二次函数基础典型经典题型全面超好资料全.doc
(完整版)初三数学二次函数所有经典题型
初三数学二次函数经典题型二次函数单元检测 (A) 姓名___ ____一、填空题: 1、函数21(1)21my m x mx +=--+是抛物线,则m = .2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大.4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到.5.抛物线342++=x x y 在x 轴上截得的线段长度是 .6.抛物线()4222-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m .8. 如果抛物线c bx ax y ++=2的对称轴是x =-2,且开口方向与形状与抛物线相同,又过原点,那么a = ,b = ,c = .9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 .10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题:11.下列各式中,y 是x 的二次函数的是 ( )A .21xy x += B . 220x y +-= C . 22y ax -=- D .2210x y -+=223x y -=12.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点13.抛物线122+--=m mx x y 的图象过原点,则m 为( )A .0B .1C .-1D .±114.把二次函数122--=x x y 配方成为( )A .2)1(-=x y B . 2)1(2--=x y C .1)1(2++=x yD .2)1(2-+=x y15.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是( )A . 1-<mB . 1<mC . 1->mD . 2->m 16、函数221y x x =--的图象经过点( )A 、(-1,1)B 、(1 ,1)C 、(0 , 1)D 、(1 , 0 )17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A 、23(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、23(1)2y x =-+18、已知h 关于t 的函数关系式212h gt =( g 为正常数,t 为时间)如图,则函数图象为 ( )19、下列四个函数中, 图象的顶点在y 轴上的函数是( )A 、232y x x =-+ B 、25y x =- C 、22y x x =-+D 、244y x x =-+20、已知二次函数2y ax bx c =++,若0a <,0c >,那么它的图象大致是( )21、根据所给条件求抛物线的解析式:(1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0)22.已知二次函数c bx x y ++=2的图像经过A (0,1),B (2,-1)两点.(1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上?23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1) 求出S 与x 之间的函数关系式,并确定自变量x 的取值范围; (2) 请你设计一个方案,使获得的设计费最多,并求出这个费用.24、某工厂现有80台机器,每台机器平均每天生产384•件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,•由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式; (2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?25、如图,有一个抛物线的拱形立交桥,•这个桥拱的最大高度为16m ,跨度为40m ,现把它放在如图所示的直角坐标系里,•若要在离跨度中心点M5m 处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?24、如图,抛物线n x x y ++-=52经过点A(1,0),与y 轴交于点B.⑴求抛物线的解析式;⑵P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.二次函数单元检测 (B ) 姓名_______一、新课标基础训练1.下列二次函数的图象的开口大小,从大到小排列依次是( ) ①y=13x 2;②y=23x 2+3;③y=-12(x-3)2-2;④y=-32x 2+5x-1. A .④②③① B .①③②④ C .④②①③ D .②③①④2.将二次函数y=3(x+2)2-4的图象向右平移3个单位,再向上平移1个单位,所得的图象的函数关系式( )A .y=3(x+5)2-5;B .y=3(x-1)2-5;C .y=3(x-1)2-3;D .y=3(x+5)2-33.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,•若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润,则应降价( ) A .5元 B .10元 C .15元 D .20元4.若直线y=ax+b (ab ≠0)不过第三象限,则抛物线y=ax 2+bx 的顶点所在的象限是( ) A .一 B .二 C .三 D .四5.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y>0,则m 的取值范围是( ) A .m ≥14 B .m>14 C .m ≤14 D .m<146.二次函数y=mx 2-4x+1有最小值-3,则m 等于( ) A .1 B .-1 C .±1 D .±12二、新课标能力训练7.如图,用2m 长的木条,做一个有横档的矩形窗子,为使透进的光线最多,那么这个窗子的面积应为_______m 2.8.如图,有一个抛物线型拱桥,其最大高度为16m , •跨度为•40m ,• 现把它的示意图放在平面直角坐标系 中••,••则此抛物线的函数关系式为__________.9、已知函数4m m2x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值;(2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大? (3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小?10、观察表格:23(1)求a ,b ,c 的值,并在表内空格处填入正确的数.(2)画出函数y=ax 2+bx+c 的图象,由图象确定,当x 取什么实数时,ax 2+bx+c>0.11、如图(2),已知平行四边形ABCD 的周长为8cm ,∠B =30。
初三数学二次函数所有经典题型
一、填空题:1、函数21(1)21my m x mx +=--+是抛物线,则m = . 2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 .3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 ,当x 时,y 随x 的增大而增大.4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到.5.抛物线342++=x x y 在x 轴上截得的线段长度是 .6.抛物线()4222-++=m x x y 的图象经过原点,则=m .7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m . 8. 如果抛物线c bx ax y ++=2 的对称轴是x =-2,且开口方向与形状与抛物线相同,又过原点,那么a = ,b = ,c = .9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时,对应x 的取值范围是 .10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 .二、选择题:11.下列各式中,y 是x 的二次函数的是 ( )A .21xy x +=B . 220x y +-=C . 22y ax -=-D .2210x y -+= 12.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点13.抛物线122+--=m mx x y 的图象过原点,则m 为( ) A .0B .1C .-1D .±1 14.把二次函数122--=x x y 配方成为( )223x y -=A .2)1(-=x yB . 2)1(2--=x yC .1)1(2++=x yD .2)1(2-+=x y 15.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是( )A . 1-<mB . 1<mC . 1->mD . 2->m16、函数221y x x =--的图象经过点( )A 、(-1,1)B 、(1 ,1)C 、(0 , 1)D 、(1 , 0 )17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A 、23(1)2y x =--B 、23(1)2y x =+-C 、23(1)2y x =++D 、23(1)2y x =-+ 18、已知h 关于t 的函数关系式212h gt =( g 为正常数,t 为时间)如图,则函数图象为 ( )19、下列四个函数中, 图象的顶点在y 轴上的函数是( )A 、232y x x =-+B 、25y x =-C 、22y x x =-+ D 、244y x x =-+20、已知二次函数2y ax bx c =++,若0a <,0c >,那么它的图象大致是( )21、根据所给条件求抛物线的解析式:(1)、抛物线过点(0,2)、(1,1)、(3,5)(2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0)22.已知二次函数c bx x y ++=2的图像经过A (0,1),B (2,-1)两点.(1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上?23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1) 求出S 与x 之间的函数关系式,并确定自变量x 的取值范围;(2) 请你设计一个方案,使获得的设计费最多,并求出这个费用.24、某工厂现有80台机器,每台机器平均每天生产384•产总量,在试生产中发现,•少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出 (225、如图,有一个抛物线的拱形立交桥,•这个桥拱的最大高度为16m ,跨度为40m ,现把它放在如图所示的直角坐标系里,•若要在离跨度中心点M5m 处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?24、如图,抛物线n x x y ++-=52经过点A(1,0),与y 轴交于点B.⑴求抛物线的解析式;⑵P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.。
二次函数专题知识点常考(典型)题型重难点题型(含详细答案)
⼆次函数专题知识点常考(典型)题型重难点题型(含详细答案)⼆次函数和基本性质专题知识点+常考题型+重难点题型(含详细答案)⼀、⽬录⼀、⽬录 (1)⼆、基础知识点 (2)1.⼆次函数的概念 (2)2.⼆次函数y=的图像和性质 (2)3.⼆次函数y=a()()的性质 (4)4,⽤配⽅法求() (6)5.⼆次函数图像性质总结 (7)6.⼆次函数解析式的求法 (7)7.⼆次函数图像的平移 (9)三、重难点题型 (11)1.由抛物线的位置确定系数的符号 (11)2.⽤待定系数法求⼆次函数的解析式 (13)3.运⽤抛物线的对称性解题 (17)4.⽤⼆次函数解决最值问题 (18)5.⼆次函数的图像 (20)6.⼆次函数与应⽤问题 (21)⼆、基础知识点1.⼆次函数的概念形如y=(a≠0)的函数叫作⼆次函数。
注:①a、b、c为常数,且a≠0,即⼆次项必须有,⼀次项和常数项可以没有②⼆次函数为函数的⼀种,满⾜函数的所有性质。
即在定义域内,⾃变量x有且仅有唯⼀应变量y与之对应例1.下列各项中,y是x的⼆次函数的有:①y=;②y=()(m为常数);③y=(m为常数);④y=答案:①是⼆次函数,⼆次项系数不为0;②不应定,当m=1时,⼆次项为0,则不是⼆次函数;③是⼆次函数,⼆次项系数不为0;④化简得:-x-2,因此不是⼆次函数例2.已知y=()是⼆次函数,求k的值。
答案:因为y=()是⼆次函数所以解得:k=22.⼆次函数y=的图像和性质y=(a≠0,b=0,c=0,即⼀次项和常数项皆为0)的性质:①图形为抛物线形状②a>0,开⼝向上;a<0,开⼝向下③过原点(顶点),为最⼤值或最⼩值(由a的正负决定)④关于y轴对称,即关于x=0对称⑤越⼤,开⼝越⼩,即上升或下降越快注:关于y轴对称的前提条件是:函数定义域关于y轴对称例1.求等边三⾓形⾯积S与边长a的函数关系式。
答案:由等边三⾓形性质可知S=例2.根据抛物线y=(a≠0)的性质回答下列问题;(1)抛物线的开⼝向上,则a:(2)当x<0时,抛物线y值随x的增⼤⽽减⼩,则a:(3)除顶点外,抛物线上的点都在x轴的下⽅,则a:(4)当x>0且a<0时,则抛物线的y值随x的增⼤⽽:答案:(1)因为抛物线开⼝向上所以a>0(2)因为当x<0时,抛物线y值随x的增⼤⽽减⼩所以抛物线开⼝向上所以a>0(3)因为除顶点外,抛物线上的点都在x轴的下⽅。
(完整版)二次函数基础分类练习题(含答案),推荐文档
1、 下列函数:①
y = 3x2 ;②
y = x2 - x (1 + x) ;③
y = x2 (x2 + x)- 4;④
y=
1 x2
+
x
;⑤
y=
x (1-
x) ,其中是二次函数的是
,c =
,其中a =
,b =
3、当 m
时,函数y = (m - 2) x2 + 3x - 5(m 为常数)是关于 x 的二次函数
(或
2
),顶点坐标是
,当 x
时,y 随 x 的增大而增大,当 x
时,y 随 x 的增大而减小,当 x=
时,该函数有最
值是
;
2、对于函数 y 2x 2 下列说法:①当 x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;
③y 随 x 的增大而减小;④图象关于 y 轴对称.其中正确的是
4、当m = _ _ _ _ 时,函数y = (m2 + )m xm2- 2m- 1 是关于 x 的二次函数
5、当 m = _ _ _ _ 时,函数 y = (m - 4) xm2- 5m+ 6 +3x 是关于 x 的二次函数
6、若点 A ( 2, m ) 在函数 y x 2 1 的图像上,则 A 点的坐标是____.
1、抛物线 y 1 x 32 ,顶点坐标是
,当 x
2
最
值.
时,y 随 x 的增大而减小, 函数有
2、试写出抛物线 y 3x 2 经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.
2
(1)右移 2 个单位;(2)左移 个单位;(3)先左移 1 个单位,再右移 4 个
(完整版)自己总结很经典二次函数各种题型分类总结.doc
二次函数题型分类总结题型 1、二次函数的定义(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是.① y=x2- 4x+1;② y=2x 2;③ y=2x2+4x;④ y=- 3x;⑤ y=- 2x- 1;⑥ y=mx2+nx+p;⑦ y =(4,x) ;⑧ y=- 5x。
2+2t ,则 t = 4 秒时,该物体所经过的路2、在一定条件下,若物体运动的路程s(米)与时间t (秒)的关系式为s=5t程为。
3、若函数 y=(m2+2m- 7)x 2+4x+5 是关于 x 的二次函数,则m的取值范围为。
4、若函数 y=(m- 2)x m-2 +5x+1 是关于x的二次函数,则m的值为。
5、已知函数 y=(m- 1) x m2 1 +5x- 3 是二次函数,求m的值。
题型 2、二次函数的对称轴、顶点、最值4ac-b 2(技法:如果解析式为顶点式y=a(x - h) 2+k,则最值为 k;如果解析式为一般式y=ax2+bx+c 则最值为4a1.抛物线 y=2x 2 +4x+m 2- m 经过坐标原点,则m的值为。
2.抛物 y=x 2+bx+c 线的顶点坐标为( 1,3),则 b=, c= .3.抛物线 y= x2+3x 的顶点在 ( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.若抛物线 y= ax2- 6x 经过点 (2 ,0) ,则抛物线顶点到坐标原点的距离为( )A. 13B. 10C. 15D. 142+ bx +c( )5.若直线 y= ax+ b 不经过二、四象限,则抛物线y= axA. 开口向上,对称轴是y 轴B. 开口向下,对称轴是y 轴C. 开口向下,对称轴平行于y 轴D. 开口向上,对称轴平行于y 轴2 16.已知抛物线 y= x + (m-1)x -4 的顶点的横坐标是2,则 m的值是 _.7.抛物线 y=x 2+2x- 3 的对称轴是。
二次函数 经典题型详解
二次函数经典题型详解
二次函数是数学中的一个重要概念,它在代数、几何和三角学中都有广泛的应用。
下面是一些经典的二次函数题型及其解答方法。
1. 求二次函数的解析式
题目:已知二次函数的图像经过点(1,0),(2,0)和(3,4),求这个二次函数的
解析式。
解法:设二次函数的解析式为 $y = a(x - 1)(x - 2)$,将点(3,4)代入解析式,得到 $4 = a(3 - 1)(3 - 2)$,解得 $a = 2$,所以这个二次函数的解析式为$y = 2(x - 1)(x - 2)$。
2. 求二次函数的顶点坐标和对称轴
题目:已知二次函数 $y = ax^2 + bx + c$ 的对称轴为 $x = 1$,且经过点(0,3),求这个二次函数的解析式。
解法:由于对称轴为 $x = 1$,所以顶点的横坐标为 1,设顶点坐标为$(1,m)$,将点 (0,3) 代入解析式 $y = a(x - 1)^2 + m$,得到 $3 = a(0 -
1)^2 + m$,解得 $a = 3 - m$,所以这个二次函数的解析式为 $y = (3 - m)(x - 1)^2 + m$。
3. 求二次函数的最大值或最小值
题目:已知二次函数 $y = x^2 - 2x$,求这个二次函数的最小值。
解法:由于 $a = 1 > 0$,所以这个二次函数的最小值为顶点的纵坐标,即$\frac{4ac - b^2}{4a} = \frac{4 \times 1 \times (-2) - (-2)^2}{4 \times 1} = -\frac{3}{4}$。
(完整word版)九年级二次函数常考题型复习
九年级数学二次函数常考题型常考知识点总结:1、二次函数的看法:一般地,形如y ax2bx c 〔 a ,b,c 是常数,a 0〕的函数,叫做二次函数。
注:和一元二次方程近似,二次项系数 a 0 ,而b,c能够为零.二次函数的定义域是全体实数.2、二次函数 y ax2bx c的结构特点:⑴ 等号左侧是函数,右侧是关于自变量x 的二次式, x 的最高次数是2.⑵ a ,b ,c 是常数, a 是二次项系数, b 是一次项系数,c是常数项3、 y a x h2k 的性质:a 的符号张口方向极点坐标对称轴性质a0向上h,k X=h x h 时, y 随x的增大而增大;x h 时, y 随x 的增大而减小;x h 时, y 有最小值 k .a0向下h,k X=h x h 时, y 随x的增大而减小;x h 时, y 随x 的增大而增大;x h 时, y 有最大值 k .4、二次函数 y ax2bx c的性质:〔 1〕当a0时,抛物线张口向上,对称轴为xb ,极点坐标为 b ,4ac b2;当 x b时, y2a 2 a4a2a随 x 的增大而减小;当xb时, y 随x的增大而增大;当x b时, y 有最小值4ac b2.2a2a4a〔 2〕当a0时,抛物线张口向下,对称轴为xb ,极点坐标为 b ,4ac b2;当 x b时, y2a 2 a4a2a随 x 的增大而增大;当xb时, y 随x的增大而减小;当x b时, y 有最大值4ac b2。
2a2a4a5、二次函数剖析式确实定:依照条件确定二次函数剖析式,平时利用待定系数法.用待定系数法求二次函数的剖析式必定依照题目的特点,选择合适的形式,才能使解题简略.一般来说,有以下几种情况:(1〕抛物线上三点的坐标,一般采纳一般式;(2〕抛物线极点或对称轴或最大〔小〕值,一般采纳极点式;(3〕抛物线与 x 轴的两个交点的横坐标,一般采纳两根式;6、二次函数、二次三项式和一元二次方程之间的内在联系〔 a 0 时〕:0抛物线与x 轴有二次三项式的值可正、一元二次方程有两个不相等实根两个交点可零、可负0抛物线与x 轴只二次三项式的值为非负一元二次方程有两个相等的实数根有一个交点0抛物线与x 轴无二次三项式的值恒为正一元二次方程无实数根 .交点题型 :依照图像,判断 a 、 b 、c 的关系问题。
二次函数全部知识点及典型例题(全)
二次函数一.复习1.函数的概念:一般地,在一个变化过程中,如果有两个变量x,y,对于自变量x在某一范围内的每一个确定值,y都有惟一确定的值与它对应,那么就说y是x的函数.对于自变量x在可以取值范围内的一个确定的值a,函数y有惟一确定的对应值,这个对应值叫做当x=a时函数的值,简称函数值. 要点诠释:对于函数的概念,应从以下几个方面去理解:(1)函数的实质,揭示了两个变量之间的对应关系;(2)判断两个变量之间是否有函数关系,要看对于x允许取的每一个值,y是否都有惟一确定的值与它相对应;(3)函数自变量的取值范围,应要使函数表达式有意义,在解决实际问题时,还必须考虑使实际问题有意义.2.函数的三种表示方法表示函数的方法,常见的有以下三种:(1)解析法:用来表示函数关系的数学式子叫做函数的表达式,(或解析式),用数学式子表示函数的方法称为解析法.(2)列表法:用一个表格表达函数关系的方法.(3)图象法:用图象表达两个变量之间的关系的方法.要点诠释:函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.对照表如下:二.二次函数的概念一般地,形如y=ax2+bx+c(a, b, c是常数,a≠0)的函数叫做x的二次函数.若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a≠0)是二次函数的一般式.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.例1.下列函数一定是二次函数的是__________.①;②;③;④;⑤y=(x-3)2-x 2 例2.若是221(3)2a a y a x --=--二次函数,则a=__________例 3.中的二次项系数=__________,一次项系数=__________,常数项=__________.例4.边长为12 cm 的正方形铁片,中间剪去一个边长x cm 的小正方形铁片,剩下的四方框铁片的面积y(cm 2)与x(cm)之间的函数关系式为_______________.例 6.某地绿色、富硒产品和特色农产品在国际市场上颇具竞争力,其中香菇远销日本和韩国等地.上市时,外商李经理按市场价格10元/千克在当地收购了2000千克香菇存放入冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出各种费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x 天后,将这批香菇一次性出售,设这批香菇的销售总金额为y 元,试写出y 与x 之间的函数关系式.(2)李经理想获得利润22500元,需将这批香菇存放多少天后出售?(利润=销售总金额-收购成本-各种费用)c bx ax y ++=2xy 3-=1342+-=x x y c bx x m y ++-=2)1(2y =(2x -1)-6a b c练习:1.下列函数中是二次函数的有( )个.(1)1y x x=+;(2)y=3(x-1)2+2;(3)y=(x+3)2-2x 2;(4) 21y x x =+ A.4 B.3 C.2 D.1 2.当m= 时,函数y=(m ﹣1)x |m|+1是二次函数.3.若267(1)m m y m x-+=-是二次函数,则m 的值是( ).A.5B.1C.1或5D.以上都不对.4.将化成二次函数的一般式是:________________.5.一个圆柱的高与底面直径相等,试写出它的表面积S 与底面半径r 之间的函数关系式___________________.6.(2014秋·温岭市校级月考) 已知某商品的进价为每件40元,售价是每件60元,每周可卖出300件.市场调查反映:如调整价格,每涨价1元,每周要少卖出10件.假设涨价x 元,求每周的利润y (元)与涨价x 之间的函数关系式,并写出自变量的取值范围.(23)(1)3y x x =+--三.二次函数的图像及性质:二次函数y=ax2(a≠0)的图象与性质二次函数y=ax2(a≠0)的图象:二次函数y=ax2的图象(如图),是一条关于y轴对称的曲线,这样的曲线叫做抛物线.抛物线y=ax2(a≠0)的对称轴是y轴,它的顶点是坐标原点.当a> 0时,抛物线的开口向上,顶点是它的最低点;当a<0时,抛物线的开口向下,顶点是它的最高点.二次函数y=ax2(a≠0)的图象的画法——描点法描点法画图的基本步骤:列表、描点、连线.(1)列表:选择自变量取值范围内的一些适当的x的值,求出相应的y值,填入表中.(自变量x的值写在第一行,其值从左到右,从小到大.)(2)描点:以表中每对x和y的值为坐标,在坐标平面内准确描出相应的点.一般地,点取的越多,图象就越准确.(3)连线:按照自变量的值由小到大的顺序,把所描的点用平滑的曲线连结起来. 要点诠释:(1)用描点法画二次函数y=ax 2(a≠0)的图象时,应在顶点的左、右两侧对称地选取自变量x 的值,然后计算出对应的y 值. (2)二次函数y=ax 2(a≠0)的图象,是轴对称图形,对称轴是y 轴.y=ax 2(a≠0)是最简单的二次函数.(3)画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.二次函数y=ax 2(a ≠0)的图象的性质x y要点诠释:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同. │a │相同,抛物线的开口大小、形状相同.│a │越大,开口越小,图象两边越靠近y 轴,│a │越小,开口越大,图象两边越靠近x 轴二次函数y=ax 2+c(a ≠0)的图象关于二次函数的性质,主要从抛物线的开口方向、顶点、对称轴、函数值的增减性以及函数的最大值或最小值等方面来研究.下面结合图象,将其性质列表归纳如下:a 2(0)y ax c a =+≠例1.二次函数y=ax2与直线y=2x﹣1的图象交于点P(1,m)(1)求a,m的值;(2)写出二次函数的表达式,并指出x取何值时该表达式y随x的增大而增大?(3)写出该抛物线的顶点坐标和对称轴.例2.已知y=(m+1)x 2m m +是二次函数且其图象开口向上,求m 的值和函数解析式例3.求下列抛物线的解析式:(1)与抛物线形状相同,开口方向相反,顶点坐标是(0,-5)的抛物线;(2)顶点为(0,1),经过点(3,-2)并且关于y 轴对称的抛物线.例4.在同一直角坐标系中,画出和的图象,并根据图象回答下列问题.2132y x =-+2y x =-21y x =-+(1)抛物线向________平移________个单位得到抛物线;(2)抛物线开口方向是________,对称轴为________,顶点坐标为________;(3)抛物线,当x________时,随x 的增大而减小;当x________时,函数y 有最________值,其最________值是________. 练习:1.下列函数中,当x <0时,y 值随x 值的增大而增大的是( ) A. B. C. D.2.在同一坐标系中,作出,,的图象,它们的共同点是( ).A .关于y 轴对称,抛物线的开口向上B .关于y 轴对称,抛物线的开口向下21y x =-+2y x =-21y x =-+21y x =-+25y x =212y x =-2y x =213y x =22y x =22y x =-212y x =C .关于y 轴对称,抛物线的顶点都是原点D .关于原点对称,抛物线的顶点都是原点3.抛物线y=2x 2+1的对称轴是( ) A .直线x=B.直线x=﹣ C .y 轴 D . x轴4.已知抛物线的解析式为y =-3x 2,它的开口向________,对称轴为________,顶点坐标是________,当x >0时,y 随x 的增大而________.5.函数,、的图象大致如图所示,则图中从里向外的三条抛物线对应的函数关系式是_____________________.6.抛物线与的形状相同,其顶点坐标为(0,1),则其解析式为 .7.已知直线与x 轴交于点A ,抛物线的顶点平移后与点A 重合.(1)求平移后的抛物线C 的解析式;2y x =212y x =23y x=2y ax c =+23y x =1y x =+22y x =-(2)若点B(,),C(,)在抛物线C 上,且,试比较,的大小.8.(2014春·牙克石市校级月考)函数y=ax 2 (a ≠0)的图象与直线y=2x-3交于点(1,b). (1)求a 和b 的值;(2)求抛物线y=ax 2的解析式,并求顶点坐标和对称轴; (3)x 取何值时,y 随x 的增大而增大?(4)求抛物线与直线y=-2的两个交点及其顶点所构成的三角形的面积.函数2()(0)y a x h a =-≠与函数2()(0)y a x h k a =-+≠的图象与性质 1.函数2()(0)y a x h a =-≠的图象与性质1x 1y 2x 2y 1212x x -<<1y 2y2.函数2()(0)y a x h k a =-+≠的图象与性质要点诠释:二次函数的图象常与直线、三角形、面积问题结合在一起,借助它的图象与性质.运用数形结合、函数、方程思想解决问题.要点二、二次函数的平移 1.平移步骤:2()+(0y a x h k a =-≠)⑴ 将抛物线解析式转化成顶点式,确定其顶点坐标;⑵ 保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2.平移规律:在原有函数的基础上“值正右移,负左移;值正上移,负下移”.概括成八个字“左加右减,上加下减”. 要点诠释:⑴沿轴平移:向上(下)平移个单位,变成(或)⑵沿x 轴平移:向左(右)平移个单位,变成(或例1.将抛物线作下列移动,求得到的新抛物线的解析式.(1)向左平移2个单位,再向下平移3个单位;()2y a x h k =-+()h k ,2y ax =()h k,h k c bx ax y ++=2y m c bx ax y ++=2m c bx ax y +++=2m c bx ax y -++=2c bx ax y ++=2m c bx ax y ++=2c m x b m x a y ++++=)()(2c m x b m x a y +-+-=)()(222(1)3y x =-+(2)顶点不动,将原抛物线开口方向反向; (3)以x 轴为对称轴,将原抛物线开口方向反向.例2.二次函数的图象可以看作是二次函数的图象向 平移4个单位,再向 平移3个单位得到的.例3.将抛物线y=x 2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,抛物线解析式为______________.例4.已知抛物线向上平移2个单位长度,再向右平移1个单位长度得到抛物线; (1)求出a ,h ,k 的值;(2)在同一直角坐标系中,画出与的图象; (3)观察的图象,当________时,y 随x 的增大而增大;当________时,函数y 有最________值,最________值是________;(4)观察的图象,你能说出对于一切的值,函数y 的取值范围吗?21(3)42y x =-+212y x=212y x =-2()y a x h k =-+2()y a x h k =-+212y x =-2()y a x h k =-+x x y =2()y a x h k =-+x例5.二次函数y 1=a (x ﹣2)2的图象与直线y 2交于A (0,﹣1),B (2,0)两点.(1)确定二次函数与直线AB 的解析式.(2)如图,分别确定当y 1<y 2,y 1=y 2,y 1>y 2时,自变量x 的取值范围.练习:1.抛物线的顶点坐标是( )A .(2,-3)B .(-2,3)C .(2,3)D .(-2,-3) 2.函数y=x 2+2x+1写成y=a(x -h)2+k 的形式是( )A.y=(x -1)2+2 B.y=(x -1)2+ C.y=(x -1)2-3 D.y=(x+2)2-1 3.抛物线y=x 2向左平移3个单位,再向下平移2个单位后,所得的抛物线表达式是( )2(2)3y x =-+-21212121212121A.y=(x+3)2-2 B.y=(x -3)2+2 C.y=(x -3)2-2 D.y=(x+3)2+2 4.把二次函数配方成顶点式为( )A .B .C .D .5.由二次函数,可知( )A .其图象的开口向下B .其图象的对称轴为直线C .其最小值为1D .当时,y 随x 的增大而增大6.(2015•泰安)在同一坐标系中,一次函数y=﹣mx+n 2与二次函数y=x 2+m 的图象可能是( ).A. B. C. D.7. 把二次函数的图象先向左平移2个单位,再向上平移4个单位,得到二次函数的图象.(1)试确定a 、h 、k 的值;(2)指出二次函数的开口方向,对称轴和顶点坐标,分析函数的增减性.21212121122--=x x y 2)1(-=x y 2)1(2--=x y 1)1(2++=x y 2)1(2-+=x y 22(3)1y x =-+3x =-3x <2()y a x h k =-+21(1)12y x =-+-2()y a x h k =-+二次函数与之间的相互关系:1.顶点式化成一般式从函数解析式我们可以直接得到抛物线的顶点(h ,k),所以我们称为顶点式,将顶点式去括号,合并同类项就可化成一般式. 2.一般式化成顶点式.对照,可知,.∴ 抛物线的对称轴是直线,顶点坐标是. 要点诠释:1.抛物线的对称轴是直线,顶点坐标是2(0)y ax bx c a =++≠=-+≠2()(0)y a x h k a 2()y a x h k =-+2()y a x h k =-+2()y a x h k =-+2y ax bx c =++2222222b b b b y ax bx c a x x c a x x c a a a a ⎡⎤⎛⎫⎛⎫⎛⎫=++=++=++-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22424b ac b a x a a -⎛⎫=++ ⎪⎝⎭2()y a x h k =-+2b h a=-244ac b k a -=2y ax bx c =++2bx a=-24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2bx a=-,可以当作公式加以记忆和运用. 2.求抛物线的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.二次函数的图象的画法1.一般方法:列表、描点、连线;2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 要点诠释:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象,24,24b ac b a a ⎛⎫-- ⎪⎝⎭2y ax bx c =++2(0)y ax bx c a =++≠2y ax bx c =++二次函数的图象与性质2(0)=++≠y ax bx c aa<a>02.二次函数图象的特征与a 、b 、c 及b 2-4ac 的符号之间的关系20()y ax bx c a =++≠要点四、求二次函数的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当时,.要点诠释:如果自变量的取值范围是x 1≤x ≤x 2,那么首先要看是否在自变量的取值范围x 1≤x ≤x 2内,若在此范围内,则当时,,若不在此范围内,则需要考虑函数在x 1≤x ≤x 2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x 2时,;当x =x 1时,,如果在此范围内,y 随x 的增大而减小,则当x =x 1时,211=ax +bx +y c 最大值;当x =x 2时,222=ax +bx +y c 最小值,如果在此范围内,y 值有增有减,则需考察x =x 1,x =x 2,时y 值的情况.例1.求抛物线的对称轴和顶点坐标.例2.把一般式化为顶点式.2(0)y ax bx c a =++≠2b x a =-244ac b y a-=最值2ba-2bx a=-244ac b y a-=最值222y ax bx c =++最大值211y ax bx c =++最小值2bx a=-2142y x x =-+-2286y x x =-+-(1)写出其开口方向、对称轴和顶点D 的坐标;(2)分别求出它与y 轴的交点C ,与x 轴的交点A 、B 的坐标.例3.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b ;③抛物线与x 轴的另一个交点为(3,0);④abc >0.其中正确的结论是 (填写序号).例4.求二次函数的最小值.例5.已知二次函数的图象过点P(2,1).(1)求证:; (2)求bc 的最大值.例6. 抛物线与y 轴交于(0,3)点:211322y x x =++21y x bx c =+++24c b =--2(1)y x m x m =-+-+(1)求出m 的值并画出这条抛物线; (2)求它与x 轴的交点和抛物线顶点的坐标; (3)x 取什么值时,抛物线在x 轴上方? (4)x 取什么值时,y 的值随x 值的增大而减小练习:1. 将二次函数化为的形式,结果为( ).A .B .C .D . 2.已知二次函数的图象,如图所示,则下列结论正确的是( ).A .B .C .D . 3.若二次函数配方后为,则b 、k 的值分别为( ).A .0,5B .0,1C .-4,5D .-4,14.抛物线的图象向右平移2个单位长度,再向下平移3个单位长度,所得图象的解析式为,则b 、c 的值为( ). A .b=2,c=2 B . b=2,c=0 C . b= -2,c= -1 D . b= -3,c=25.已知抛物线y=ax 2+bx+c 的对称轴为x=2,且经过点(3,0),则a+b+223y x x =-+2()y x h k =-+2(1)4y x =++2(1)4y x =-+2(1)2y x =++2(1)2y x =-+2y ax bx c =++0a >0c <240b ac -<0a b c ++>25y x bx =++2(2)y x k =-+2y x bx c =++223y x x =--的值( )A. 等于0B.等于1C. 等于-1D. 不能确定6.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q 两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A. B. C. D.7.如图二次函数y=ax2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0)且与y轴交于负半轴.第①问:给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0其中正确的结论的序号是__________第②问:给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1,其中正确的结论的序号是_________8.如图,在平面直角坐标系中,正方形OABC 的边长为4,顶点A 、C 分别在x 轴、y 轴的正半轴,抛物线y=﹣x 2+bx+c 经过B 、C 两点,点D 为抛物线的顶点,连接AC 、BD 、CD . (1)求此抛物线的解析式.(2)求此抛物线顶点D 的坐标和四边形ABCD 的面积.用待定系数法求二次函数解析式1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0);(2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0); (3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0).2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组);第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.例1. 已知抛物线c bx ax y 2++=经过A ,B ,C 三点,当x ≥0时,其图象如图所示.求抛物线的解析式,写出顶点坐标.例2. 形状与抛物线y=2x 2﹣3x +1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为 . 例3. 已知抛物线c bx ax y 2++=的顶点坐标为(-1,4),与x 轴两交点间的距离为6,求此抛物线的函数关系式.例4.已知二次函数的图象如图所示,根据图中的数据,(1)求二次函数的解析式;(2)设此二次函数的顶点为P,求△ABP的面积.练习:1.已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式.2.已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.3.(2016•丹阳市校级模拟)抛物线的图象如图,则它的函数表达式是.当x时,y>0.4.已知抛物线经过(3,5),A(4,0),B(-2,0),且与y轴交于点C.(1)求二次函数解析式;(2)求△ABC的面积.5.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.。
(完整版)二次函数知识点与题型总结.doc
二次函数知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
注意: x 轴和y轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用a, b 表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当 a b 时,a,b和b, a是两个不同点的坐标。
知识点二、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x 与y,如果对于 x 的每一个值,y都有唯一确定的值与它对应,那么就说 x 是自变量,y 是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量 x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
知识点三、概念总结及基本性质1、二次函数的概念:一般地,形如y ax2bx c( a ,b ,c 是常数, a 0 )的函数,叫做二次函数。
二次函数的定义域是全体实数.2. 、二次函数y ax2bx c 的结构特征:⑴ 等号左边是函数,右边是关于自变量⑵ a ,b ,c 是常数, a 是二次项系数,x 的二次式,x 的最高次数是b 是一次项系数,c 是常数项.2.3、二次函数的基本形式(平移规律:左加右减,上加下减)(1) y ax2的性质: a 的绝对值越大,抛物线的开口越小。
二次函数各知识点、考点、典型例题及练习
二次函数各知识点、考点、典型例题及对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展,2008年武汉市中考题,12) 下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
○3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。
○4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。
○5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC=6,则抛物线解析式为y=x 2-5x+4。
○6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。
○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。
○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。
○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。
○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。
○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。
点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。
初中二次函数经典题型
初中二次函数经典题型
初中二次函数的经典题型包括求解二次方程、求顶点、判断开口方向等。
以下是其中几个题型及解析:
1. 求解二次方程:
题目:解方程2x^2 - 5x + 3 = 0。
解析:可以使用因式分解、配方法或求根公式等方法来解这个方程。
其中,求根公式是一种常用的方法。
根据求根公式,对于一般形式的二次方程ax^2 + bx + c = 0,它的解为x = (-b ± √(b^2 - 4ac)) / (2a)。
将方程2x^2 - 5x + 3 = 0带入公式,可以求得x的解。
2. 求顶点:
题目:求二次函数y = 3x^2 + 4x - 2的顶点坐标。
解析:二次函数的顶点坐标可以通过公式x = -b / (2a)和将x带入函数中得到y来求解。
将函数y = 3x^2 + 4x - 2带入公式,可以求得x的值,然后将x带入函数中计算得到y的值,从而得到顶点坐标。
3. 判断开口方向:
题目:判断二次函数y = -2x^2 + 3x - 1的开口方向。
解析:二次函数的开口方向可以通过二次项的系数a来判断。
如果a > 0,则开口向上;如果a < 0,则开口向下。
对于函数y = -2x^2 + 3x - 1,由于二次项的系数a = -2小于0,所以开口方向是向下的。
这些是初中二次函数的一些经典题型及解析。
通过理解和掌握这些题型的解法,可以提高对二次函数的理解和应用能力。
同时,还可以通过做更多的练习题来巩固和提高解题技巧。
(完整版),初中二次函数知识点及经典题型,文档
二次函数的解析式二次函数的解析式有三种形式:2 bx c a b c a y ax 是常数,〔1〕一般一般式:( , , 0)2〔2〕两根当抛物线y ax bx c 与x轴有交点时,即对应二次好方程 2 bx c ax x1 x2有实根和存在时,依照二次三项式的分解因式2 bx c a x x x x 2ax y ax bx c( 1)( 2 ),二次函数可转变为两根式y a( x x1 x x2)( ) 。
若是没有交点,那么不能够这样表示。
a 的绝对值越大,抛物线的张口越小。
2 k a h k a y a x h是常数,〔3〕极点式:( ) ( , , 0)知识点八、二次函数的最值若是自变量的取值范围是全体实数,那么函数在极点处获取最大值〔或最小值〕2b 4ac bx y,即当时,。
最值2a 4ab 若是自变量的取值范围是x1 x x2 ,那么,第一要看可否在自变量取值范2a2b 4ac b围x1 x x2 内,假设在此范围内,那么当 x= 时,;假设不在此范围y最值2a 4a内,那么需要考虑函数在x1 x x2 范围内的增减性,若是在此范围内, y随x的增大而2 2增大,那么当x x2 时,y最大ax bx c,当x x1时,y ax bx1 c;如最小2 2 12果在此范围内, y随x的增大而减小,那么当x x1时,y ax bx1 c,当最大x x212时,y ax bx2 c。
最小2知识点九、二次函数的性质1 、二次函数的性质二次函数函数 2 bx c a b c ay ax ( , , 是常数,0)a>0 a<0yy图像0 x 0 x〔1〕抛物线张口向上,并向上无量延伸;〔1〕抛物线张口向下,并向下无量延伸;b b〔2〕对称轴是 x= ,极点坐标是〔2a 2ab〔2〕对称轴是 x= ,极点坐标是〔2a24ac b ,〕;4a2 b 4ac b,〕;2a 4a性b〔3〕在对称轴的左侧,即当 x< 时,y随2ab〔3〕在对称轴的左侧,即当 x< 时,y2a x的增大而减小;在对称轴的右侧,即当 x随x的增大而增大;在对称轴的右侧,质b b> 时,y随x的增大而增大,简记左即当x> 时,y随x的增大而减小,2a 2a减右增;简记左增右减;b 〔4〕抛物线有最低点,当 x= 时,y有最2ab 〔4〕抛物线有最高点,当 x= 时,y有2a小值,y最小值4ac4ab 2最大值,y最大值4ac4ab 22 bx c a b c a2、二次函数y ax ( , , 是常数, 0) 中,a、b、c 的含义:a a表示张口方向: >0 时,抛物线张口向上a <0 时,抛物线张口向下b b 与对称轴有关:对称轴为 x=2ac c表示抛物线与 y轴的交点坐标:〔 0,〕3、二次函数与一元二次方程的关系一元二次方程的解是其对应的二次函数的图像与 x轴的交点坐标。
二次函数综合复习经典题型
二次函数综合复习【知识要点】1.二次函数:形如 的函数叫做二次函数.2.二次函数的图像性质:(1)二次函数的图像是 ;(2)二次函数),,,0(2为常数c b a a c bx ax y ≠++=通过配方可得c b a a a b ac a b x a y ,,,0(44)2(22≠-++=为常数),其顶点坐标为 。
(3)当0>a 时,抛物线开口 ,并向上无限延伸;在对称轴左侧)2(abx -<即时,y 随x 的增大而减小;在对称轴右侧)2(ab x ->即时,y 随x 的增大而增大;当a bx 2-=时,函数有 .当0<a 时,抛物线开口 ,并向下无限延伸;在对称轴左侧)2(abx -<即时,y 随着x 的增大而增大;在对称轴右侧)2(ab x ->即时,y 随着x 的增大而减小;当,2时a bx -=函数有 。
3.二次函数的图像平移:(1)二次函数k h x a y h x a y ax y +-=-==222)(,)(,的图像都是抛物线,并且形状相同,只是位置不同(a 的取值决定抛物线的形状).将2ax y =的图像向右(h>0)、向左(h<0)平移h 个单位,就得到函数2)(h x a y -=的图像;再将此抛物线向上(k>0)、向下(k<0)平移k 个单位得到函数k h x a y +-=2)(的图像.上述平移的规律是:“h 值正、负、右、左移;k 值正、负、上、下移.” 4.抛物线与坐标轴的交点:(1)抛物线).,0(2c y c bx ax y 轴交于点与++=(2)若方)0,)(0,(,,0212212x x x c bx ax y x x c bx ax 轴点交则抛物线有两根++==++ 核心考点突破考点㈠二次函数的图像性质例1定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23;③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点.其中正确的结论有 A. ①②③④ B. ①②④ C. ①③④ D. ②④ 变式训练1.已知二次函数2y ax bx c =++的图像如图所示,则下列结论正确的是( )A.0a >B. 0c <C.240b ac -<D.0a b c ++>第(1)题第(3)题 2.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:( )①240b ac ->;②0abc >;③80a c +>;④930a b c ++<.3. 已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<;⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个考点㈡二次函数图像平移例2. 抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为( ) A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2 变式训练1.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式 ( )2.若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?3.如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标最大值为( )第(2)题 yxO 1x = 1- 2-· O y x 1 A .-3 B .1 C .5 D .8考点㈢确定二次函数解析式例3如图,在平面直角坐标系中,OB OA ⊥,且2OB OA =,点A 的坐标是(12)-,.(1)求点B 的坐标;(2)求过点A O B 、、的抛物线的表达式;(3)连接AB ,在(2)中的抛物线上求出点P ,使得ABP ABO S S =△△. 变式训练1.二次函数23y x mx =-+的图象与x 轴的交点如图所示,根据图中信息可得到m 的值是 .第2题图2.已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y = . 3.如图,已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点。
二次函数各知识点、考点、典型例题及练习
二次函数各知识点、考点、典型例题及对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展,2008年武汉市中考题,12) 下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
○3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。
○4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。
○5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC=6,则抛物线解析式为y=x 2-5x+4。
○6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。
○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。
○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。
○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。
○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。
○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。
点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。
(完整word版)二次函数基础知识和经典练习题.docx
-二次函数一、基础知识1. 定义:一般地,如果y ax 2bx c(a,b, c 是常数, a 0) ,那么y叫做 x 的二次函数.2. 二次函数的表示方法:数表法、图像法、表达式.3.二次函数由特殊到一般,可分为以下几种形式:① y ax2( a0);② y ax 2k ;( a0)③ y a x h2 ( a0) 顶点式);④ y a x h2k ;( a 0)⑤ y ax2bx c .它们的图像都是对称轴平行于(或重合)y 轴的抛物线 .4.各种形式的二次函数的图像性质如下表:函数解析式开口方向对称轴顶点坐标y ax2x0 ( y 轴)(0,0 )y ax 2k当 a 0 时x0 ( y 轴)(0, k )y a x2开口向上x h( h ,0) h当 a 0 时y a x h 2开口向下x h( h , k ) ky ax 2bx c x b(b4ac b22a2a ,)4a1. 抛物线y ax2bx c 中的系数 a, b, c(1)a决定开口方向:几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同 . 当 a 0 时,抛物线开口向上,顶点为其最低点;当 a 0 时,抛物线开口向下,顶点为其最高点 .( 2) b 和a共同决定抛物线对称轴的位置:当b0 时,对称轴为 y 轴;当a、 b 同号时,对称轴在y 轴左侧;当a、 b 异号时,对称轴在 y 轴右侧 .(3)c决定抛物线与 y 轴交点位置:当 c 0 时,抛物线经过原点;当 c 0时 , 相交于 y 轴的正半轴;当 c 0 时, 则相交于 y 轴的负半轴 .-2. 求抛物线的顶点、对称轴的方法b 22b 4ac b2( 1)公式法: y ax 24ac bbx c a x4a,顶点是(,),对称轴是直线2a2a4axb .2a(2)配方法:运用配方的方法,将抛物线 y ax 2bxc 的解析式化为 y a x h 2 k 的形式,得到顶点为 ( h , k ) ,对称轴是直线 x h . 其中 hb,k4ac b 2.2a4a(3)运用抛物线的对称性:抛物线是轴对称图形,所以对称点的连线的垂直平分线就是抛物线的对称轴,对称轴与抛物线的交点是顶点 ..3.用待定系数法求二次函数的解析式(1)一般式: yax 2 bx c . 已知图像上三点或三对 x 、 y 的值,通常选择一般式 .(2)顶点式: ya x h 2k . 已知图像的顶点或对称轴,通常选择顶点式.(3)两点式:已知图像与 x 轴的交点坐标 x 1 、 x 2 ,通常选用交点式: y a x x 1 x x 2 .4. 抛物线与 x 轴的交点设二次函数 y ax 2 bx c 的图像与 x 轴的两个交点的横坐标x 1 、 x 2 ,是对应一元二次方程ax 2 bx c0 的两个实数根 . 抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的判别式来判定:(1) b 2 4ac 0 抛物线与 x 轴有两个交点;(2) b 2 4ac 0 抛物线与 x 轴有一个交点(顶点在 x 轴上);(3) b 2 4ac抛物线与 x 轴没有交点 .5. 二次函数的应用一、 y ax 2bx c 的性质1.已知二次函数ykx 27x 7 与 x 轴有交点,则k 的取值范围是。
二次函数基础典型经典题型(全面超好)
1二次函数精讲基础题型一认识二次函数1、y=mxm2+3m+2是二次函数,则m 的值为( ) A 、0,-3B 、0,3C 、0D 、-3 2、关于二次函数y=ax 2+b ,命题正确的是( )A 、若a>0,则y 随x 增大而增大B 、x>0时y 随x 增大而增大。
C 、若x>0时,y 随x 增大而增大D 、若a>0则y 有最大值。
二简单作图 1在一个坐标系内做出2x y =,12+=x y ,12-=x y ,2)1(-=x y ,2)1(+=x y 你发现了什么结论2同样的在同一个坐标系内做出2x y -=,22x y -=,12--=x y ,12+-=x y 2)1(--=x y ,2)1(+-=x y 的图像,你又发现了什么结论,并且与上一题的图像比较的话,你又有什么样新的发现3 已知抛物线y x x =-+123522,五点法作图。
2、已知y=ax 2+bx+c 中a<0,b>0,c<0 ,△<0,画出函数的大致图象。
三,二次函数的三种表达形式,求解析式1求二次函数解析式:(1)抛物线过(0,2),(1,1),(3,5);(2)顶点M (-1,2),且过N (2,1);(3)与x 轴交于A (-1,0),B (2,0),并经过点M (1,2)。
2 抛物线过(-1,-1)点,它的对称轴是直线x +=20,且在x 轴上截取长度为22的线段,求解析式。
3、根据下列条件求关于x 的二次函数的解析式(1)当x=3时,y 最小值=-1,且图象过(0,7)(2)图象过点(0,-2)(1,2)且对称轴为直线x=23 (3)图象经过(0,1)(1,0)(3,0)(4)当x=1时,y=0;x=0时,y= -2,x=2 时,y=3(5)抛物线顶点坐标为(-1,-2)且通过点(1,10)三 图像与a,b,c 的符号之间的关系1、二次函数y=ax 2+bx+c 的图象是抛物线,其开口方向由_________来确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数精讲基础题型一认识二次函数1 、y=mx m2+3m+2 是二次函数,则 m 的值为()A、0 , -3B、0,3C、 0D、-32 、关于二次函数y=ax 2 +b ,命题正确的是()A、若 a>0, 则 y 随 x 增大而增大 B 、 x>0 时 y 随 x 增大而增大。
C、若 x>0 时, y 随 x 增大而增大 D 、若 a>0 则 y 有最大值。
二简单作图1 在一个坐标系内做出y x2, y x2 1, y x2 1 , y ( x 1) 2, y ( x 1)2你发现了什么结论2 同样的在同一个坐标系内做出y x 2, y 2 x2, yx 2 1 ,yx2 1 y(x 1) 2, y (x 1) 2的图像,你又发现了什么结论,并且与上一题的图像比较的话,你又有什么样新的发现3 已知抛物线y 1 x23x5,五点法作图。
2 22 、已知 y=ax 2 +bx+c中a<0,b>0,c<0,△ <0,画出函数的大致图象。
三,二次函数的三种表达形式,求解析式1求二次函数解析式:(1)抛物线过( 0 , 2 ),( 1 ,1 ),( 3 ,5 );(2)顶点 M (-1 ,2),且过 N(2, 1);(3 )与 x 轴交于 A( -1 ,0 ), B ( 2 , 0 ),并经过点 M (1 , 2 )。
2 抛物线过( -1 ,-1 )点,它的对称轴是直线x 2 0,且在 x 轴上截取长度为2 2的线段,求解析式。
3 、根据下列条件求关于x 的二次函数的解析式(1 )当x=3时,y最小值=-1,且图象过(0,7)(2 )图象过点( 0 , -2 )( 1 , 2 )且对称轴为直线3 x= 2(3)图象经过(0,1)(1,0)(3,0)(4 )当x=1时,y=0;x=0时,y= -2,x=2时,y=3(5 )抛物线顶点坐标为(-1 , -2 )且通过点( 1 ,10 )三图像与 a,b,c 的符号之间的关系1 、二次函数 y=ax2 +bx+c 的图象是抛物线,其开口方向由_________来确定。
2 、已知 y=ax 2 +bx+c 的图象如下,则: a _____0,b_____0,c_____0,a+b+c_______0 ,a-b+c__________0 。
2a+b________0 ,b 2 4ac _________03 .已知函数y ax2bx c的图象如图1-2-11所示,给出下列关于系数a、b、c的不等式:① a<0 ,② b<0,③ c >0 ,④2a+b <0 ,⑤a +b +c>0 .其中正确的不等式的序号为___________-4 .已知抛物线y ax2bx c与x轴交点的横坐标为-1,则a+c=_________.5 .二次函数y ax2bx c的图象如图1-2-14所示,则下列关于a、b、c间的关系判断正确的是()A.ab < 0 B 、bc <0 C . a+b +c>0 D .a-b 十 c< 06 、已知二次函数y ax 2 bx c(a 0 )的图象如图 4 所示,有下列y四个结论:① b 0② c 0③ b2 4ac 0 ④ a b c 0 ,其中正确的x3个数有()O1A.1 个B.2 个C.3 个D.4 个图 47 、二次函数y ax2 bx c 的图象如图所示,则下列关系式中错误的是()..A.a< 0 B .c>0 C.b2 4ac >0 D .a b c >08 已知 =次函数 y = ax 2 +bx+c 的图象如图.则下列 5 个代数式: ac ,a+b+c ,-O4a -2b+c ,2a - b 中,其值大于 0 的个数为()A . 1B 2C 、 3D 、 49 、不论 x 为何值 , 函数 y=ax 2 +bx+c(a ≠ 0) 的值恒大于0 的条件是 ( )A.a>0, △ >0B.a>0, △ <0C.a<0, △ <0D.a<0, △<010 、二次函数y ax2 bx c 的图象如图所示,则一次函数 y bx b2 4ac 与反比例函a b c)数 y 在同一坐标系内的图象大致为(xyy y y y1 O 1 x xOxOxO OA .B .C. D .11 已知抛物线 y=ax 2 +bx, 当 a>0,b<0 时 ,它的图象经过 ( )A. 一、二、三象限B. 一、二、四象限 C .一、三、四象限 D. 一、二、三、四象限12已知二次函数 y= ax 2+ bx + c(a ≠0 )的图象如图所示,给出以下结论:①a >0.②该函数的图象关于直线x 1 对称 .③当 x1或 x 3 时,函数 y 的值都等于0.其中正确结论的个数是()O 1x xA.3 B.2 C.1 D .0四,二次函数的性质:顶点,与X 轴的焦点,对称轴,最值问题1 抛物线 y=4x2 -11x-3 与 y 轴的交点坐标是 _______________2 抛物线 y= -6x 2 -x+2 与 x 轴的交点的坐标是 ___________抛物线 y= 1 (x-1) 2 +2 的对称轴是直线 __________顶点坐标为 ____________23 、方程 ax 2 +bx+c=0 的两根为 -3 ,1 则抛物线 y=ax 2 +bx+c 的对称轴是直线 ____________ 。
4 、函数 y=-x2+4x+1 图象顶点坐标是()A、(2,3)B、(-2 ,3)C、(2,1)D、(2,5)5 、抛物线y( x 2) 23的顶点坐标是()A.(2,3)B.(- 2,3)C.(2,- 3) D .(- 2,- 3)6 、二次函数y3x26x 5的图象的顶点坐标是()A .(18),B. (18),C.(1,2) D. (1, 4)7 、抛物线y 2 x2 8x 1的顶点坐标为(A)(-2 ,7)(B)(-2 ,-25 )(C)( 2,7)(D)(2, -9 )8 、向上发射一枚炮弹,经x 秒后的高度为y 公尺,且时间与高度关系为y=ax2 bx 。
若此炮弹在第 7 秒与第 14 秒时的高度相等,则再下列哪一个时间的高度是最高的?(A) 第8 秒(B) 第10 秒 (C) 第12秒 (D) 第 15 秒。
9 、二次函数y( x 1)22的最小值是()A . 2B . 1 C.-3 D .2 310 、已知二次函数y 2x2 2(a b) x a2 b2 , a, b 为常数,当 y 达到最小值时,x 的值为()a b a b( A)ab ( B ) 2 ( C )2ab(D)211 、如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是()A .h mB .k nC.k nD. h 0, k 012 、7 .当x=4 时,函数y ax2bx c的最小值为-8,抛物线过点(6,0).求:(1)顶点坐标和对称轴;(2 )函数的表达式;( 3 )x 取什么值时, y 随 x 的增大而增大;x取什么值时, y 随 x 增大而减五平移问题1 、在平面直角坐标系中,将二次函数y 2x2的图象向上平移2 个单位,所得图象的解析式为A.y 2x2 2 B .y 2x2 2 C.y 2( x 2)2 D .y 2( x 2)2 2 、将抛物线 y 2x2向下平移 1 个单位,得到的抛物线是()A.y 2( x 1)2 B .y 2( x 1)2 C.y 2x2 1 D .y 2x2 13 、将函数 y x2 x 的图象向右平移 a (a 0) 个单位,得到函数y x2 3x 2 的图象,则 a 的值为A. 1 B . 2 C. 3 D . 44 、把抛物线 y x2向左平移 1 个单位,然后向上平移 3 个单位,则平移后抛物线的解析式为A.y (x 1)2 3 B .y ( x 1) 2 3 C. y ( x 1)2 3D .y (x 1)2 35 、把二次函数y 3x2的图象向左平移 2 个单位,再向上平移 1 个单位,所得到的图象对应的二次函数关系式是()( A )y 3 x 2 2 1 (B)y 3 x 2 2 1(C)y 3 x 2 2 1 ( D )y 3 x 2 2 1六二次函数的应用1 某涵洞是抛物线型,它的截面如图 l 上 52 ,得水面宽 AB=1 .6m ,涵洞顶点O 到水面的距离为 2 .4m ,在图中直角坐标系中,涵洞所在抛物线的函数关系式是 ______2 是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m 。
(2 )建立平面直角坐标系,则抛物线的关系式是()A.y 2x2 B .y 2x2 C.y 1x2 D .y1x2 2 23 如图,某隧道口的横截面是抛物线形,已知路宽AB 为6米,最高点离地面的距离OC 为5米.以最高点 O 为坐标原点,抛物线的对称轴为y 轴,1米为数轴的单位长度,建立平面直角坐标系,求( 1 )以这一部分抛物线为图象的函数解析式,并写出x 的取值范围;(2)有一辆宽2.8 米,高 1 米的农用货车(货物最高处与地面AB 的距离)能否通过y此隧道?OxA BC4 有一座抛物线形拱桥,在正常水位时水面 A B 的宽为 20m ,如果水位上升 3米时,水面 CD 的宽为 10m .(1 )建立如图 1 -2 -56 所示直角坐标系,求此抛物线的解析式;(2 )现有一辆载有救援物质的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥 280km (桥长忽略不计)货车正以 40km / h 的速度开往乙地,当行驶 1 小时,忽然接到通知;前方连降暴雨,造成水位以每小时0 .25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位到达最高点O 时,禁止车辆通行)试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由,若不能,要使货车安全通过此桥,速度应超过每小时多少千米?5 已知如图 1 -2 - 53 ,△ ABC 的面积为 2400cm 2,底边 BC 长为多 80cm ,若点 D 在 BC 边上, E 在 AC 边上, F 在 AB 边上,且四边形BDEF 为平行四边形,设 BD=xcm ,S□BDEF =y cm 2.求:(1 )y 与 x 的函数关系式;(2 )自变量x 的取值范围;(3 )当 x 取何值时, y 有最大值?最大值是多少?6 某商店将进货每个10 元的商品,按每个18 元售出时,每天可卖60 个,商店经理到市场上做一番调查后发现,若将这种商品的售价每提高 1 元,则日销售量就减少 5 个,为获得每日最大利润,则商品售价应定为每个多少元?7 .将进货单价为40 元的商品按 50 元售出时,就能卖出500 个,已知这个商品每个涨价1 元,其销售量就减少10 个。