 2x2 y
4.计算:
(1) 3a2b 5 5b2 6a2b 7 5b2 4a3 ;
(2) 3ab2 2 2ab2 a2b 3 1 4a2b 10ab2 . 2
5.化简:
8.化简并求值: 2 ab2 2a2b 3 ab2 a2b 1 ,其中 a 2,b 1.
9.先化简,再求值: x2 y2 2xy 3x2 4xy y2 5xy ,其中, x= 1, Nhomakorabeay 2.
10.先化简,再求值 2
ab 3a2
5a2
4ab a2
14.已知 A 3a2 ab , B 5ab a2 (1)求 2A B 的值;
(2)若 2A 与 B C 互为相反数,a、b 满足 a 22 + b+1=0 ,求 C 的值.
15.已知 A 4x2 2xy 3y2, B 4x2 3y2 . (1)求 A B ; (2)当 x 3, y 1 时,求 A B 的值.
18.已知代数式 A 2x2 5xy 7 y 3 , B x2 xy 2
(1)求 3A 2A 3B 的值;
(2)若 A 2B 值与 x 的取值无关,求 y 的值.
1.(1) 1 x2 - 3x + 2 5
(2) 1 a2b 4
2.(1) 2x2 x 1 (2) 3a2 33a 18
3.(1) 6 y 10x (2) 2x2 y 3xy 4
4.(1) 3a2b 4a3 2 (2) 4ab2 6
5.(1) a2b 8ab2 (2) x2 4x
6.(1) 2a2 7b2 ab (2)12a 10b
7. 3x2 4xy 12 , 24 8. ab2 a2b 3 , 5 9. 4x2 xy ;6 10. 2ab ;1 11. 3x2 y 5xy , 2 12. 5x2 xy ,18 13. a2b 6ab2 3 , 89 14.(1) 5a2 3ab (2) 14
人教版七年级数学上册第二章整式的加减专项练习100题
七年级数学上册第二章整式的加减专项练习100题1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x 2y-7xy 2)-(xy 2-3x 2y ); 22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]. 23、3a 2-9a+5-(-7a 2+10a-5); 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2). 25、(5a-3a 2+1)-(4a 3-3a 2);26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab] 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2].30、5a+(4b-3a )-(-3a+b );31、(3a2-3ab+2b2)+(a2+2ab-2b2); 32、2a2b+2ab2-[2(a2b-1)+2ab2+2]. 33、(2a 2-1+2a )-3(a-1+a 2); 34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 37、2x -(3x -2y +3)-(5y -2);38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3) 40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4)46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).49、21xy+(-41xy )-2xy 2-(-3y 2x )50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]5556、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 258、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2;59、(7y-3z )-(8y-5z );60、-3(2x 2-xy )+4(x 2+xy-6).61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)62、-3x 2y+2x 2y+3xy 2-2xy 2;63、3(a 2-2ab )-2(-3ab+b 2);64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}.65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )].66、-[2m-3(m-n+1)-2]-1.67、31a-( 21a-4b-6c)+3(-2c+2b)68、 -5a n-a n-(-7a n)+(-3a n)69、x 2y-3xy 2+2yx 2-y 2x70、41a 2b-0.4ab 2-21a 2b+52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.80、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z 2与12y+7x-3z 2的和85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2 a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.98、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值99、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a 2+6b 24、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5、3x 2-[7x-(4x-3)-2x 2] = 5x 2-3x-3 6、(2xy-y )-(-y+yx )= xy7、5(a 22b-3ab 2)-2(a 2b-7ab ) = -a 2b+11ab8、(-2ab+3a )-2(2a-b )+2ab= -2a+b 9、(7m 2n-5mn )-(4m 2n-5mn )= 3m 2n10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-13 11、-3x 2y+3xy 2+2x 2y-2xy 2= -x 2y+xy 212、2(a-1)-(2a-3)+3.=413、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]= 7a 2+ab-2b 214、(x 2-xy+y )-3(x 2+xy-2y )= -2x 2-4xy+7y15、3x 2-[7x-(4x-3)-2x 2]=5x 2-3x-316、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c 17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y 18、2(2x-3y )-(3x+2y+1)=2x-8y-119、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p 21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y 22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2 +7a+2 23、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+10 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 2 25、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+1 26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a 2+ab-2b 227、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=0 28、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-2529、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b 31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+4 41、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+2 43、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 2 44、()[]{}y x x y x --+--32332 = 5x+y 45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab 49、21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 250、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a 51、5m-7n-8p+5n-9m+8p=-4m-2n59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x2+7xy-24 61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 2 65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+4 67、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、y-4xy 2 71、71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =69874、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=12 78、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3. 原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 2 81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y 83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 2 85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+1 86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M M=-21x 2+4xy —23y87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.原式=-8xy+y= —15 88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=36 89、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A); A+B=2a 2+2b 241(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N . M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B . 2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.原式=9ab 2-4a 2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-3296、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B。
人教版七年级上册数学第二章整式的加减单元测试题附答案
人教版七年级上册数学第二章整式的加减单元测试题附答案精品数学单元测试人教版数学七年级上学期第二章整式的加减达标测试卷一、选择题(共10小题,每小题3分,共30分)1.式子 $3x^2+2xy-5y^2$ 中整式有()A。
3个 B。
4个 C。
5个 D。
6个2.已知 $a=2$,$b=-3$,当 $x=1$ 时,$3a+2b$ 的结果为()A。
8 B。
-8 C。
-6 D。
64.下列运算正确的是()A。
$4m-m=3$ B。
$2a^2-3a^2=-a^2$ C。
$a^2b-ab^2=0$ D。
$x-(y-x)=-y$5.单项式的系数和次数依次是()A。
$-2,2$ B。
$-3,4$ C。
$-1,2$ D。
$-5,5$6.下列说法正确的是()A。
整式一定是单项式 B。
多项式一定是整式C。
多项式一定是单项式 D。
单项式一定是多项式7.若 $2x^2+3x+1$ 和 $3x^2+2x+1$ 是同类项,则$2x^2+3x+1$ 的系数是 $x^2$ 的系数与 $x$ 的系数之和。
其值为()A。
5 B。
6 C。
7 D。
88.下列说法中错误的是()A。
单项式的系数是一个数 B。
单项式与单项式的次数相加得到多项式的次数C。
与单项式的次数为0的单项式是常数项 D。
二次三项式不是一个术语9.下列单项式中,与 $-5xy$ 是同类项的是()A。
$-5xy$ B。
$3x^2y$ C。
$-5xy^2$ D。
$-5$10.将多项式按降幂排列,正确的是()A。
$x^3-2x+2x^2+5$ B。
$5-2x+2x^2-x^3$ C。
$-x^3+2x^2+2x+5$ D。
$-x^3+2x^2-2x+5$二、填空题(共10小题,每小题3分,共30分)11.计算:$(2a^2-3ab+4b^2)-(a^2+2ab-3b^2)$答案:$a^2-5ab+7b^2$12.已知 $x=2$,$y=-3$,计算 $2x^2-xy+3y^2$ 的值答案:$29$13.矩形的周长为 $18$,其中一边长为 $3$,求另一边长答案:$4.5$14.已知 $a+b=3$,$a-b=1$,求 $a$ 和 $b$ 的值答案:$a=2$,$b=1$15.若 $2x^2-xy+3y^2$ 与 $-4x^2+xy$ 是同类项,则 $x$ 的值为 $-2$,一边长为 $5$,则矩形的另一边长为 $6$。
人教版七年级上册数学第二章整式的加减单元综合检测附答案
人教版数学七年级上学期第二章整式的加减达标测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.用语言叙述-2表示的数量关系,下列表述不正确的是()A. 比a的倒数小2的数B. 比a的倒数大2的数C. a的倒数与2的差D. 1除以a的商与2的差2.有下列各式:m,-,x-2,,,,,其中单项式有()A. 5个B. 4个C. 3个D. 2个3.在下列式子中,次数为3的单项式是()A. xy2B. x3+y3C. x3yD. 3xy4.多项式1+2xy-3xy2的次数及最高次项的系数分别是()A. 3,-3B. 2,-3C. 5,-3D. 2,35.下列各组单项式中,是同类项的一组是()A. 3x2y与3xy2B. abc与acC. -2xy与-3abD. xy与-xy6.下面计算正确的是()A. 6a-5a=1B. a+2a2=3a2C. -(a-b)=-a+bD. 2(a+b)=2a+b7.化简-16(x-0.5)的结果是()A. -16x-0.5B. 16x+0.5C. 16x-8D. -16x+88.若多项式3x2-2xy-y2减去多项式M所得的差是-5x2+xy-2y2,则多项式M是()A. -2x2-xy-3y2B. 2x2+xy+3y2C. 8x2-3xy+y2D. -8x2+3xy-y29.某企业今年3月份的产值为a万元,4月份比3月份的产值减少了10%,5月份比4月份的产值增加了15%,则该企业5月份的产值是()A. (a-10%)(a+15%)万元B. (1-10%)(1+15%)a万元C. (a-10%+15%)万元D. (1-10%+15%)a万元10.已知a,b两数在数轴上的位置如图所示,化简式子|a+b|-|a-1|+|b+2|的结果是()A. 1B. 2b+3C. 2a-3D. -1二、填空题(本大题共8小题,每小题4分,共32分)11.当x=-1时,整式x3-x2+4的值为__________.12.多项式3m2-5m3+2-m是________次_______项式.13.请你写出一个多项式,使它含有字母m,n,最高次项的系数为-2,次数为3,你写出的多项式是__________.14.如图是一个简单的数值运算程序,当输入x的值为3时,则输出的数值为________.15.单项式-3x2加上单项式-4x2y,-5x2,2x2y的和,列算式为________,计算后的结果是________.16.已知a2+2ab=-8,b2+2ab=14,则a2+4ab+b2=________;a2-b2=________.17.一个两位数,十位上的数字是2,个位上的数字是x,这个两位数是________.18.有一组按规律排列的单项式:,,,,…,第25个单项式是______.三、解答题19.计算:(1)4x2-8x+5-3x2+6x-2;(2).20.化简并求值:(a2-ab+2b2)-2(b2-a2),其中a=-,b=5.21.如图是某居民小区的一块面积为4ab平方米的长方形空地,准备在空地的四个顶点处修建一个半径为a 米的扇形花台,在花台内种花,其余部分种草.如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?22.玲玲做一道题:“已知两个多项式A、B,其中A=x2+3x-5,计算A-2B的值.”她误将“A-2B”写成“2A-B”,得到的答案是x2+8x-7,你能帮助她求出A-2B的值吗?23.某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量将减少10个.(1)设每个台灯的销售价上涨a元,试用含a的式子填空:①涨价后,每个台灯的销售价为______________元;②涨价后,每个台灯的利润为______________元;③涨价后,台灯平均每月的销售量为__________________台.(2)商场要想让销售利润平均每月达到10 000元,经理甲说:“在原售价每台40元的基础上再上涨40元,可以完成任务.”经理乙说:“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了.”判断经理甲与经理乙的说法是否正确,并说明理由.24.下表中的字母都是按一定规律排列的.我们把每个图形中字母的和所得的多项式称为特征多项式,例如第1格的“特征多项式”为6x+2y,第2格的“特征多项式”为9x+4y.根据以上信息,回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为;(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.用语言叙述-2表示的数量关系,下列表述不正确的是()A. 比a的倒数小2的数B. 比a的倒数大2的数C. a的倒数与2的差D. 1除以a的商与2的差【答案】B【解析】【分析】根据代数式的表述的意义得到代数式-2可表达式为比a的倒数小2的数或a的倒数与2的差或1除以a的商与2的差.【详解】A、代数式-2可表达式为比a的倒数小2的数,故A选项的说法正确;B、代数式-2可表达式为比a的倒数小2的数,故B选项的说法不正确;C、代数式-2可表达式为a的倒数与2的差,故C选项的说法正确;D、代数式-2可表达式1除以a的商与2的差,故D选项的说法正确.故选B.【点睛】本题考查了代数式:代数式是由运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子.单独的一个数或者一个字母也是代数式.带有“<(≤)”“>(≥)”“=”“≠”等符号的不是代数式.2.有下列各式:m,-,x-2,,,,,其中单项式有()A. 5个B. 4个C. 3个D. 2个【答案】B【解析】∵m,﹣,,﹣是单项式;x﹣2,是多项式;是分式;∴单项式有4个.故选B.点睛:本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键3.在下列式子中,次数为3的单项式是()A. xy2B. x3+y3C. x3yD. 3xy【答案】A【解析】【分析】根据单项式的次数是指单项式中所有字母因数的指数和判断即可.【详解】根据单项式的次数定义可知:A、xy2的次数为3,符合题意;B、x3+y3不是单项式,不符合题意;C、x3y的次数为4,不符合题意;D、3xy的次数为2,不符合题意.故选A.【点睛】本题考查了单项式的次数的概念,单项式的次数是指单项式中所有字母因数的指数和,只要字母的指数的和等于3的单项式都符合要求.4.多项式1+2xy-3xy2的次数及最高次项的系数分别是()A. 3,-3B. 2,-3C. 5,-3D. 2,3【答案】A【解析】试题分析:多项式的次数看每一个单项式的最高次数,则次数为3次,系数为-3.考点:多项式的次数和系数5.下列各组单项式中,是同类项的一组是()A. 3x2y与3xy2B. abc与acC. -2xy与-3abD. xy与-xy【答案】D【解析】A.相同字母的指数不相同,不是同类项;B.所含字母不相同,不是同类项;C.所含字母不相同,不是同类项;D.符合同类项的定义,是同类项,故选D.6.下面计算正确的是()A. 6a-5a=1B. a+2a2=3a2C. -(a-b)=-a+bD. 2(a+b)=2a+b【答案】C【解析】试题分析:A.6a﹣5a=a,故此选项错误;B.a与不是同类项,不能合并,故此选项错误;C.﹣(a﹣b)=﹣a+b,故此选项正确;D.2(a+b)=2a+2b,故此选项错误;故选C.考点:1.去括号与添括号;2.合并同类项.7.化简-16(x-0.5)的结果是()A. -16x-0.5B. 16x+0.5C. 16x-8D. -16x+8【答案】D【解析】根据去括号的法则计算即可.解:﹣16(x﹣0.5)=﹣16x+8,故选D.“点睛”此题考查去括号,关键是根据括号外是负号,去括号时应该变号.8.若多项式3x2-2xy-y2减去多项式M所得的差是-5x2+xy-2y2,则多项式M是()A. -2x2-xy-3y2B. 2x2+xy+3y2C. 8x2-3xy+y2D. -8x2+3xy-y2【答案】C【解析】【分析】根据题意列出关系式,计算即可得到M.【详解】解:根据题意得:M=3x2-2xy-y2-(-5x2+xy-2y2)=3x2-2xy-y2+5x2-xy+2y2=8x2-3xy+y2.故选C.【点睛】本题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.某企业今年3月份的产值为a万元,4月份比3月份的产值减少了10%,5月份比4月份的产值增加了15%,则该企业5月份的产值是()A. (a-10%)(a+15%)万元B. (1-10%)(1+15%)a万元C. (a-10%+15%)万元D. (1-10%+15%)a万元【答案】B【解析】解:∵3月份的产值是a万元,∴4月份的产值是(1−10%)a万元,∴5月份的产值是(1+15%)(1−10%)a万元,故选:B.10.已知a,b两数在数轴上的位置如图所示,化简式子|a+b|-|a-1|+|b+2|的结果是()A. 1B. 2b+3C. 2a-3D. -1【答案】B【解析】试题分析:根据a,b两数在数轴上的位置可得,b<-1,1<a<2,|b|<|a|,所以a+b>0,a-1>0,b+2>0,所以|a+b|-|a-1|+|b+2|=a+b-a+1+b+2=2b+3.故选:B.考点:数轴;绝对值;代数式的化简求值.二、填空题(本大题共8小题,每小题4分,共32分)11.当x=-1时,整式x3-x2+4的值为__________.【答案】2【解析】【分析】把x=-1代入整式求值即可.【详解】因为x=-1,所以x3-x2+4,=(-1)3-(-1)2+4,=-1-1+4,=2,故答案为:2.【点睛】本题考查代数式的求值,计算过程中注意符号的变化是解题关键.12.多项式3m2-5m3+2-m是________次_______项式.【答案】(1). 三(2). 四【解析】【分析】直接利用多项式的次数与系数的确定方法得出单项式的次数进而得出答案.【详解】因为3m2-5m3+2-m的最高项的次数是3,由4个单项式组成,所以三次四项式,故答案为:(1)三(2)四.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.13.请你写出一个多项式,使它含有字母m,n,最高次项的系数为-2,次数为3,你写出的多项式是__________.【答案】答案不唯一,如-2mn2+mn-1【解析】【分析】根据多项式次数的定义来求解即可.【详解】因为次数为3,所以可以是mn2,因为最高项系数为-2,所以为-2 mn2,因为是多项式,所以后面可以加两项mn-1,故答案为:-2mn2+mn-1(答案不唯一).【点睛】本题考查多项式的定义,几个单项式的和叫做多项式,多项式里次数最高的项的次数叫做多项式的次数.14.如图是一个简单的数值运算程序,当输入x的值为3时,则输出的数值为________.【答案】1【解析】【分析】根据运算程序,可得若输入是x,则输出是(x2-2)7,把x的值代入输出结果求值即可得答案.【详解】根据运算程序,可得若输入是x,则输出是(x2-2)7,当x=3时,(x2-2)7=(9-2)7=1,故答案为:1.【点睛】本题考查代数式求值.根据运算程序列出算式是解题关键.15.单项式-3x2加上单项式-4x2y,-5x2,2x2y的和,列算式为________,计算后的结果是________.【答案】(1). -3x2 -4x2y-5x2+2x2y(2). -8x2-2x2y【解析】【分析】直接根据题意列算式,然后再去括号合并同类项即可.【详解】根据题意得,算式为:-3x2+[(-4x2y)+(-5x2)+2x2y],-3x2+[(-4x2y)+(-5x2)+2x2y],=-3x2-4x2y-5x2+2x2y,=-8x2-2x2y,故答案为:(1)-3x2-4x2y-5x2+2x2y ;(2)-8x2-2x2y.【点睛】本题考查了整式加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键.16.已知a2+2ab=-8,b2+2ab=14,则a2+4ab+b2=________;a2-b2=________.【答案】(1). 6 (2). -22【解析】【分析】由a2+4ab+b2=a2+2ab+b2+2ab且a2-b2=a2+2ab-(b2+2ab),将已知条件代入即可求出所要求的代数式的值.【详解】∵a2+2ab=-8,b2+2ab=14,∴a2+2ab+b2+2ab=a2+4ab+b2=6,a2+2ab-(b2+2ab)=a2-b2=-8-14=-22.即:a2+4ab+b2=6,a2-b2=-22.故答案为:(1)6 ;(2)-22.【点睛】本题主要考查了整式的加减,通过对已知条件的加、减,即可求出所要求的代数式的值.17.一个两位数,十位上的数字是2,个位上的数字是x,这个两位数是________.【答案】20+x【解析】两位数字的表示方法为:十位数字×10+个位数字,可得2×10+x=20+x.18.有一组按规律排列的单项式:,,,,…,第25个单项式是______.【答案】【解析】【分析】根据分子的变化得出分子变化的规律,根据分母得变化得出分母变化的规律,得到该组式子的变化规律即可得出答案.【详解】分子为a,其指数为1、3、5、7,…,其规律为:2n-1,分母为2、4、6、8,…,其规律为:2n,所以该组式子的规律为:,所以第25个单项式是:,故答案为:【点睛】本题考查单项式的概念,根据分子、分母的规律找出该组式子的规律是解题关键.三、解答题19.计算:(1)4x2-8x+5-3x2+6x-2;(2).【答案】(1)x2-2x+3;(2)a+2.【解析】【分析】(1)直接合并同类项求解即可;(2)先去括号,然后合并同类项求解即可;【详解】(1)原式=(4x2-3x2)+(-8x+6x)+(5-2),=x2-2x+3;(2)原式=5a-6a+2(a+1),=5a-6a+2a+2,=a+2.【点睛】本题考查了整式的加减,熟练掌握去括号法则和合并同类项法则是解题关键.20.化简并求值:(a2-ab+2b2)-2(b2-a2),其中a=-,b=5.【答案】3a2-ab; 2.【解析】试题分析:根据去括号,合并同类项,可化简整式,根据代数式求值,可得答案.试题解析:解:原式=a2﹣ab+2b2﹣2b2+2a2=3a2﹣ab当a=,b=5时,原式=3×()2﹣()×5==2.21.如图是某居民小区的一块面积为4ab平方米的长方形空地,准备在空地的四个顶点处修建一个半径为a 米的扇形花台,在花台内种花,其余部分种草.如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?【答案】所需资金为(50πa2+200ab)元.【解析】【分析】花台面积为πa2平方米,所需资金为πa2×100.草地面积为(2ab-πa2)平方米,所需资金为(2ab-πa2)×50.共需资金为花台所需资金+草地所需资金.【详解】花台的面积为:πa2平方米,草地的面积为:(4ab-πa2)平方米.所需资金为:100×πa2+50(4ab-πa2)=100πa2+200ab-50πa2=50πa2+200ab.【点睛】本题考查列代数式.理解题意,先求面积再求所需资金的和是解题关键.22.玲玲做一道题:“已知两个多项式A、B,其中A=x2+3x-5,计算A-2B的值.”她误将“A-2B”写成“2A-B”,得到的答案是x2+8x-7,你能帮助她求出A-2B的值吗?【答案】能,-x2+7x+1.【解析】【分析】根据题意求出式子B,再列出正确的算式,根据整式的加减法则计算即可得出结论.【详解】能.∵A=x2+3x﹣5,2A﹣B=x2+8x﹣7,∴B=2A﹣(x2+8x﹣7)=2(x2+3x﹣5)﹣(x2+8x﹣7)=2x2+6x﹣10﹣x2﹣8x+7=x2﹣2x﹣3.∴A﹣2B=(x2+3x﹣5)﹣2(x2﹣2x﹣3)=x2+3x﹣5﹣2x2+4x+6=﹣x2+7x+1.【点睛】本题考查的是整式的加减,熟知整式的加减实质上就是去括号合并同类项是解答此题的关键.23.某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量将减少10个.(1)设每个台灯的销售价上涨a元,试用含a的式子填空:①涨价后,每个台灯的销售价为______________元;②涨价后,每个台灯的利润为______________元;③涨价后,台灯平均每月的销售量为__________________台.(2)商场要想让销售利润平均每月达到10 000元,经理甲说:“在原售价每台40元的基础上再上涨40元,可以完成任务.”经理乙说:“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了.”判断经理甲与经理乙的说法是否正确,并说明理由.【答案】(1)①(40+a);②(10+a);③(600-10a);(2)经理甲与经理乙的说法都正确.【解析】【分析】(1)根据进价和售价以及每上涨1元时,其销售量就将减少10个之间的关系,列出代数式即可;(2)根据平均每月能售出600个和销售价每上涨1元时,其销售量就将减少10个之间的关系列出式子,再分两种情况讨论,求出每月的销售利润,再进行比较即可.【详解】(1)①(40+a)②(10+a)③(600-10a)(2)经理甲与经理乙的说法都正确,理由如下:在原售价每台40元的基础上再上涨40元,销售利润为:(10+40)(600-10×40)=10 000(元);在原售价每台40元的基础上再上涨10元,销售利润为:(10+10)(600-10×10)=10000(元).所以经理甲与经理乙的说法都正确.【点睛】此题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的关系,列出代数式,求出代数式的解.24.下表中的字母都是按一定规律排列的.我们把每个图形中字母的和所得的多项式称为特征多项式,例如第1格的“特征多项式”为6x+2y,第2格的“特征多项式”为9x+4y.根据以上信息,回答下列问题:(1)第3格的“特征多项式”为,第4格的“特征多项式”为;(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.【答案】(1)12x+6y;15x+8y;(2)3x+2y.【解析】【分析】(1)仔细观察每格的特征多项式的特点,找到规律,利用规律求得答案即可;(2)根据(1)中所求,得出第6格的“特征多项式”与第5格的“特征多项式”,进而得出答案.【详解】(1)观察图形发现:第1格的“特征多项式”为:6x+2y,第2格的“特征多项式”为:9x+4y,第3格的“特征多项式”为:12x+6y,第4格的“特征多项式”为:15x+8y,…第n格的“特征多项式”为:3(n+1)x+2ny;故答案为:12x+6y;15x+8y,(2)第6格的“特征多项式”为:21x+12y,第5格的“特征多项式”为:18x+10y.所以第6格的“特征多项式”与第5格的“特征多项式”的差为:21x+12y-(18x+10y)=3x+2y.【点睛】本题考查了图形的变化类问题,仔细观察图形的变化,发现图形变化的规律是解题关键.。
人教版七年级数学上册第二章《整式的加减》测试题(含答案)
人教版七年级数学上册第二章《整式的加减》测试题(含答案)(考试时间:90分钟,赋分:100分)姓名:________ 班级:________ 分数:________一、选择题(本大题共10小题,每小题3分,满分30分)1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同; ③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.20.观察下列等式:13+23=1×22×32;4×32×42;13+23+33=14×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=;(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是,S2-S1的值为;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.参考答案一、选择题(本大题共10小题,每小题3分,满分30分)题 号 1 2345678910答 案 CBADBCCADB1.下列四个式子:①3π;②a +b 2;③2x ;④15.其中不是整式的是 A .①B .②C .③D .④2.下列语句错误的是A.数字0是单项式B.单项式-a 的系数与次数都是1C.12xy 是二次单项式 D.-2ab 3的系数是-233.下列运算正确的是 A.3a 2b -3ba 2=0 B.5a 2-3a 2=2 C.3a 3+2a 3=5a 6D.3a +2b =5ab4.若单项式x m y 3与4x 2y n 的和仍是单项式,则m -n 的值是 A .5B .1C .0D .-15.有一个数值转换器,其原理如图所示.若开始输入的x 值是5,发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,……依次继续下去,第101次输出的结果是A .2B .1C .4D .86.【合肥高新区期末】若整式3x 2-4x +6的值为9,则x 2-43x +6的值为 A .5B .6C .7D .87.一个多项式A 减去多项式2x 2+5x -3,某同学将减号抄成了加号,运算结果为-x 2+3x -5,那么正确的运算结果是 A .-3x 2-2x -4B .-x 2+3x -7C .-5x 2-7x +1D .无法确定8.若多项式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为 A .2B .-2C .-1D .09.如图,点A ,B 表示的数分别是a ,b ,点A 在数轴上0和1两点(不包括这两点)之间移动,点B 在数轴上-3和-2两点之间移动.下列四个代数式的值可能比2 021大的是A.a 6b 6B.b 6+a 6C.a 12bD.ab 1210.一个含有多个字母的整式,如果把其中任意两个字母互换位置,所得的结果与原式相同,那么称此整式是对称整式.例如,x 2+y 2+z 2是对称整式,x 2-2y 2+3z 2不是对称整式.①所含字母相同的两个对称整式求和,若结果中仍含有多个字母,则该和仍为对称整式; ②一个多项式是对称整式,那么该多项式中各项的次数必相同;③单项式不可能是对称整式;④若某对称整式只含字母x ,y ,z ,且其中有一项为x 2y ,则该多项式的项数至少为3. 以上结论中错误的个数是 A.4B.3C.2D.1二、填空题(本大题共6小题,每小题3分,满分18分)11.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么|a -b |+|a +b |化简的结果为 -2a .12.七年级(1)班有学生a 人,七年级(2)班的人数比七年级(1)班的人数的一半多25人,那么七年级(2)班有 (12a +25) 人.13.把四张形状、大小完全相同的小长方形卡片(如图1,卡片长为x 、宽为y ,且x >y )不重叠地放在一个底面为长方形(长为a 、宽为b )的盒子底部(如图2),盒底面未被卡片覆盖的部分用阴影表示,则图2中两块阴影部分周长的和是 4b .(用只含b 的代数式表示)14.已知有理数a ,b ,c 在数轴上的位置如图所示,化简||a +b -||b -2-||c -a -||2-c = -4 .15.现规定一种运算a *b =ab +a -b ,其中a ,b 为实数,则a *b +(b -a )*b = b 2-b . 16.已知代数式ax 4+bx 3+cx 2+dx +3.当x =2时,代数式的值为20;当x =-2时,代数式的值为16,则当x =2时,代数式ax 4+cx 2+3的值为 18 .三、解答题(第21题12分,其余每题10分,共52分) 17.已知M =2x 2-2xy +y 2,N =3x 2+xy -2y 2,求2M -3N 的值. 解:原式=2(2x 2-2xy +y 2)-3(3x 2+xy -2y 2) =4x 2-4xy +2y 2-9x 2-3xy +6y 2 =-5x 2-7xy +8y 2.18.一根绳长a 米(a >6),第一次用掉了全长的13多1米,第二次用掉了余下的23少2米,最后还剩多少米?解:由题可知a -(13a+1)-{23[a -(13a+1)]-2}=a -13a -1-[23(23a -1)-2]=a -13a -1-49a +23+2=(29a+53)米.答:最后还剩(29a+53)米.19.已知多项式-5x2y m+1+xy2-3x3-6是六次四项式,且单项式3x2n y5-m的次数与此多项式的次数相同.(1)求m,n的值;(2)求该多项式的常数项以及各项的系数和.解:(1)因为该多项式为六次四项式,所以2+m+1=6,所以m=3.因为单项式3x2n y5-m的次数也是6,所以2n+5-m=6,所以n=2.(2)该多项式为-5x2y4+xy2-3x3-6,常数项为-6,各项系数为-5,1,-3,-6,故系数和为-5+1-3-6=-13.20.观察下列等式:×22×32;13+23=1413+23+33=1×32×42;4×42×52;13+23+33+43=14…根据上述规律,解决下列问题:(1)若n为正整数,猜想:13+23+33+…+n3=1n2(n+1)2;4(2)利用(1)的结论,比较13+23+33+…+1003与50552的大小.×1002×1012=502×1012=50502.解:(2)根据(1)可知13+23+33+…+1003=14因为50502<50552,所以13+23+33+…+1003<50552.21.将7张完全相同的小长方形纸片(如图1)按图2所示的方式不重叠地放在长方形ABCD内,未被覆盖的部分恰好被分割成两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a、宽为b,且a>b.(1)当a=9,b=3,AD=30时,长方形ABCD的面积是630,S2-S1的值为-63;(2)当AD=40时,请用含a,b的式子表示S2-S1的值;(3)若AB的长度为定值,AD变长,将这7张小长方形纸片还按照同样的方式放在新的长方形ABCD内,而S2-S1的值总保持不变,求a,b满足的关系.解:(2)因为S1=4b(40-a),S2=a(40-3b),所以S2-S1=a(40-3b)-4b(40-a)=40a-160b+ab.(3)S2-S1=a(AD-3b)-4b(AD-a),整理,得S2-S1=(a-4b)AD+ab.因为若AB的长度不变,AD变长,而S2-S1的值总保持不变, 所以a-4b=0,即a=4b,所以a,b满足的关系是a=4b.。
人教版七年级上册数学第2章 整式的加减达标测试卷【含答案】
人教版七年级上册数学第2章 整式的加减达标测试卷( )一、选择题(每小题3分,共30分)1.单项式-5ab 的系数是( B )A .5B .-5C .2D .-22.(青海)一个两位数,它的十位数字是x ,个位数字是y ,那么这个两位数是( D )A .x +yB .10xyC .10(x +y )D .10x +y3.下列说法不正确的是( C )A .多项式5x 2+4x -2的项是5x 2,4x ,-2B .5是单项式C .2x 3,a +b 3 ,ab 2 ,3a π都是单项式 D .3-4a 中,一次项的系数是-44.下列各算式中,合并同类项正确的是( A )A .x 2+x 2=2x 2B .x 2+x 2=x 4C .2x 2-x 2=2D .2x 2-x 2=2x5.下列各项中,去括号正确的是( C )A .x 2-2(2x -y +2)=x 2-4x -2y +4B .-3(m +n )-mn =-3m +3n -mnC .-(5x -3y )+4(2xy -y 2)=-5x +3y +8xy -4y 2D .ab -5(-a +3)=ab +5a -36.(温州)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米(a +1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为( D )A .20a 元B .(20a +24)元C .(17a +3.6)元D .(20a +3.6)元7.一个多项式A 与多项式B =2x 2-3xy -y 2的和是多项式C =x 2+xy +y 2,则A 等于( B )A.x 2-4xy -2y 2 B .-x 2+4xy +2y 2C .3x 2-2xy -2y 2D .3x 2-2xy8.如果在数轴上表示a ,b 两个数的点的位置如图所示,那么化简|a -b |+|a +b |的结果等于( B )A .2aB .-2aC .0D .2b9.(重庆中考)按如图所示的运算程序,能使输出y 值为1的是( D )A .m =1,n =1B .m =1,n =0C .m =1,n =2D .m =2,n =110.(贺州)如M ={1,2,x },我们叫集合M ,其中1,2,x 叫做集合M 的元素.集合中的元素具有确定性(如x 必然存在),互异性(如x ≠1,x ≠2),无序性(即改变元素的顺序,集合不变).若集合N ={x ,1,2},我们说M =N .已知集合A ={1,0,a },集合B ={1a ,|a |,b a},若A =B ,则b -a 的值是( C ) A .-1 B .0 C .1 D .2二、填空题(每小题3分,共15分)11.若14x m +1y 3与-2xy n 是同类项,则m +n =__3__. 12.(岳阳中考)已知x -3=2,则代数式(x -3)2-2(x -3)+1的值为__1__.13.(鹤壁期末)某商场举行促销活动,促销的方法是“消费超过200元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x (x >200)元,则购买该商品实际付款的金额是__(80%x -20)__元.14.(白银中考)已知一列数a ,b ,a +b ,a +2b ,2a +3b ,3a +5b ……按照这个规律写下去,第9个数是__13a +21b __.15.(河北中考)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:,即4+3=7则(1)用含x 的式子表示m =__3x __;(2)当y =-2时,n 的值为__1__.三、解答题(共75分)16.(8分)计算:(1)(2m 2+4m -3)+(5m +2);解:2m 2+9m -1(2)x -[y -2x -(x +y )].解:4x17.(9分)先化简,再求值:3(2x 2-3xy -5x -1)+6(-x 2+xy -1),其中x ,y 满足(x +2)2+|y -23|=0. 解:原式=6x 2-9xy -15x -3-6x 2+6xy -6=-3xy -15x -9.由(x +2)2+|y -23|=0,得x =-2,y =23 .所以原式=-3×(-2)×23-15×(-2)-9=4+30-9=2518.(9分)若a ,b ,c 满足以下两个条件:①23(a -5)2+5|c |=0;②x 2y b +1与3x 2y 3是同类项,求代数式(2a 2-3ab +6b 2)-(3a 2-abc +9b 2-4c 2)的值.解:由①可得a =5,c =0,由②可得b +1=3,即b =2.所以原式=-a 2-3ab +abc -3b 2+4c 2=-25-30-12=-6719.(9分)托运行李的费用计算方法是:托运行李总质量不超过30千克,每千克收费1元;超过部分每千克收费1.5元.某旅客托运行李m 千克(m 为正整数).(1)请你用代数式表示托运m 千克行李的费用;(2)求当m =45时的托运费用.解:(1)当m ≤30时,费用为m 元;当m >30时,费用为30+1.5(m -30)=(1.5m -15)元 (2)当m =45时,费用为52.5元20.(9分)(河北模拟)在数学课上,王老师出示了这样一道题目:“当a =12,b =-3时,求多项式2a 2+4ab +2b 2-2(a 2+2ab +b 2-1)的值.”解完这道题后,小明指出:“a =12,b =-3是多余的条件.”师生讨论后,一致认为小明的说法是正确的. (1)请你说明正确的理由;(2)受此启发,王老师又出示了一道题目:“已知无论x ,y 取什么值,多项式2x 2-my +12-(nx 2+3y -6)的值都等于定值18,求m +n 的值.”请你解决这个问题.解:(1)2a 2+4ab +2b 2-2(a 2+2ab +b 2-1)=2a 2+4ab +2b 2-2a 2-4ab -2b 2+2=2,∴该多项式的值为常数.与a 和b 的取值无关,小明的说法是正确的 (2)2x 2-my +12-(nx 2+3y -6)=2x 2-my +12-nx 2-3y +6=(2-n )x 2+(-m -3)y +18,∵已知无论x ,y 取什么值,该多项式的值都等于定值18,∴2-n =0,-m -3=0,∴n =2,m =-3,∴m +n =-3+2=-121.(10分)一位同学做一道题:“已知两个多项式A ,B ,计算3A +B ”.他误将“3A +B ”看成“A +3B ”,求得的结果为8x 2-5x +7.已知B =x 2+2x -3,请求出正确的答案.解:依题意可知,A +3B =8x 2-5x +7,B =x 2+2x -3,所以A =(8x 2-5x +7)-3(x 2+2x -3)=5x 2-11x +16.故3A +B =3(5x 2-11x +16)+(x 2+2x -3)=15x 2-33x +48+x 2+2x -3=16x 2-31x +45,即正确的结果为16x 2-31x +4522.(10分)(贵阳中考)如图是一个长为a,宽为b的长方形,两个阴影图形都是一对底边长为1,且底边在长方形对边上的平行四边形.(1)用含字母a,b的代数式表示长方形中空白部分的面积;(2)当a=3,b=2时,求长方形中空白部分的面积.解:(1)S空白=ab-a-b+1;(2)当a=3,b=2时,S空白=6-3-2+1=223.1......续的奇数1...5,7,9,...,排列成如图所示的数表:(1)十字框中的五个数的和与中间数23有什么关系?(2)设中间数为a,用式子表示十字框中五个数之和;(3)若将十字框上、下、左、右平移,可框住另外五个数,这五个数还有这种规律吗?(4)十字框中的五个数之和能等于2023吗?若能,请写出这五个数;若不能,请说明理由.解:(1)十字框中的五个数的和是中间数23的5倍(2)a-16+a-2+a+a+2+a+16=5a(3)通过计算,不管框住怎样的五个数,这五个数仍具有这种规律(4)不能等于2023.理由:因为2023不能被5整除,所以十字框中的五个数之和不等于2023。
人教版七年级上册数学第二章整式的加减单元检测带答案
第二章整式的加减综合测试第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是()A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是52.下列各组单项式中,是同类项的是()A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有()A. 2个B. 3个C. 4个D. 5个4.化简a﹣(b﹣c)正确的是()A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c5.多项式4xy2﹣3xy+12的次数为()A. 3B. 4C. 6D. 76.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+67.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A. 6B. 8C. 9D. 128.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为()A. m+1B. m+5C. m+6D. m+79.下列各项去括号正确的是()A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+410.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是()A. 2B. 3C. 4D. 5二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.12.单项式﹣π2x2y的系数是_____,次数是_____.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.16.若,,则的值为______________.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y 任意取值代入时,结果总是同一个定值,为什么?20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?答案与解析第Ⅰ卷(选择题)一.选择题(共10小题)1.下列说法正确的是()A. 单项式3πx2y3的系数是3B. 单项式﹣6x2y的系数是6C. 单项式﹣xy2的次数是3D. 单项式x3y2z的次数是5【答案】C【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】A、单项式3πx2y3的系数是3π,故此选项错误;B、单项式-6x2y的系数是-6,故此选项错误;C、单项式-xy2的次数是3,正确;D、单项式x3y2z的次数是6,故此选项错误;故选C.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.2.下列各组单项式中,是同类项的是()A. 与﹣x2yB. 2a2b与2ab2C. a与1D. 2xy与2xyz【答案】A【解析】【分析】直接利用同类项的定义分析得出答案.【详解】A、与-x2y,是同类项,符合题意;B、2a2b与2ab2,不是同类项,不合题意;C、a与1,不是同类项,不合题意;D、2xy与2xyz,不是同类项,不合题意;故选A.【点睛】此题主要考查了同类项,正确把握相关定义是解题关键.3.在下列各式:ab,,ab2+b+1,﹣9,x3+x2﹣3中,多项式有()A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】直接利用多项式的定义分析得出答案.【详解】ab,,ab2+b+1,-9,x3+x2-3中,多项式有:,ab2+b+1,x3+x2-3共3个.故选B.【点睛】此题主要考查了多项式,正确把握多项式定义是解题关键.4.化简a﹣(b﹣c)正确的是()A. a﹣b+cB. a﹣b﹣cC. a+b﹣cD. a+b+c【答案】A【解析】【分析】去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【详解】a-(b-c)=a-b+c.故选A.【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.顺序为先大后小.5.多项式4xy2﹣3xy+12的次数为()A. 3B. 4C. 6D. 7【答案】A【解析】【分析】直接利用多项式的次数确定方法是解题关键.【详解】多项式4xy2-3xy+12的次数为,最高此项4xy2的次数为:3.故选A.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.6.一个多项式加上﹣2a+7等于3a2+a+1,则这个多项式是()A. 3a2﹣a﹣6B. 3a2+3a+8C. 3a2+3a﹣6D. ﹣3a2﹣3a+6【答案】C【解析】【分析】先根据题意列出算式,再去掉括号合并同类项即可.【详解】根据题意得:这个多项式为(3a2+a+1)-(-2a+7)=3a2+a+1+2a-7=3a2+3a-6,故选C.【点睛】本题考查了整式的加减和列代数式,能根据题意列出算式是解此题的关键.7.如图,两个面积分别为35,23的图形叠放在一起,两个阴影部分的面积分别为a,b(a>b),则a﹣b的值为()A. 6B. 8C. 9D. 12【答案】D【解析】【分析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个长方形面积的差.【详解】设重叠部分的面积为c,则a-b=(a+c)-(b+c)=35-23=12,故选D.【点睛】本题考查了整式的加减,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.8.如图1为2018年5月份的日历表,某同学任意框出了其中的四个数字,如图2,若用m表示框图中相应位置的数字,则“?”位置的数字可表示为()A. m+1B. m+5C. m+6D. m+7【答案】C【解析】【分析】由日历中数字可得答案.【详解】由于在日历中一行为七天,所以m正下面一个数为m+7,所以?为m+7-1m+6,所以答案选择C项.【点睛】本题考查了用已知数表示未知数,了解一行为七天是解决本题的关键.9.下列各项去括号正确的是()A. ﹣3(m+n)﹣mn=﹣3m+3n﹣mnB. ﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C. ab﹣5(﹣a+3)=ab+5a﹣3D. x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4【答案】B【解析】【分析】根据去括号法则逐个判断即可.【详解】A、-3(m+n)-mn=-3m-3n-mn,错误,故本选项不符合题意;B、-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2,正确,故本选项符合题意;C、ab-5(-a+3)=ab+5a-15,错误,故本选项不符合题意;D、x2-2(2x-y+2)=x2-4x+2y-4,错误,故本选项不符合题意;故选B.【点睛】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.10.若单项式2x3y2m与﹣3x n y2的差仍是单项式,则m+n的值是()A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据合并同类项法则得出n=3,2m=2,求出即可.【详解】∵单项式2x3y2m与-3x n y2的差仍是单项式,∴n=3,2m=2,解得:m=1,∴m+n=1+3=4,故选C.【点睛】本题考查了合并同类项和单项式,能根据题意得出n=3、2m=2是解此题的关键.二.填空题(共6小题)11.﹣3xy﹣x3+xy3是_____次多项式.【答案】四【解析】【分析】直接利用多项式的次数确定方法分析得出答案.【详解】-3xy-x3+xy3是四次多项式.【点睛】此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.12.单项式﹣π2x2y的系数是_____,次数是_____.【答案】(1). ﹣π2(2). 3【解析】【分析】由于单项式中数字因数叫做单项式的系数,所有字母的指数和是单项式的次数,由此即可求解.【详解】由单项式的系数及其次数的定义可知,单项式﹣π2x2y的系数是﹣π2,次数是3.故答案为:﹣π2,3.【点睛】此题主要考查了单项式的系数及其次数的定义,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.13.某单项式含有字母x,y,次数是4次.则该单项式可能是_____.(写出一个即可)【答案】x2y2【解析】【分析】根据单项式的定义即可求出答案.【详解】由题意可知:x2y2,故答案为:x2y2【点睛】本题考查单项式的定义,解题的关键是熟练运用单项式的定义,本题属于基础题型.14.若两个单项式﹣3x m y2与﹣xy n的和仍然是单项式,则这个和的次数是_____.【答案】3【解析】【分析】根据同类项的定义直接可得到m、n的值.【详解】因为两个单项式-3x m y2与-xy n的和仍然是单项式,所以m=1,n=2,所以这个和的次数是1+2=3,【点睛】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.15.若关于x、y的代数式mx3﹣3nxy2+2x3﹣xy2+y中不含三次项,则(m﹣3n)2018=_____.【答案】1【解析】【分析】不含三次项,则三次项的系数为0,从而可得出m和n的值,代入即可得出答案.【详解】∵代数式mx3-3nxy2+2x3-xy2+y中不含三次项,∴m=-2,-3n=1,解得:m=-2,n=-,∴(m-3n)2018=1.故答案为:1.【点睛】此题考查了多项式的知识,要求我们掌握多项式的次数、系数指的是哪一部分,难度一般.16.若,,则的值为______________.【答案】【解析】试题解析:m2+mn=-5①,n2-3mn=10②,①-②得:m2+mn-n2+3mn=m2+4mn-n2=-5-10=-15.故答案为:-15.三.解答题(共7小题)17.化简:(1)2a﹣4b﹣3a+6b(2)(7y﹣5x)﹣2(y+3x)【答案】(1)﹣a+2b;(2)﹣11x+5y.【解析】【分析】(1)直接合并同类项即可;(2)先去括号,然后合并同类项.【详解】(1)原式=﹣a+2b;(2)原式=7y﹣5x﹣2y﹣6x=﹣11x+5y.【点睛】本题考查了整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号、合并同类项.18.通常用作差法可以比较两个数或者两个式子的大小.(1)如果a﹣b>0,则a b;如果a﹣b=0,则a b;如果a﹣b<0,则a b;(用“>”、“<”、“=”填空)(2)已知A=5m2﹣4(m﹣),B=7m2﹣7m+3,请用作差法比较A与B的大小.【答案】(1)>;=;<;(2)A<B.【解析】【分析】(1)根据题意,利用整式的加减法法则判断即可;(2)利用做差法判断即可.【详解】(1)如果a﹣b>0,则a>b;如果a﹣b=0,则a=b;如果a﹣b<0,则a<b;故答案为:>;=;<;(2)∵A﹣B=5m2﹣4(m﹣)﹣(7m2﹣7m+3)=﹣2m2﹣1<0,∴A<B.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.19.在对多项式(x2y+5xy2+5)﹣[(3x2y2+x2y)﹣(3x2y2﹣5xy2﹣2)]代入计算时,小明发现不论将x、y 任意取值代入时,结果总是同一个定值,为什么?【答案】结果是定值,与x、y取值无关.【解析】【分析】原式去括号、合并同类项得出其结果,从而得出结论.【详解】(x2y+5xy2+5)-[(3x2y2+x2y)-(3x2y2-5xy2-2)]=x2y+5xy2+5-(3x2y2+x2y-3x2y2+5xy2+2)=x2y+5xy2+5-3x2y2-x2y+3x2y2-5xy2-2=(x2y-x2y)+(5xy2-5xy2)+(-3x2y2+3x2y2)+(5-2)=3,∴结果是定值,与x、y取值无关.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减运算顺序和运算法则.20.先化简,再求值:8a2﹣10ab+2b2﹣(2a2﹣10ab+8b2),其中a=,b=﹣.【答案】6a2﹣6b2,.【解析】【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=8a2﹣10ab+2b2﹣2a2+10ab﹣8b2=6a2﹣6b2,当a=,b=﹣时,原式=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.21.已知A=3a2b﹣2ab2+abc,小明同学错将“2A﹣B“看成”2A+B“,算得结果C=4a2b﹣3ab2+4abc.(1)计算B的表达式;(2)求出2A﹣B的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值.【答案】(1)﹣2a2b+ab2+2abc; (2)8a2b﹣5ab2;(3)0.【解析】【分析】(1)由2A+B=C得B=C-2A,将C、A代入后,再去括号后合并同类项化为最简即可;(2)将A、B代入2A-B,,再去括号后合并同类项化为最简即可;(3)由化简后的代数式中无字母c可知其值与c无关,将a、b的值代入计算即可.【详解】(1)∵2A+B=C,∴B=C-2A=4a2b-3ab2+4abc-2(3a2b-2ab2+abc)=4a2b-3ab2+4abc-6a2b+4ab2-2abc=-2a2b+ab2+2abc.(2)2A-B=2(3a2b-2ab2+abc)-(-2a2b+ab2+2abc)=6a2b-4ab2+2abc+2a2b-ab2-2abc=8a2b-5ab2.(3)对,与c无关,将a=,b=代入,得8a2b-5ab2=8××-5××=0.【点睛】本题考查了整式加减的应用,整式的加减实质上是去括号后合并同类项.熟知去括号法则和合并同类项法则是解题的关键.22.对于有理数a,b定义a△b=3a+2b,化简式子[(x+y)△(x-y)]△3x【答案】21x+3y【解析】整体分析:根据定义a△b=3a+2b,先小括号,后中括号依次化简[(x+y)△(x-y)]△3x.解:原式=[3(x+y)+2(x-y)]△3x=(3x+3y+2x-2y)△3x=(5x+y)△3x=3(5x+y)+6x=15x+3y+6x=21x+3y.23.从A地途径B地、C地,终点E地的长途汽车上原有乘客(6x+2y)人,在B地停靠时,上来(2x﹣y)人,在C地停靠时,上来了(2x+3y)人,又下去了(5x﹣2y)人.(1)途中两次共上车多少人?(2)到终点站E地时,车上共有多少人?【答案】(1)(4x+2y)人;(2)(5x+6y)人【解析】【分析】(1)将途中两次上车人数相加,计算即可求解;(2)将(1)中所求结果加上车上原有人数、减去下去的人数即可.【详解】(1)根据题意知,途中两次共上车2x﹣y+2x+3y=4x+2y(人);(2)6x+2y+4x+2y﹣(5x﹣2y)=10x+4y﹣5x+2y=5x+6y,故到终点站E地时,车上共有(5x+6y)人.【点睛】本题考查了整式的加减、去括号法则两个考点.能够根据题意正确列式是解题的关键.。
人教版七年级数学上册第2章 2.2.3 整式的加减 培优训练 (含答案)
人教版七年级上册第二章整式的加减2.2.3整式的加减培优训练一.选择题(共10小题,3*10=30)1.化简5(2x-3)+4(3-2x)的结果为( )A.2x-3 B.2x+9C.8x-3 D.18x-32.化简a-(5a-3b)+(2b-a)的结果是()A.7a-bB.-5a+5bC.7a+5b D.-5a-b3. 若a-b=2,b-c=-3,则a-c等于( )A.1 B.-1C.5 D.-54.已知A=5a-3b,B=-6a+4b,则A-B等于()A.-a+bB.11a+bC.11a-7b D.-a-7b5.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( )A.x2-5x+3 B.-x2+x-1C.-x2+5x-3 D.x2-5x-136.用2a+5b减去4a-4b的一半,应当得到( )A.4a-b B.b-aC.a-9b D.7b7.如果(3x2-2)-(3x2-y)=-2,那么代数式(x+y)+3(x-y)-4(x-y-2)的值是() A.4B.20C.8D.-68.若P是三次多项式,Q也是三次多项式,P+Q一定是()A .三次多项式B .六次多项式C .不高于三次的多项式或单项式D .单项式9.多项式36x 2-3x +5与3x 3+12mx 2-5x +7相加后,不含二次项,则常数m 的值是( )A .2B .-3C .-2D .-810.一家商店以每包a 元的价格买进30包甲种茶叶,又以每包b 元的价格买进60包乙种茶叶.如果以每包a +b 2的价格卖出这两种茶叶,那么卖完后,这家商店( ) A .赚了 B .赔了C .不赔不赚D .不能确定赔或赚二.填空题(共8小题,3*8=24)11.化简:(x 2+y 2)-3(x 2-2y 2)=________________.12.一个长方形的一边长是2a +3b ,另一边的长是a +b ,则这个长方形的周长是________.13.某客车上原有(4a -2b)人,中途有一半人下车,又上来若干人,这时车上共有乘客(10a -6b)人,则中途上车的乘客有_____________人.14.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树____________棵.15.三角形的周长为48,第一边长为4a +3b ,第二边比第一边的2倍少2a -b ,则第三边的长为_______________.16. 如果关于x 的多项式(8x 2-2nx +14)-(8x 1-m -6x +5)的值与x 无关,则m +n =___.17.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红年龄的12还多1岁,则这三名同学的年龄之和是____________. 18. 已知两个完全相同的大长方形,长为a ,各放入四个完全一样的白色小长方形后,得到图(1)、图(2),那么,图(1)阴影部分的周长与图(2)阴影部分的周长的差是______________.(用含a 的代数式表示)三.解答题(共7小题,46分)19. (6分)化简:(1)(9x-6y)-(5x-4y);(2)2(m2+2m)-(5m-m2);(3)3(2x2-y2)-2(3y2-2x2).20. (6分)化简,再求值:(1)(x3-2x2+x-4)-2(x3-x2+2x-2),其中x=-2;(2)3x2y-[2xy2-2(xy-32x2y)]+3xy2-xy,其中x=3,y=-13.21. (6分)计算:(1)(x2-y2)-3(x2-2y2);(2)(9a-2b)-[8a-(5b-2a)]+2c;(3)2a2-3[2a-2(-a2+2a-1)-4].22. (6分) 黑板上有一道题,是一个多项式减去3x2-5x+1,某同学由于大意,将减号抄成了加号,得出的结果是5x2+3x-7,求出这道题的正确结果.23. (6分)某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?24. (8分)已知多项式A,B,其中B=5x2+3x-4,马小虎同学在计算“3A+B”时,误将“3A+B”看成了“A+3B”,求得的结果为12x2-6x+7.求正确答案.25. (8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:+(-3x2+5x-7)=-2x2+3x-6.(1)求所捂的多项式;(2)若x为正整数,任取几个x值并求出所捂多项式的值,你能发现什么规律?(3)若所捂多项式的值为144,请直接写出正整数x的取值.参考答案1-5ABBCC 6-10DCCBD11. -2x2+7y212.6a+8b13. (8a-5b)14. (4x+6)15. 48-10a-10b16. 217. (4m-5)岁18.a19. 解:(1)原式=9x-6y-5x+4y=4x-2y(2)原式=2m2+4m-5m+m2=3m2-m(3)原式=6x2-3y2-6y2+4x2=10x2-9y220. 解:(1)原式=x3-2x2+x-4-2x3+2x2-4x+4=-x3-3x. 当x=-2时,原式=-(-2)3-3×(-2)=14解:原式=3x2y-2xy2+2xy-3x2y+3xy2-xy=xy2+xy.当x=3,y=-13时,原式=3×(-13)2+3×(-13)=-2321. 解:(1)原式=x2-y2-3x2+6y2=-2x2+5y2(2)原式=9a-2b-(8a-5b+2a)+2c=9a-2b-8a+5b-2a+2c=-a+3b+2c(3)原式=2a2-3(2a+2a2-4a+2-4)=2a2-3(2a2-2a-2)=2a2-6a2+6a+6=-4a2+6a+622. 解:该多项式为(5x2+3x-7)-(3x2-5x+1)=2x2+8x-8.所以正确的结果为(2x2+8x-8)-(3x2-5x+1)=-x2+13x-923. 解:(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3.答:A,B,C三个课外活动小组共有(5x+10y+3)名学生24. 解:根据题意知A=12x2-6x+7-3B=12x2-6x+7-3(5x2+3x-4)=12x2-6x+7-15x2-9x+12=-3x2-15x+19,则3A+B=3(-3x2-15x+19)+5x2+3x-4=-9x2-45x+57+5x2+3x-4=-4x2-42x+5325. 解:(1)(-2x2+3x-6)-(-3x2+5x-7)=-2x2+3x-6+3x2-5x+7=x2-2x+1,即所捂的多项式是x2-2x+1(2)当x=1时,x2-2x+1=1-2+1=0;当x=2时,x2-2x+1=4-4+1=1;当x=3时,x2-2x+1=9-6+1=4;当x=4时,x2-2x+1=16-8+1=9,由上可以发现规律是所捂多项式的值是(x-1)2(3)x=13。
人教版初中七年级数学上册第二章《整式的加减》经典练习(含答案解析)
1.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.2.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B 解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】 33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】 要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.7.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55C解析:C【分析】 观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=,当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- D 解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.15.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.1.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.2.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.4.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x .【解析】解:系数为-2,次数为4的单项式为:-2x 4.故答案为-2x 4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.6.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.9.多项式223324573x x y x y y --+-按x 的降幂排列是______。
人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)
人教版七年级数学上册第二章《整式的加减》综合测试卷(含答案)一、单选题(每小题3分,共30分)1.下列各式2211241,,8,,26,,,25πx y x ymn m x xa y-+-++中,单项式有( )A.3个B.4个C.6个D.7个2.(安顺中考)下列计算正确的是 ( )A.3x2-x2=3B.-3a2-2a2=-a2C.3(a-1)=3a-1D.-2(x+1)=-2x-23.下列说法正确的是 ( )A.-22x3y 的次数6B. 0不是单项C.23x y的系数是13D.2πr的系数是14.(贵州安顺期末)下列各组中的两个项不属于同类项的是 ( )A. 3x2y和-2x2yB. -xy和2yxC. 1-和1D. -2x2y与xy25.整式x2-3x的值是4,则3x2-9x+8的值是 ( )A.20B.4C.16D.-46.下面四个代数式中,不能表示图中阴影部分面积的是 ( )A.(x+3)(x+2)-2xB.x2+5xC.3(x+2)+x2D. x(x+3)+67.一台轿车标价a万元,为了促销,每台降价10%销售,则每台轿车的售价为 ( )万元A. 10a%B.(1+10% )aC.90% aD.(1+.90%)a8.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是 ( )A.-5x-1B.5x+1C.-13x-1D.13x+19.如果多项式x2+8xy-y2-kxy+5不含xy项,则k的值为( )A.0B.7C.1D.810.(青岛期末)观察如图所示图形,则第n个图形中三角形的个数是 ( )A.22n +B.44n +C.4nD.44n -二、填空题(每小题3分,共24分) 11.写出一个系数为-2且含a,b 的五次单项式 。
12.多项式3235612x y x -+-是 次 项式,最高次项的系数是 。
13.若代数式3a m b n-1与-9a 3b 6的和是单项式,则m n += 。
人教版七年级上册数学第二章整式的加减单元检测(附答案)
人教版数学七年级上册第二章整式的加减综合能力测试第Ⅰ卷(选择题)一.选择题(共10小题,满分40分,每小题4分)1.下列代数式中,整式为()A. x+1B.C.D.2.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A. 7个B. 6个C. 5个D. 4个3.单项式2πr3的系数是()A. 3B. πC. 2D. 2π4.单项式2a3b的次数是()A. 2B. 3C. 4D. 55.对于式子:,,,3x2+5x-2,abc,0,,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式6.下列说法正确的是( )A. -的系数是-3B. 2m2n的次数是2C. 是多项式D. x2-x-1的常数项是17.如果2x a+1y与x2y b﹣1是同类项,那么的值是()A. B. C. 1 D. 38.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 99.下面计算正确的是()A. (m+1)a﹣ma=1B. a+3a2=4a3C. ﹣(a﹣b)=﹣a+bD. 2(a+b)=2a+b10.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A. 4a+5bB. a+bC. a+5bD. a+7b第Ⅱ卷(非选择题)二.填空题(共4小题,满分20分,每小题5分)11.下列代数式:(1)mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有______.(填序号)12.如果多项式(﹣a﹣1)x2﹣x b+x+1是关于x的四次三项式,那么这个多项式的最高次项系数是_____,2次项是_____13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为_____米.14.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于_____.三.解答题(共9小题,满分90分)15.计算:(1)3xy﹣4xy﹣(﹣2xy)(2)(﹣3)2÷2÷(﹣)+4+22×(﹣)16.若3x m y n是含有字母x和y的五次单项式,求m n的最大值.17.已知多项式x2y m+1+xy2–3x3–6是六次四项式,单项式6x2n y5–m的次数与这个多项式的次数相同,求m+n的值.18.如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.19.若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.21.嘉淇准备完成题目:化简:(x²+6x+8)-(6x+5x²+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?22.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值答案与解析第Ⅰ卷(选择题)一.选择题(共10小题,满分40分,每小题4分)1.下列代数式中,整式为()A. x+1B.C.D.【答案】A【解析】【分析】直接利用整式、分式、二次根式的定义分析得出答案.【详解】A、x+1是整式,故此选项正确;B、是分式,故此选项错误;C、是二次根式,故此选项错误;D、是分式,故此选项错误,故选A.【点睛】本题考查了整式、分式、二次根式的定义,熟练掌握相关定义是解题关键.2.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A. 7个B. 6个C. 5个D. 4个【答案】B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式. 【详解】在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选:B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.3.单项式2πr3的系数是()A. 3B. πC. 2D. 2π【答案】D【解析】【分析】根据单项式中的数字因数是单项式的系数求解即可.【详解】单项式2πr3的系数是2π.故选D.【点睛】本题考查了单项式的概念,单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.4.单项式2a3b的次数是()A. 2B. 3C. 4D. 5【答案】C【解析】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选:C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.5.对于式子:,,,3x2+5x-2,abc,0,,m,下列说法正确的是( )A. 有5个单项式,1个多项式B. 有3个单项式,2个多项式C. 有4个单项式,2个多项式D. 有7个整式【答案】C【解析】分析:分别利用多项式以及单项式的定义分析得出答案.详解:,,,3x2+5x﹣2,abc,0,,m中:有4个单项式:,abc,0,m;2个多项式为:,3x2+5x-2.故选:C.点睛:此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.6.下列说法正确的是( )A. -的系数是-3B. 2m2n的次数是2C. 是多项式D. x2-x-1的常数项是1【答案】C【解析】分析:直接利用单项式以及多项式的定义分别分析得出答案.详解:A.﹣的系数是﹣,故此选项错误;B.2m2n的次数是3次,故此选项错误;C.是多项式,正确;D.x2﹣x﹣1的常数项是﹣1,故此选项错误.故选C.点睛:本题主要考查了单项式以及多项式,正确把握相关定义是解题的关键.7.如果2x a+1y与x2y b﹣1是同类项,那么的值是()A. B. C. 1 D. 3【答案】A【解析】【分析】根据同类项的概念可得a+1=2,b-1=1,解方程求得a、b的值,代入进行计算即可得.【详解】由题意得:a+1=2,b-1=1,解得:a=1,b=2,所以=,故选A.【点睛】本题考查了同类项,熟知所含字母相同,相同字母的指数也相同的项是同类项是解题的关键.8.若单项式a m﹣1b2与的和仍是单项式,则n m的值是()A. 3B. 6C. 8D. 9【答案】C【解析】分析:首先可判断单项式a m-1b2与a2b n是同类项,再由同类项的定义可得m、n的值,代入求解即可.详解:∵单项式a m-1b2与a2b n的和仍是单项式,∴单项式a m-1b2与a2b n是同类项,∴m-1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.点睛:本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.9.下面计算正确的是()A. (m+1)a﹣ma=1B. a+3a2=4a3C. ﹣(a﹣b)=﹣a+bD. 2(a+b)=2a+b【答案】C【解析】【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【详解】A. (m+1)a﹣ma=a≠1,故此选项错误;B.a与3a2不是同类项,不能合并,故此选项错误;C. ﹣(a﹣b)=﹣a+b,故此选项正确;D. 2(a+b)=2a+2b≠2a+b,故此选项错误;故选C.【点睛】本题主要考查了合并同类项,去括号,关键是注意去括号时注意符号他变化,注意乘法分配律的应用,不要漏乘.10.一个长方形的周长为6a+8b,其中一边长为2a﹣b,则另一边长为()A. 4a+5bB. a+bC. a+5bD. a+7b【答案】C【解析】【分析】根据长方形的周长公式列出求边长的式子,再去括号,合并同类项即可.【详解】一个长方形的周长为6a+8b,一边长为2a﹣b,∴它的另一边长=(6a+8b )-( 2a﹣b)=3a+4b-2a+b=a+5b.故选C.【点睛】本题考查的是整式的加减的应用,熟知整式的加减实质上就是去括号合并同类项,正确列出算式是解答此题的关键.第Ⅱ卷(非选择题)二.填空题(共4小题,满分20分,每小题5分)11.下列代数式:(1)mn,(2)m,(3),(4),(5)2m+1,(6),(7),(8)x2+2x+,(9)y3﹣5y+中,整式有______.(填序号)【答案】1)、(2)、(3)、(5)、(6)、(8).【解析】单项式和多项式统称整式,由此可得(1)mn,(2)m,(3),(5)2m+1,(6)都是整式,所以整式有(1)、(2)、(3)、(5)、(6)、(8).12.如果多项式(﹣a﹣1)x2﹣x b+x+1是关于x的四次三项式,那么这个多项式的最高次项系数是_____,2次项是_____【答案】(1). ﹣(2). 不存在【解析】【分析】由题意可得b=4,–a–1=0,求出a、b的值后再根据多项式的相关概念进行求解即可得.【详解】由题意得:b=4,–a–1=0,解得:a=–1,b=4,∴多项式–x 4+x+1的最高次项系数是–,2次项是0,故答案为:–;0.【点睛】本题考查了多项式的项数以及次数,熟练掌握多项式的项数及次数的概念是解题的关键.13.如图是小明家的楼梯示意图,其水平距离(即:AB的长度)为(2a+b)米,一只蚂蚁从A点沿着楼梯爬到C点,共爬了(3a﹣b)米.问小明家楼梯的竖直高度(即:BC的长度)为_____米.【答案】(a﹣2b)【解析】试题分析:根据平移可得蚂蚁所爬的距离=AB+BC,即3a-b=2a+b+BC.考点:代数式的减法计算14.若x=y+3,则(x﹣y)2﹣2.3(x﹣y)+0.75(x﹣y)2+(x﹣y)+7等于_____.【答案】10【解析】【分析】由由x=y+3得x-y=3,整体代入原式计算即可.【详解】由x=y+3得x-y=3,将其代入要求的式子得:原式=,故答案为:10.【点睛】本题考查了整式的加减—化简求值,解题的关键是掌握整体代入思想的运用.三.解答题(共9小题,满分90分)15.计算:(1)3xy﹣4xy﹣(﹣2xy)(2)(﹣3)2÷2÷(﹣)+4+22×(﹣)【答案】(1)xy(2)-8【解析】【分析】(1) 先将括号去掉,然后根据合并同类项的法则:系数相加减,字母和字母的指数不变.据此合并即可;(2) 原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【详解】(1)原式=3xy﹣4xy+2xy=xy,(2)原式=9÷÷(﹣)+4+4×(﹣)=4×(﹣)+4﹣6=﹣6+4﹣6=﹣8【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.16.若3x m y n是含有字母x和y的五次单项式,求m n的最大值.【答案】9【解析】【分析】根据单项式的概念即可求出答案.【详解】因为3x m y n是含有字母x和y的五次单项式,所以m+n=5,且m、n均为正整数.当m=1,n=4时,m n=14=1;当m=2,n=3时,m n=23=8;当m=3,n=2时,m n=32=9;当m=4,n=1时,m n=41=4,故m n的最大值为9.【点睛】考查单项式的概念,解题关键是运用单项式的概念和分类讨论的思想.17.已知多项式x2y m+1+xy2–3x3–6是六次四项式,单项式6x2n y5–m的次数与这个多项式的次数相同,求m+n的值.【答案】5.【解析】【分析】根据多项式的次数和单项式的次数的定义进行分析解答即可.【详解】∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,解得:m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.【点睛】熟知“(1)单项式的次数的定义:单项式中所有字母因数的指数之和叫做这个单项式的次数;(2)多项式的次数的定义:多项式的各项中,次数最高的项的次数就是这个多项式的次数”是解答本题的关键. 18.如果两个关于x、y的单项式2mx a y3与﹣4nx3a﹣6y3是同类项(其中xy≠0).(1)求a的值;(2)如果它们的和为零,求(m﹣2n﹣1)2017的值.【答案】(1)3(2)-1【解析】试题分析:(1)根据同类项的概念可得关于a 的方程,解方程即可得;(2)由已知可得2m-4n=0,从而得m-2n=0,代入进行计算即可得.试题解析:(1)∵关于x、y的两个单项式2mx a y3和﹣4nx3a﹣6y3是同类项,∴a=3a﹣6,解得:a=3;(2)∵2mx a y3+(﹣4nx3a﹣6y3)=0,则2m﹣4n=0,即m﹣2n=0,∴(m﹣2n﹣1)2017=(﹣1)2017=﹣1.19.若(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,求m的值.【答案】【解析】【分析】与x无关说明含x的项都被消去,由此可得出m的值.【详解】(2mx2﹣x+3)﹣(3x2﹣x﹣4)=2mx2﹣x+3﹣3x2+x+4=(2m﹣3)x2+7,∵(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关,∴2m﹣3=0,解得:m=.【点睛】本题考查整式的加减,解题的关键是正确理解(2mx2﹣x+3)﹣(3x2﹣x﹣4)的结果与x的取值无关.20.已知多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式.(1)求m的值;(2)当x=,y=﹣1时,求此多项式的值.【答案】(1)-3(2)【解析】【分析】(1)直接利用多项式的次数的确定方法得出m的值;(2)将x,y的值代入求出结果即可.【详解】(1)∵多项式(m﹣3)x|m|﹣2y3+x2y﹣2xy2是关于的xy四次三项式,∴|m|﹣2+3=4,m﹣3≠0,解得:m=﹣3,(2)当x=,y=﹣1时,此多项式的值为:﹣6××(﹣1)3+()2×(﹣1)﹣2××(﹣1)2=9﹣﹣3=.【点睛】本题考查了多项式及绝对值的知识点,解题的关键是根据题意得出m的值.21.嘉淇准备完成题目:化简:(x²+6x+8)-(6x+5x²+2)发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【答案】(1)﹣2x2+6;(2)a=5【解析】【分析】(1)由题意可先去括号,再合并同类项计算即可;(2)设“”是a,代入原式得到(a﹣5)x2+6,再根据“该题标准答案的结果是常数”,即可解答.【详解】(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.【点睛】本题考查了整式的加减,解题的关键是掌握合并同类项及去括号法则.22.阅读下面材料:计算1+2+3+…+99+100时,如果一个一个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的运算律,可简化计算,提高计算速度.1+2+3+…+99+100=(1+100)+(2+99)+…+(50+51)=101×50=5050.根据阅读材料提供的方法,计算:a+(a+m)+(a+2m)+(a+3m)+…+(a+100m).【答案】101a+5050m.【解析】【分析】由阅读材料可以看出,100个数相加,用第一项加最后一项可得101,第二项加倒数第二项可得101,…,共100项,可分成50个101,在计算a+(a+m)+(a+2m)+(a+3m)+…+(a+100d)时,可以看出a共有100个,m,2m,3m,…100m,共有100个,m+100m=101m,2m+99d=101d,…共有50个101m,根据规律可得答案.【详解】a+(a+m)+(a+2m)+(a+3m)+…+(a+100m)=101a+(m+2m+3m+…+100m)=101a+(m+100m)+(2m+99m)+(3m+98m)+…+(50m+51m)=101a+101m×50=101a+5050m.【点睛】考查了整式的加法,关键是根据阅读材料找出其中的规律,根据规律得出解题的技巧.23.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了多项式,形式如下:﹣(a2+4ab+4b2)=a2﹣4b2(1)求所捂的多项式(2)当a=﹣2,b=时,求所捂的多项式的值【答案】(1)2a2+4ab(2)4【解析】试题分析:(1)所捂的多项式是被减式,根据被减式=减式+差求解;(2)把a,b的值代入到(1)中所求的多项式中求值.试题解析:(1)所捂多项式=a2-4b2+a2+4b2+4ab=2a2+4ab;(2)当a=-1,b=时,所捂多项式=2×(-1)2+4×(-1)×=2-2=0.。
七年级数学上册第二章整式的加减专项训练题
(名师选题)七年级数学上册第二章整式的加减专项训练题单选题1、如图,下列四个式子中,不能表示阴影部分面积的是()A.3(x+2)+x2B.x(x+3)+6C.x2+5D.(x+3)(x+2)−2x答案:C分析:根据图形列出各个算式,再得出答案即可.解:阴影部分的面积S=x2+3(2+x)=x(x+3)+3×2=(x+3)(x+2)﹣2x,故A、B、D都可以表示阴影部分面积,只有C不能,故选:C.小提示:本题考查了列代数式,能根据图列出算式是解此题的关键.2、下列各式书写符合要求的是()A.a−1÷−b B.312xy C.ab×5D.−x2y2答案:D分析:根据代数式的书写要求判断各项即可.解:A、原书写不规范,应写为a−1−b,故此选项不符合题意;B,原书写不规范,应写为72xy,故此选项不符合题意;C、书写不规范,应写为5ab,故本选项不符合题意;D、书写规范,故此选项符合题意.故选:D.小提示:本题考查了代数式,解题的关键是掌握代数式的书写要求:(l)在代数式中出现的乘号,通常简写成“·”或者简略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写,而分数要写成假分数的形式.3、对实数a,b依次进行以下运算;M1=a,M2=b,M3=2M2−M1,M4=2M3−M2,M5=2M4−M3,⋯,M n=2M n−1−M n−2,⋯.若点P n(M n,M n+1),其中n为正整数.下列说法中正确的有()①M5=4b−3a;②M n中,a与b的系数之和为 1;③点P11的坐标为(11b−10a,12b−11a).A.0 个B.1 个C.2 个D.3 个答案:C分析:根据M1,M2,依次求出M3,M4,M5,进而得出规律,然后根据规律进行判断.解:∵M1=a,M2=b,∴M3=2M2−M1=2b−a,M4=2M3−M2=2(2b−a)−b=3b−2a,M5=2M4−M3=2(3b−2a)−(2b−a)=6b−4a−2b+a=4b−3a,…,①正确;由此发现规律:M n=(n−1)b−(n−2)a,∵(n−1)−(n−2)=1,∴M n中,a与b的系数之和为 1,②正确;∵M11=10b−9a,M12=11b−10a,∴点P11的坐标为(10b−9a,11b−10a),③错误;故选:C.小提示:本题考查了整式加减中的规律问题,熟练掌握运算法则,正确求出M3,M4,M5,进而得出规律是解题的关键.4、已知a+b=3,c−d=2,则(a+c)−(−b+d)的值是()A.5B.-5C.1D.-1答案:A根据整式的加减运算法则即可求出答案.分析:解:原式=a+c+b﹣d=a+b+c﹣d,当a+b=3,c﹣d=2时,∴原式=3+2=5,故选:A.小提示:本题考查整式的加减中的化简求值,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5、已知单项式3a m+1b与−b n−1a3可以合并同类项,则m,n分别为()A.2,2B.3,2C.2,0D.3,0答案:A分析:根据同类项的定义得出关于m,n的式子,计算求出m,n即可.解:∵单项式3a m+1b与−b n−1a3可以合并同类项,∴m+1=3,n-1=1,∴m=2,n=2,故选:A.小提示:本题考查了合并同类项及同类项的定义,如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.6、一个多项式与x2﹣2x+1的和是3x﹣2,则这个多项式为()A.x2﹣5x+3B.﹣x2+x﹣1C.﹣x2+5x﹣3D.x2﹣5x﹣13答案:C分析:根据题意列出关系式,去括号合并同类项即可得到结果.解:根据题意得:3x-2-(x2-2x+1)=3x-2-x2+2x-1=-x2+5x-3.故选:C.小提示:此题考查了整式的减法的运用,熟练掌握整理式减法运算法则是解本题的关键.7、某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a元;超过部分每立方米(a+1.2)元.该地区某用户上月用水量为20立方米,则应缴水费为()A.20a元B.(20a+24)元C.(17a+3.6)元D.(20a+3.6)元答案:D分析:分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.解:∵20立方米中,前17立方米单价为a元,后面3立方米单价为(a+1.2)元,∴应缴水费为17a+3(a+1.2)=20a+3.6(元),故选:D.小提示:本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.8、按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1答案:D分析:逐项代入,寻找正确答案即可.解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m+1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;小提示:本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.9、单项式mxy3与x n+2y3的和是5xy3,则m−n(()A.﹣4B.3C.4D.5答案:D分析:根据单项式的和是单项式,可得两个单项式是同类项,根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.解:解:∵单项式mxy3与x n+2y3的和是5xy3,∴单项式mxy3与x n+2y3是同类项,∴n+2=1,m+1=5,解得n=−1,m=4,∴m−n=4−(−1)=5,故选:D.小提示:本题考查了同类项的概念,同类项定义中的两个“相同”:字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.10、下列算式中正确的是()A.4x−3x=1B.2x+3y=3xyC.3x2+2x3=5x5D.x2−3x2=−2x2答案:D分析:根据合并同类项的法则计算即可得出正确结论.解:A. 4x−3x=x,故本选项错误,不符合题意;B. 2x与3y不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;C. 3x2与2x3不是同类项,不能合并运算,故本选项故本选项错误,不符合题意;D. x2−3x2=−2x2,本选项正确,符合题意;故选:D小提示:本题主要考查了合并同类项,熟记同类项的概念是解题的关键.填空题11、如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,50节链条总长度为_________cm.答案:91分析:通过观察图形可知,1节链条的长度是2.8cm,2节链条的长度是(2.8×2-1)cm,3节链条的长度是(2.8×3-1×2)cm,n节链条的长度是2.8n-1×(n-1)cm,据此解答即可求解.解:2节链条的长度是(2.8×2-1)cm,3节链条的长度是(2.8×3-1×2)cm,n节链条的长度是2.8n-1×(n-1)cm,所以50节链条的长度是:2.8×50-1×(50-1)=140-1×49=91(cm)所以答案是:91小提示:此题考查的图形类规律,关键是找出规律,得出n节链条长度为2.5×n-0.8×(n-1).12、已知x=−5−y,xy=2,计算3x+3y−4xy的值为______.答案:−23分析:将已知式子代入代数式中求解即可.∵x=−5−y∴x+y=−5将x+y=−5,xy=2代入3x+3y−4xy中,可得原式=3(x+y)−4xy=3×(−5)−4×2=−15−8=−23所以答案是:−23.小提示:本题考查了代数式的计算问题,掌握代入法是解题的关键.13、如果单项式2x m−1y2与−3x2y n+1是同类项,那么m+n=______.答案:4分析:根据同类项的定义中相同字母的指数也相同,可先列出关于m和n的二元一次方程组,再解方程组求出它们的值,再代入代数式求值即可.解:由题意得,{m−1=2n+1=2∴{m=3n=1∴m+n=4所以答案是:4.小提示:本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个相同是解题的关键.14、如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_______(结果用含a、b代数式表示).答案:a+8b分析:观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.观察图形可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),四个拼接时,总长度为4a-3(a-b),…,所以9个拼接时,总长度为9a-8(a-b)=a+8b,故答案为a+8b.小提示:本题考查了规律题——图形的变化类,通过推导得出总长度与个数间的规律是解题的关键.15、如果一个矩形内部能用一些正方形铺满,既不重叠,又无缝隙,就称它为“优美矩形”,如图所示,“优美矩形”ABCD 的周长为26,则正方形d 的边长为______.答案:5分析:设正方形a 、b 、c 、d 的边长分别为a 、b 、c 、d ,分别求得b =13c ,c =35d ,由“优美矩形”ABCD 的周长得4d +2c =26,列式计算即可求解.解:设正方形a 、b 、c 、d 的边长分别为a 、b 、c 、d ,∵“优美矩形”ABCD 的周长为26,∴4d +2c =26,∵a =2b ,c =a +b ,d =a +c ,∴c =3b ,则b =13c ,∴d =2b +c =53c ,则c =35d ,∴4d +65d =26,∴d =5,∴正方形d 的边长为5,所以答案是:5.小提示:本题考查了整式加减的应用,认真观察图形,根据长方形的周长公式推导出所求的答案是解题的关键.解答题16、先化简,再求值:a(a −2b)+(a +b)2,其中a =−3,b =5答案:2a 2+b 2,43分析:由单项式乘以多项式法则,结合完全平方公式进行化简,再代入数值计算即可.解:原式=a2−2ab+a2+2ab+b2= 2a2+b2当a=−3,b=5时,原式=2×(−3)2+52=43.小提示:本题考查整式加减的化简求值,涉及完全平方公式,掌握相关知识是解题关键.17、如图所示,在数轴上点A,B,C表示得数为﹣2,0,6,点A与点B之间的距离表示为AB,点B与点C 之间的距离表示为BC,点A与点C之间的距离表示为AC.(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动.请问:BC﹣AB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值.答案:(1)AB=2,AC=8(2)变化,当t=0时取得最大值4分析:(1)根据点A,B,C表示的数,即可求出AB,AC的长;(2)根据题意分别求得点A表示的数为-2-2t,点B表示的数为3t,点C表示的数为6+4t,根据两点距离求得BC,AB,进而根据整式的加减进行计算即可.(1)解:AB=0-(-2)=2,AC=6−(−2)=8.(2)当运动时间为t秒时,点A表示的数为-2-2t,点B表示的数为3t,点C表示的数为6+4t,则BC=6+4t−3t=6+t,AB=3t−(−2−2t)=2+5t∴BC−AB=6+t−(2+5t)=4−4t当t=0时,BC−AB的值最大,最大值为4.小提示:本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t的代数式表示出BC,AB的长.18、有这样一道题:“求(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中x=2020,y”,但他的计算结果竟然正确,请你说明原因,并计=﹣1”.小明同学把“x=2−a−ab”错抄成了“x=﹣m−n3算出正确结果.答案:见解析;2分析:原式去括号合并得到最简结果,即可作出判断.解:原式=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,∴此题的结果与x的取值无关,y=﹣1时,原式=﹣2×(﹣1)3=2.小提示:本题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.。
人教版数学七年级上册第二章整式的加减单元测试题(含答案)
人教版数学七年级上学期第二章整式的加减测试一、选择题:1.单项式22r π的系数是( ) A. 12 B. π C. 2 D. 2π 2.若232n x y 与2m -5xy 是同类项,则m n -值是( )A. 0B. 1C. 7D. -13.关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A. 这个多项式是五次四项式B. 四次项的系数是7C. 常数项是1D. 按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.m,n 都是正数,多项式x m +x n +3x m+n 的次数是( )A. 2m+2nB. m 或nC. m+nD. m,n 中的较大数 5.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为( )A. a 2+(﹣2a+b+c)B. a 2+(﹣2a ﹣b ﹣c)C. a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c) 6.下列计算正确的是( )A. 3a+2a=5a 2B. 3a -a=3C. 2a 3+3a 2=5a 5D. -a 2b+2a 2b=a 2b 7.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( )A. ﹣5x ﹣1B. 5x+1C. ﹣13x ﹣1D. 13x+1 8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm ,宽为ncm )的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A. 4m cmB. 4n cmC. 2(m +n) cmD. 4(m -n) cm9.当a=﹣1,b=1时,(a 3﹣b 3)﹣(a 3﹣3a 2b+3ab 2﹣b 3)的值是( )A. 0B. 6C. ﹣6D. 910.已知密文和明文的对应规则为:明文a 、b 对应的密文为ma-nb 、na+mb.例如,明文1、2对应的密文是-3,4.若密文是1,7时,则对应的明文是( )A. -1,1B. 1,3C. 3,1D. 1,l11.如图,为做一个试管架,在acm 长的木条上钻4个圆孔,每个孔的直径为2cm ,则x 等于( )A. 85a +cmB. 165a cm -C. 45a cm -D. 85a cm - 12.用大小相等的小正方形按一定规律拼成下列图形,则第n 个图形中小正方形的个数是( )A 2n+1 B. n 2﹣1 C. n 2+2n D. 5n ﹣2二、填空题:13.单项式358ab -系数是__,次数是__. 14.2xy 2+x 2y 2﹣7x 3y +7按x 的降幂排列:__________________________________.15.爸爸给小强买了一个足球花了a 元,买一个乒乓球花了b 元,则买x 个足球和y 个乒乓球共花了____元. 16.已知24m m n x y +与623x y 是同类项,则m -n=___________.17.已知当x =1时,代数式ax 3+bx +5的值为-9,那么当x =-1时,代数式ax 3+bx +5的值为_______ . 18 观察下列算式:222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+= 若字母表示自然数,请把你观察到的规律用含有的式子表示出来:三、计算题:19.化简:﹣3a 2+2ab ﹣4ab+2a 220.化简:(3x 2﹣xy ﹣2y 2)﹣2(x 2+xy ﹣2y 2)21.化简:(8x ﹣7y)﹣2(4x ﹣5y)22.化简:﹣(3a 2﹣4ab)+[a 2﹣2(2a 2+2ab)].四、解答题:23.已知多项式x 4﹣y +3xy ﹣2xy 2﹣5x 3y 3﹣1,按要求解答下列问题:(1)指出该多项式的项;(2)该多项式的次数是______,三次项的系数是______.(3)按y 的降幂排列为:______.(4)若|x+1|+|y-2|=0,试求该多项式的值.24.已知:A =3a 2﹣4ab ,B =a 2+2ab .(1)求A ﹣2B ;(2)若|2a +1|+(2﹣b )2=0,求A ﹣2B 的值.25.化简求值:2222233224()(4)2a b ab ab a b ab ab a b ⎡⎤---++-⎢⎥⎣⎦,其中,a b 使得关于的多项式3213(1)()32x a x b x +++--不含2x 项和项. 26.小明、小强从同一地点A 同时反向(小明按逆时针方向,小强按顺时针方向)绕环形跑道跑步,小明的速度为4a 米/秒,小强的速度为5a 米/秒(a >0),经过t 秒两人第一次相遇.⑴ 这条环形跑道的周长为多少米?⑵ 两人第一次相遇后,小明、小强继续按原方向绕跑道跑步. ① 小明又经过几秒再次到达A 点?② 在①中当小明到达A 点时,小强否已经过A 点?如果已经过,则小强经过A 点后又走了多少米?如果没有经过,请说明理由.答案与解析一、选择题:1.单项式22r π的系数是( ) A. 12 B. π C. 2 D. 2π 【答案】D【解析】 【详解】单项式22r π的系数是:2π.故选D .2.若232n x y 与2m -5xy 是同类项,则m n -的值是( )A. 0B. 1C. 7D. -1 【答案】B【解析】【分析】直接利用同类项的概念得出n ,m 的值,再利用绝对值的性质求出答案.【详解】∵232n x y 与2m -5xy 是同类项,∴2n =1,2m =3,解得:m =32,n =12,∴|m−n|=|32−12|=1.故选:B .【点睛】此题主要考查了同类项,正确把握同类项的定义是解题关键.3.关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A. 这个多项式是五次四项式B. 四次项的系数是7C. 常数项是1D. 按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+1【答案】B【解析】【分析】根据多项式的概念即可求出答案.【详解】多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,有四项分别为:0.3x 2y ,﹣2x 3y 2,﹣7xy 3,+1,最高次为5次,是五次四项式,故A 正确;四次项的系数是-7,故B 错误;常数项是1,故C 正确;按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+1,故D 正确,故符合题意的是B 选项,故选B.4.m,n 都是正数,多项式x m +x n +3x m+n 的次数是( )A. 2m+2nB. m 或nC. m+nD. m,n 中的较大数 【答案】C【解析】∵m,n 都是正数,∴m+n>m,m+n>n,∴m+n 最大,∴多项式x m +x n +3x m+n 次数是m+n,故选:C.5.不改变代数式a 2﹣(2a+b+c )的值,把它括号前的符号变为相反的符号,应为() A. a 2+(﹣2a+b+c) B. a 2+(﹣2a ﹣b ﹣c)C. a 2+(﹣2a)+b+cD. a 2﹣(﹣2a ﹣b ﹣c)【答案】B【解析】试题解析:原式2(2).a a b c =+---故选B.6.下列计算正确的是( )A. 3a+2a=5a 2B. 3a -a=3C. 2a 3+3a 2=5a 5D. -a 2b+2a 2b=a 2b 【答案】D【解析】【分析】根据合并同类项:系数相加字母部分不变,可得答案.【详解】A、3a+2a=5a≠5a2 ,故A错误;B、3a-a=2a≠3,故B错误;C、2a3与3a2不能合并,故C错误;D、-a2b+2a2b=a2b,故D正确;故选D.【点睛】本题考查了同类项,关键是利用合并同类项法则:系数相加字母及字母的指数不变.7.已知一个多项式与3x2+9x的和等于3x2+4x﹣1,则这个多项式是()A. ﹣5x﹣1B. 5x+1C. ﹣13x﹣1D. 13x+1【答案】A【解析】选A分析:本题涉及多项式的加减运算,解答时根据各个量之间的关系作出回答.解答:解:设这个多项式为M,则M=3x2+4x-1-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.故选A.8.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为mcm,宽为ncm)的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A. 4m cmB. 4n cmC. 2(m+n) cmD. 4(m-n) cm【答案】B【解析】【分析】设图①小长方形的长为a,宽为b,由图②表示出上面与下面两个长方形的周长,求出之和,根据题意得到a+2b=m,代入计算即可得到结果.【详解】设小长方形的长为a,宽为b,上面的长方形周长:2(m﹣a+n﹣a),下面的长方形周长:2(m﹣2b+n﹣2b),两式联立,总周长为:2(m﹣a+n﹣a)+2(m﹣2b+n﹣2b)=4m+4n﹣4(a+2b),∵a+2b=m(由图可得),∴阴影部分总周长为4m+4n﹣4(a+2b)=4m+4n﹣4m=4n(厘米).故选:.【点睛】此题考查了整式的加减运算,熟练掌握运算法则以及根据题意结合图形得出答案是解题的关键.9.当a=﹣1,b=1时,(a3﹣b3)﹣(a3﹣3a2b+3ab2﹣b3)的值是( )A. 0B. 6C. ﹣6D. 9【答案】B【解析】【分析】本题考查了整式的加法运算,要先去括号,然后合并同类项,最后代入求值.【详解】原式=a3﹣b3﹣a3+3a2b﹣3ab2+b3=3a2b﹣3b2a当a=﹣1,b=1时,原式=3×(﹣1)2×1﹣3×12×(﹣1)=6.故选B.【点睛】解决此类题目的关键是熟练地去括号、合并同类项,这是各地中考的常考点.最后要化简求值.10.已知密文和明文的对应规则为:明文a、b对应的密文为ma-nb、na+mb.例如,明文1、2对应的密文是-3,4.若密文是1,7时,则对应的明文是( )A. -1,1B. 1,3C. 3,1D. 1,l【答案】C【解析】由题意得:23{24m nn m-=-+=,解得12mn=⎧⎨=⎩,∴若密文是1,7时,有21 {27 a ba b-=+=,解得:31 ab=⎧⎨=⎩,故选C11.如图,为做一个试管架,在acm长的木条上钻4个圆孔,每个孔的直径为2cm,则x等于()A.85a+cm B.165acm-C.45acm-D.85acm-【答案】D【解析】【分析】读图可得:5x+四个圆的直径=acm.由此列出方程,用含a的代数式表示x即可.【详解】由题意可得:5x=a﹣2×4,则x=85a-cm.故选D.【点睛】本题考查了一元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.12.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是( )A. 2n+1B. n2﹣1C. n2+2nD. 5n﹣2【答案】C【解析】试题分析:∵第1个图形中,小正方形的个数是:221-=3;第2个图形中,小正方形的个数是:231-=8;第3个图形中,小正方形的个数是:241-=15;…∴第n个图形中,小正方形的个数是:2(1)1n+-=22n n+;故选C.考点:规律型:图形的变化类.二、填空题:13.单项式358ab -的系数是__,次数是__. 【答案】 (1). 58- (2). 4 【解析】【分析】单项式就是数与字母的乘积,数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,据此即可求解. 【详解】单项式358ab -的系数是:58-,次数是:1+3=4. 故答案为58-;4.【点睛】本题主要考查了单项式系数与次数的定义,在写系数时,注意不要忘记前边的符号是解答此题的关键.14.2xy 2+x 2y 2﹣7x 3y +7按x 的降幂排列:__________________________________.【答案】3222727x y x y xy -+++【解析】因为按x 降幂排列即从左向右x 的次数从高到低依次递减, 故答案为:3222727x y x y xy -+++. 15.爸爸给小强买了一个足球花了a 元,买一个乒乓球花了b 元,则买x 个足球和y 个乒乓球共花了____元.【答案】ax+by【解析】【分析】根据买一个足球花a 元,得出买x 个足球共花ax 元,再根据买一个乒乓球花b 元,得出买y 个乒乓球共花by 元,两者相加即可得出答案.详解】根据题意得:买x 个足球和y 个乒乓球共花了:(ax +by )元.故答案为ax +by .【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的数量关系,列出代数式. 16.已知24m m n x y +与623xy 是同类项,则m -n=___________.【答案】4【解析】试题解析:∵4x 2m y m+n 与3x 6y 2是同类项,∴2m=6,m+n=2.第一个式子减去第二个式子得:m ﹣n=4.考点:1.同类项;2.解一元一次方程.17.已知当x =1时,代数式ax 3+bx +5的值为-9,那么当x =-1时,代数式ax 3+bx +5的值为_______ .【答案】19.【解析】试题分析:∵当x=1时,代数式ax 3+bx+5的值为-9,∴a×13+b×1+5=-9,即a+b=-14,把x=-1代入代数式ax 3+bx+5,得ax 3+bx+5=a×(-1)3+b×(-1)+5=-(a+b)+5=14+5=19.考点:代数式求值.18. 观察下列算式:222222222210101;21213;32325;43437;54549;-=+=-=+=-=+=-=+=-=+= 若字母表示自然数,请把你观察到的规律用含有的式子表示出来:【答案】()221121n n n n n +-=++=+【解析】【分析】根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;…进而发现规律,用n 表示可得答案.【详解】根据题意,分析可得:(0+1)2-02=1+2×0=1;(1+1)2-12=2×1+1=3;(1+2)2-22=2×2+1=5;… 若字母n 表示自然数,则有:(n+1)2-n 2=2n+1;故答案为(n+1)2-n 2=2n+1. 三、计算题:19.化简:﹣3a 2+2ab ﹣4ab+2a 2【答案】﹣a 2﹣2ab【解析】【分析】把各同类项进行合并即可.【详解】原式=(﹣3+2)a2+(2﹣4)ab=﹣a2﹣2ab【点睛】本题考查的是合并同类项.解题的关键是掌握合并同类项法则.20.化简:(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)【答案】x2﹣3xy+2y2.【解析】【分析】根据括号前是正号,去掉括号及正号,各项都不变,括号前是负号,去掉括号及负号,各项都变号,可去括号,再根据系数相加字母部分不变,合并同类项.【详解】原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=3x2﹣2x2﹣xy﹣2xy﹣2y2+4y2= x2﹣3xy+2y2.【点睛】本题考查了去括号与添括号,根据法则去括号添括号是解题的关键.21.化简:(8x﹣7y)﹣2(4x﹣5y)【答案】3y【解析】【分析】先去括号,然后合并同类项即可.【详解】原式=8x﹣7y﹣8x+10y=3y.【点睛】本题考查了去括号与添括号,根据法则去括号是解题的关键.22.化简:﹣(3a2﹣4ab)+[a2﹣2(2a2+2ab)].【答案】﹣6a2【解析】【分析】根据整式的加减即可求出答案.【详解】原式=﹣3a2+4ab+a2﹣4 a2﹣4ab=﹣6a2【点睛】本题考查了整式的加减,注意去括号的顺序.四、解答题:23.已知多项式x4﹣y+3xy﹣2xy2﹣5x3y3﹣1,按要求解答下列问题:(1)指出该多项式的项;(2)该多项式的次数是______,三次项的系数是______.(3)按y的降幂排列为:______.(4)若|x+1|+|y-2|=0,试求该多项式的值.【答案】(1)该多项式的项为:x4,-y,3xy,-2xy2,-5x3y3,-1; (2)该多项式的次数是6,三次项的系数是-2; (3)按y的降幂排列为:-5x3y3-2xy2-y+3xy+x4-1;(4)40【解析】【分析】(1)根据多项式的项的定义求解,(2)根据多项式的项的次数、单项式的系数的定义求解;(3)先分清多项式的各项,然后按y的降幂排列;(4)根据非负数的性质得到x,y的值,代入代数式即刻得到结果.【详解】(1)该多项式的项为:x4,-y,3xy,﹣2xy2,﹣5x3y3,﹣1;(2)该多项式的次数是6,三次项的系数是﹣2.故答案为6,﹣2;(3)按y的降幂排列为:﹣5x3y3﹣2xy2﹣y+3xy+x4﹣1.故答案为﹣5x3y3﹣2xy2﹣y+3xy+x4﹣1;(4)∵|x+1|+|y﹣2|=0,∴x=﹣1,y=2,∴x4﹣y+3xy﹣2xy2﹣5x3y3﹣1=(﹣1)4﹣2+3×(﹣1)×2﹣2(﹣1)×22﹣5(﹣1 )3×23﹣1=1﹣2﹣6+8+40﹣1=40.【点睛】本题考查的是与多项式有关的定义,比较简单.几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.24.已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|2a+1|+(2﹣b)2=0,求A﹣2B的值.【答案】(1)a2﹣8ab;(2)814.【解析】【分析】(1)直接利用去括号法则去括号,进而合并同类项得出答案.;(2)利用绝对值以及偶次方的非负性得出a,b的值,进而得出答案.【详解】(1)∵A=3a2﹣4ab,B=a2+2ab,∴A﹣2B=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab;(2)∵|2a+1|+(2﹣b)2=0,∴a=﹣12,b=2,则原式=14+8=814. 【点睛】此题主要考查了整式的加减运算,正确合并同类项是解题关键.25.化简求值:2222233224()(4)2a b ab ab a b ab ab a b ⎡⎤---++-⎢⎥⎣⎦,其中,a b 使得关于的多项式3213(1)()32x a x b x +++--不含2x 项和项. 【答案】原式=21068a b ab -+=-.【解析】试题分析:本题先将第一个整式按照先去小括号,再去中括号的依次顺序去掉括号,然后合并同类项化简,然后根据第二个整式中不含2x 项和项,可令式子中的2x 项和项的系数为0,从而计算出a ,b 的值,然后将a ,b 的值代入到第一个化简的式子中进行计算求值.试题解析:原式=22222322464a b ab ab a b ab ab a b ⎡⎤--+++-⎣⎦,=222223481224a b ab ab a b ab ab a b -+--+-,=2106a b ab -+,由题意知:10a +=,102b -=, ∴1a =-,12b =, 当1a =-,12b =时, 原式=()()2111016122-⨯-⨯+⨯-⨯, =()53-+-,=8-.26.小明、小强从同一地点A 同时反向(小明按逆时针方向,小强按顺时针方向)绕环形跑道跑步,小明的速度为4a 米/秒,小强的速度为5a 米/秒(a >0),经过t 秒两人第一次相遇.⑴ 这条环形跑道的周长为多少米?⑵ 两人第一次相遇后,小明、小强继续按原方向绕跑道跑步. ① 小明又经过几秒再次到达A 点?② 在①中当小明到达A 点时,小强是否已经过A 点?如果已经过,则小强经过A 点后又走了多少米?如果没有经过,请说明理由.【答案】⑴ 这条环形跑道的周长为9at 米;(2)①54t ;②小强已经经过A 点,经过A 点后又走了94at 米【解析】【分析】(1)小明、小强两人行走的距离和为环形跑道的周长;(2)①小明行的距离÷行驶速度=小明所用的时间;②小强行距离÷小强所用的时间=行驶速度.【详解】(1)依题意得:(5a+4a)t=9at,即这条环形跑道的周长为9at米;(2)①设经过x秒后,小明再次到达A点,依题意得:4ax+4at=9at.解得:x=54t.答:小明又经过54t秒再次到达A点;②当小明再一次到达A点时,5a×54t=254at,所以小强已经过A点.25 4at﹣4at=94at.则小强经过A点后又走了94at米.【点睛】考查了一元一次方程的应用.解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
人教版数学七年级上册第二章整式的加减单元综合检测题(含答案)
人教版数学七年级上学期第二章整式的加减测试一、选择题(每小题3分,共36分)1.原售价为m元的商品,降价30%后的价格应为( )A. (1+30%)m元B. (m+30%)元C. (1-30%)m元D. 30%m元2.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A. 4、-6、5B. 4、0、-1C. 2、0、5D. 4、6、53.下面的叙述错误的是( )A.32ab⎛⎫⎪⎝⎭的意义是a的立方除以2b的商B. a+2b2的意义是a与b2的2倍的和C. (a+2b)2的意义是a与b的2倍的和的平方D. 2(a+b)2的意义是a与b的和的平方的2倍4.关于单项式-235xyπ的判断,正确的是( )A. 它的系数和次数都是3B. 它的系数是-35,次数是4C. 它的系数是-35π,次数是2 D. 它的系数是-35π,次数是35.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有( )A. 1个B. 2个C. 3个D. 4个6.在代数式12x-y,3a,a2-y+23,1π,xyz,-5y,3x y z-+中有( )A. 5个整式B. 4个单项式,3个多项式C. 6个整式,4个单项式D. 6个整式,单项式与多项式个数相同7.下列各式运算其中去括号不正确的有( )(1)-(-a-b)=a-b;(2)5x-(2x-1)-x2=5x-2x-1+x2;(3)3xy-12(xy-y2)=3xy-12xy+y2;(4)(a3+b3)-3(2a3-3b3)=a3+b3-6a3+9b3A (1)(2) B. (1)(2)(3) C. (2)(3)(4) D. (1)(2)(3)(4)8.已知-2m6n与5x m2x n y是同类项,则( )A. x=2,y=1B. x=3,y=1C. x=32,y=1 D. x=3,y=09.节日期间,某专卖店推出全店打8折的优惠活动,持贵宾卡可在8折基础上再打9折,小明妈妈持贵宾卡买了一件商品共花了a元,则该商品的标价是( )A. 1720a元 B.2017a元 C.1825a元 D.2518a元10.观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-411.若代数式2x2+3y+7的值为8,则代数式6x2+9y+8的值为( )A. 1B. 11C. 15D. 2312.大于1正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是103,则m的值是( )A 9 B. 10 C. 11 D. 12二、填空题(每小题3分,共18分)13.若a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,则m=____,n=____.14.已知5x2m-n y9-4x5y3n=x5y9,则m-n=______.15.如果m,n都是正整数,且m>n,那么多项式x m+y n+z mn的次数应当是______.16.若a2-b2-4-m=a2+b2+ab,则m所代表的代数式是__________.17.现规定a bc d=a-b+c-d,则22232235xy x xy xx xy------+的值为____________.18.一个三角形的第一边长2a+3b,第二边比第一边短a,第三边比第一边大2b,那么这个三角形的周长是__________.三、解答题(共66分)19.给出三个多项式:12x2+x-1,12x2+3x+1,12x2-x,请你选择其中两个进行加法运算.20.计算:(8a-7b)-(4a-5b)+(3a-2b).21.课堂上李老师给出了一道整式求值题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?22.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2是同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.23.已知-5x m y3+104x m-4xy2是关于x,y的六次多项式,求m的值,并写出该多项式.下面是李明同学给出的解法:解:由原多项式知,第一项的次数为m+3,第二项的次数为4+m,第三项的次数为3,于是可知此多项式最高次数为4+m. ①又因为这个多项式是六次多项式,所以有4+m=6, ②所以m=2. ③于是原多项式为-5x2y3+104x2-4xy2. ④李明同学的解答正确吗?若不对,请指出错在哪一步,并给出正确解法.24.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应等式.25.“十一”期间,某中学七年级(1)班的三位老师带领本班a名学生(学生人数不少于3名)去北京旅游,春风旅行社的收费标准为:教师全价,学生半价;华北旅行社不论教师、学生一律八折优惠,这两家旅行社的基本收费都是每人500元.(1)用代数式表示,选择这两家旅行各需要多少钱?(2)如果有学生20名,你认为选择哪家旅行社较为合算,为什么?26.现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例,要求小麦的种植面积占总面积的60%,设玉米的种植面积为x亩,下表是三种农作物的亩产量及销售单价的对应表:名称小麦玉米黄豆亩产量/千克400 600 220(1)黄豆的种植面积为亩;(用含x的式子表示)(2)求三种农作物的总售价为多少元.(用含x的式子表示)(3)如果玉米的种植面积为3亩,求三种农作物的总售价为多少元.答案与解析一、选择题(每小题3分,共36分)1.原售价为m元的商品,降价30%后的价格应为( )A. (1+30%)m元B. (m+30%)元C. (1-30%)m元D. 30%m元【答案】C【解析】分析】用原价减去降低的价钱得出现价即可.【详解】售价为m元的商品,降价30%就是在原价的基础上减去30%m元,所以,现价是m-30%m=(1-30%)m元,故选C.【点睛】本题考查了列代数式,掌握销售问题中的基本数量关系是解决问题的关键.2.若(3x2-3x+2)-(-x2+3x-3)=Ax2-Bx+C,则A、B、C的值分别为( )A. 4、-6、5B. 4、0、-1C. 2、0、5D. 4、6、5【答案】D【解析】【分析】先把等式左边的整式相加减,再分别令等式两边x的二次项系数、一次项系数及常数项分别相等即可.【详解】∵等式的左边=3x2-3x+2+x2-3x+3=(3+1)x2-(3+3)x+2+3=4x2-6x+5,∴A=4,B=6,C=5,故选D.【点睛】本题考查了整式的加减,熟知整式加减的实质就是合并同类项是解答此题的关键.3.下面的叙述错误的是( )A.32ab⎛⎫⎪⎝⎭的意义是a的立方除以2b的商B. a+2b2的意义是a与b2的2倍的和C. (a+2b)2的意义是a与b的2倍的和的平方D. 2(a+b)2的意义是a与b的和的平方的2倍【答案】A【解析】【分析】根据代数式来判定各选项给出的表达意义是否正确,注意“和”、“差”、“倍”、“商”的表述.【详解】A.3a2b⎛⎫⎪⎝⎭的意义应是“a除以2b的商的立方”,故A选项错误,符合题意;B. a+2b2的意义是a与b2的2倍的和,正确,不符合题意;C. (a+2b)2的意义是a与b的2倍的和的平方,正确,不符合题意;D. 2(a+b)2的意义是a与b的和的平方的2倍,正确,不符合题意, 故选A.【点睛】本题考查了代数式的意义,正确分析是解题的关键.4.关于单项式-235xyπ的判断,正确的是( )A. 它的系数和次数都是3B. 它的系数是-35,次数是4C. 它的系数是-35π,次数是2 D. 它的系数是-35π,次数是3【答案】D【解析】【分析】根据单项式系数以及次数的定义进行判断即可.【详解】单项式-23πxy5的数字因数是-3π5,所有字母指数的和为:1+2=3,所以单项式的系数是-35π,次数是3,故选D.【点睛】本题考查了单项式的系数与次数,熟记相关概念是解题的关键.5.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据题意可得m=-1,|5-n|=1或m=-2,|5-n|=4,求出m、n的值,然后求出m n的值即可.【详解】∵代数式2x4y+mx|5-n|y+xy化简之后为单项式,∴化简后的结果可能为2x4y,也可能为xy,当结果为2x4y时,m=-1,|5-n|=1,解得:m=-1,n=4或n=6,则m n=(-1)4=1或m n=(-1)6=1;当结果为xy时,m=-2,|5-n|=4,解得:m=-2,n=1或n=9,则m n=(-2)1=-2或m n=(-2)9=-29,综上,m n的值共有3个,故选C.【点睛】本题考查了合并同类项,解答本题的关键是掌握合并同类项的法则.6.在代数式12x-y,3a,a2-y+23,1π,xyz,-5y,3x y z-+中有( )A. 5个整式B. 4个单项式,3个多项式C. 6个整式,4个单项式D. 6个整式,单项式与多项式个数相同【答案】D【解析】【分析】根据整式,单项式,多项式的概念分析各个式子即可得.【详解】单项式有3a,1π,xyz共3个,多项式有12x-y,a2-y+23,x y z3-+共3个,整式有12x-y,3a,a2-y+23,1π,xyz,x y z3-+共6个,故选D.【点睛】本题考查了整式的有关概念.要能准确的分清什么是整式.整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除式不能含有字母.单项式和多项式统称为整式.单项式是字母和数的乘积,只有乘法,没有加减法.多项式是若干个单项式的和,有加减法.7.下列各式运算其中去括号不正确的有( )(1)-(-a-b)=a-b;(2)5x-(2x-1)-x2=5x-2x-1+x2;(3)3xy-12(xy-y2)=3xy-12xy+y2;(4)(a3+b3)-3(2a3-3b3)=a3+b3-6a3+9b3A. (1)(2)B. (1)(2)(3)C. (2)(3)(4)D. (1)(2)(3)(4)【答案】B【解析】试题分析:在去括号时,如果括号前面是负号,则去掉括号后括号里面的每一项都要变号.(1)、原式=a+b ;(2)、原式=5x -2x+1-x²;(3)、原式=3xy -12xy+12y²;(4)、正确. 考点:去括号法则.8.已知-2m 6n 与5x m 2x n y 是同类项,则( )A. x =2,y =1B. x =3,y =1C. x =32,y =1D. x =3,y =0 【答案】B【解析】【分析】根据同类项的概念可得2x=6,y=1,由此即可求得答案.【详解】∵-2m 6n 与5x m 2x n y 是同类项,∴2x=6,y=1,∴x =3,y =1,故选B.【点睛】本题考查了同类项的定义,解答本题的关键是掌握同类项中的两个相同:(1)所含字母相同;(2)相同字母的指数相同.9.节日期间,某专卖店推出全店打8折的优惠活动,持贵宾卡可在8折基础上再打9折,小明妈妈持贵宾卡买了一件商品共花了a 元,则该商品的标价是( ) A. 1720a 元 B. 2017a 元 C. 1825a 元 D. 2518a 元 【答案】D【解析】【分析】根据商品打折数与商品价钱的关系进行列式即可,打折后价格=原价格×10折数. 【详解】根据题意可知商品的标价为:a÷0.9÷0.8 =a×101098= 2518a 元,故选D.【点睛】本题考查了列代数式的知识,解决问题的关键是读懂题意,找到所求的量的等量关系.10.观察如图所示图形,则第n个图形中三角形的个数是( )A. 2n+2B. 4n+4C. 4nD. 4n-4【答案】C【解析】【分析】由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【详解】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选C.【点睛】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.11.若代数式2x2+3y+7的值为8,则代数式6x2+9y+8的值为( )A. 1B. 11C. 15D. 23【答案】B【解析】【详解】试题分析:由已知多项式的值求出2x2+3y的值,原式变形后代入计算即可求出值.解:∵2x2+3y+7=8,∴2x2+3y=1,则原式=3(2x2+3y)+8=3+8=11,故选B考点:代数式求值.12.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是103,则m的值是( ) A. 9 B. 10 C. 11 D. 12【答案】B【解析】试题分析:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3有m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=(1)(2)2m m-+,∵2n+1=313,n=156,∴奇数103是从3开始的第52个奇数,∵(91)(92)442-+=,(101)(102)542-+=,∴第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m=10.故选B.考点:规律型.二、填空题(每小题3分,共18分)13.若a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,则m=____,n=____.【答案】(1). 1 (2). 0【解析】【分析】根据同类项的定义可知m+1=3,再根据合并同类项的法则可得n-1=-1,由此即可得答案.【详解】∵a m+1b3和(n-1)a2b3是同类项,并且它们合并的结果是0,∴m+1=2,1+(n-1)=0,∴m=1,n=0,故答案为1,0.【点睛】本题考查了合并同类项以及同类项的定义,熟练掌握同类项的概念以及合并同类项的法则是解题的关键.14.已知5x2m-n y9-4x5y3n=x5y9,则m-n=______.【答案】1【解析】【分析】根据两者合并得结果是单项式可得5x2m-n y9与4x5y3n是同类项,继而根据同类项:所含字母相同且相同字母的指数也相同可得出关于m和n的方程,解出即可得出答案.【详解】∵5x2m-n y9-4x5y3n=x5y9,∴25 39m nn-=⎧⎨=⎩,∴43 mn=⎧⎨=⎩,∴m-n=4-3=1,故答案为1.【点睛】本题考查了合并同类项以及解二元一次方程组,解答本题关键是掌握同类项定义中两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.15.如果m,n都是正整数,且m>n,那么多项式x m+y n+z mn的次数应当是______.【答案】mn【解析】【分析】根据多项式次数的定义进行求解即可得.【详解】∵m,n都是正整数,且m>n,∴mnm>n,∴多项式x m+y n+z mn的次数是mn,故答案为mn.【点睛】本题考查了多项式的次数,熟知多项式的次数是指多项式中次数最高的单项式的次数是解题的关键.16.若a2-b2-4-m=a2+b2+ab,则m所代表的代数式是__________.【答案】-2b2-ab-4【解析】【分析】由题意可知m=(a2-b2-4)-(a2+b2+ab),去括号后合并同类项即可得.【详解】由题意,m=(a2-b2-4)-(a2+b2+ab)=a2-b2-4-a2-b2-ab=-2b2-ab-4,故答案为-2b2-ab-4.【点睛】本题考查了整式的加减运算,熟练掌握去括号法则以及合并同类项法则是解题的关键.17.现规定a bc d=a-b+c-d,则22232235xy x xy xx xy------+的值为____________.【答案】-4x2+2xy+2【解析】【分析】根据规定的运算列式,然后去括号、合并同类项即可得.【详解】由题意:222xy 3x 2xy x 2x 35xy ------+=(xy-3x 2)-(22xy x --)+(22x 3--)-(5xy -+)=xy-3x 2+2xy+x 2-2x 2-3+5-xy=-4x 2+2xy +2,故答案为-4x 2+2xy +2.【点睛】本题考查了整式的加减,解题的关键是弄清规定运算的规则,正确列出式子.18.一个三角形的第一边长2a +3b ,第二边比第一边短a ,第三边比第一边大2b ,那么这个三角形的周长是__________.【答案】5a +11b【解析】【分析】先表示出三角形的三边长,然后根据三角形的周长公式列式进行计算即可得.【详解】三角形的第一边长是2a+3b ,则第二边长为2a+3b-a ,第三边长为2a+3b+2b,∴(2a+3b)+(2a+3b-a)+(2a+3b+2b)=2a+3b+2a+3b-a+2a+3b+2b=5a+11b,故答案为5a+11b.【点睛】本题考查了整式的加减的应用,解决本题的关键是熟记三角形的周长公式,即1=a+b+c .本题的关键是根据三角形的第一边长,求出另外两条边的边长.三、解答题(共66分)19.给出三个多项式:12x 2+x -1, 12x 2+3x +1, 12x 2-x ,请你选择其中两个进行加法运算. 【答案】详见解析.【解析】【分析】本题答案不唯一,列式后根据去括号法则以及合并同类项法则进行计算即可. 【详解】如选择12x 2+x -1, 12x 2+3x +1, 则:(12x 2+x -1)+( 12x 2+3x +1)=12x 2+x -1+ 12x 2+3x +1=x 2+4x ; 如选择12x 2+x -1,12x 2-x,则:(12x2+x-1)+(12x2-x)=12x2+x-1+12x2-x=x2-1;如选择12x2+3x+1,12x2-x,则:(12x2+3x+1)+(12x2-x)=12x2+3x+1+12x2-x=x2+2x+1;【点睛】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解题的关键.20.计算:(8a-7b)-(4a-5b)+(3a-2b).【答案】7a-4b.【解析】【分析】先去括号,然后合并同类项即可.【详解】(8a-7b)-(4a-5b)+(3a-2b)=8a-7b-4a+5b+3a-2b=7a-4b.【点睛】本题考查了整式的加减,明确整式的加减就是合并同类项是解题的关键.21.课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a,b的值,老师自己说答案,当王红说完:“a=65,b=-2 005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?【答案】相信,理由见解析.【解析】【分析】先化简(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3),得结果为3,由此进行解答即可.【详解】相信,理由如下:(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)=7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+3=(7a3+3a3-10a3)+(-6a3b+6a3b)+(3a2b-3a2b)+3=3,则不管a,b取何值,整式的值都为3.【点睛】本题考查了整式加减——化简求值,熟练掌握去括号法则以及合并同类项法则是解答本题的关键.22.已知:m,x,y满足:(1)23(x-5)2+5|m|=0;(2)-2a2b y+1与7b3a2是同类项.求:代数式2x2-6y2+m(xy-9y2)-(3x2-3xy+7y2)的值.【答案】-47.【解析】【分析】根据几个非负数的和为零,则每一个非负数都是零的性质求出x 和m 的值;根据同类项的定义求出y 的值,然后将x 、y 和m 的值代入所求的代数式得出答案. 【详解】解:∵()225503x m -+=,(x ﹣5)2≥0,|m |≥0, ∴(x ﹣5)2=0,|m |=0, ∴x ﹣5=0,m=0,∴x=5∵﹣2a 2b y +1与7b 3a 2是同类项∴y +1=3,∴y=2∴2x 2﹣6y 2+m(xy ﹣9y 2)﹣(3x 2﹣3xy +7y 2)=2x 2﹣6y 2+mxy ﹣9my 2﹣3x 2+3xy ﹣7y 2=﹣x 2﹣13y 2﹣9my 2+mxy +3xy=﹣52﹣13×22﹣9×0×22+0×5×2+3×5×2=﹣47.【点睛】本题主要考查的就是非负数的性质、同类项的定义以及代数式的化简求值问题.计算结果为非负数的我们在初中阶段学过三种:平方、绝对值、算术平方根.这种题目经常会在考试当中出现,我们一定要引起重视.对于同类项,我们一定要明确同类项的定义,根据定义可以得出未知数的值.23.已知-5x m y 3+104x m -4xy 2是关于x,y 的六次多项式,求m 的值,并写出该多项式.下面是李明同学给出的解法:解:由原多项式知,第一项的次数为m +3,第二项的次数为4+m ,第三项的次数为3,于是可知此多项式最高次数为4+m. ①又因为这个多项式是六次多项式,所以有4+m =6, ②所以m =2. ③于是原多项式为-5x 2y 3+104x 2-4xy 2. ④李明同学的解答正确吗?若不对,请指出错在哪一步,并给出正确解法.【答案】不正确,错在第①步.正确解法见解析.【解析】【分析】根据常数的次数不是单项式的次数进而得出m的值.【详解】不正确,错在第①步,正确解法:由原多项式知,第一项的次数为m+3,第二项的次数为m,第三项的次数为3,所以最高次数为m+3,又因为这个多项式是六次多项式,所以m+3=6,即m=3于是原多项式为-5x3y3+104x3-4xy2.【点睛】本题考查了多项式的次数,正确把握多项式的次数的定义是解题关键.注意常数的次数不是单项式的次数.24.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应的等式.【答案】(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n-1)=n2.【解析】【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n个图形黑点个数为1+3+5+…+(2n-1)=n2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.25.“十一”期间,某中学七年级(1)班的三位老师带领本班a名学生(学生人数不少于3名)去北京旅游,春风旅行社的收费标准为:教师全价,学生半价;华北旅行社不论教师、学生一律八折优惠,这两家旅行社的基本收费都是每人500元.(1)用代数式表示,选择这两家旅行各需要多少钱?(2)如果有学生20名,你认为选择哪家旅行社较为合算,为什么?【答案】(1)详见解析;(2)春风旅行社合算,理由见解析.【解析】【分析】(1)利用旅行社的收费标准可列出代数式,(2)把a=20代入即可求解.【详解】(1)春风旅行社的总费用为3×500+500a×50%=1 500+250a(元),华北旅行社的总费用为(3+a)×500×80%=1 200+400a(元);(2)当a=20时,春风旅行社费用为1 500+250×20=6 500(元),华北旅行社费用为1 200+400×20=9 200(元),6 500元<9 200元,故春风旅行社合算.【点睛】本题考查了列代数式以及代数式求值,正确理解题意列出代数式是解题的关键.26.现将面积为10亩的一块农田进行“三种三收”套种,为保证主要农作物的种植比例,要求小麦的种植面积占总面积的60%,设玉米的种植面积为x亩,下表是三种农作物的亩产量及销售单价的对应表:(1)黄豆的种植面积为亩;(用含x的式子表示)(2)求三种农作物的总售价为多少元.(用含x的式子表示)(3)如果玉米的种植面积为3亩,求三种农作物的总售价为多少元.【答案】(1) (4-x);(2)三种农作物的总售价为(540x+7 440)元;(3)三种农作物的总售价为9 060元.【解析】【分析】(1)减去小麦、玉米的种植面积即可得;(2)根据种植面积×亩产量×销售单价列式计算即可得;(3)把x=3代入(2)中的结果即可求得答案.【详解】(1)由题意得,黄豆的种植面积为:10×(1-60%)-x=(4-x)(亩),故答案为(4-x);(2)三种农作物总售价为:10×60%×400×2+2×600x+220×(4-x)×3=4 800+1 200x+2 640-660x=(540x+7 440)(元),答:三种农作物的总售价为(540x+7 440)元;(3)当x=3时,540x+7 440=540×3+7 440=9 060(元),答:三种农作物的总售价为9060元.【点睛】本题考查了整式加减的应用,正确理解题意,弄清各量之间的关系列出式子是解题的关键.。
人教版七年级数学上册 第二章 整式的加减 达标测试卷【含答案】
人教版七年级数学上册第二章整式的加减达标测试卷_________ ___________一、单选题(共10题;共30分)1.若(x+8)(x-1)=x2+mx+n任意x都成立,则m+n=()A. -8B. -1C. 1D. 82.单项式﹣2xy3的次数是()A. 2B. 3C. 4D. 53.下列命题中,是假命题的是()3a3b|a|=|b|A. 两点之间,线段最短B. 的系数是3C. 位似图形必定相似D. 若,则a=b−2a2b4.单项式的系数和次数分别是()A. -2、3B. -2、2C. 2、3D. 2、25.下列计算正确的是()2ab+3ba=5ab3a2+2a3=5a53−2a=a2a+b=3abA. B. C. D.2a2⋅a3a36.若等式 +()= 成立,则括号中填写单项式可以是()a2a3a4A. aB.C.D.−1≤x≤2|x−3|−2|x+1|7.已知,则化简代数式的结果是()1−3x1+3x−1−3x−1+3xA. B. C. D.a2b38.下列单项式中,的同类项是()a3b22a2b3a2b ab3A. B. C. D.9.已知M、N表示两个代数式,M=(x+1)(x﹣1)﹣2(y2﹣y+1),N=(2x+y)(2x﹣y),则M与N的大小是()A. M>NB. M<NC. M=ND. 无法确定10.如图,大长方形ABCD是由一张周长为C1正方形纸片①和四张周长分别为C2,C3,C4,C5的长方形纸片②,③,④,⑤拼成,若大长方形周长为定值,则下列各式中为定值的是()A. C1B. C3+C5C. C1+C3+C5D. C1+C2+C4二、填空题(共5题;共15分)1.单项式的系数是________. −32xy 2.多项式 的三次项系数是________.4x 2−12xy 2−13x +13.已知两个单项式 与 的和为0,则 的值是________.3xy m −3x n y 2m +n 4.己知 , ,则 与 的大小关系是________.M =(x−2)(x−6)N =(x−5)(x−3)M N 5.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣2x 2﹣2x+1=﹣x 2+5x﹣3:则所捂住的多项式是________.三、计算题(共20分)1.已知A=3a 2b-2ab 2+ab ,小明错将“2A-B”看成“2A+B"算得结果C=4a 2b-3ab 2+4ab(1)计算B 的表达式;(2)求正确的结果表达式2.化简(1) ;−(ab−1)−(2a 2+ab +1)(2) .12(x 2−y)+13x 2−16(5x 2+3y)四、解答题(每题7分,共35分)1.若2x m y 2﹣(n﹣3)x+1是关于x 、y 的三次二项式,求m 、n 的值.2.先化简,再求值: ,其中3(2a 2b−ab 2)−(5a 2b−4ab 2)a =2、b =−13.三角形的周长为32,第一边长为3a+2b,第二边比第一边的2倍少a-2b,求第三边长.(2x2+ax+y+6)−(2bx2−3x+5y−1)4.若代数式:的值与字母x的取值无关,求代数式3(a2−2ab−b2)−(4a2+ab+b2)的值.x2−2x+15.已知多项式A,B,其中A= ,马小虎在计算A-B时,由于粗心把A-B看成了A+B,求x2−4x得结果为,请你帮助马小虎算出A-B的正确结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级上册第2章能力训练一.选择题1.单项式4ab2的系数为()A.1B.2C.3D.42.当x=1时,代数式ax3﹣bx+4的值是7,则当x=﹣1时,代数式ax3﹣bx+4的值是()A.﹣7B.7C.3D.13.一辆货车送货上山,并按原路下山.上山速度为a千米/时,下山速度为b千米/时.则货车上、下山的平均速度为()A.B.C.D.4.按如图所示的运算程序,能使输出的b的值为﹣1的是()A.x=1,y=2B.x=2,y=0C.x=2,y=1D.x=﹣1,y=1 5.从边长为a+2的正方形纸片中剪去一个边长为a﹣1的正方形纸片(a>1),则剩余部分的面积是()A.4a+1B.4a+3C.6a+3D.a2+16.下列去括号的结果中,正确的是()A.﹣m+(﹣n2+3mn)=﹣m+n2+3mnB.4mn+4n﹣(m2﹣2mn)=4mn+4n﹣m2+2mnC.﹣(a﹣c)+(b+d)=﹣a+b﹣c+dD.(﹣3b+)﹣(﹣5a)=5a﹣3b﹣7.某商场举行促销活动,促销的方法是“消费超过200元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x(x>200)元,则购买该商品实际付款的金额是()A.(80%x﹣20)元B.80%(x﹣20)元C.(20%x﹣20)元D.20%(x﹣20)元8.四个长宽分别为a,b的小长方形(白色的)按如图所示的方式放置,形成了一个长、宽分别为m、n的大长方形,则下列各式不能表示图中阴影部分的面积是()A.mn﹣4ab B.mn﹣2ab﹣amC.an+2bn﹣4ab D.a2﹣2ab﹣am+mn9.按照如图所示的计算程序计算,若开始输入的x值为2,第一次得到的结果为1,第二次得到的结果为4,…第6次得到的结果为()A.1B.2C.3D.410.若x,y满足等式x2﹣2x=2y﹣y2,且xy=,则式子x2+2xy+y2﹣2(x+y)+2019的值为()A.2018B.2019C.2020D.2021二.填空题11.若单项式﹣3a2m+1b8与4a3m b5m+n同类项,则这两个单项式的和为.12.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×,所捂多项式是.14.第十三届全国人大于2019年3月4日召开新闻发布会,在发布会上两名记者记录同一份文稿,记者甲单独记录需要a小时完成,记者乙单独记录需要b小时完成,甲、乙两名记者合作,一起完成这项工作需要小时.15.在班级联欢会上,数学老师和同学们做了一个游戏.她在A,B,C三个盘子里分别放了一些小球,小球数依次为a0,b0,c0,记为G0=(a0,b0,c0)游戏规则如下:三个盘子中的小球数a0≠b0≠c0,则从小球最多的一个盘子中拿出两个,给另外两个盘子各放一个,记作一次操作;n次操作后的小球数记为G n=(a n,b n,c n),若G0=(3,5,19),则G3=,G2020=.三.解答题16.先化简,再求值:(1)2x+7+3x﹣2,其中x=2;(2)(﹣2x2+x﹣4)﹣(﹣2x2﹣+1),其中x=2.17.小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米k元,木地板的价格为每平方米2k元,那么小王一共需要花多少钱?18.对于题目:“已知x2﹣2x﹣1=0,求代数式3x2﹣6x+2020的值”,采用“整体代入”的方法(换元法),可以比较容易的求出结果.(1)设x2﹣2x=y,则3x2﹣6x+2020=(用含y的代数式表示).(2)根据x2﹣2x﹣1=0,得到y=1,所以3x2﹣6x+2020的值为.(3)用“整体代入”的方法(换元法),解决下面问题:已知a+﹣5=0,求代数式的值.19.(1)计算2﹣3﹣5+(﹣3)(2)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?20.(1)若关于a,b的多项式3(a2﹣2ab+b2)﹣(2a2﹣mab+2b2)中不含有ab项,求m 的值.(2)已知两个有理数,y满足条件:|x|=7,|y|=4,x+y>0,xy<0,求x﹣y的值.参考答案一.选择题1.解:单项式4ab2的系数是4,故选:D.2.解:把x=1代入得:a﹣b+4=7,即a﹣b=3,则当x=﹣1时,原式=﹣a+b+4=﹣3+4=1.故选:D.3.解:设货车上山的路程为S千米,货车上、下山的平均速度为:=(千米/时),故选:D.4.解:A、把x=1,y=2代入运算程序得:2=1﹣b,即b=﹣1,符合题意;B、把x=2,y=0代入运算程序得:0=﹣2+b,即b=2,不符合题意;C、把x=2,y=1代入运算程序得:1=﹣2+b,即b=3,不符合题意;D、把x=﹣1,y=1代入运算程序得:1=﹣1﹣b,即b=﹣2,不符合题意,故选:A.5.解:根据题意得:(a+2)2﹣(a﹣1)2=(a+2+a﹣1)(a+2﹣a+1)=3(2a+1)=6a+3,则剩余部分的面积是6a+3,故选:C.6.解:A、原式=﹣m﹣n2+3mn=﹣m﹣n2+3mn,不符合题意;B、原式=4mn+4n﹣m2+2mn,符合题意;C、原式=﹣a+c+b+d,不符合题意;D、原式=﹣3b++5a,不符合题意,故选:B.7.解:由题意可得,若某商品的原价为x元(x>200),则购买该商品实际付款的金额是:(80%x﹣20)元故选:A.8.解:由题意可得a+2b=m,即2b﹣m=﹣a,b=(m﹣a),可得左边阴影部分的长为2b,宽为n﹣a,右边阴影部分的长为m﹣2b,宽为n﹣2b,图中阴影部分的面积为2b(n﹣a)+(m﹣2b)(n﹣2b)=2bn﹣2ab+mn﹣2bm﹣2bn+4b2=﹣2ab+mn﹣2bm+4b2=mn﹣2ab+2b(2b﹣m)=mn﹣2ab+2b(﹣a)=mn﹣4ab,mn﹣4ab=(a+2b)n﹣4ab=an+2bn﹣4ab,mn﹣4ab=mn﹣2ab﹣2a×(m﹣a)=a2﹣2ab﹣am+mn.无法得到B选项.故选:B.9.解:把x=2代入计算程序得:×2=1,把x=1代入计算程序得:1+3=4,把x=4代入计算程序得:4×=2,依次以1,4,2循环,∵6÷3=2,整除,∴第6次得到的结果是2,故选:B.10.解:∵x2﹣2x=2y﹣y2,xy=,∴x2﹣2x+y2﹣2y=0,2xy=1,∴x2+2xy+y2﹣2(x+y)+2019=x2﹣2x+y2﹣2y+1+2019=2020,故选:C.二.填空题11.解:∵单项式﹣3a2m+1b8与4a3m b5m+n同类项,∴,解得:.∴﹣3a3b8+4a3b8=a3b8.故答案为:a3b8.12.解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.13.解:由题意可得,所捂多项式是:(3x2y﹣xy2+xy)÷(﹣xy)=3x2y÷(﹣xy)﹣xy2÷(﹣xy)+xy÷(﹣xy)=﹣6x+2y﹣1.故答案为:﹣6x+2y﹣1.14.解:由题意可得:=.故答案为:.15.解:∵G0=(3,5,19),∴G1=(4,6,17),G2=(5,7,15),G3=(6,8,13),G4=(7,9,11),G5=(8,10,9),G6=(9,8,10),G7=(10,9,8),G8=(8,10,9),G9=(9,8,10),G10=(10,9,8),……∴从G5开始每3次为一个周期循环,∵(2020﹣4)÷3=672,∴G2020=G7=(10,9,8),故答案为:(6,8,13),(10,9,8).三.解答题16.解:(1)2x+7+3x﹣2=5x+5;当x=2时,原式=5×2+5=15;(2)(﹣2x2+x﹣4)﹣(﹣2x2﹣+1)==,当x=2时,原式=.17.解:(1)木地板的面积为2b(5a﹣3a)+3a(5b﹣2b﹣b)=2b•2a+3a•2b=4ab+6ab=10ab(平方米);地砖的面积为5a•5b﹣10ab=25ab﹣10ab=15ab(平方米);(2)15ab•k+10ab•2k=15abk+20abk=35abk(元),答:小王一共需要花35abk元钱.18.解:(1)∵x2﹣2x=y,∴3x2﹣6x+2020=3(x2﹣2x)+2020=3y+2020;故答案为:3y+2020;(2)∵y=1,∴3x2﹣6x+2020=3y+2020=3×1+2020=2023;故答案为:2023;(3)设,则.∵,∴b﹣5=0,解得:b=5.∴.19.解:(1)原式=2﹣3﹣3﹣5=﹣1﹣9=﹣10;(2)∵A﹣B=﹣8x2+7x+10,B=3x2﹣2x﹣6,∴A=(﹣8x2+7x+10)+(3x2﹣2x﹣6)=﹣5x2+5x+4,∴A+B=(﹣5x2+5x+4)+(3x2﹣2x﹣6)=﹣2x2+3x﹣2.20.解:(1)原式=3a2﹣6ab+3b2﹣2a2+mab﹣2b2=a2+(m﹣6)ab+b2,由结果不含ab项,得到m﹣6=0,解得:m=6;(2)∵|x|=7,|y|=4,x+y>0,xy<0,∴x=7,y=﹣4,则x﹣y=11.。