苏科版数学九年级下册第六章《图形的相似》(探索三角形相似的条件) 专题练习
苏科版九年级数学下册第6章《相似三角形》专题练习
《相似三角形》专题练习【小题热身】1.如图,已知∠1=∠2,添加下列条件后,仍无法判定△ABC∽△ADE的是()A.=B.∠B=∠D C.∠C=∠AED D.=2.在正方形网格纸上,每个小格的顶点叫格点,以格点为顶点的三角形叫格点三角形.如图,点A、B、C是4×4网格中的格点(每个小正方形的边长为1),在网格中画出一个与△ABC相似且面积最大的格点△DEF,△DEF的面积为.3.如图所示,已知AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=4.如图,在△ABC中,点E、D分别为AB与AC边上两个点,请添加一个条件:,使得△ADE∽△ABC.5.如图,在平面直角坐标系中有两点A(6,0)、B(0,8),点C为AB的中点,点D在x轴上,当点D 的坐标为时,由点A、C、D组成的三角形与△AOB相似.6.如图,Rt△ABC中,∠C=90°,AC=4,BC=3,点D是AB边上一点(不与A、B重合),若过点D 的直线截得的三角形与△ABC相似,并且平分△ABC的周长,则AD的长为.7.如图,在矩形ABCD中,AB=12,AD=10,E为AD中点,CF⊥BE,垂足为G,交BC边于点F,则CF的长为.8.如图,Rt△ABC中,∠C=90°,AC=4,BC=2,D、E、F分别为BC、AB、AC上的点,若四边形DEFC为正方形,则它的边长为.9.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,点P、Q在DC边上,且PQ=DC.若AB=16,BC=20,则图中阴影部分的面积是.10.如图,在△ABC中,AH⊥BC于H,正方形DEFG内接于△ABC,点D、E分别在边AB、AC上,点G、F在边BC上.如果BC=20,正方形DEFG的面积为25,那么AH的长是.11.如图:已知矩形ABCD中,AB=2,BC=3,F是CD的中点,一束光线从A点出发,通过BC边反射,恰好落在F点,那么反射点E与C点的距离为.12.如图,△ABC中,AB=6,AC=12,点D、E分别在AB、AC上,其中BD=x,AE=2x.当△ADE 与△ABC相似时,x的值可能是.【典型例题】1.(相似与二次函数)如图,矩形CDEF两边EF、FC的长分别为8和6,现沿EF、FC的中点A、B截去一角成五边形ABCDE,P是线段AB上一动点,试确定AP的长为多少时,矩形PMDN的面积取得最大值.2.(相似与圆)如图,在正方形ABCD中,E是AB上一点,连接DE.过点A作AF⊥DE,垂足为F,⊙O 经过点C、D、F,与AD相交于点G.(1)求证:△AFG∽△DFC;(2)若正方形ABCD的边长为4,AE=1,求⊙O的半径.3.(一线三直角必有相似)(1)如图1,已知AB⊥l,DE⊥l,垂足分别为B、E,且C是l上一点,∠ACD =90°,求证:△ABC∽△CED;(2)如图2,在四边形ABCD中,已知∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD 的长.4.(动态问题与相似)如图所示,在矩形ABCD中,AB=12厘米,BC=6厘米,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D向点A以1厘米/秒的速度移动.如果P、Q同时出发,用t(秒)表示移动时间(0≤t≤6).那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?5.(相似性质)如图,在Rt△ABC中,∠C=90°,BC=3,CA=4,矩形DEFC的顶点D、E、F都在△ABC的边上.(1)设DE=x,则AD=(用含x的代数式表示);(2)求矩形DEFC的最大面积.6.(一线三直角)如图,G是边长为8的正方形ABCD的边BC上的一点,矩形DEFG的边EF过点A,GD=10.(1)求FG的长;(2)直接写出图中与△BHG相似的所有三角形.7.(圆中相似计算)如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D(1)求证:DE是⊙O的切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长.8.(圆中动态问题与相似计算)如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)求证:△ODM∽△MCN;(2)设DM=x,OA=R,求R关于x的函数关系式;(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.9.(相似与作图)如图,矩形ABCD中,AB=4,BC=m(m>1),点E是AD边上一定点,且AE=1.(1)当m=3时,AB上存在点F,使△AEF与△BCF相似,求AF的长度.(2)如图②,当m=3.5时.用直尺和圆规在AB上作出所有使△AEF与△BCF相似的点F.(不写作法,保留作图痕迹)(3)对于每一个确定的m的值,AB上存在几个点F,使得△AEF与△BCF相似?10.(遇到比例式问题处理)如图,在△ABC中,AD和BG是△ABC的高,连接GD.(1)求证:△ADC∽△BGC;(2)求证:CG•AB=CB•DG.11.(一线三等角与相似)如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=.(1)求证:△ABP∽△PCD;(2)求△ABC的边长.12.(动态问题中的相似计算)如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P以2mm/s 的速度从A向B移动,(不与B重合),动点Q以4mm/s的速度从B向C移动,(不与C重合),若P、Q同时出发,试问:(1)经过几秒后,△PBQ与△ABC相似.(2)经过几秒后,四边形APQC的面积最小?并求出最小值.13.△ABC,∠A、∠B、∠C的对边分别是a、b、c,一条直线DE与边AC相交于点D,与边AB相交于点E.(1)如图①,若DE将△ABC分成周长相等的两部分,则AD+AE等于多少;(用a、b、c表示)(2)如图②,若AC=3,AB=5,BC=4.DE将△ABC分成周长、面积相等的两部分,求AD;(3)如图③,若DE将△ABC分成周长、面积相等的两部分,且DE∥BC,则a、b、c满足什么关系?【作业】1.如图,△ABB1,△A1B1B2,△A2B2B3是全等的等边三角形,点B,B1,B2,B3在同一条直线上,连接A2B交AB1于点P,交A1B1于点Q,则PB1:QB1的值为.2.如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别交于点A、B、C和点D、E、F,若BC=2AB,AD=2,CF=6,则BE的长为.3.如图,在△ABC中,AB=3,AC=4,BC=6,D是BC上一点,CD=2,过点D的直线l将△ABC分成两部分,使其所分成的三角形与△ABC相似,若直线l与△ABC另一边的交点为点P,则DP=.4.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC 的长.5.如图,正方形ABCD的边长为12,其内部有一个小正方形EFGH,其中E、F、H分别在BC,CD,AE 上.若BE=9,则小正方形EFGH的边长.6.如图,在矩形ABCD中,E是AD的中点,连接AC、BE,AC与BE交于点F,则△ABF的面积和四边形CDEF的面积的比值是.7.如图,在△ABC和△APQ中,∠P AB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是.8.如图,在平面直角坐标系中,点A,B的坐标分别为(0,1)和,若在第四象限存在点C,使△OBC和△OAB相似,则点C的坐标是.9.如图,在△ABC中,∠C=90°,AC=BC=1,P为△ABC内一个动点,∠P AB=∠PBC,则CP的最小值为.10.如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=1,BD=2,则AC 的长.11.如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E三点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为.12.如图,在△ABC中,AB=8cm,BC=16cm,点P从点A开始沿AB向B以2cm/s的速度移动,点Q 从点B开始沿BC向C点以4cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒钟△PBQ 与△ABC相似?13.如图,已知等腰△ABC中,AB=AC=2,点D在边BC的反向延长线上,且DB=3,点E在边BC的延长线上,且∠EAC=∠D,设AD=x,BC=y.(1)求线段CE的长;(2)求y关于x的函数解析式,并写出定义域;(3)当AC平分∠BAE时,求线段AD的长.14.如图,已知△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在AB边上移动,动点F 在AC边上移动.(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,求BE的长;若不能,请说明理由;(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,并写出x的取值范围.15.如图,AB⊥BC,DC⊥BC,垂足分别为B、C,且AB=8,DC=6,BC=14,BC上是否存在点P使△ABP与△DCP相似?若有,有几个?并求出此时BP的长,若没有,请说明理由.16.如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是上一点,连接AF交CD的延长线于点E.(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为的中点时,求AF的值.17.学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得经验,继续探索两个直角三角形相似的条件.(1)“对与两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,两个直角三角形全等”.类似地你可以得到:“满足,或,两个直角三角形相似”.(2)“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地你可以得到“满足的两个直角三角形相似”.请结合下列所给图形,写出已知,并完成说理过程.已知:如图,.试说明Rt△ABC∽Rt△A′B′C′.。
苏科版九年级数学下《第6章图形的相似》单元测试含答案
第 8页,共 8页
上,他测得落在地面上影长为 21 米,留在墙上的影高为 2 米,求旗杆的高度.
第 㠮页,共 8页
【答案】
1. B 8. B 10. 11.
쳌 1 ᦙ
2. D 9. C
3. D
4. A
5. B
6. B
7. A
12. 10 13. 1. ;2 14. 1:3 15. 解: 1 如图,
ጠ 䔾 为所作;
16. 证明:
A. 1 对
第 쳌页,共 8页
B. 2 对 C. 3 对 D. 4 对
二、填空题 1 . 如图,已知 䕋ጠ䗃䗃ጠ䔾, 䕋 值为______ . ᦙ,ጠ䕋
1 ᦙ
香,ጠ䔾
那
㠮,则 AF 的
11. 如果线段 a、b、c、d 满足
,那么
1쳌. 已知 a、b、c、d 是成比例的线段,即 则线段 c 的长为______ cm.
ጠ䕋
ጠ䔾
ጠ䔾
䔾䕋
下列四条线段中,不能成比例的是
A. C.
香,
ᦙ,
h,
㠮,
8,
쳌,
1
香
B. D.
1,
쳌,
ᦙ,
쳌,
香,
쳌 쳌,
h
香
香.
已知
쳌,那么
那
的值是A. 3h. 如 Nhomakorabea,P 是 判定 ጠh∽
ጠ ጠ 䔾 h ጠ 䔾
B. 4
C. 5
D. 6
ጠ䔾 的边 AC 上一点,连接 BP,以下条件中不能 䔾ጠ 的是
ጠ䔾 的顶点坐标分别为
쳌,香 、ጠ ᦙ,쳌 、
画出
쳌 写出
ጠ䔾 的位似图形;
在第一象限把 1,쳌 为位似中心,
苏科版九年级数学下学期第六章《图形的相似》单元测试试卷含答案
苏科版九年级下学期第六章《图形的相似》单元测试试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把正确的选项填在相应的括号内) 1.下列各数能组成比例的是A .0.4,0.6,1,1.5B .0.2,0.8,12,30C .1,3,4,6D .1,2,3,4 2.下列判断中,正确的是A .各有一个角是67°的两个等腰三角形相似B .邻边之比为2:1的两个等腰三角形相似C .各有一个角是45°的两个等腰三角形相似D .邻边之比为2:3的两个等腰三角形相似3.在如图所示的四个图形为两个圆或相似的正多边形,其中位似图形的个数为A .1个B .2个C .3个D .4个4.如图,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A ′B ′C ,使得△A ′B ′C 的边长是△ABC 的边长的2倍.设点B 的横坐标是﹣3,则点B'的横坐标是A .2B .3C .4D .55.如图,△ABC 中,点D 在AB 边上,点E 在AC 边上,且∠1=∠2=∠3,则与△ADE 相似的三角形的个数为A .4个B .3个C .2个D .1个6.如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于点D .若AC =2,则AD 的长是A 1-B 1-C 2-D .32第5题第4题 第6题7.如图,在△ABC 中,∠A =60°,BE 、CF 分别是AC 、AB 边上的高,连接EF ,则EF :BC 的值为 A .1:2 B .2:3 C .1:4 D .2:58.如图,已知点A(1,0),点B(b ,0)(b >1),点P 是第一象限内的动点,且点P 的纵坐标为4b,若△POA 和△PAB 相似,则符合条件的P 点个数是A .0B .1C .2D .39A 、B 两点都在反比例函数(0)ky k x=>位于第一象限内的图象上,过A 、B 两点分别作坐标轴的垂线,垂足分别为C 、D 和E 、F ,设AC 与BF 交于点G ,已知四边形OCAD 和CEBG 都是正方形.设FG 、OC 的中点分别为P 、Q ,连接PQ .给出以下结论:①四边形ADFG 为黄金矩形;②四边形OCGF 为黄金矩形;③四边形OQPF 为黄金矩形.以上结论中,正确的是A .①B .②C .②③D .①②③第7题 第8题 第9题10.如图所示,若△ABC 内一点P 满足∠PAC =∠PBA =∠PCB ,则点P 为△ABC 的布洛卡点.三角形的布洛卡点是法国数学家和数学教育家克洛尔于1816年首次发现,但他的发现并未被当时的人们所注意,1875年,布洛卡点被一个数学爱好者法国军官布洛卡重新发现,并用他的名字命名.问题:已知在等腰直角三角形DEF 中,∠EDF =90°,若点Q 为△DEF 的布洛卡点,DQ =1,则EQ +FQA .5B .4C .3D .2二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.若x 是3和6的比例中项,则x = .12.在▱ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则S △AEF :S△CBF 是 .13.在△ABC 中,AB =7,AC =6,∠A =45°,点D 、E 分别在边AB 、BC 上,将△BDE 沿着DE 所在的直线翻折,点B 落在点P 处,PD 、PE 分别交边AC 于点M ,N ,如果AD =2,PD ⊥AB ,垂足为点D ,那么MN 的长是 . 14.如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1,4,9.则△ABC 的面积是 .第10题 第14题 第15题15.如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO =∠ABC =∠ACB =75°,BO :OD =1:3,则DC 的长为 .16.如图,在△ABC 中,AD 是BC 边上的中线,F 是AD 上一点,且AF :FD =1:4,连结CF ,并延长交AB于点E ,则AE :EB = .17.如图,正方形ABCD的边长为E是正方形ABCD内一点,将△BCE绕着点C顺时针旋转90°,点E的对应点F和点E,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为.18.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.点D、E分别是边AB、BC的中点,连接DE,将△BDE绕点B按顺时针方向旋转一定角度(这个角度小于90°)后,点D的对应点D'和点E的对应点E'以及点A三个点在一直线上,连接CE',则CE'=.第16题第17题第18题三、解答题(本大题共6小题,共54分.请在试卷相应的区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本题满分8分)在平行四边形ABCD中E是BC边上一点,且AB=BE,AE,DC的沿长线相交于点F.(1)若∠F=62°,求∠D的度数;(2)若BE=3EC,且△EFC的面积为1,求平行四边形ABCD的面积.20.(本题满分8分)如图,长方形纸片ABCD中,AB=8,将纸片折叠,折痕的一个端点F在边AD上,另一个端点G在边BC上,顶点B的对应点为E.当顶点B的对应点E落在长方形内部,E到AD的距离为2,且BG=10时,求AF的长.21.(本题满分8分)如图①,在△ABC中,∠BAC=90°,D、E分别是BA和CA延长线上的点,且△ABC∽△AED.M是BC的中点,延长MA交DE于点N,求证:MN⊥DE.如图②,在小正方形的边长为1的网格中,△ABC的顶点均在格点上.请仅用无刻度的直尺按下列要求分别作图,并保留作图痕迹(不需要写作法):(1)在△ABC外作△CEF,使△ABC∽△FEC;(2)在线段FE上作一点P,使得点P到点C的距离最小.22.(本题满分10分)如图,平面直角坐标系中,一次函数2y kx =-的图象与反比例函数my x=(x <0)的图象交于点B ,与x 轴,y 轴交于点D ,E ,BC ⊥x 轴于C ,BA ⊥y 轴于A ,OD OC =12,△ABE 的面积为24. (1)点E 的坐标是 ;(2)求一次函数和反比例函数的表达式;(3)以BC 为边作菱形CBMN ,顶点M 在点B 左侧的一次函数2y kx =-的图象上,判断边MN 与反比例函数my x=(x <0)的图象是否有公共点.23.(本题满分10分)如图1,点O 是正方形ABCD 的中心,点E 是AB 边上一动点,在BC 上截取CF =BE ,连接OE ,DF . 初步探究:在点E 的运动过程中:(1)猜想线段OE 与OF 的关系,并说明理由. 深入探究:(2)如图2,连接EF ,过点O 作EF 的垂线交BC 于点G .交AB 的延长线于点I .延长OE 交CB 的延长线于点H .①直接写出∠EOG 的度数.②若AB =2,请探究BH •BI 的值是否为定值,若是,请求出其值;反之,请说明理由.24.(本题满分10分)如图,矩形ABCD中,AD=4cm,AB=8cm,点P从点A出发在边AB上向点B匀速运动,同时点Q从点A出发在边AD上向点D匀速运动,速度都是1cm/s,运动时间是t s(0<t<4),PE⊥AB,交BD于点E,点Q关于PE的对称点是F,射线PF分别与BD,CD交于点M,N.(1)求∠BPN度数,并用含t的代数式表示PE的长;(2)当点F与点M重合时,如图②,求t的值;(3)探究:在点P,Q运动过程中.①PMPB的值是否是定值?若是,请求出这个值;若不是,请说明理由.②t为何值时,以点P,Q,E为顶点的三角形与△PMB相似?参考答案1.A 2.B 3.C 4.B 5.C 6.A 7.A 8.D 9.B 10.D11.±12.4:25或9:25 13.18714.3615.16.1:8 17.741819.20.21.22.23.24.。
苏科版九年级数学下《第六章图形的相似》单元测试题含答案
第六章图形的相似一、选择题:(本题共10小题,每小题3分,共30分)1.若=,则的值为()A.1 B.C.D.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长()A.18cm B.5cm C.6cm D.±6cm3.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.B.C. D.4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C. = D. =5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:26.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.127.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1) C.(,)D.(2,1)8.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A .1B .2C .3D .49.如图,王华晚上由路灯A 下的B 处走到C 处时,测得影子CD 的长为1米,继续往前走3米到达E 处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )A .4.5米B .6米C .7.2米D .8米10.如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A→B→A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,t 的值为( )A .2B .2.5或3.5C .3.5或4.5D .2或3.5或4.5二、填空题:(本题共8小题,每小题3分,共24分)11.如果在比例尺为1:1 000 000的地图上,A 、B 两地的图上距离是3.4厘米,那么A 、B 两地的实际距离是 千米.12.如图,已知:l 1∥l 2∥l 3,AB=6,DE=5,EF=7.5,则AC= .13.如图,△ABC 与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是 .14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= m.16.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为时,△ADP和△ABC相似.17.如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S=21,求△BODk= .18.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG =S △FGH ;④AG +DF=FG .其中正确的是 .(把所有正确结论的序号都选上)三、解答题:(本大题共10大题,共76分)19.如图,在矩形ABCD 中,AB=4,BC=6,M 是BC 的中点,DE ⊥AM 于点E .(1)求证:△ADE ∽△MAB ;(2)求DE 的长.20.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,若S △ADE =4cm 2,S △EFC =9cm 2,求S △ABC .21.如图,△ABC 中,CD 是边AB 上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.22.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.23.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?24.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的,若AB=2,求△ABC移动的距离BE的长.25.如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m= ;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.26.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.27.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D为边CB上的一个动点(点D不与点B 重合),过D作DO⊥AB,垂足为O,点B′在边AB上,且与点B关于直线DO对称,连接DB′,AD.(1)求证:△DOB∽△ACB;(2)若AD平分∠CAB,求线段BD的长;(3)当△AB′D为等腰三角形时,求线段BD的长.28.已知:如图,在矩形ABCD 中,AB=6cm ,BC=8cm ,对角线AC ,BD 交于点0.点P 从点A 出发,沿方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形S 五边形OECQF :S △ACD =9:16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.《第6章图形的相似》参考答案与试题解析一、选择题:(本题共10小题,每小题3分,共30分)1.若=,则的值为()A.1 B.C.D.【考点】比例的性质.【专题】计算题.【分析】根据合分比性质求解.【解答】解:∵ =,∴==.故选D.【点评】考查了比例性质:常见比例的性质有内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.2.已知线段a、b、c,其中c是a、b的比例中项,若a=9cm,b=4cm,则线段c长()A.18cm B.5cm C.6cm D.±6cm【考点】比例线段.【分析】由c是a、b的比例中项,根据比例中项的定义,列出比例式即可得出线段c的长,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故选C.【点评】此题考查了比例线段;理解比例中项的概念,这里注意线段不能是负数.3.已知点P是线段AB的黄金分割点(AP>PB),AB=4,那么AP的长是()A.B.C. D.【考点】黄金分割.【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.【解答】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=4×=2﹣2.故选A.【点评】本题考查了黄金分割的概念:把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.熟记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的是解题的关键.4.如图,点P在△ABC的边AC上,要判断△ABP∽△ACB,添加一个条件,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C. = D. =【考点】相似三角形的判定.【分析】分别利用相似三角形的判定方法判断得出即可.【解答】解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.【点评】此题主要考查了相似三角形的判定,正确把握判定方法是解题关键.5.如果两个相似三角形的面积比是1:4,那么它们的周长比是()A.1:16 B.1:4 C.1:6 D.1:2【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方解答即可.【解答】解:∵两个相似三角形的面积比是1:4,∴两个相似三角形的相似比是1:2,∴两个相似三角形的周长比是1:2,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形周长的比等于相似比,相似三角形面积的比等于相似比的平方是解题的关键.6.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4 B.7 C.3 D.12【考点】相似三角形的判定与性质;平行四边形的性质.【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴,∵EF=3,∴,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选B.【点评】此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.7.如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2)B.(1,1) C.(,)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,1).故选:B.【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.8.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3 D.4【考点】相似三角形的判定与性质;等边三角形的性质.【专题】几何图形问题.【分析】利用两对相似三角形,线段成比例:AB:BD=AE:EF,CD:CF=AE:EF,可得CF=2.【解答】解:如图,∵△ABC和△ADE均为等边三角形,∴∠B=∠BAC=60°,∠E=∠EAD=60°,∴∠B=∠E,∠BAD=∠EAF,∴△ABD∽△AEF,∴AB:BD=AE:EF.同理:△CDF∽△EAF,∴CD:CF=AE:EF,∴AB:BD=CD:CF,即9:3=(9﹣3):CF,∴CF=2.故选:B.【点评】本题考查了相似三角形的判定与性质和等边三角形的性质.此题利用了“两角法”证得两个三角形相似.9.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米【考点】相似三角形的应用.【专题】压轴题;转化思想.【分析】由于人和地面是垂直的,即和路灯到地面的垂线平行,构成两组相似.根据对应边成比例,列方程解答即可.【解答】解:如图,GC⊥BC,AB⊥BC,∴GC∥AB,∴△GCD∽△ABD(两个角对应相等的两个三角形相似),∴,设BC=x,则,同理,得,∴,∴x=3,∴,∴AB=6.故选:B.【点评】本题考查相似三角形性质的应用.在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中的“”.10.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s 的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为()A.2 B.2.5或3.5 C.3.5或4.5 D.2或3.5或4.5【考点】相似三角形的判定与性质;含30度角的直角三角形.【专题】压轴题;动点型.【分析】由Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,可求得AB的长,由D为BC的中点,可求得BD的长,然后分别从若∠DEB=90°与若∠EDB=90°时,去分析求解即可求得答案.【解答】解:∵Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,∴AB=2BC=4(cm),∵BC=2cm,D为BC的中点,动点E以1cm/s的速度从A点出发,∴BD=BC=1(cm),BE=AB﹣AE=4﹣t(cm),若∠BED=90°,当A→B时,∵∠ABC=60°,∴∠BDE=30°,∴BE=BD=(cm),∴t=3.5,当B→A时,t=4+0.5=4.5.若∠BDE=90°时,当A→B时,∵∠ABC=60°,∴∠BED=30°,∴BE=2BD=2(cm),∴t=4﹣2=2,当B→A时,t=4+2=6(舍去).综上可得:t的值为2或3.5或4.5.故选D.【点评】此题考查了含30°角的直角三角形的性质.此题属于动点问题,难度适中,注意掌握分类讨论思想与数形结合思想的应用.二、填空题:(本题共8小题,每小题3分,共24分)11.如果在比例尺为1:1 000 000的地图上,A、B两地的图上距离是3.4厘米,那么A、B两地的实际距离是34 千米.【考点】比例线段.【专题】计算题.【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,3.4÷=3400000厘米=34千米.即实际距离是34千米.故答案为:34.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.12.如图,已知:l 1∥l 2∥l 3,AB=6,DE=5,EF=7.5,则AC= 15 .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得出比例式,代入求出BC 的值,即可得出答案.【解答】解:∵:l 1∥l 2∥l 3,∴=,∵AB=6,DE=5,EF=7.5,∴BC=9,∴AC=AB+BC=15,故答案为:15.【点评】本题考查了平行线分线段成比例定理的应用,能根据定理得出正确饿比例式是解此题的关键.13.如图,△ABC 与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是 (9,0) .【考点】位似变换.【专题】网格型.【分析】位似图形的主要特征是:每对位似对应点与位似中心共线.【解答】解:直线AA′与直线BB′的交点坐标为(9,0),所以位似中心的坐标为(9,0).【点评】本题考查位似中心的找法,各对应点所在直线的交点即为位似中心.14.如图,点G是△ABC的重心,GH⊥BC,垂足为点H,若GH=3,则点A到BC的距离为9 .【考点】平行线分线段成比例;三角形的重心.【专题】数形结合.【分析】根据题意作图,利用重心的性质AD:GD=3:1,同时还可以求出△ADE∽△GDH,从而得出AD:GD=AE:GH=3:1,根据GH=3即可得出答案.【解答】解:设BC的中线是AD,BC的高是AE,由重心性质可知:AD:GD=3:1,∵GH⊥BC,∴△ADE∽△GDH,∴AD:GD=AE:GH=3:1,∴AE=3GH=3×3=9,故答案为9.【点评】本题主要考查了作辅助线,重心的特点,全等三角形的性质,难度适中.15.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= 5.5 m.【考点】相似三角形的应用.【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【解答】解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5m,CD=8m,∴=∴BC=4米,∴AB=AC+BC=1.5+4=5.5米,故答案为:5.5.【点评】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.16.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为4或9 时,△ADP和△ABC相似.【考点】相似三角形的判定.【分析】分别根据当△ADP∽△ACB时,当△ADP∽△ABC时,求出AP的长即可.【解答】解:当△ADP∽△ACB时,∴=,∴=,解得:AP=9,当△ADP∽△ABC时,∴=,∴=,解得:AP=4,∴当AP的长度为4或9时,△ADP和△ABC相似.故答案为:4或9.【点评】此题主要考查了相似三角形的判定与性质,利用倒推法以及分类讨论得出是解题关键.17.如图,双曲线y=经过Rt △BOC 斜边上的点A ,且满足=,与BC 交于点D ,S △BOD =21,求k= 8 .【考点】反比例函数系数k 的几何意义;相似三角形的判定与性质.【分析】过A 作AE ⊥x 轴于点E ,根据反比例函数的比例系数k 的几何意义可得S 四边形AECB =S △BOD ,根据△OAE ∽△OBC ,相似三角形面积的比等于相似比的平方,据此即可求得△OAE 的面积,从而求得k 的值.【解答】解:过A 作AE ⊥x 轴于点E .∵S △OAE =S △OCD ,∴S 四边形AECB =S △BOD =21,∵AE ∥BC ,∴△OAE ∽△OBC ,∴==()2=,∴S △OAE =4,则k=8.故答案是:8.【点评】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.18.如图,在矩形纸片ABCD 中,AB=6,BC=10,点E 在CD 上,将△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,有下列结论:①∠EBG=45°;②△DEF ∽△ABG ;③S △ABG =S △FGH ;④AG +DF=FG .其中正确的是 ①③④ .(把所有正确结论的序号都选上)【考点】相似形综合题.【专题】综合题.【分析】由折叠性质得∠1=∠2,CE=FE ,BF=BC=10,则在Rt △ABF 中利用勾股定理可计算出AF=8,所以DF=AD ﹣AF=2,设EF=x ,则CE=x ,DE=CD ﹣CE=6﹣x ,在Rt △DEF 中利用勾股定理得(6﹣x )2+22=x 2,解得x=,即ED=;再利用折叠性质得∠3=∠4,BH=BA=6,AG=HG ,易得∠2+∠3=45°,于是可对①进行判断;设AG=y ,则GH=y ,GF=8﹣y ,在Rt △HGF 中利用勾股定理得到y 2+42=(8﹣y )2,解得y=3,则AG=GH=3,GF=5,由于∠A=∠D 和≠,可判断△ABG 与△DEF 不相似,则可对②进行判断;根据三角形面积公式可对③进行判断;利用AG=3,GF=5,DF=2可对④进行判断.【解答】解:∵△BCE 沿BE 折叠,点C 恰落在边AD 上的点F 处,∴∠1=∠2,CE=FE ,BF=BC=10,在Rt △ABF 中,∵AB=6,BF=10,∴AF==8,∴DF=AD ﹣AF=10﹣8=2,设EF=x ,则CE=x ,DE=CD ﹣CE=6﹣x ,在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6﹣x )2+22=x 2,解得x=,∴ED=,∵△ABG 沿BG 折叠,点A 恰落在线段BF 上的点H 处,∴∠3=∠4,BH=BA=6,AG=HG ,∴∠2+∠3=∠ABC=45°,所以①正确;HF=BF ﹣BH=10﹣6=4,设AG=y ,则GH=y ,GF=8﹣y ,在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8﹣y )2,解得y=3,∴AG=GH=3,GF=5,∵∠A=∠D , ==, =,∴≠,∴△ABG 与△DEF 不相似,所以②错误;∵S △ABG =•6•3=9,S △FGH =•GH•HF=×3×4=6,∴S △ABG =S △FGH ,所以③正确;∵AG+DF=3+2=5,而GF=5,∴AG+DF=GF ,所以④正确.故答案为①③④.【点评】本题考查了相似形综合题:熟练掌握折叠和矩形的性质、相似三角形的判定方法;会运用勾股定理计算线段的长.三、解答题:(本大题共10大题,共76分)19.如图,在矩形ABCD 中,AB=4,BC=6,M 是BC 的中点,DE ⊥AM 于点E .(1)求证:△ADE ∽△MAB ;(2)求DE 的长.【考点】相似三角形的判定与性质;矩形的性质.【分析】(1)先根据矩形的性质,得到AD ∥BC ,则∠DAE=∠AMB ,又由∠DEA=∠B ,根据有两角对应相等的两三角形相似,即可证明出△DAE ∽△AMB ;(2)由△DAE ∽△AMB ,根据相似三角形的对应边成比例,即可求出DE 的长.【解答】(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DAE=∠AMB ,又∵∠DEA=∠B=90°,∴△DAE ∽△AMB ;(2)由(1)知△DAE ∽△AMB ,∴DE :AD=AB :AM ,∵M 是边BC 的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE :6=4:5,∴DE=.【点评】此题主要考查了相似三角形的判定与性质,矩形的性质.(1)中根据矩形的对边平行进而得出∠DAE=∠AMB 是解题的关键.20.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,若S △ADE =4cm 2,S △EFC =9cm 2,求S △ABC .【考点】相似三角形的判定与性质.【分析】首先求出△ADE ∽△ECF ,得出S △ADE :S △ECF =(AE :EC )2,进而得出AE :EC=2:3,在得出S △ABC :S △ADE =(5:2)2,求出答案即可.【解答】解:∵DE ∥BC ,EF ∥AB ,∴∠A=∠FEC ,∠AED=∠C ,∴△ADE ∽△ECF ;∴S △ADE :S △ECF =(AE :EC )2,∵S △ADE =4cm 2,S △EFC =9cm 2,∴(AE :EC )2=4:9,∴AE :EC=2:3,即EC :AE=3:2,∴(EC+AE ):AE=5:2,即AC :AE=5:2.∵DE ∥BC ,∴∠C=∠AED ,又∵∠A=∠A ,∴△ABC ∽△ADE ,∴S △ABC :S △ADE =(AC :AE )2,∴S △ABC :4=(5:2)2,∴S △ABC =25cm 2.【点评】此题主要考查了相似三角形的判定与性质,根据已知得出S △ABC :S △ADE =(AC :AE )2进而求出是解题关键.21.如图,△ABC 中,CD 是边AB 上的高,且=.(1)求证:△ACD ∽△CBD ;(2)求∠ACB 的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD ∽△CBD ;(2)由(1)知△ACD ∽△CBD ,然后根据相似三角形的对应角相等可得:∠A=∠BCD ,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD 是边AB 上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD ∽△CBD ;(2)解:∵△ACD ∽△CBD ,∴∠A=∠BCD ,在△ACD 中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.22.已知:如图△ABC 三个顶点的坐标分别为A (0,﹣3)、B (3,﹣2)、C (2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC 向上平移6个单位得到的△A 1B 1C 1;(2)以点C 为位似中心,在网格中画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且△A 2B 2C 2与△ABC 的位似比为2:1,并直接写出点A 2的坐标.【考点】作图-位似变换;作图-平移变换.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置进而得出.【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求,A 2坐标(﹣2,﹣2).【点评】此题主要考查了位似变换和平移变换,根据题意正确得出对应点位置是解题关键.23.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?【考点】相似三角形的应用.【分析】先求出墙上的影高CD落在地面上时的长度,再设树高为h,根据同一时刻物高与影长成正比列出关系式求出h的值即可.【解答】解:过D作DE∥BC交AB于点E,设墙上的影高CD落在地面上时的长度为xm,树高为hm,∵某一时刻测得长为1m的竹竿影长为0.9m,墙上的影高CD为1.2m,∴=,解得x=1.08(m),∴树的影长为:1.08+2.7=3.78(m),∴=,解得h=4.2(m).答:测得的树高为4.2米.【点评】本题考查的是相似三角形的应用,解答此题的关键是正确求出树的影长,这是此题的易错点.24.如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的,若AB=2,求△ABC移动的距离BE的长.【考点】平移的性质.【分析】根据平移的性质得到EF∥AC,证得△BEG∽△BAC,由相似三角形的性质得到==,即可得到结论.【解答】解:∵把△ABC沿边BA平移到△DEF的位置,∴EF∥AC,∴△BEG∽△BAC,∴==,∵AB=2,∴BE=.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于求证△ABC与阴影部分为相似三角形.25.如图,点A(1,4)、B(2,a)在函数y=(x>0)的图象上,直线AB与x轴相交于点C,AD⊥x轴于点D.(1)m= 4 ;(2)求点C的坐标;(3)在x轴上是否存在点E,使以A、B、E为顶点的三角形与△ACD相似?若存在,求出点E的坐标;若不存在,说明理由.【考点】反比例函数综合题.【分析】(1)有点A的坐标结合反比例函数图象上点的坐标特征,即可得出m的值;(2)由反比例函数的解析式结合反比例函数图象上点的坐标特征即可得出点B的坐标,利用待定系数法即可求出直线AB的解析式,再领y=0求出x值即可得出点C的坐标;(3)假设存在,设点E的坐标为(n,0),分∠ABE=90°、∠BAE=90°以及∠AEB=90°三种情况考虑:①当∠ABE=90°时,根据等腰三角形的性质,利用勾股定理即可找出关于n的一元二次方程,解方程即可得出结论;②当∠BAE=90°时,根据∠ABE>∠ACD可得出两三角形不可能相似;③当∠AEB=90°时,根据A、B的坐标可得出AB的长度,以AB为直径作圆可知圆与x轴无交点,故该情况不存在.综上即可得出结论.【解答】解:(1)∵点A(1,4)在反比例函数y=(x>0)的图象上,∴m=1×4=4,故答案为:4.(2)∵点B(2,a)在反比例函数y=的图象上,∴a==2,∴B(2,2).设过点A、B的直线的解析式为y=kx+b,∴,解得:,∴过点A、B的直线的解析式为y=﹣2x+6.当y=0时,有﹣2x+6=0,解得:x=3,∴点C的坐标为(3,0).(3)假设存在,设点E的坐标为(n,0).①当∠ABE=90°时(如图1所示),∵A(1,4),B(2,2),C(3,0),∴B是AC的中点,∴EB垂直平分AC,EA=EC=n+3.由勾股定理得:AD2+DE2=AE2,即42+(x+1)2=(x+3)2,解得:x=﹣2,此时点E的坐标为(﹣2,0);②当∠BAE=90°时,∠ABE>∠ACD,故△EBA与△ACD不可能相似;③当∠AEB=90°时,∵A(1,4),B(2,2),∴AB=,2>,∴以AB为直径作圆与x轴无交点(如图3),∴不存在∠AEB=90°.综上可知:在x轴上存在点E,使以A、B、E为顶点的三角形与△ACD相似,点E的坐标为(﹣2,0).【点评】本题考查了反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征、待定系数法求函数解析式以及勾股定理,解题的关键是:(1)利用反比例函数图象上点的坐标特征求出m 值;(2)根据待定系数法求出直线AB的解析式;(3)分∠ABE=90°、∠BAE=90°以及∠AEB=90°三种情况考虑.本题属于中档题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.26.如图,在平行四边形ABCD中,对角线AC、BD交于点O.M为AD中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△DCN的面积为2,求四边形ABNM的面积.【考点】相似三角形的判定与性质;平行四边形的性质.【专题】几何综合题.【分析】(1)由四边形ABCD为平行四边形,得到对边平行且相等,且对角线互相平分,根据两直线平行内错角相等得到两对角相等,进而确定出三角形MND与三角形CNB相似,由相似得比例,得到DN:BN=1:2,设OB=OD=x,表示出BN与DN,求出x的值,即可确定出BD的长;(2)由相似三角形相似比为1:2,得到CN=2MN,BN=2DN.已知△DCN的面积,则由线段之比,得到△MND与△CNB的面积,从而得到S△ABD =S△BCD=S△BCN+S△CND,最后由S四边形ABNM=S△ABD﹣S△MND求解.【解答】解:(1)∵平行四边形ABCD,∴AD∥BC,AD=BC,OB=OD,∴∠DMN=∠BCN,∠MDN=∠NBC,∴△MND∽△CNB,∴=,∵M为AD中点,∴MD=AD=BC,即=,∴=,即BN=2DN ,设OB=OD=x ,则有BD=2x ,BN=OB+ON=x+1,DN=x ﹣1,∴x+1=2(x ﹣1),解得:x=3,∴BD=2x=6;(2)∵△MND ∽△CNB ,且相似比为1:2,∴MN :CN=DN :BN=1:2,∴S △MND =S △CND =1,S △BNC =2S △CND =4.∴S △ABD =S △BCD =S △BCN +S △CND =4+2=6∴S 四边形ABNM =S △ABD ﹣S △MND =6﹣1=5.【点评】此题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.27.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 为边CB 上的一个动点(点D 不与点B 重合),过D 作DO ⊥AB ,垂足为O ,点B′在边AB 上,且与点B 关于直线DO 对称,连接DB′,AD .(1)求证:△DOB ∽△ACB ;(2)若AD 平分∠CAB ,求线段BD 的长;(3)当△AB′D 为等腰三角形时,求线段BD 的长.【考点】相似形综合题.【分析】(1)由∠DOB=∠ACB=90°,∠B=∠B ,容易证明△DOB ∽△ACB ;(2)先由勾股定理求出AB ,由角平分线的性质得出DC=DO ,再由HL 证明Rt △ACD ≌Rt △AOD ,得出AC=AO ,设BD=x ,则DC=DO=8﹣x ,由勾股定理得出方程,解方程即可;(3)根据题意得出当△AB′D 为等腰三角形时,AB′=DB′,由△DOB ∽△ACB ,得出=,设BD=5x ,则AB′=DB′=5x,BO=B′O=4x,由AB′+B′O +BO=AB ,得出方程,解方程求出x ,即可得出BD .【解答】(1)证明:∵DO⊥AB,∴∠DOB=∠DOA=90°,∴∠DOB=∠ACB=90°,又∵∠B=∠B,∴△DOB∽△ACB;(2)解:∵∠ACB=90°,∴AB===10,∵AD平分∠CAB,DC⊥AC,DO⊥AB,∴DC=DO,在Rt△ACD和Rt△AOD中,,∴Rt△ACD≌Rt△AOD(HL),∴AC=AO=6,设BD=x,则DC=DO=8﹣x,OB=AB﹣AO=4,在Rt△BOD中,根据勾股定理得:DO2+OB2=BD2,即(8﹣x)2+42=x2,解得:x=5,∴BD的长为5;(3)解:∵点B′与点B关于直线DO对称,∴∠B=∠OB′D,BO=B′O,BD=B′D,∵∠B为锐角,∴∠OB′D也为锐角,∴∠AB′D为钝角,∴当△AB′D为等腰三角形时,AB′=DB′,∵△DOB∽△ACB,∴==,设BD=5x,则AB′=DB′=5x,BO=B′O=4x,∵AB′+B′O+BO=AB,∴5x+4x+4x=10,解得:x=,∴BD=.【点评】本题是相似形综合题目,考查了相似三角形的判定与性质、勾股定理、全等三角形的判定与性质、角平分线的性质等知识;本题难度较大,综合性强,特别是(2)(3)中,需要根据题意列出方程,解方程才能得出结果.28.(2016•青岛)已知:如图,在矩形ABCD 中,AB=6cm ,BC=8cm ,对角线AC ,BD 交于点0.点P 从点A 出发,沿方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形S 五边形OECQF :S △ACD =9:16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t ,如图1,过P 作PM ⊥AO ,根据相似三角形的性质得到AP=t=,②当AP=AO=t=5,于是得到结论;(2)过点O 作OH ⊥BC 交BC 于点H ,已知BE=PD ,则可求△BOE 的面积;可证得△DFQ ∽△DOC ,由相似三角形的面积比可求得△DFQ 的面积,从而可求五边形OECQF 的面积.(3)根据题意列方程得到t=,t=0,(不合题意,舍去),于是得到结论;(4)由角平分线的性质得到DM=DN=,根据勾股定理得到ON=OM==,由三角形的面积公式得到OP=5﹣t ,根据勾股定理列方程即可得到结论.【解答】解:(1)∵在矩形ABCD 中,AB=6cm ,BC=8cm ,∴AC=10,①当AP=PO=t ,如图1,。
苏科新版九年级数学下册第6章《图形的相似》单元测试卷( 附答案)
《图形的相似》单元培优测试卷一.选择题1.已知=,则的值为()A.B.C.﹣D.﹣2.已知=(a≠0,b≠0),下列变形错误的是()A.=B.2a=3b C.=D.3a=2b3.如果=,那么下列等式中不一定成立的是()A.=B.=C.=D.ad=bc4.给出下列各组线段,其中成比例线段是()A.a=2cm,b=4cm,c=6cm,d=8cmB.a=cm,b=cm,c=cm,d=cmC.a=cm,b=cm,c=cm,d=2cmD.a=2cm,b=cm,c=2cm,d=cm5.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个B.2个C.3个D.4个6.如图,在矩形、锐角三角形、正五边形、直角三角形的外边加一个宽度一样的外框,保证外框的边与原图形的对应边平行,则外框与原图一定相似的有()A.1个B.2个C.3个D.4个7.如图,点P在△ABC的边AC上,如果添加一个条件后可以得到△ABP∽△ACB,那么以下添加的条件中,不正确的是()A.∠ABP=∠C B.∠APB=∠ABC C.AB2=AP•AC D.8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.9.如图,在Rt△ABC,∠BAC=90°,AD⊥BC,AB=10,BD=6,则BC的值为()A.B.C.D.10.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2 B.(2,2),C.(2,2),2 D.(1,1),11.一个钢筋三角架三边长分别为20cm,50cm,60cm,现在要做一个和它相似的钢筋三角架,而只有长为30cm和50cm的两根钢筋,要求以其中的一根为一边,从另一根上截两段(允许有余料)作为另两边,则不同的截法有()A.一种B.两种C.三种D.四种或四种以上12.如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列选项中的结论错误的是()A.FA:FB=1:2 B.AE:BC=1:2C.BE:CF=1:2 D.S△ABE:S△FBC=1:413.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=GC D.EG=2GC 14.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.15.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3D.216.如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A.=B.=C.=D.=17.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6 B.8 C.10 D.1218.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是()A.B.C.D.19.如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,CD与BE、AE分别交于点P,M.对于下列结论:①△BAE∽△CAD;②MP•MD=MA•ME;③2CB2=CP•CM.其中正确的是()A.①②③B.①C.①②D.②③二.填空题20.如图,已知△ABC与△A′B′C′是以坐标原点O为位似中心的位似图形,且=,若点A(﹣1,0),点C(,1),则A′C′=.21.如图,在矩形ABCD中,点E是CD的中点,将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,将BF延长交AD于点G.若=,则=.22.如图,已知正方形DEFG的顶点D、E在△ABC的边BC上,顶点G、F分别在边AB、AC上.如果BC=4,△ABC的面积是6,那么这个正方形的边长是.23.如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为.24.如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为.25.如图,已知半圆O与四边形ABCD的边AD、AB、BC都相切,切点分别为D、E、C,半径OC=1,则AE•BE=.26.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为.27.已知==,且a+b﹣2c=6,则a的值为.三.解答题28.在下列三个正方形网格图中,△ABC的顶点和另两条线段的端点都在格点上,以给定的线段为一边,分别在图2和图3中各画出一个三角形,使所画的三角形都与△ABC相似,并说明所画三角形与△ABC的相似比.29.如图,△ABC三个顶点分别为A(0,﹣3),B(3,﹣2),C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移6个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1.30.已知AD为⊙O的直径,BC为⊙O的切线,切点为M,分别过A,D两点作BC的垂线,垂足分别为B,C,AD的延长线与BC相交于点E.(1)求证:△ABM∽△MCD;(2)若AD=8,AB=5,求ME的长.31.如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l 于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.32.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE•DC=20,求⊙O的面积.(π取3.14)33.如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;(2)若BD=AD,AC=3,求CD的长.34.求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A'B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A'B′C′,使得△A'B′C′∽△ABC,不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.35.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.参考答案一.选择题1.解:设x=2k,y=5k,则==﹣.故选:D.2.解:由=得,3a=2b,A、由等式性质可得:3a=2b,正确;B、由等式性质可得2a=3b,错误;C、由等式性质可得:3a=2b,正确;D、由等式性质可得:3a=2b,正确;故选:B.3.解:A、正确,∵=,∴+1=+1,∴=;B、错误,b+d=0时,不成立;C、正确.D、正确.∵=,∴ad=bc;故选:B.4.解:A、2×8≠4×6,故选项错误;B、×≠×,故选项错误;C、×2≠×,故选项错误;D、2×=×2,故选项正确.故选:D.5.解:∵点C数线段AB的黄金分割点,∴AC=AB,①正确;AC=AB,②错误;BC:AC=AC:AB,③正确;AC≈0.618AB,④正确.故选:C.6.解:矩形不相似,因为其对应角的度数一定相同,但对应边的比值不一定相等,不符合相似的条件;锐角三角形、直角三角形的原图与外框相似,因为其三个角均相等,三条边均对应成比例,符合相似的条件;正五边形相似,因为它们的边长都对应成比例、对应角都相等,符合相似的条件.故选:C.7.解:A、当∠ABP=∠C时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;B、当∠APB=∠ABC时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;C、当AB2=AP•AC即=时,又∵∠A=∠A,∴△ABP∽△ACB,故此选项错误;D、无法得到△ABP∽△ACB,故此选项正确.故选:D.8.解:由正方形的性质可知,∠ACB=180°﹣45°=135°,A、C、D图形中的钝角都不等于135°,由勾股定理得,BC=,AC=2,对应的图形B中的边长分别为1和,∵=,∴图B中的三角形(阴影部分)与△ABC相似,故选:B.9.解:根据射影定理得:AB2=BD×BC,∴BC==.故选:D.10.解:如图所示:位似中心F的坐标为:(2,2),k的值为:=.故选:B.11.解:由相似三角形对应边成比例可知,只能将30cm长的作为一边,将50cm长的截成两段,设从50cm的钢筋上截下的两段分别长xcm,ycm,当30cm长的边对应20cm长的边时,,x=75(cm),x>50(cm),不成立;当30cm长的边对应50cm长的边时,,x=12(cm),y=36(cm),x+y=48cm <50cm,成立;当30cm长的边对应60cm长的边时,,x=10(cm),y=25(cm),x+y=35cm <50cm,成立.故选:B.12.解:∵四边形ABCD是平行四边形,∴CD∥AB,CD=AB,∴△DEC∽△AEF,∴==,∵E为AD的中点,∴CD=AF,FE=EC,∴FA:FB=1:2,A说法正确,不符合题意;∵FE=EC,FA=AB,∴AE:BC=1:2,B说法正确,不符合题意;∵∠FBC不一定是直角,∴BE:CF不一定等于1:2,C说法错误,符合题意;∵AE∥BC,AE=BC,∴S△ABE:S△FBC=1:4,D说法正确,不符合题意;故选:C.13.解:∵DE∥FG∥BC,DB=4FB,∴.故选:B.14.解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,,∴△PAB∽△NCA,∴=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,∴=,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.15.解:如图1,在Rt△ABC中,AB=5,BC=10,∴AC=5,连接BE,∴∠BAC=∠EDB,∵AD∥BC,∠ABC=90°,∴∠BAD=90°∴BD是圆的直径,∴∠BED=90°=∠CBA,∴△ABC∽△DEB,∴,∴,∴DB=3,在Rt△ABD中,AD==2,故选:D.16.解:∵GE∥BD,GF∥AC,∴△AEG∽△ABD,△DFG∽△DCA,∴=,=,∴==.故选:D.17.解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.18.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.19.解:由已知:AC=AB,AD=AE ∴∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD所以①正确∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴∴MP•MD=MA•ME所以②正确由②MP•MD=MA•ME∠PMA=∠DME∴△PMA∽△EMD∴∠APD=∠AED=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB∴2CB2=CP•CM所以③正确故选:A.二.填空题(共8小题)20.解:设C′作C′D′⊥x轴于D,∵△ABC与△A′B′C′是以坐标原点O为位似中心的位似图形,且=,点A(﹣1,0),点C(,1),∴A′(﹣2,0),C′(1,2),∴OA′=2,DC′=2,OD=1,∴A′D=1+2=3,∴A′C′==,故答案为:.21.解:连接GE,∵点E是CD的中点,∴EC=DE,∵将△BCE沿BE折叠后得到△BEF、且点F在矩形ABCD的内部,∴EF=DE,∠BFE=90°,在Rt△EDG和Rt△EFG中,∴Rt△EDG≌Rt△EFG(HL),∴FG=DG,∵=,∴设DG=FG=a,则AG=7a,故AD=BC=8a,则BG=BF+FG=9a,∴AB==4a,故==.故答案为:.22.解:作AH⊥BC于H,交GF于M,如图,∵△ABC的面积是6,∴BC•AH=6,∴AH==3,设正方形DEFG的边长为x,则GF=x,MH=x,AM=3﹣x,∵GF∥BC,∴△AGF∽△ABC,∴=,即=,解得x=,即正方形DEFG的边长为.故答案为.23.解:∵3AE=2EB,∴可设AE=2a、BE=3a,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵S△AEF=1,∴S△ABC=,∵四边形ABCD是平行四边形,∴S△ADC=S△ABC=,∵EF∥BC,∴===,∴==,∴S△ADF=S△ADC=×=,故答案为:.24.解:如图,作AQ⊥BC于点Q,交DG于点P,∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,设GF=PQ=x,则AP=4﹣x,由DG∥BC知△ADG∽△ABC,∴=,即=,则EF=DG=(4﹣x),∴EG====,∴当x=时,EG取得最小值,最小值为,故答案为:.25.解:如图连接OE.∵半圆O与四边形ABCD的边AD、AB、BC都相切,切点分别为D、E、C,∴OE⊥AB,AD⊥CD,BC⊥CD,∠OAD=∠OAE,∠OBC=∠OBE,∴AD∥BC,∴∠DAB+∠ABC=180°,∴∠OAB+∠OBA=90°,∴∠AOB=90°,∵∠OAE+∠AOE=90°,∠AOE+∠BOE=90°,∴∠EAO=∠EOB,∵∠AEO=∠OEB=90°,∴△AEO∽△OEB,∴=,∴AE•BE=OE2=1,故答案为1.26.解:∵四边形ABCD为矩形,∴∠BAD=90°,∴BD==10,当PD=DA=8时,BP=BD﹣PD=2,∵△PBE∽△DBC,∴=,即=,解得,PE=,当P′D=P′A时,点P′为BD的中点,∴P′E′=CD=3,故答案为:或3.27.解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.三.解答题(共8小题)28.解:如图所示:△ABC∽△A′B′C′,相似比为:1:;△ABC∽△DEF,相似比为:1:2.29.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求.30.(1)证明:∵AD为圆O的直径,∴∠AMD=90°,∵∠BMC=180°,∴∠2+∠3=90°,∵∠ABM=∠MCD=90°,∴∠2+∠1=90°,∴∠1=∠3,则△ABM∽△MCD;(2)解:连接OM,∵BC为圆O的切线,∴OM⊥BC,∵AB⊥BC,∴sin∠E==,即=,∵AD=8,AB=5,∴=,即OE=16,根据勾股定理得:ME===4.31.(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:作OH⊥PA于H.∵OA=OP,OH⊥P A,∴AH=PH=3,∵OA∥PB,∴∠OAH=∠APB,∵∠AHO=∠ABP=90°,∴△AOH∽△PAB,∴=,∴=,∴PB=.32.解:(1)连接OC,∵PC为⊙O的切线,∴∠OCP=90°,即∠2+∠P=90°,∵OA=OC,∴∠CAO=∠1,∵AC=CP,∴∠P=∠CAO,又∵∠2是△AOC的一个外角,∴∠2=2∠CAO=2∠P,∴2∠P+∠P=90°,∴∠P=30°;(2)连接AD,∵D为的中点,∴∠ACD=∠DAE,∴△ACD∽△EAD,∴=,即AD2=DC•DE,∵DC•DE=20,∴AD=2,∵=,∴AD=BD,∵AB是⊙O的直径,∴Rt△ADB为等腰直角三角形,∴AB=2,∴OA=AB=,∴S⊙O=π•OA2=10π=31.4.33.(1)证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90°.∵AB是⊙O的直径,∴∠ADB=90°,∴∠OBD+∠CAD=90°,∴∠CAD=∠BDC.(2)解:∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴=.∵BD=AD,∴=,∴=,又∵AC=3,∴CD=2.34.解:(1)如图所示,△A'B′C′即为所求;(2)已知,如图,△ABC∽△A'B'C',===k,D是AB的中点,D'是A'B'的中点,求证:=k.证明:∵D是AB的中点,D'是A'B'的中点,∴AD=AB,A'D'=A'B',∴==,∵△ABC∽△A'B'C',∴=,∠A'=∠A,∵=,∠A'=∠A,∴△A'C'D'∽△ACD,∴==k.35.解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.。
九年级数学下第6章图形的相似单元测试题(苏科版带答案)
九年级数学下第6章图形的相似单元测试题(苏科版带答案)第 6 章《图形的相似》单元测试题一.选择题(共10小题) 1.已知(a≠0,b≠0),则下列变形正确的有()个.(1)(2)2a=3b (3)(4)3a=2b A.1 B.2 C.3 D.4 2.如图,在△ABC中,点D、E分别在边BA、CA的延长线上, =2,那么下列条件中能判断DE∥BC 的是()A. B. C. D. 3.如图所示,若△ABC∽△DEF,则∠E的度数为()A.28° B.32° C.42° D.52° 4.如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a 5.如图,已知∠ACP=∠ABC,AC=4,AP=2,则AB的长为()A.8 B.3 C.16 D.4 6.两个相似六边形的相似比为3:5,它们周长的差是24cm,那么较大的六边形周长为() A.40cm B.50cm C.60cm D.70cm 7.如图,F是菱形ABCD的边CD上一点,射线AF 交BC延长线于点E,则下列比例式中正确的是()A. = B. = C. = D. = 8.如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F,若AB=2,BC=4,DF=9,则EF的长是()A.3 B.6 C.7 D.8 9.如图,在正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,连接AF交CG于M点,则FM=()A. B. C. D. 10.如图,在△ABC中AC=BC,∠ACB=90°,以BC 为直径作⊙O,连接OA,交⊙O于点D,过D点作⊙O的切线交AC于点E,连接B、D并延长交AC于点F.则下列结论错误的是()A.△ADE∽△ACO B.△AOC∽△BFC C.△DEF∽△DOC D.CD2=DF•DB 二.填空题(共8小题) 11.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为.12.如图,在△ABC中,AD平分∠BAC,与BC边的交点为D,且DC=BC,DE∥AC,与AB边的交点为E,若DE=4,则BE的长为.13.如图,Q为正方形ABCD的CD边上一点,CQ=1,DQ=2,P为BC上一点,若PQ⊥AQ,则CP= .14.如图,在△A BC中,D,E两点分别在AB,AC边上,DE∥BC,如果=,AC=10,那么EC= .15.已知点P、Q为线段AB的黄金分割点,且AB=2,则PQ= .(结果保留根号) 16.如图,点E为矩形ABCD边BC上一点,点F在边CD的延长线上,EF与AC交于点O,若CE:EB=1:2,BC:AB=3:4,AE⊥AF,则CO:OA= .17.如图,D是等边△ABC的边BC上一动点,ED∥AC交AB于点E.DF⊥AC 交AC于点F,DF=,若△DCF与E、F、D三点组成的三角形相似,则BD的长等于.18.如图,E是正方形ABCD边AB的中点,连接CE,过点B作BH⊥CE 于F,交AC于G,交AD于H,下列说法:①=;②点F是GB的中点;③AG=AB;④S△AHG=S△ABC.其中正确的结论的序号是. [来源三.解答题(共7小题) 19.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:△AFD∽△CFE.20.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.21.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C、A 共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.22.如图,四边形ABCD、CDEF、EFGH都是正方形.(1)△ACF与△ACG相似吗?说说你的理由.(2)求∠1+∠2的度数.23.如图,G是边长为4的正方形ABCD的边BC上的一点,矩形DEFG的边EF过A,GD=5.(1)指出图中所有的相似三角形;(2)求FG的长.24.在锐角△ABC中,正方形EFGH的两个顶点E、F在BC上,另两个顶点G、H分别在AC、AB上,BC=15cm,BC边上的高是10cm,求正方形的面积.25.如图,正方形ABCD的边长为10,点E、F分别在边BC、CD上,且∠EAF=45°,AH⊥EF于点H,AH=10,连接BD,分别交AE、AH、AF 于点P、G、Q.(1)求△CEF的周长;(2)若E是BC的中点,求证:CF=2DF;(3)连接QE,求证:AQ=EQ.参考答案与试题解析一.选择题(共10小题) 1.【解答】解:由(a≠0,b≠0)得,3a=2b,(1)、由等式性质可得:3a=2b,正确;(2)、由等式性质可得2a=3b,错误;(3)、由等式性质可得:3a=2b,正确;(4)、由等式性质可得:3a=2b,正确;故选:C. 2.【解答】解:∵当=时,DE∥BC,∴选项D正确,故选:D. 3.【解答】解:∵∠A=110°,∠C=28°,∴∠B=42°,∵△ABC∽△DEF,∴∠B=∠E.∴∠E=42°.故选:C. 4.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE,∴△ADE∽△ABC,∴=()2=4,∴S△ABC=4a,∴S△BDEC=S△ABC�S△ADE=3a.故选:C. 5.【解答】解:∵∠ACP=∠ABC,∠A=∠A,∴△ACP∽△ABC,∴=,∵AC=4,AP=2,∴=,∴AB=8,故选:A. 6.【解答】解:由题意,可设较小多边形的周长为3x,则较大多边形的周长为5x,则有:5x�3x=24,解得x=12,∴5x=60,故选:C. 7.【解答】解:∵四边形ABCD为菱形,∴AD∥CE,AB∥FC,AB=BC=CD=AD,∴△ADF∽△ECF,△ABE∽△FCE,∴△ADF∽△EBA,∴==,故A错误; =,故B错误; =,故C错误; =,故D正确.故选:D. 8.【解答】解:∵AD∥BE∥CF,∴=,∵AB=2,BC=4,DF=9,∴=,解得EF=6.故选:B. 9.【解答】解:∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,∴DG=CG�CD=2,AD∥GF,则△ADM∽△FGM,∴=,即=,解得:GM=,∴FM===,故选:C. 10.【解答】解:A、∵DE是⊙O的切线,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠AC B,∵∠DAE=∠CAO,∴△ADE∽△ACO;故本选项正确; B、假设△AOC∽△BFC,则有∠OAC=∠FBC,∵∠ACB=90°,以BC为直径作⊙O,∴AC是⊙O的切线,∴∠ACD=∠FBC,∵∠ODC=∠OAC+∠ACD=2∠OAC,∠COD=2∠FBC(三角形的一个外角等于与它不相邻的两个内角的和),∴∠ODC=∠COD,∴OC=CD,又∵OD=OC,∴OC=CD=OD,即△OCD是等边三角形,∠AOC=60°,∴AC=OC①,而在△ABC中,AC=BC,BC=2OC,∴AC=2OC②,∴假设与题目条件相矛盾,故假设不成立,所以△AOC与△BFC不相似;故本选项错误; C、∵∠ACB=90°,∴∠CBD+∠BFC=90°,∴BC是⊙O的直径,∴∠CBD+∠BCD=90°,∴∠BCD=∠BFC,∵DE是⊙O的切线,AC是⊙O的切线,∴∠CDE=∠CED=∠CBD,又∵∠AED=∠CDE+∠CED=2∠CBD,∠COD=2∠CBD,∴∠AED=∠COD,在△DEF∽△DOC中,,∴△DEF∽△DOC,故本选项正确; D、∵BC为⊙O的直径,∴∠CDB=90°,∴CD⊥BF,∵∠ACB=90°,∴CD2=DF•DB,故本选项正确.故选:B.二.填空题(共8小题) 11.【解答】解:∵DE∥BC,∴=,∵AD=1,BD=2,∴AB=3,∴=,故答案为:. 12.【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠EDA,∴∠EAD=∠EDA,∴EA=ED=4,∵DE∥AC,∴=,而DC=BC,∴BE=2AE=8.故答案为8. 13.【解答】解:∵PQ⊥AQ,∴∠DQA+∠CQP=180°�90°=90°;又∵四边形ABCD是正方形,∴∠DAQ+∠DQA=90°,∴∠CQP=∠DAQ,∴ADQ∽△QCP,∴=;∵CQ=1,DQ=2,∴AD=DC=3;∴CP=;故答案:. 14.【解答】解:∵DE∥BC,∴==,∵AC=10,∴EC=×10=4,故答案为4. 15.【解答】解:根据黄金分割点的概念,可知AP=BQ=×2=(�1).则PQ=AP+BQ�AB=(�1)×2�2=(2�4).故本题答案为:2�4.16.【解答】解:由BC:AB=3:4,设BC=3a,AB=4a,则CE=a,BE=2a,∵四边形ABCD是矩形,∴AB=CD=4a,BC=AD=3a,∠B=∠BCD=∠DAB=∠ADF=90°,∵EA⊥AF,∴∠BAD=∠EAF=90°,∴∠BAE=∠DAF,∵∠B=∠ADF=90°,∴△BAE∽△DAF,∴==,∴DF=a,在Rt△ECF中,EF==,在Rt△ABC中,AC==5a,在Rt△ADF中,AF==a,∵∠ECF+∠EAF=180°,∴A、E、C、F四点共圆,∴∠ECO=∠AFO,∵∠EOC=∠AOF,∴△EOC∽△AOF,∴===,设EO=x则AO=x,设OC=y,则OF=y,则有,解得,∴OC=a,OA=a,∴CO:OA=a: a=11:30.故答案为:11:30;17.【解答】解:∵ED∥AC交AB于点E,△ABC是等边三角形,∴△BDE 是等边三角形,∠FDC=30°,当△DCF∽△EFD,∴∠FED=∠FDC=30° ∴DE===3,∴BD=DE=3;当△DCF∽△FED,∴∠EFD=∠FDC=30°,∴BD=DE=DF•tan∠A=×=1.故答案为:1或3.18.【解答】解:①∵四边形ABCD是正方形,∴AB=BC,∠HAB=∠ABC=90°,∵CE⊥BH,∴∠BFC=∠BCF+∠CBF=∠CBF+∠ABH=90°,∴∠BCF=∠ABH,∴△ABH≌△BCE,∴AH=BE,∵E是正方形ABCD边AB的中点,∴BE=AB,∴AH=AD=BC,∴=,∵AH∥BC,∴=,∴;故正确;②tan∠ABH=tan∠BCF==,设BF=x,CF=2x,则BC=x,∴AH=x,∴BH==x,∵=,∴HG==,∴FG=BH�GH�BF=��x=≠BF,故②不正确;③∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴AC=AB,∵,∴,∴AG=AC=AB,故③正确;④∵=,∴,,∴=,∴,故④正确;本题正确的结论是:①③④;故答案为:①③④.三.解答题(共7小题) 19.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE. 20.【解答】解:(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,�2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为:(1)(2,�2);(2)(1,0)21.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,∴=,∴AB=17(m),经检验:AB=17是分式方程的解,答:河宽AB的长为17米. 22.【解答】解:(1)相似.理由:设正方形的边长为a, AC==a,∵==, ==,∴=,∵∠ACF=∠ACF,∴△ACF∽△GCA;(2)∵△ACF∽△GCA,∴∠1=∠CAF,∵∠CAF+∠2=45°,∴∠1+∠2=45°. 23.【解答】解:(1)△AFH,△DCG,△DEA,△GBH 均是相似三角形;(2)由∠E=∠C=90°,∠EDA与∠CDG均为∠ADG的余角,得△DEA∽△DCG ∴,ED=FG,∴,由已知GD=5,AD=CD=4,∴,即FG=. 24.【解答】解:作AD⊥BC,交BC于点D,交GH于点M,∵四边形EFGH是正方形,∴EH=MD=HG,设正方形的边长为x,则AM=10�x,且AM⊥GH,∵GH∥BC,∴△AHG∽△ABC,∴=,即=,解得x=6,∴S正方形HEFG=36(cm2).25.【解答】解:(1)在Rt△ABE和Rt△AHE中,∵∠ABE=∠AHE=90°,AB=AH=10,AE=AE,∴△ABE≌△AHE,∴BE=HE,同理,DF=FH,∴△ECF 的周长=CE+CF+EF=CE=CE+BE+CF+FD=CB+CD=20.(2)∵E是BC中点,∴BE=EC=EH=5,设DF=FH=x,则CF=10�x,在Rt△ECF中,∵∠C=90°,∴EF2=EC2+CF2,∴52+(10�x)2=(5+x)2,解得x=,即DF=,则CF=10�=,∴CF=2DF.(3)在△BPE和△APQ中,∠EBP=∠QAP=45°,∠BPE=∠APQ,∴△BPE∽△APQ,∴=,即=,∵∠APB=∠QPE,∴△APB∽△QPE,∴∠QEP=∠ABP=45°,∵∠EAF=45°,∴∠QEA=∠QAE=45°,∴AQ=EQ.。
九年级数学下册第6章图形的相似6.4探索三角形相似的条件6.4.4利用三边证相似同步练习2新版苏科版
[6.4 第4课时利用三边证相似]一、选择题1.△ABC的三边长分别为2,6,2,△A1B1C1的两边长为1,3,要使△ABC∽△A1B1C1,那么△A1B1C1的第三边长为( )A. 2B.22C.62D.332.在△ABC与△A′B′C′中,有下列条件:①ABA′B′=BCB′C′;②BCB′C′=ACA′C′;③∠B=∠B′;④∠C=∠C′.如果从中任取两个条件组成一组,那么能判定△ABC∽△A′B′C′的共有( )A.1组 B.2组 C.3组 D.4组3.如图K-18-1,在边长为1的格点图形中,与△ABC相似的是链接听课例2归纳总结( )图K-18-1图K-18-24.如图K-18-3所示,若A,B,C,P,Q,甲、乙、丙、丁都是方格纸上的格点,为使△ABC ∽△PQR,则点R应是甲、乙、丙、丁4点中的( )图K-18-3A.甲B.乙C.丙D.丁二、填空题5.若一个三角形的三边长之比为3∶5∶7,与它相似的三角形的最长边的边长为21 cm,则其余两边长的和为________cm.6.如图K-18-4,在△ABC和△DEF中,已知ABDE=BCEF,再添加一个条件:________________________________________________________________________,使得△ABC∽△DEF.图K-18-47.正方形ABCD中,E是CD的中点,点F在BC边上,BF=3CF.则下列结论:(1)△ABF∽△AEF;(2)△ECF ∽△ADE ;(3)△AEF ∽△ADE ;(4)△ABF ∽△ADE ;(5)△ECF ∽△AEF .其中正确的有________(填写序号).8.如图K -18-5,在7×12的正方形网格中有一只可爱的小狐狸,观察画面中由黑色阴影组成的五个三角形,则相似三角形有________对.链接听课例2归纳总结图K -18-5三、解答题9.根据下列条件,判断△ABC 与△A ′B ′C ′是否相似,并说明理由.(1)∠B =30°,AB =3 cm ,AC =4 cm ,∠B ′=30°,A ′B ′=6 cm ,A ′C ′=8 cm ;(2)AB =4 cm ,BC =6 cm ,AC =5 cm ,A ′B ′=12 cm ,B ′C ′=18 cm ,A ′C ′=15 cm.链接听课例1归纳总结10.如图K -18-6所示,在每个小正方形的边长为1个单位的网格中,△ABC ,△DEF 的顶点都在格点上,那么△ABC 与△DEF 相似吗?试说明理由.链接听课例1归纳总结图K -18-611.已知AD 和A 1D 1分别是△ABC 和△A 1B 1C 1的中线,且AB A 1B 1=AC A 1C 1=AD A 1D 1. 试判断△ABC 与△A 1B 1C 1是否相似,并说明你的理由.12.如图K -18-7,在△ABC 中,AD 为边BC 上的高,E ,F 分别为AB ,AC 的中点,△DEF 与△ABC 相似吗?说明你的理由. 图K -18-713.如图K -18-8,在△ABC 和△ADE 中,AB AD =BC DE =AC AE,点B ,D ,E 在一条直线上. 求证:△ABD ∽△ACE.图K -18-8类比思想学习《图形的相似》后,我们可以借助探索两个直角三角形全等的条件所获得的经验,继续探索两个直角三角形相似的条件.“满足斜边和一条直角边对应相等的两个直角三角形全等”,类似地,你可以得到:“满足____________________________的两个直角三角形相似”.请结合下列所给图形,写出已知、求证,并完成说理过程.图K -18-9详解详析 [课堂达标]1.[解析] A 设第三边长为x ,分类讨论:(1)21=63=2x ,则x =2;(2)2x =21≠63,故不成立;(3)21≠23=6x,故不成立. 2.[解析] D 根据相似三角形的判定方法,知①②,②④,③④,①③满足条件,故选D .3.[解析] A 根据勾股定理求出△ABC 的三边,并求出三边之比,然后根据网格结构利用勾股定理求出三角形的三边之比,再根据三边对应成比例,两三角形相似选择答案.已知给出的三角形的各边分别为2,2,10,所以△ABC 的三边之比为2∶2∶10=1∶2∶ 5.A 项,三角形的三边分别为1,2,5,三边之比为1∶2∶5,故A 选项正确;B 项,三角形的三边分别为2,5,3,三边之比为2∶5∶3,故B 选项错误;C 项,三角形的三边分别为1,5,2 2,三边之比为1∶5∶2 2,故C 选项错误;D 项,三角形的三边分别为2,5,13,三边之比为2∶5∶13,故D 选项错误.故选A .4.[解析] C 记方格纸上每一小格的边长为1,记甲、乙、丙、丁4点为X ,Y ,Z ,W.则AB =2,BC =AC =10,PQ =4.若△ABC ∽△PQR ,则PR =2 10.而PX ,PY ,PZ ,PW 中只有PZ 的长为2 10,所以R 应是丙点.5.[答案] 24[解析] 设另两边长分别为x cm ,y cm (x<y).则x 3=y 5=217,所以x =9,y =15,所以x +y =24. 6.答案不唯一,如∠B =∠E 或AB DE =AC DF7.(2)(3)(5)8.[答案] 2 [解析] 如图,设一个小正方形的边长为1,则计算各个小三角形的各边长如下:△ABC 的各边分别为2,2,2;△CDF 的各边分别为2,5,3;△EFG 的各边分别为5,5,10;△HMN 的各边分别为1,2,5; △HPQ 的各边分别为2,2 2,2 5; 可以得出△ABC 与△EFG ,△HMN 与△HPQ 的各边对应成比例,所以这两组三角形相似.故答案为2. 9.解:(1)不一定相似.理由:∵AB A′B′=36=12,AC A′C′=48=12, ∴AB A′B′=AC A′C′, 但∠B 不是边AB ,AC 两边的夹角,∠B ′不是边A′B′,A ′C ′的夹角,不满足三角形相似的条件,∴△ABC 与△A′B′C′不一定相似.(2)相似.理由:∵AB A′B′=412=13,BC B′C′=618=13,AC A′C′=515=13,∴AB A′B′=BC B′C′=AC A′C′, ∴△ABC ∽△A ′B ′C ′.10.解:不相似.理由:在△ABC 中,AC =4,由勾股定理,求得BC =AB =20=2 5.在△DEF 中,由勾股定理,得DF =2,DE =EF =5,∴DE AB =EF BC =52 5=12, 而DF AC =24≠12,∴DE AB =EF BC ≠DF AC,∴△ABC 与△DEF 不相似.11.解:相似.理由:如图,等倍延长中线AD 和A 1D 1至M 和M 1,连接BM 和B 1M 1,则AM =2AD ,A 1M 1=2A 1D 1.易证△ADC ≌△MDB ,△A 1D 1C 1≌△M 1D 1B 1,则BM =AC ,B 1M 1=A 1C 1.∵AB A 1B 1=AC A 1C 1=AD A 1D 1, ∴AB A 1B 1=BM B 1M 1=AM A 1M 1, ∴△ABM ∽△A 1B 1M 1,∴∠BAM =∠B 1A 1M 1,∠M =∠M 1.由△ADC ≌△MDB ,得∠DAC =∠M ,由△A 1D 1C 1≌△M 1D 1B 1,得∠D 1A 1C 1=∠M 1,∴∠DAC =∠D 1A 1C 1,∴∠BAC =∠B 1A 1C 1.又∵AB A 1B 1=AC A 1C 1, ∴△ABC ∽△A 1B 1C 1.12.[解析] 根据三角形的中位线性质可得EF =12BC ,再根据直角三角形斜边上的中线等于斜边的一半可得DE =12AB ,DF =12AC ,所以有EF BC =DE AB =DF AC =12,可证得△DEF 与△ABC 相似. 解:△DEF ∽△ABC.理由:∵E ,F 分别为AB ,AC 的中点,∴EF =12BC. ∵AD 为边BC 上的高,E ,F 分别为AB ,AC 的中点,∴DE =12AB ,DF =12AC , ∴EF BC =DE AB =DF AC =12,∴△DEF ∽△ABC. 13.[解析] 在△ABC 和△ADE 中,由AB AD =BC DE =AC AE,可证得△ABC ∽△ADE ,即可证得∠BAD =∠CAE ,又由AB AD =AC AE,即可证得△ABD ∽△ACE. 证明:∵在△ABC 和△ADE 中,AB AD =BC DE =AC AE,∴△ABC ∽△ADE , ∴∠BAC =∠DAE ,∴∠BAD =∠CAE.∵AB AD =AC AE ,∴AB AC =AD AE,∴△ABD ∽△ACE. [素养提升]解: 斜边和一条直角边对应成比例已知:Rt △ABC 和Rt △A ′B ′C ′,且BC B′C′=AB A′B′. 求证:Rt △ABC ∽Rt △A ′B ′C ′.证明:设BC B′C′=AB A′B′=k(k >0), 则BC =k·B′C ′,AB =k·A′B′.∵AC =AB 2-BC 2=(k·A′B′)2-(k·B′C′)2=k A′B′2-B′C′2=k·A′C′,∴AC A′C′=k ,从而BC B′C′=AB A′B′=AC A′C′=k , ∴Rt △ABC ∽Rt △A ′B ′C ′.。
苏科版九年级下6.4探索三角形相似的条件专题练习含答案
第六章《图形的相似》(探索三角形相似的条件)一.选择题1.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.2.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个3.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有()A.1个B.2个C.3个D.4个4.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.5.如图所示,在▱ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有()A.3对B.4对C.5对D.6对6.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或二.填空题(共6小题)7.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)8.如图,平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P在折线AOB 上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是.9.如图,在▱ABCD中,F是BC上的点,直线DF与AB的延长线相交于点E,与AC相交于点M,BP ∥DF,且与AD相交于点P,与AC相交于点N,则图中的相似三角形有对.10.将两块全等的三角板如图放置,点O为AB中点,AB=A′B′=10,BC=B′C′=6,现将三角板A′B′C′绕点O旋转,B′C′、A′B′与边AC分别交于点M、N,当CM=时,△OMN与△BCO相似.11.如图,在△ABC中,D、E分别是AB、AC边上的点(DE不平行于BC),当时,△AED与△ABC相似.12.在边长为2cm的正方形ABCD中,动点E、F分别从D、C两点同时出发,都以1cm/s的速度在射线DC、CB上移动.连接AE和DF交于点P,点Q为AD的中点.若以A、P、Q为顶点的三角形与以P、D、C为顶点的三角形相似,则运动时间t为秒.三.解答题(共16小题)13.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.14.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.15.如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.16.在矩形ABCD中,点E是AD的中点,BE垂直AC交AC于点F,求证:△DEF∽△EBD.17.如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.18.将两块完全相同的等腰直角三角形摆放成如图的样子,假设图形中的所有点、线都在同一平面内,图中有相似(不包括全等)三角形吗?如果有,请写出其中的一对,并给予说明其为什么相似?19.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.20.如图,在△ABC中,AD、BE分别是BC、AC边上的高.求证:△DCE∽△ACB.21.如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.22.如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q 从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?23.如图,四边形ABCD和ACED都是平行四边形,B,C,E在一条直线上,点R为DE的中点,BR分别交AC,CD于点P,Q.(1)则图中相似三角形(相似比为1除外)共有对;(2)求线段BP:PQ:QR,并说明理由.24.如图,在正方形ABCD中,E为BC上任意一点(与B、C不重合)∠AEF=90°.观察图形:(1)△ABE与△ECF是否相似?并证明你的结论.(2)若E为BC的中点,连结AF,图中有哪些相似三角形?并说明理由.25.如图,在Rt△ACB中,AC=8m,BC=6m,点P、Q同时由C、B两点出发分别沿CA、BC向点A、C 匀速移动,它们的速度分别是2米/秒、1米/秒,问几秒后△PCQ与△ACB相似?26.如图,巳知AB丄BD,CD丄BD.(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在.请说明理由;(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为頂点的三角形相似?并求BP的长.27.如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发,运动时间为t(s).(1)当t为何值时,△APQ与△AOB相似?(2)当t为何值时,△APQ的面积为8cm2?28.如图①,△ABC中,∠ACB=90°,∠ABC=α,将△ABC绕点A顺时针旋转得到△AB′C′,设旋转的角度是β.(1)如图②,当β=°(用含α的代数式表示)时,点B′恰好落在CA的延长线上;(2)如图③,连接BB′、CC′,CC′的延长线交斜边AB于点E,交BB′于点F.请写出图中两对相似三角形,(不含全等三角形),并选一对证明.参考答案与解析一.选择题1.(2016•河北)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.【分析】根据相似三角形的判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选C.【点评】本题考查的是相似三角形的判定,熟知相似三角形的判定定理是解答此题的关键.2.(2016•盐城)如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个【分析】直接利用平行四边形的性质得出AD∥BC,AB∥DC,再结合相似三角形的判定方法得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF相似的三角形有2个.故选:C.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,正确掌握相似三角形的判定方法是解题关键.3.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有()A.1个B.2个C.3个D.4个【分析】设AP=x,则有PB=AB﹣AP=7﹣x,分两种情况考虑:三角形PDA与三角形CPB相似;三角形PDA与三角形PCB相似,分别求出x的值,即可确定出P的个数.【解答】解:设AP=x,则有PB=AB﹣AP=7﹣x,当△PDA∽△CPB时,=,即=,解得:x=1或x=6,当△PDA∽△PCB时,=,即=,解得:x=,则这样的点P共有3个,故选C.【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.4.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.【分析】设小正方形的边长为1,根据已知可求出△ABC三边的长,同理可求出阴影部分的各边长,从而根据相似三角形的三边对应成比例即可得到答案.【解答】解:∵小正方形的边长均为1∴△ABC三边分别为2,,同理:A中各边的长分别为:,3,;B中各边长分别为:,1,;C中各边长分别为:1、2,;D中各边长分别为:2,,;∵只有B项中的三边与已知三角形的三边对应成比例,且相似比为故选B.【点评】此题主要考查学生对相似三角形的判定方法的理解及运用.5.如图所示,在▱ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有()A.3对B.4对C.5对D.6对【分析】根据相似三角形的判定来找出共有多少对相似的三角形.【解答】解:AD∥BC,可知△AGE∽△CGB,△DFE∽△CFB,△ABC∽△CDA,AB∥CD,可知△ABG∽△CFG,△ABE∽△CFB,△EDF∽△EAB.共有6对,故选D.【点评】本题主要考查对于相似三角形的判定的掌握以及能够不遗漏的找出全部的相似三角形.6.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.A.B.C.或D.或【分析】根据AE=EB,△ABE中,AB=2BE,所以在△MNC中,分CM与AB和BE是对应边两种情况利用相似三角形对应边成比例求出CM与CN的关系,然后利用勾股定理列式计算即可.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∵BE=CE,∴AB=2BE,又∵△ABE与以D、M、N为顶点的三角形相似,∴①DM与AB是对应边时,DM=2DN∴DM2+DN2=MN2=1∴DM2+DM2=1,解得DM=;②DM与BE是对应边时,DM=DN,∴DM2+DN2=MN2=1,即DM2+4DM2=1,解得DM=.∴DM为或时,△ABE与以D、M、N为顶点的三角形相似.故选C.【点评】本题考查相似三角形的判定与性质、正方形的性质.解决本题特别要考虑到①DM与AB是对应边时,②当DM与BE是对应边时这两种情况.二.填空题7.(2016•娄底)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是AB ∥DE.(只需写一个条件,不添加辅助线和字母)【分析】根据有两组角对应相等的两个三角形相似进行添加条件.【解答】解:∵∠A=∠D,∴当∠B=∠DEF时,△ABC∽△DEF,∵AB∥DE时,∠B=∠DEF,∴添加AB∥DE时,使△ABC∽△DEF.故答案为AB∥DE.【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.8.如图,平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P在折线AOB 上,直线CP截△AOB,所得的三角形与△AOB相似,那么点P的坐标是(0,),(2,0),(,0).【分析】分类讨论:当PC∥OA时,△BPC∽△BOA,易得P点坐标为(0,);当PC∥OB时,△ACP ∽△ABO,易得P点坐标为(2,0);当PC⊥AB时,如图,由于∠CAP=∠OAB,则Rt△APC∽Rt△ABC,得到=,再计算出AB、AC,则可利用比例式计算出AP,于是可得到OP的长,从而得到P点坐标.【解答】解:当PC∥OA时,△BPC∽△BOA,由点C是AB的中点,所以P为OB的中点,此时P点坐标为(0,);当PC∥OB时,△ACP∽△ABO,由点C是AB的中点,所以P为OA的中点,此时P点坐标为(2,0);当PC⊥AB时,如图,∵∠CAP=∠OAB,∴Rt△APC∽Rt△ABC,∴=,∵点A(4,0)和点B(0,3),∴AB==5,∵点C是AB的中点,∴AC=,∴=,∴AP=,∴OP=OA﹣AP=4﹣=,此时P点坐标为(,0),综上所述,满足条件的P点坐标为(0,),(2,0),(,0).故答案为(0,),(2,0),(,0).【点评】本题考查了相似三角形的判定:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;有两组角对应相等的两个三角形相似.也考查了坐标与图形性质.注意分类讨论思想解决此题.9.如图,在▱ABCD中,F是BC上的点,直线DF与AB的延长线相交于点E,与AC相交于点M,BP ∥DF,且与AD相交于点P,与AC相交于点N,则图中的相似三角形有16对.【分析】根据相似三角形的判定,判断出△BFE∽△ADE,△BFE∽△APB,△BFE∽△CFD,从而得到△ADE∽△APB,△ADE∽△CFD,△APB∽△CFD,类似可得与△CFM相似的有△CNB,△ANP,△AMD,共6对;与△CMD相似的有△ANB,△AME共3对;与△ABC相似的有△CDA,共1对.【解答】解:∵AD∥BF,∴△BFE∽△ADE,∵AD∥BC,∴∠DAB=∠CBE,∵DE∥BP,∴∠E=∠PBA,∴△BFE∽△APB,∵AE∥DC,∴△BFE∽△CFD,∴△ADE∽△APB,∴△ADE∽△CFD,∴△APB∽△CFD,故与△BFE相似的有△ADE,△APB,△CFD,共6对;类似的,与△CFM相似的有△CNB,△ANP,△AMD,共6对;与△CMD相似的有△ANB,△AME共3对;与△ABC相似的有△CDA,共1对.故答案为16.【点评】本题考查了相似三角形的判定和平行四边形的性质,找到平行线进而判断出三角形相似是解题的关键.10.将两块全等的三角板如图放置,点O为AB中点,AB=A′B′=10,BC=B′C′=6,现将三角板A′B′C′绕点O旋转,B′C′、A′B′与边AC分别交于点M、N,当CM=或时,△OMN与△BCO相似.【分析】由直角三角形斜边上的中线性质得出OC=AB=OA=OB=5,由勾股定理求出AC=8,由全等三角形的性质得出∠B=∠MON.△OMN与△BCO相似,分两种情况:①当OM=MN时,作OD⊥AC于D,CE⊥AB于E,则AD=CD=AC=4,由勾股定理求出OD,由三角形的面积求出CE,由相似三角形的性质得出比例式求出OM=MN=,由勾股定理求出DM,得出CM=CD﹣DM=4﹣=;②当ON=MN 时,由△OMN∽△BCO,得出==,求出OM,与勾股定理求出DM,即可得出CM的长.【解答】解:∵∠ACB=90°,点O为AB中点,AB=A′B′=10,BC=B′C′=6,∴OC=AB=OA=OB=5,AC==8,∵△ABC≌△A′B′C′,∴∠B=∠MON.若△OMN与△BCO相似,分两种情况:①当OM=MN时,作OD⊥AC于D,CE⊥AB于E,如图所示:则AD=CD=AC=4,△ABC的面积=AB•CE=AC•BC,∴OD===3,CE==,∵△OMN∽△BOC,∴==,即,∴OM=MN=,∴DM==,∴CM=CD﹣DM=4﹣=;②当ON=MN时,∵△OMN∽△BCO,∴===,即,解得:OM=,∴DM==,∴CM=CD﹣DM=4﹣=;综上所述:当CM=或时,△OMN与△BCO相似.【点评】本题考查了相似三角形的判定与性质、旋转的性质、勾股定理、等腰三角形的判定、直角三角形斜边上的中线性质等知识;熟练掌握勾股定理,证明三角形相似是解决问题的关键.11.如图,在△ABC中,D、E分别是AB、AC边上的点(DE不平行于BC),当不唯一,如∠ADE=∠C时,△AED与△ABC相似.【分析】两个对应角相等即为相似三角形,∠A为公共角,只需一角对应相等即可.【解答】解:由题意,∠ADE=∠C即可.证明:∵∠ADE=∠C,∠A为公共角∴△ADE∽△ACB.【点评】熟练掌握相似三角形的判定方法.12.在边长为2cm的正方形ABCD中,动点E、F分别从D、C两点同时出发,都以1cm/s的速度在射线DC、CB上移动.连接AE和DF交于点P,点Q为AD的中点.若以A、P、Q为顶点的三角形与以P、D、C为顶点的三角形相似,则运动时间t为2或4秒.【分析】分两种情况:①E点在DC上;②E点在BC上;根据相似三角形的性质得到比例式求出运动时间t即可.【解答】解:分两种情况:①如图1,E点在DC上,AE==,DP=,AP==,∵以A、P、Q为顶点的三角形与以P、D、C为顶点的三角形相似,∴=,即=,解得t=2;△APQ与△ODC相似,边的对应关系共有三种可能逐一分类讨论,得t=4符合题意【点评】考查了相似三角形的判定和性质,正方形的性质,本题关键是根据相似三角形的性质列出比例式,注意分类思想的运用.三.解答题13.(2016•福州)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.【分析】(1)先求得AD、CD的长,然后再计算出AD2与AC•CD的值,从而可得到AD2与AC•CD的关系;(2)由(1)可得到BD2=AC•CD,然后依据对应边成比例且夹角相等的两三角形相似证明△BCD∽△ABC,依据相似三角形的性质可知∠DBC=∠A,DB=CB,然后结合等腰三角形的性质和三角形的内角和定理可求得∠ABD的度数.【解答】解:(1)∵AD=BC,BC=,∴AD=,DC=1﹣=.∴AD2==,AC•CD=1×=.∴AD2=AC•CD.(2)∵AD=BC,AD2=AC•CD,∴BC2=AC•CD,即.又∵∠C=∠C,∴△BCD∽△ACB.∴,∠DBC=∠A.∴DB=CB=AD.∴∠A=∠ABD,∠C=∠BDC.设∠A=x,则∠ABD=x,∠DBC=x,∠C=2x.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°.解得:x=36°.∴∠ABD=36°.【点评】本题主要考查的是相似三角形的性质和判定、等腰三角形的性质、三角形内角和定理的应用,证得△BCD∽△ABC是解题的关键.14.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.【分析】(1)利用正方形的性质,可得∠A=∠D,根据已知可得,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据平行线分线段成比例定理,可得CG的长,即可求得BG的长.【解答】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∴,∵DF=DC,∴,∴,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.【点评】此题考查了相似三角形的判定(有两边对应成比例且夹角相等三角形相似)、正方形的性质、平行线分线段成比例定理等知识的综合应用.解题的关键是数形结合思想的应用.15.如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.【分析】(1)利用平行分线段成比例定理得出==,进而得出△ABC≌△GBC(SAS),即可得出答案;(2)分别利用第一种情况:若∠CDB=∠CPB,第二种情况:若∠PCB=∠CDB,进而求出相似三角形即可得出答案.【解答】(1)证明:∵BF∥DE,∴==,∵AD=BD,∴AC=CG,AE=EF,在△ABC和△GBC中:,∴△ABC≌△GBC(SAS),∴AB=BG;(2)解:当BP长为或时,△BCP与△BCD相似;∵AC=3,BC=4,∴AB=5,∴CD=2.5,∴∠DCB=∠DBC,∵DE∥BF,∴∠DCB=∠CBP,∴∠DBC=∠CBP,第一种情况:若∠CDB=∠CPB,如图1:在△BCP与△BCD中,∴△BCP≌△BCD(AAS),∴BP=CD=2.5;第二种情况:若∠PCB=∠CDB,过C点作CH⊥BG于H点.如图2:∵∠CBD=∠CBP,∴△BPC∽△BCD,∵CH⊥BG,∴∠ACB=∠CHB=90°,∠ABC=∠CBH,∴△ABC∽△CBH,∴=,∴BH=,BP=.综上所述:当PB=2.5或时,△BCP与△BCD相似.【点评】此题主要考查了相似三角形的判定与性质以及全等三角形的判定与性质,正确利用分类讨论分析是解题关键.16.在矩形ABCD中,点E是AD的中点,BE垂直AC交AC于点F,求证:△DEF∽△EBD.【分析】根据已知结合相似三角形的判定与性质得出=,进而得出△DEF∽△BED.【解答】证明:∵AC⊥BE,∴∠AFB=∠AFE=90°,∵四边形ABCD是矩形,∴∠BAE=90°,又∵∠AEF=∠BEA,∴△AEF∽△BEA,∴=,∵点E是AD的中点,∴AE=ED,∴=,又∵∠FED=∠DEB,∴△DEF∽△BED.【点评】此题主要考查了相似三角形的判定与性质以及矩形的性质,正确得出=是解题关键.17.如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.【分析】根据直角三角形斜边上的中线性质求出AM=CM,推出∠C=∠CAM,求出∠DAB=∠CAM,求出∠DAB=∠C,根据相似三角形的判定得出即可.【解答】证明:∵∠BAC=90°,点M是BC的中点,∴AM=CM,∴∠C=∠CAM,∵DA⊥AM,∴∠DAM=90°,∴∠DAB=∠CAM,∴∠DAB=∠C,∵∠D=∠D,∴△DBA∽△DAC.【点评】本题考查了相似三角形的判定,直角三角形斜边上的中线性质的应用,能求出∠DAB=∠C是解此题的关键.18.将两块完全相同的等腰直角三角形摆放成如图的样子,假设图形中的所有点、线都在同一平面内,图中有相似(不包括全等)三角形吗?如果有,请写出其中的一对,并给予说明其为什么相似?【分析】先利用等腰直角三角形的性质得到∠B=∠GAF=45°,再加上公共角,于是可判断△EAD∽△EBA.【解答】解:有相似三角形,它们为△EAD∽△EBA.理由如下:∵△ABC和△AFG为等腰直角三角形,∴∠B=∠GAF=45°,而∠AED=∠BEA,∴△EAD∽△EBA.【点评】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.解决的关键是灵活运用相似三角形的判断.19.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.【分析】(1)在Rt△ABC中,利用勾股定理可求得AB的长,即可得到AD、t的值,从而确定AE的长,由DE=AE﹣AD即可得解.(2)若△DEG与△ACB相似,要分两种情况:①AG:DE=DH:GE,②AH:EG=DH:DE,根据这些比例线段即可求得t的值.(需注意的是在求DE的表达式时,要分AD>AE和AD<AE两种情况)【解答】解:(1)∵∠ACB=90°,AC=3,BC=4,∴AB==5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6﹣5=1.(2)∵EF=BC=4,G是EF的中点,∴GE=2.当AD<AE(即t<)时,DE=AE﹣AD=3+3t﹣5t=3﹣2t,若△DEG与△ACB相似,则或,∴或,∴t=或t=;当AD>AE(即t>)时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,若△DEG与△ACB相似,则或,∴或,解得t=或t=;综上所述,当t=或或或时,△DEG与△ACB相似.【点评】此题考查了勾股定理、轴对称的性质、平行四边形及梯形的判定和性质、解直角三角形、相似三角形等相关知识,综合性强,是一道难度较大的压轴题.20.如图,在△ABC中,AD、BE分别是BC、AC边上的高.求证:△DCE∽△ACB.【分析】首先由在△ABC中,AD、BE分别是BC、AC边上的高,证得△CDE∽△CAB,即可得CD:CA=CE:CB,继而证得结论.【解答】证明:∵在△ABC中,AD、BE分别是BC、AC边上的高,∴∠ADC=∠BEC=90°,∵∠C是公共角,∴△CDE∽△CAB,∴CD:CE=CA:CB,∴CD:CA=CE:CB,∴△DCE∽△ACB.【点评】此题考查了相似三角形的判定与性质.注意证得△CDE∽△CAB是关键.21.如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.【分析】(1)首先根据等腰直角三角形的两个底角都是45°,得到一对对应角相等;再根据三角形的外角的性质得到∠ADE+∠EDC=∠B+∠BAD,从而证明∠EDC=∠BAD,根据两个角对应相等,得到两个三角形相似;(2)根据等腰三角形的定义,此题要分三种情况进行分析讨论.根据等腰三角形的性质进行计算.【解答】(1)证明:Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠B=∠C=45°.∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠EDC,∴∠ADE+∠EDC=∠B+∠BAD.又∵∠ADE=45°,∴45°+∠EDC=45°+∠BAD.∴∠EDC=∠BAD.∴△ABD∽△DCE.(2)解:讨论:①若AD=AE时,∠DAE=90°,此时D点与点B重合,不合题意.②若AD=DE时,△ABD与△DCE的相似比为1,此时△ABD≌△DCE,于是AB=AC=2,BC=2,AE=AC﹣EC=2﹣BD=2﹣(2﹣2)=4﹣2③若AE=DE,此时∠DAE=∠ADE=45°,如下图所示易知AD⊥BC,DE⊥AC,且AD=DC.由等腰三角形的三线合一可知:AE=CE=AC=1.【点评】熟练运用等腰直角三角形的性质,特别注意第二问要分情况进行讨论解题.22.如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q 从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?【分析】设经过t秒时,以△QBC与△ABC相似,则AP=2t,BP=8﹣2t,BQ=4t,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:=时,△BPQ∽△BAC,即=;当=时,△BPQ∽△BCA,即=,然后方程解方程即可.【解答】解:设经过t秒时,以△QBC与△ABC相似,则AP=2t,BP=8﹣2t,BQ=4t,∵∠PBQ=∠ABC,∴当=时,△BPQ∽△BAC,即=,解得t=2(s);当=时,△BPQ∽△BCA,即=,解得t=0.8(s);即经过2秒或0.8秒时,△QBC与△ABC相似.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.利用时间表示相应线段长和利用相似比列方程是解决此题的关键.23.如图,四边形ABCD和ACED都是平行四边形,B,C,E在一条直线上,点R为DE的中点,BR分别交AC,CD于点P,Q.(1)则图中相似三角形(相似比为1除外)共有3对;(2)求线段BP:PQ:QR,并说明理由.【分析】此题的图形比较复杂,需要仔细分析图形.(1)根据平行四边形的性质,可得到角相等.∠BPC=∠BRE,∠BCP=∠E,可得△BCP∽△BER;(2)根据AB∥CD、AC∥DE,可得出△PCQ∽△PAB,△PCQ∽△RDQ,△PAB∽△RDQ.根据相似三角形的性质,对应边成比例即可得出所求线段的比例关系.【解答】解:(1)∵四边形ACED是平行四边形,∴∠BPC=∠BRE,∠BCP=∠E,∴△BCP∽△BER;同理可得∠CDE=∠ACD,∠PQC=∠DQR,∴△PCQ∽△RDQ;∵四边形ABCD是平行四边形,∴∠BAP=∠PCQ,∵∠APB=∠CPQ,∴△PCQ∽△PAB;∵△PCQ∽△RDQ,△PCQ∽△PAB,∴△PAB∽△RDQ.综上所述,图中相似三角形(相似比为1除外)共有4对.故答案是:4.(2)∵四边形ABCD和四边形ACED都是平行四边形,∴BC=AD=CE,∵AC∥DE,∴BC:CE=BP:PR,∴BP=PR,∴PC是△BER的中位线,∴BP=PR,=,又∵PC∥DR,∴△PCQ∽△RDQ.又∵点R是DE中点,∴DR=RE.===,∴QR=2PQ.又∵BP=PR=PQ+QR=3PQ,∴BP:PQ:QR=3:1:2.【点评】此题考查了相似三角形的判定和性质:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.24.如图,在正方形ABCD中,E为BC上任意一点(与B、C不重合)∠AEF=90°.观察图形:(1)△ABE与△ECF是否相似?并证明你的结论.(2)若E为BC的中点,连结AF,图中有哪些相似三角形?并说明理由.【分析】(1)由正方形的性质得出∠B=∠C=∠D=90°,AB=BC=CD=AD,由角的互余关系得出∠BAE=∠CEF,即可证出△ABE∽△ECF;(2)由(1)的结论和已知条件得出BE=CE=2CF,设CF=a,则BE=CE=2a,AB=BC=CD=AD=4a,DF=3a,由勾股定理和勾股定理的逆定理得出△AEF是直角三角形,∠AEF=90°,得出,证出△AEF∽△ABE,即可得出结论.【解答】解:(1)相似,理由如下:∵四边形ABCD是正方形,∴∠B=∠C=∠D=90°,AB=BC=CD=AD,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)△ABE∽△ECF∽△AEF,理由如下:∵E为BC的中点,∴BE=CE=BC=AB,由(1)得:∴△ABE∽△ECF,∴=2,∴BE=CE=2CF,设CF=a,则BE=CE=2a,AB=BC=CD=AD=4a,∴DF=3a,∴AE2=(4a)2+(2a)2=20a2,EF2=(2a)2+a2=5a2,AF2=(4a)2+(3a)2=25a2,∵=2,∴,又∵∠AEF=∠B=90°,∴△AEF∽△ABE,∴△ABE∽△ECF∽△AEF.【点评】本题考查了正方形的性质、相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握正方形的性质和相似三角形的判定方法,运用勾股定理进行计算是解决(2)的关键.25.如图,在Rt△ACB中,AC=8m,BC=6m,点P、Q同时由C、B两点出发分别沿CA、BC向点A、C 匀速移动,它们的速度分别是2米/秒、1米/秒,问几秒后△PCQ与△ACB相似?【分析】设x秒后△PCQ与△ACB相似;则CP=2x,BQ=x,CQ=6﹣x.当,或时,△PCQ与△ACB相似,解方程即可.【解答】解:设x秒后△PCQ与△ACB相似.由题知,CP=2x,BQ=x,CQ=6﹣x.∵∠C=∠C,当,或,△PCQ与△ACB相似.∴,或,解得:x=,或x=;∴秒或秒后△PCQ与△ACB相似.【点评】本题考查了相似三角形的判定;熟练掌握相似三角形的判定方法,由两边成比例得出方程是解决问题的关键.26.如图,巳知AB丄BD,CD丄BD.(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在.请说明理由;(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为頂点的三角形相似?并求BP的长.【分析】(1)设BP=x,则PD=10﹣x,由于∠B=∠D,根据两组对应边的比相等且夹角对应相等的两个三角形相似,则当=时,△ABP∽△PDC,即=,当=时,△ABP∽△CDP,即=,然后分别解方程求出x的值即可得到BP的长;(2)设BP=x,则PD=12﹣x,与(1)解答一样,易得=或=,然后分别解方程求出x 的值即可得到BP的长.【解答】解:(1)存在.设BP=x,则PD=10﹣x,∵∠B=∠D,∴当=时,△ABP∽△PDC,即=,整理得x2﹣10x+36=0,此方程没有实数解;当=时,△ABP∽△CDP,即=,即解得x=,即BP的长为;(2)存在2个P点.设BP=x,则PD=12﹣x,∵∠B=∠D,∴当=时,△ABP∽△PDC,即=,整理得x2﹣12x+36=0,解得x1=x2=6;当=时,△ABP∽△CDP,即=,即解得x=,即BP的长为6或.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.注意分类讨论思想的运用.27.如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发,运动时间为t(s).(1)当t为何值时,△APQ与△AOB相似?(2)当t为何值时,△APQ的面积为8cm2?【分析】(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ和∠AQP是直角两种情况,利用相似三角形对应边成比例列式求解即可;(2)过点P作PC⊥OA于C,利用∠OAB的正弦求出PC,然后根据三角形的面积公式列出方程求解即可.【解答】解:(1)∵点A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,。
苏科版九年级下册数学第6章 图形的相似 含答案
苏科版九年级下册数学第6章图形的相似含答案一、单选题(共15题,共计45分)1、已知点A的坐标是(2,1),以坐标原点O为位似中心,图像与原图形的位似比为2,则点的坐标为()A.(1,)B.(4,2)C.(1,)或(-1,- )D.(4,2)或(-4,-2)2、若△ABC∽△DEF,相似比为1:2,且△ABC的面积为2,则△DEF的面积为()A.16B.8C.4D.23、如图,在Rt△ABC纸片中,∠ACB=90°,AC=4,BC=3,点D,E分别在AB,AC上,连结DE,将△ADE沿DE翻折,使点A的对应点F落在BC的延长线上,若FD平分∠EFB,则AD的长为()A. B. C. D.4、如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A. B. C. D.5、如图,四边形ABCD中,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=6,AD=4,则该四边形的面积为()A.9B.12C.8D.86、如图,与相交于点,.若,则为()A. B. C. D.7、如图,l1∥l2∥l3,直线a,b与l1, l2, l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.68、如图,已知⊙O的半径为2,点A、B、C为圆上三点,且OA∥BC,则的值是()A.2B.C.D.9、如图, CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=6, CD=12,则CE的值为()A.3B.4C.5D.610、如图,点A在反比例函数y=- (x<0)的图象上,点B在反比例函数y= (x>0)的图象上,且∠AOB=90°.则tan∠OBA的值等于()A.2B.3C.D.11、下列各组线段中,成比例的是()A.2cm,3cm,4cm,5cmB.2cm,4cm,6cm,8cmC.3cm,6cm,8cm,12cmD.1cm,3cm,5cm,15cm12、若,则的值为()A.1B.C.D.13、如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长是()A. B. C. D.14、如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10B.11C.D.15、在平面直角坐标系中,△ABC顶点A(2,3).若以原点O为位似中心,画三角形ABC的位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为,则A′的坐标为()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有________(写出所有正确结论的序号)①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为;⑤当△ABP≌△ADN时,BP= .17、如果线段a、b、c、d满足= = ,那么=________.18、如图,依次连接一个边长为1的正方形各边的中点,得到第二个正方形,再依次连接第二个正方形各边的中点,得到第三个正方形,按此方法继续下去,则第n个正方形的面积是________ .19、如图,在∆ABC中,AB=AC=10,E,D分别是AB,AC上的点,BE=4,CD=2,且BD=CE,则BD=________.20、如图,在ΔABC中,若∠AED=∠B,DE=6,AB=10,AE=8,则BC的长为________.21、如图,面积为1的等腰直角△OA1A2,∠OA2A1=90°,且OA2为斜边在△OA1A2外作等腰直角△OA2A3,以OA3为斜边在△OA2A3外作等腰直角△OA3A4,以OA4为斜边在△OA3A4外作等腰直角△OA4A5,…连接A1A3, A3A5,A 5A7,…分别与OA2, OA4, OA6,…交于点B1, B2, B3,…按此规律继续下去,记△OB1A3的面积为S1,△OB2A5的面积为S2,△OB3A7的面积为S 3,…△OBnA2n+1的面积为Sn,则Sn=________(用含正整数n的式子表示).22、如图,矩形ABCD的顶点C,D分别在反比例函数y=(x>0).y=(x>0)的图象上,顶点A,B在x轴上,连接OC,交DA于点E,则=________.23、如图,Rt△ABC中,∠C=90°,AC=8,BC=16,点D在边BC上,点E在边AB上,沿DE将△ABC折叠,使点B与点A重合,连接AD,点P是线段AD 上一动点,当半径为5的⊙P与△ABC的一边相切时,AP的长为________.24、在中,边、上的中线、相交于点,,那么________.25、如图,△ABC是等边三角形,AB=6.点D和E分别在边BC和AC上,且∠ADE=60°,BD=2,则CE的长为________.三、解答题(共5题,共计25分)26、已知a:b:c=3:2:5,求的值.27、如图,花丛中有一路灯杆AB,在灯光下,大华在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时大华的影长GH=5米.如果大华的身高为2米,求路灯杆AB的高度.28、如图,竖立在点B处的标杆AB高2.4m,站立在点F处的观察者从点E 处看到标杆顶A、树顶C在一条直线上,设BD=8m,FB=2m,EF=1.6m,求树高CD.29、在同车道行驶的机动车,后车应当与前车保持足以采取紧急制动措施的安全距离,如图,在某个路口,一辆长为的大巴车遇红灯后停在距交通信号灯的停止线处,小张驾驶一辆小轿车跟随大巴车行驶,设小张距离大巴车,已知大巴车车顶高于小张的水平视线,红灯下沿高于小张的水平视线,若小张能看到整个红灯,求的最小值.30、在正方形ABCD中,点M是射线BC上一点,点N是CD延长线上一点,且BM=DN.直线BD与MN相交于E.(1)如图1,当点M在BC上时,求证:BD-2DE=BM;(2)如图2,当点M在BC延长线上时,BD、DE、BM之间满足的关系式是什么?;(3)在(2)的条件下,连接BN交AD于点F,连接MF交BD于点G.若DE=,且AF:FD=1:2时,求线段DG的长.参考答案一、单选题(共15题,共计45分)1、D2、B3、D4、B5、A6、D7、C8、B9、B10、D11、D12、D13、C14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、。
苏科版九年级数学下《第6章图形的相似》单元测试含答案
二、填空题 10. 如图,已知������������//������������,������������ = 3,������������ = 4,������������ = 6,则 AF 的值 为______ .
������
11. 如果线段 a、b、c、d 满足������
= ������ = 3
������������
= ������������ = ������������
������������
������������
B. ������������
C. ∠������������������ = ∠������ D. ∠������������������ = ∠������������������
8.
A. 1:4 B. 1:6 C. 1:8 D. 1:9
如图, △ ������������������中,������������//������������,������������//������������,则图中相似三角形 的对数是( )
第 2 页,共 8 页
9.
A. 1 对 B. 2 对 C. 3 对 D. 4 对
苏科版九年级数学下《第 6 章图形的相似》单元测试含答案
第 6 章《图形的相似》单元测试
一、选择题
1.
下列各组图形中,能够相似的一组图形是( )
A. (1)
B. (2)
C. (3)
D. (4)
2.
如图,已知������������//������������//������������,那么下列结论正确的是( )
1
A. (3,2) B. (4,1) C. (3,1) D. (4,2)
苏科版九年级下册数学第6章 图形的相似 含答案
苏科版九年级下册数学第6章图形的相似含答案一、单选题(共15题,共计45分)1、如图△ABC与△DEF是位似图形,位似比是1:2,已知DE=4,则AB的长是()A.2B.4C.8D.12、下列各组图形必相似的是()A.任意两个等腰三角形B.有两边对应成比例,且有一个角对应相等的两三角形C.两边为4和5的直角三角形与两边为8和10的直角三角形 D.两边及其中一边上的中线对应成比例的两三角形3、如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为()A. B. C. D.4、如图,在△ABC中,AD平分∠BAC,按如下步骤作图:步骤1:分别以点A,D为圆心,以大于AD的长为半径,在AD两侧作弧,两弧交于点M,N;步骤2:连接MN,分别交AB,AC于点E,F;步骤3:连接DE,DF.下列叙述不一定成立的是()A.线段DE是△ABC的中位线B.四边形AFDE是菱形C.MN垂直平分线段ADD. =5、已知,则直线y=kx+2k一定经过()A.第1,2象限B.第2,3象限C.第3,4象限D.第1,4象限6、两正方形的边长比是1:2,它们的周长比与面积比分别是()A.1:2;1:4B.1:2;1:2C.1:4;1:2D.1:4;1:47、已知点A、B分别在反比例函数 y=(x>0), y=(x>0)的图象上,且OA⊥OB,则的值为()A. B.2 C. D.38、下列说法中不一定正确的是()A.所有的等腰直角三角形都相似 B.所有等边三角形相似 C.所有矩形相似 D.直角三角形被斜边上的高分成两个三角形相似9、如图,△ABC中,∠C=90°,D是BC边上一点,∠ADC=3∠BAD,BD=8,DC=7,则AB的值为()A.15B.20C.2 +7D.2 +10、如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④11、两个相似三角形的最短边分别是5cm和3cm,它们的周长之差为12cm,那么小三角形的周长为()A.14cmB.16cmC.18cmD.30cm12、如图,直线,直线分别和直线交于点,和直线交于点,若,则线段的长为()A.2B.3C.4D.613、如图,在正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长于点Q,下列结论正确的有()个①AE⊥BF;②QB=QF;③ ;④S四边形ECFG =2S△BGE.A.1B.4C.3D.214、把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是()A. :1B.4:1C.3:1D.2:115、如图,以某点为位似中心,将△OAB进行位似变换得到△DFE,若△OAB与△DFE的相似比为k,则位似中心的坐标与k的值分别为()A.(2,2),2B.(0,0),2C.(2,2),D.(0,0),二、填空题(共10题,共计30分)16、如果两个相似三角形的最长边分别是35厘米和14厘米,它们的周长之差60厘米,那么这两个三角形的周长分别是________.17、如图,已知边长为4的菱形ABCD中,AC=BC,E,F分别为AB,AD边上的动点,满足BE=AF,连接EF交AC于点G,CE、CF分别交BD与点M,N,给出下列结论:①∠AFC=∠AGE;②EF=BE+DF;③△ECF面积的最小值为3 ,④若AF=2,则BM=MN=DN;⑤若AF=1,则EF=3FG;其中所有正确结论的序号是________.18、如图,在△ABC中,∠C=90°,点D是BC边上一动点,过点B作BE⊥AD 交AD的延长线于E.若AC=2,BC=4,则的最大值为________19、如图,在Rt△ABC中,∠ABC=90°,AB=BC=2,AE是BC边上的中线,过点B作AE的垂线BD,垂足为H,交AC于点D,则AD的长为________.20、如图,直线,分别交直线m,n于点A,B,C,D,E,F,若,,,则EF的长为________.21、如图,、分别为△ABC的边、延长线上的点,且DE∥BC.如果,CE=16,那么AE的长为________22、在△ABC中,∠C=90°,AC=4,点G为△ABC的重心.如果GC=2,那么的值是________.23、如图4,我国现代数学著作《九章算术》中有“井深几何”问题如下:今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?它的题意可以由如图所示获得,井深为________尺.24、如图,在长8cm,宽4cm的矩形中截去一个矩形(阴影部分)使留下的矩形与原矩形相似,那么留下的矩形的面积为________ .25、如图,在△ABC中,AB=AC=4,AF⊥BC于点F,BH⊥AC于点H.交AF于点G,点D在直线AF上运动,BD=DE,∠BDE=135°,∠ABH=45°,当AE取最小值时,BE的长为________.三、解答题(共5题,共计25分)26、如图,某测量人员的眼睛A与标杆顶端F、电视塔顶端E在同一条直线上,已知此人的眼睛到地面的距离AB=1.6m,标杆FC=2.2m,且BC=1m,CD=5m,标杆FC、ED垂直于地面.求电视塔的高ED.27、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(2,2),B (4,0),C(4,﹣4)①将△ABC绕点A顺时针旋转90°后得到△AB1C1,在图①中画出△AB1C1,并求出在旋转过程中△ABC扫过的面积;②在图②中以点O为位似中心,将△ABC缩小为原来的,并写出点C的对应点的坐标.28、如图,在△ABC中,AB=8,BC=4,CA=6,CD//AB,BD是∠ABC的平分线,BD交AC于点E,求AE的长.29、如图,在△ABC和△CDE中,∠B=∠D=90°,C为线段BD上一点,且AC⊥CE,证明:△ABC∽△CDE.30、如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、A5、B6、A7、B8、C9、B10、C12、C13、C14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)29、。
苏科版九年级下63相似图形专题练习含答案.docx
第六章《图形的相似》(相似图形)一・选择题1.如图,在AABC 中,DE 〃BC,若军=舟,则( )DB 3 EC己知直线a 〃b 〃c,直线m 交直线a, b, c 于点A, B, C,直线n 交直线a, b,3.如图,直线li 〃b 〃13,—等腰直角三角形ABC 的三个顶点A, B, C 分别在h ,b ,bAR已知h 与12的距离为1, 12与】3的距离为3,则需的值D D在AABC 屮,点D 在AB 上,BD=2AD, DE 〃BC 交AC 于E,则下列结论不止上,ZACB=90°, AC 交 I?于点 D, 4.如图, A 2.如图,( ) 为(确的是(C. AADE^AABCD. S A ADE =-^*S A AB C5. 如图的矩形ABCD 中,E 点在CD±,且AEVAC.若P 、Q 两点分别在AD 、AE±,AP : PD=4: 1, AQ : QE=4: 1,直线PQ 交AC 于R 点,且Q 、R 两点到CD 的距离分别 为q 、r,则下列关系何者正确?( )A. q<r, QE=RCB. q<r, QE<RCC. q=r, QE=RCD. q=r, QE<RC二.填空题6. 如图,AB 〃CD 〃EF, AF 与BE 相交于点G,且AG=2, GD=1, DF=5,那么需的值等 CE于 .8. 如图,AB 〃CD, AD 与BC 交于点0,已知AB=4, CD=3, OD=2,那么线段OA 的长 为 ___ •9. 如图,直线 AD 〃BE 〃CF, BC=^-AC, DE=4,那么 EF 的值是 ________ .CECA 百 ------------------------ B连接CE,过点D 作DF 〃CE 交AB 于点F.若AB 二15,则EF 二Ct10. 如图AABC 屮,BE 平分ZABC, DE 〃BC,若 DE=2AD, AE=2,那么 EC=11. 如图,已知AD 、BC 相交于点O, AB 〃CD 〃EF,如果CE=2, EB=4, FD=L5,那么AD=12. 如图,Z\ABC 的两条屮线AD 和BE 相交于点G,过点E 作EF 〃BC 交AD 于点F,那 三・解答题13. 如图,AABC 中,ZACB=90°, AC=5, BC=12, CO 丄AB 于点 0, D 是线段 OB 上一点,DE=2, ED 〃AC (ZADE<90°),连接 BE 、CD.设 BE 、CD 的中点分别为 P 、设PQ 与AB 的交点为M,请直接写出|PM-MQ|的值.14. 如图,已知AABC 中,点D 、E 分别在边AB 和AC 上,DE 〃BC ,点F 是DE 延长线I 牍1 AD DE 3』厂小卄AE 2 土 AD 弘“上的点’而肓’联结FG 右疋亏求瓦的蝕AC=14;(1) 求AO 的长;(2) 求PQ 的长;Q.(3) 15.如图,(1)求AB、BC的长;(2)如果AD=7, CF=14,求BE 的长.16.如图,已知Z\ABC中,AB>AC, BC=6, BC边上的高AN=4.直角梯形DEFG的底EF在BC边上,EF=4,点D、G分别在边AB、AC±,且DG〃EF, GF丄EF,垂足为F.设GF的长为x,直角梯形DEFG的面积为y,求y关于x的函数关系式,并写出函数的定义域.17.如图,在AABC 中,DE〃BC, AABC 的高AM 交DE 于点N, BC=15, AM=10,DE=MN, 求MN的长.18.如图,延长AABC的边BC到D,使CD=BC.収AB的中点F,连接FD交AC于点E.求EC: AC的值.19.已知:Z1 = Z2, CD=DE, EF//AB,求证:EF=AC.20.如图,在AABC中,点D是边AB的四等分点,DE〃AC, DF〃BC, AC=8, BC=12, 求四边形DECF的周长.21.如图,AB〃CD、AD〃CE, F、G分别是AC和FD的中点,过G的直线依次交AB、AD、CD、CE 于点M、N、P、Q,求证:MN+PQ=2PN.22.如图,Z\ABC的顶点A是线段PQ的中点,PQ〃BC,连接PC、QB,分别交AB、AC 于M、N,连接MN,若MN=1, BC=3,求线段PQ的长.23.如图,点D是等边AABC屮BC边上一点,过点D分别作DE〃AB, DF〃AC,交AC, AB于E, F,连接BE, CF,分别交DF, DE于点N, M,连接MN.试判断ADMN的形状,并说明理由.1图225. 如图,DE/7BC, EF 〃CG, AD : AB=1: 3, AE=3.(1) 求EC 的值;(2) 求证:AD ・AG 二AF ・AB.27. 如图,已知:过AABC 的底边BC 的中点D 任作一条直线交AC 于点Q,交AB 的延 长线于点P,作AE 〃BC 交DQ 的延长线于点E.求证:PD ・QE 二DQ ・PE.24. 对于平行线,我们有这样的结论:如图1, AB 〃CD, AD, BC 交于点 6请利用该结论解答下面的问题:如图 2,在AABC 中,点 D 在线段 BC 上,ZBAD=75°, ZCAD=30°, AD 二2, BD=2DC, 求AC 的长.26.如图,AC 〃BD, AD. BC 相交于 £ EF 〃BD,D28.数学课上,张老师出示了问题1:如图1,四边形ABCD是正方形,BC=1,对角线交点记作O,点E是边BC延长线上一点.连接OE交CD边于F,设CE=x, CF=y,求y关于x的函数解析式及其定义域.(1)经过思考,小明认为可以通过添加辅助线・■过点0作0M丄BC,垂足为M求解.你认为这个想法可行吗?请写出问题1的答案及相应的推导过程;(2)如果将问题1中的条件“四边形ABCD是正方形,BC=1〃改为“四边形ABCD是平行四边形,BC=3, CD=2, 〃其余条件不变(如图2),请直接写出条件改变后的函数解析式;(3)如果将问题1屮的条件"四边形ABCD是正方形,BC=1〃进一步改为:"四边形ABCD 是梯形,AD〃BC, BC=a, CD=b, AD=c (其中a, b, c为常量)"其余条件不变(如图3), 请你写出条件再次改变后y关于x的函数解析式以及相应的推导过程.图1 图2 图3【分析】直接利用平行线分线段成比例定理写出答案即可.【解答】解:VDE^BC,.AE = AD =_2故选c.【点评】本题考查了平行线分线段成比例定理,了解定理的内容是解答本题的关键,属于基 础定义或定理,难度不大.2. (2016・杭州)如图,己知直线a 〃b 〃c,直线m 交直线a, b, c 于点A, B, C,直线n【分析】克接根据平行线分线段成比例定理求解.【解答】解:・・・a 〃b 〃c, .DE _ AB _1 ••丽二丽E故选 B. 【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的対应线段成 比例.一.选择题参考答案与解析AD 91. (2016・兰州)如图,在AABC 中,DE 〃BC,若轻話, DB 3D.C.D ・1 F,3. (2016*淄博)如图,直线li 〃12〃b ,—等腰直角三角形ABC 的三个顶点A, B, C 分 别在h ,b ,b 上,ZACB=90°, AC 交I?于点D,己知h 与b 的距离为1,b 与b 的距离为【分析】先作出作BF 丄I3, AE 丄13,再判断△ACE^ACBF,求出CE=BF=3, CF=AE=4, 然后由12〃b ,求出DG,即可.【解答】解:如图,作BF 丄b ,AE 丄I3,.\ZBCF+ZACE=90°,VZBCF+ZCFB=90°,A ZACE=ZCBF,在Z\ACE 和Z\CBF 屮,”ZBFC 二 ZCEA< ZCB2ZACE ,PC 二 AC.•.AACE^ACBF, .\CE=BF=3, CF=AE=4,Til 与12的距离为1,I2与b 的距离为3,・・・AG 二 1, BG=EF=CF+CE=7•: AB =V BG 2+AG 2=5V2»3,则豊的值为(D U5^2D. 20^223)A. B.辱 VZACB=90°,■匹型二丄ee CE3 25 BD=BG - DG=7 - ■:4 4••需聲岖故选A.【点评】此题是平行线分线段成比例试题,主要考查了全等三角形的性质和判定,平行线分 线段成比例定理,勾股定理,解本题的关键是构造全等三角形.4. (2016*黔西南州)如图,在厶ABC 屮,点D 在AB 上,BD=2AD, DE 〃BC 交AC 于E, 则下列结论不正确的是( )C. △ADE S /XABCD. S A ADE =-^S A AB C【分析】根据平行线分线段成比例定理、相似三角形的性质解答即可.【解答】解:・・・BD=2AD,・・・AB=3AD,•・・ DE//BC,.DE AD••矿ITT・・・BC=3DE, A 结论正确;・.・ DE 〃BC,•・・DE 〃BC,AAADE^AABC, C 结论正确;.BD _ CZ 'B F CA B 结论正确;S MDE 二*S MB C' D 结论错误,故选:D.【点评】本题考查的是平行线分线段成比例定理和相似三角形的性质,灵活运用平行线分线 段成比例定理、掌握相似三角形的面积比等于相似比的平方是解题的关键.5. (2016*台湾)如图的矩形ABCD 中,E 点在CD±,且AE<AC.若P 、Q 两点分别在 AD 、AE 上,AF : PD=4: 1, AQ : QE=4: 1,直线 PQ 交 AC 于 R 点,且 Q 、R 两点到 CD的距离分别为q 、r,则下列关系何者正确?( )A. q<r, QE=RCB. q<r, QE<RCC. q=r, QE=RCD. q=r, QE<RC于是得到结论.【解答】解:・・•在矩形ABCD 中,AB 〃CD,ZAP : PD=4: 1, AQ : QE=4: 1, .AP 二鲤*PD =QE ,・・PQ 〃CD,.AR'J •RC ~QE ~ '••平行线间的距离相等,*.q=r,.AR_AQ• RC.QE 二 CR 二 1* AE••AEVAC,•••QE<CR.【分析】根据矩形的性质得到AB 〃CD,根据已知条件得到 AP PD ^QE ,根据平行线分线段成 比例定理得到PQ 〃CD,磐茅 Ku =4,根据平行线间的距离相等,得到证得 QE 二 CR AE ^AR AB故选D.【点评】本题考查了平行线分线段成比例定理,矩形的性质,熟练掌握平行线分线段成比例定理是解题的关键.二.填空题(共7小题)6.(2016・济宁)如图,AB〃CD〃EF, AF 与BE 相交于点G,且AG二2, GD=I, DF二5,【分析】首先求H! AD的长度,然后根据平行线分线段成比例定理,列出比例式希晋即CE ur可得到结论.【解答】解:VAG=2, GD=1,・•・AD=3,•・・AB〃CD〃EF,.BC_AD=_3**CE =DF~'5,故答案为:吕.b【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是准确找出图形中的对应线段,正确列出比例式求解、计算.CT) 17.(2016*锦州)如图,在AABC中,点D为AC ±一点,且详二含,过点D作DE〃BCAD 2交AB于点E,连接CE,过点D作DF〃CE交AB于点F.若AB=15,则EF二丄g .A【分析】由DE与BC平行,rfl平行得比例求出AE的长,再由DF与CE平行,由平行得比例求出EF的长即可.【解答】解:・・・DE〃BC,.AD_AE** AC"AB?..CD J・ AD"2,•亜一Z pn AE_2.,,AC_3,即AB一3'TAB二15,・・・AE=10,•・・DF〃CE,・吃盟n,AF 2•・ AE"AC, 10"3,解得:AF-y,贝1J EF=AE - AF=1()-竺丄23 3故答案为:-y【点评】此题考查了平行线分线段成比例,熟练掌握平行线分线段成比例性质是解本题的关键.8.(2016*阜新)如图,AB〃CD, AD 与BC 交于点O,己知AB=4, CD=3, OD=2,那么线段OA的长为4 •—3一A/ \ "C【分析】根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到OA: OD=AB: CD,然后利用比例性质计算OA的长.【解答】解:・・・AB〃CD,Z.OA: OD=AB: CD,即OA: 2=4: 3,0A=-^-.3故答案为吕.【点评】本题考查了平行线分线段成比例:平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.9.如图,直线AD〃BE〃CF, BC=£A C, DE=4,那么EF 的值是2 .,再根据条件AD〃BE〃CF,可得器晋,再把DE=4bC Er代入可得EF的值.【解答】解:TBC气"AC,TAD〃BE〃CF,.AB DE,,BC^EF,VDE=4,・・・EF=2.故答案为:2.【点评】此题主要考查了平行线分线段成比例定理,关键是掌握三条平行线截两条直线,所得的对应线段成比例.10. 如图△ ABC 屮,BE 平分ZABC, DE 〃BC,若 DE 二2AD, AE=2,那么 EC 二 4 .【解答】解:・・・DE 〃BC,・・・ZDEB 二 ZCBE,VBE 平分ZABC,・・・ZABE 二 ZCBE, .*.ZABE=ZDEB,ABD=DE,VDE=2AD,.\BD=2AD,•・・DE 〃BC,A AD : DB=AE : EC,.\EC=2AE=2X2=4,故答案为:4.【点评】此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质.注意掌握线段 的对应关系是解此题的关键.11. 如图,已知 AD 、BC 相交于点 O, AB 〃CD 〃EF,如果 CE=2, EB=4, FD=1.5,那么 AD 二 4.5.【分析】根据平行线分线段成比例、比例的基本性质求得AF=3,则AD 二AF+FD=4.5即可.【解答】解:・・・AB 〃EF,平行线分线段成比例定理,即町求得答案.即可得BD=2AD,又由・・・匹县,则匹旦, AF EB EO EB又 EF 〃CD,**FD _EC ,人 EO_EC ,.jJ ._FD**EB =EC ,叩 AF —1.5 即 4 - 2,解得:AF=3,・・・AD=AF+FD=3+1.5=4.5,即AD 的长是4.5;故答案为:4.5.【点评】本题考查了平行线分线段成比例、比例的性质;由平行线分线段成比例定理得出比 例式求出AF 是解决问题的关键.12. 如图,AABC 的两条中线AD 和BE 相交于点G,过点E 作EF 〃BC 交AD 于点F,那【分析】由三角形的重心定理得出畀斗,辱冷,由平行线分线段成比例定理得出 Dv Z Av ZFG FG 1即可得出结果•【解答】解:•・•线段AD 、BE 是AABC 的中线,.EG1 DG 1,,BG =2, AG 乜• FG 1AG 4故答案为:TEF 〃BC, FG ^EG 1【点评】本题考查了平行线分线段成比例定理、三角形的重心定理;熟练掌握三角形的重心 定理,由平行线分线段成比例定理得出FG : DG=1: 2是解决问题的关键三.解答题(共16小题)13. (2016*南通)如图,ZiABC^4, ZACB=90°, AC=5, BC=12, CO 丄AB 于点 O, D 是线段 OB 上一点,DE=2, ED 〃AC (ZADE<90°),连接 BE 、CD.设 BE 、CD 的中点 分别为P 、Q.设PQ 与AB 的交点为M,请直接写ill |PM ・MQ|的值.【分析】⑴iAABC^AACO,得罟卷由此即可求XA.(2)如图2中,取BD 中点F, CD 中点Q,连接PF 、QF,在RtAPFQ 中,求出PF, QF即可解决问题.pir (3)如图3中,取AD 中点G 连扌妾GQ,由PF 〃GQ,推APMF<^ AQMG,推出::=乂 U JIL QG 冬,由PM+QM 二何,可以求出PM, QM,即可解决问题.5(1) 求AO 的长;(2) 求PQ 的长;(3) TCO 丄AB,【解答】解:(1)如图1中,A APMF^AQMG, .PM_PF_2 •*Q F QG C T ,•・・ PM+QM=V37,.-.ZAOC=ZACB=90°, VZA=ZA,•••△ABC S A A CO,.AB AC*• AC~AO7AB=V A C 2+BC 2=V52+1 22=1^・•・O A 二AC 2_25AB 13* (2)如图2中,取BD 中点F, CD 中点Q,连接PF 、QF,PF 丄FQ,且 PF#ED=1, FQ 三BC 二6,在 RtAPFQ 中,-(3)如图3中,収AD 中点G,连接GQ,・・・PF 〃GQ,【点评】本题考查三角形相似综合题、平行线的性质、勾股定理、相似三角形的判定和性质、 解题的关键是学会添加常用辅助线,构造特殊三角形以及相似三角形解决问题,属于中考压 轴题.14. 如图,己知AABC 中,点D 、E 分别在边AB 和AC 上,DE 〃BC,点F 是DE 延长线 上的点,联结FC,若需岭,求譽的值.【分析】由平行线分线段成比例定理和已知条件得出益诗,证出AB 〃CF,再由平行线 分线段成比例定理和比例的性质即可得出结果.【解答】解:・・・DE 〃BC,.AD_AE••而冠,v .. AD.DE ・ BD ~EF ,.AE _ DE••丽肓,・・・AB 〃CF,.AD _AE ,,FC = EC ,..AE _2 ・ AC_3'・坦二-2 ••EC—严,供2. FC【点评】本题考查了平行线分线段成比例定理以及逆定理;熟练掌握平行线分线段成比例定 理,证明AB 〃CF 是解决问题的关键.AE DE15.如图,己知AD〃BE〃CF,它们依次交直线h、【2于点A、B、C和点D、E、F,詬毛AC=14;(1)求AB、BC的长;(2)如果AD二7, CF二14,求BE 的长.【分析】(1)由平行线分线段成比例定理和比例的性质得出器諾,即可求出AB的长,AU I得出BC的长;(2)过点A作AG〃DF交BE于点H,交CF于点G,得出AD=HE=GF=7,由平行线分线段成比例定理得出比例式求出BH,即可得出结果.【解答】解:(1)・・・AD〃BE〃CF,.AB DE 2■■ ■ ■叩 I IBC EF 5.AB_2••疋讦’TAO 14,・・・AB二4,.\BC=14-4=10;(2)过点A作AG〃DF交BE于点H,交CF于点G,如图所示:又・.・AD〃BE〃CF, AD=7,.\AD=HE=GF=7,・.・CF二14,.\CG=14-7=7,・.・BE〃CF,.BH AB 2■ I — I I I 1CG AC 7 •\BH=2, ABE=2+7=9.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例; 熟练学握平行线分线段成比例,通过作辅助线运用平行线分线段成比例求出BH是解决问题的关键.16.如图,已知Z\ABC中,AB>AC, BC=6, BC边上的高AN=4.直角梯形DEFG的底EF在BC边上,EF二4,点D、G分另U在边AB、AC上,且DG〃EF, GF丄EF,垂足为F.设GF的2为x,直角梯形DEFG的面积为y,求y关于x的函数关系式,并写出函数的定义【分析】由平行线分线段成比例定理得出啟o洋,证出四边形GFMN为矩形,得出BC ACGF=MN=X,由平行线分线段成比例定理得出爭斗善,得出辱与兰,因此DG=6 ■寻x,Akz AW 0 4 Z即可得出结果.【解答】解:・・・DG〃EF,・・・DG〃BC,.DG AG•'BC 二AC'VGF丄EF, AN1BC,四边形DEFG为直角梯形,・・・四边形GFMN为矩形,・・・GF二MN二x, ・.・ DG〃BC,.AG _ AM _糾 - GF _ 4 - x A TTF AN = 4 域.3解得:DG=6 - -^-x,即y关于x的函数关系式为:y ------- X2+5X (0<X<4).【点评】本题考查了平行线分线段成比例定理、直角梯形面积的计算、矩形的判定与性质; 本题难度适中,由平行线分线段成比例定理得出比例式是解决问题的关键.17.如图,在AABC 中,DE〃BC, AABC 的高AM 交DE 于点N, BC=15, AM=10, DE=MN, 求MN的长.【分析】设MN二x,贝IJ AN=10-x,由平行线分线段成比例定理得出比例式,即可得出MN 的长.【解答】解:设MN二x,则AN=10・x,•・• DE//BC,.AN.DE** AM =BC,即MN的长为6.【点评】本题主要考查了平行线分线段成比例的性质;熟练学握平行线分线段成比例定理是解决问题的关键.1如图,延长AABC的边BC到D,使CD=BC.取AB的中点F,连接FD交AC于点E.求EC:AC的值.I 1 9【分析】取BC 中点G,则CG=^BC,连接GF,得出FG 〃AC, FG=^AC,证出EC=^-FG,乙 Z J进而得出答案.【解答】解:取BC'|>点G,则CG=yBC,连接GF,如图所示: 又TF 为AB 屮点, ・・・FG 〃AC,且FG 」"AC, 2・・・EC 〃FG,.EC_DC,,FG _=DG ,VCG=yBC, DC=BC设 CG=k,那么 DC=BC=2k, DG=3k •••FG 承 C・•・ EC#AC ,【点评】此题主要考查了平行线分线段成比例定理;根据已知得出正确辅助线是解题关键. 19. 己知:Z1=Z2, CD 二DE, EF 〃AB,求证:EF=AC.DAEC : AC=1:3.D【解答】证明:过点D 作DM 丄AB 于M,作DN 丄AC 于N, VZ1 = Z2, •••DM 二 DN,•:S AA BDI ACD 二AB: AC,*•*S A ABD- S MCD =BD : CD, .AB_BD ** A F CD '・.・EF 〃AB,.AB_BD••沪莎.AC_EF_AB ••而莅贡,XVCD=DE,【点评】此题考查平行线分线段成比例的性质及角平分线的性质,难度不大. 20. 如图,在AABC 中,点D 是边AB 的四等分点,DE 〃AC, DF 〃BC, AC=8, BC=12, 求四边形DECF 的周长.【分析】根据EF 〃AB 得 AB = BD EF"DE ;根据角平分线的性质有 AB = BD AC^CD由ED=CD 得证.C•\EF=AC.【分析】根据平行四边形的判定得出四边形DFCE是平行四边形,证△ ADF-AABC,得出醫备詈斗,代入求出DF、AE即可求出答案.【解答】解:・・・DE〃AC, DF〃BC,・・・四边形DFCE是平行四边形,・・・DE=FC, DF=EC•・・DF〃BC,AAADF^AABC,.DF = AF = AD=1,,BC=AC=AB~7,VAC=8, BC=12,・・・AF=2, DF=3FC=AC - AF=8 - 2=6,・・・DE=FC=6, DF=EC=3・•・四边形DECF 的周长是DF+CF+CE+DE二3+6+3+6二18.答:四边形DECF的周长是18.【点评】本题考查的知识点是平行四边形的性质和判定和相似三角形的性质和判定,关键是求出DE二CF, DF=CE,主要考查学生运用性质进行推理和计算的能力.21.如图,AB〃CD、AD〃CE, F、G分别是AC和FD的屮点,过G的直线依次交AB、AD、CD、CE 于点M、N、P、Q,求证:MN+PQ=2PN.3【分析】根据已知的平行线,可以通过延长己知线段构造平行四边形.根c D据平行四边形的性质得到比例线段,再根据等式的性质即可得出等量关系.【解答】证明:延长BA、EC,设交点为6则四边形OADC为平行四边形,TF是AC的屮点,・・・DF的延长线必过0点,且畀丄.UG □.MN_AN••丽VAD//CE,• PQ」Q••pN"Dir■ MN PQ 二AN CQ 二AN+CQ •.丽百T而DN二DNV..DN=DG_^1• OG T OG一3’•\0Q=3DN..\CQ=OQ - 0C=3DN - 0C=3DN - AD, AN=AD - DN.•••AN+CQ 二2DN.AN+CQ c【点评】综合运用了平行四边形的性质和平行线分线段成比例泄理.即MN+PQ=2PN.22. 如图,AABC 的顶点A 是线段PQ 的中点,PQ 〃BC,连接PC 、QB,分别交AB 、AC【解答】解:・・・PQ 〃BC,.PA^AM AQ ^AN=MB ,BC・・・MN 〃BC,.AN 二惭二 MN=1 ** AC _AB =BC _T.処4••颤 F'.AP_AM_1旷丄 ,,BC"BM"2,1 2 BC_2?VAP=AQ,・・・PQ=3.【点评】此题考查了平行线段成比例,关键是根据平行线等分线段定理进行解答. 23. 如图,点D 是等边△ ABC 中BC 边上一点,过点D 分别作DE 〃AB, DF 〃AC,交AC, AB 于E, F,连接BE, CF,分别交DF, DE 于点N, M,连接MN.试判断ADMN 的形状,并说明理市.B D C【分析】根据平行线分线段成比例定理,得到罟,证明MN〃BC,证明结论.Mr D N【解答】解:厶。
苏科版九年级下册数学第6章 图形的相似 含答案(高分练习)
苏科版九年级下册数学第6章图形的相似含答案一、单选题(共15题,共计45分)1、如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③,④,⑤,使△ADE与△ACB一定相似的有()A.①②④B.②④⑤C.①②③④D.①②③⑤2、如图,已知第一象限内的点A在反比例函数 y=的图象上,第二象限内的点B在反比例函数 y =的图象上,且OA⊥OB,tanA=,则k的值为A.-3B.-C.-6D.-2= 3、如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数y1=﹣的图象经过点B,则m的值是的图象经过点A,反比例函数y2()A.m=3B.C.D.4、如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=4,CE= ,则△ABC的面积为()A.8B.15C.9D.125、如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD 上滑动,当DM为时,△ABE与以D、M、N为顶点的三角形相似.()A. B. C. 或 D. 或6、下列命题中,是真命题的是()A.三点确定一个圆B.有一个角是直角的四边形是矩形C.菱形的对角线互相平分且相等D.相似三角形的对应角相等、对应边成比例7、下列生活中的现象,属于相似变换的是()A.抽屉的拉开B.汽车刮雨器的运动C.坐在秋千上人的运动D.投影片的文字经投影变换到屏幕8、已知,则的值为()A. B. C. D.9、下列说法正确的是( )A.小红小学毕业时的照片和初中毕业时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗的五角星都是相似的10、两个相似三角形面积比是,其中一个三角形的周长为18,则另一个三角形的周长是()A.12B.12或24C.27D.12或2711、如图,过菱形ABCD的顶点C的直线与AB的延长线交于点E,与AD的延长线交于点F,若菱形的边长为x,BE=a,DF=b,则a,b,x满足的关系是()A.2x=a+bB.x 2=a•bC.x(a+b)=a•bD.2x 2=a 2+b 212、已知,则的第四比例项是()A.5cmB. cmC. cmD. cm13、如图,在中,是边的中点,交对角线于点,若,则等于()A. B. C. D..14、如图,Rt△ABC中,∠C=90°,AC=3,BC=4,点P为AB上的一个动点,过点P画PD⊥AC于点D,PE⊥BC于点E,当点P由A向B移动时,四边形CDPE 周长的变化情况是()A.逐渐变小B.逐渐变大C.先变大后变小D.不变15、如图,DE∥BC,且AD=4,DB=2,DE=3,则BC的长为()A. B. C. D.8二、填空题(共10题,共计30分)16、如图,在△ABC中,D为AB边上的一点,要使△ABC~△AED成立,还需要添加一个条件为________.17、如图,在△ABC中,D、E分别是边AB、AC上的点,且DE∥BC,若△ADE与△ABC的周长之比为2:3,AD=4,则DB=________。
(黄金题型)苏科版九年级下册数学第6章 图形的相似含答案
苏科版九年级下册数学第6章 图形的相似含答案一、单选题(共15题,共计45分)1、如图,在△ABC 中,点D 在AB 上,在下列四个条件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC 2=AD•AB;④AB•CD=AD•CB,能满足△ADC 与△ACB 相似的条件是( )A.①、②、③B.①、③、④C.②、③、④D.①、②、④2、如图,△ABC 中,DE ∥BC , 则下列等式中不成立的是( )A. B. C. D.3、下列各组线段中,不成比例的是( )A.4cm ,10cm ,6cm ,8cmB.12cm ,4cm ,6cm ,8cmC.33cm ,11cm ,22cm ,66cmD.2cm ,4cm ,4cm ,8cm4、如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( )A.2:5B.2:3C.3:5D.3:25、若将一个正方形的各边长扩大为原来的4倍,则这个正方形的面积扩大为原来的( )A.16倍B.8倍C.4倍D.2倍6、如图,已知DE∥BC,CD和BE相交于点O,S△DOE :S△COB=4:9,则AE:EC为()A.2:1B.2:3C.4:9D.5:47、如图,在△ABC中,,,则的值为 ( )A. B. C. D.8、如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中:①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD•AE=EF•CG;一定正确的结论有()A.1个B.2个C.3个D.4个9、如图,在△ABC中,D是边AC上一点,连BD,给出下列条件:①∠ABD=∠ACB;②AB2=AD•AC;③AD•BC=AB•BD;④AB•BC=AC•BD.其中单独能够判定△ABC∽△ADB的个数是()A.①②B.①②③C.①②④D.①②③④10、下列各组中的四条线段成比例的是()A.a=1,b=3,c=2,d=4B.a=4,b=6,c=5,d=10C.a=2,b=4,c=3,d=6 D.a=2,b=3,c=4,d=511、下列四组图形中,不是相似图形的是()A. B. C. D.12、如图,CD是Rt△ABC斜边AB上的高,CD=6,BD=4,则AB的长为()A.10B.11C.12D.1313、如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形,并把△ABC的边长放大到原来的2倍,记所得的像是△A′B′C.设点B的对应点B′的横坐标是a,则点B的横坐标是( )A. B. C. D.14、把边长分别为1和2的两个正方形按如图的方式放置.则图中阴影部分的面积为()A. B. C. D.15、在△ABC中,DE∥BC,AE:EC=2:3,则S△ADE :S四边形BCED的值为()A.4:9B.4:21C.4:25D.4:5二、填空题(共10题,共计30分)16、如图,在矩形中,,,以点为圆心,为半径作圆与的延长线交于点,连接,则阴影部分的面积是________ .17、如图,为等边三角形,点,分别在,上,将沿折叠,使点落在边上的点处,连接,,若,则________.(结果用含的代数式表示)18、Rt△ABC中,∠ACB=90°,AC=20,BC=10,D、E分别为边AB、CA上两动点,则CD+DE的最小值为________.19、已知线段a,b,c,d成比例线段,其中a=3cm,b=4cm,c=6cm,则d=________cm;20、如果,那么的值是________21、如图,已知,第一象限内的点A在反比例函数y=的图象上,第四象限内的点B在反比例函数y=的图象上.且OA⊥OB,∠OAB=60°,则k的值为________.22、以下四个命题:①如果三角形一边的中点到其他两边距离相等,那么这个三角形一定是等腰三角形:②两条对角线互相垂直且相等的四边形是正方形:③一组数据2,4,6.4的方差是2;④△OAB与△OCD是以O为位似中心的位似图形,且位似比为1:4,已知∠OCD=90°,OC=CD.点A、C在第一象限.若点D坐标为(2, 0),则点A坐标为(,),其中正确命题有________ (填正确命题的序号即可)23、已知△ABC~△DEF,AB:DE=3:5,△ABC的面积为9,则△DEF的面积为________.24、如图,在等腰Rt△ABC中,AC=BC=6 ,∠EDF的顶点D是AB的中点,且∠EDF=45°,现将∠EDF绕点D旋转一周,在旋转过程中,当∠EDF的两边DE、DF分别交直线AC于点G、H,把△DGH沿DH折叠,点G落在点M处,连接AM,若=,则AH的长为________.25、数3和12的比例中项是________.三、解答题(共5题,共计25分)26、已知≠0,求的值.27、如图已知:,求证:.28、如图,在正方形ABCD中,E为BC的中点,F是DC上的点,且DF=3FC,试说明:△ABE∽△ECF.29、一个三角形三边长分别为5cm,8cm,12cm,另一个与它相似的三角形的最长边为4.8cm,求另外两边长.30、如图,在平面直角坐标系中,点A的坐标为(0,2),点P(t,0)在x轴上,B 是线段PA的中点.将线段PB绕着点P顺时针方向旋转900,得到线段PC,连结OB、BC.(1)判断PBC的形状,并简要说明理由;(2)当时,试问:以P、O、B、C为顶点的四边形能否为平行四边形?若能,求出相应的t 的值?若不能,请说明理由;(3)当t为何值时,AOP与APC相似?参考答案一、单选题(共15题,共计45分)2、B3、A4、B5、A6、A7、D8、D9、A10、C11、D12、D13、D14、A15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、三、解答题(共5题,共计25分)26、27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章《图形的相似》(探索三角形相似的条件)
一.选择题
1.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()
A.B. C.D.
2.如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()
A.0个B.1个C.2个D.3个
3.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有()
A.1个B.2个C.3个D.4个
4.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()
A.B.C.D.
5.如图所示,在▱ABCD中,BE交AC,CD于G,F,交AD的延长线于E,则图中的相似三角形有()
A.3对B.4对C.5对D.6对
6.如图,正方形ABCD的边长为2,BE=CE,MN=1,线段MN的两端点在CD、AD上滑动,当DM为()时,△ABE与以D、M、N为顶点的三角形相似.
A.B.C.或D.或
二.填空题(共6小题)
7.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)
8.如图,平面直角坐标系中,已知点A(4,0)和点B(0,3),点C是AB的中点,点P在折线AOB 上,直线CP截△AOB,所得的三角形与△AOB相似,那么点
P的坐标是.
9.如图,在▱ABCD中,F是BC上的点,直线DF与AB的延长线相交于点E,与AC相交于点M,BP ∥DF,且与AD相交于点P,与AC相交于点N,则图中的相似三角形有对.
10.将两块全等的三角板如图放置,点O为AB中点,AB=A′B′=10,BC=B′C′=6,现将三角板A′B′C′绕点O旋转,B′C′、A′B′与边AC分别交于点M、N,当CM=时,△OMN与△BCO相似.
11.如图,在△ABC中,D、E分别是AB、AC边上的点(DE不平行于BC),当时,△AED与△ABC相似.
12.在边长为2cm的正方形ABCD中,动点E、F分别从D、C两点同时出发,都以1cm/s的速度在射线DC、CB上移动.连接AE和DF交于点P,点Q为AD的中点.若以A、P、Q为顶点的三角形与以P、D、C为顶点的三角形相似,则运动时间t为秒.
三.解答题(共16小题)
13.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断AD2与AC•CD的大小关系;
(2)求∠ABD的度数.
14.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.
(1)求证:△ABE∽△DEF;
(2)若正方形的边长为4,求BG的长.
15.如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.
(1)求证:AB=BG;
(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.
16.在矩形ABCD中,点E是AD的中点,BE垂直AC交AC于点F,求证:△DEF∽△EBD.
17.如图,在△ABC中,∠BAC=90°,M是BC的中点,过点A作AM的垂线,交CB的延长线于点D.求证:△DBA∽△DAC.
18.将两块完全相同的等腰直角三角形摆放成如图的样子,假设图形中的所有点、线都在同一平面内,图中有相似(不包括全等)三角形吗?如果有,请写出其中的一对,并给予说明其为什么相似?
19.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.
(1)当t为何值时,AD=AB,并求出此时DE的长度;
(2)当△DEG与△ACB相似时,求t的值.
20.如图,在△ABC中,AD、BE分别是BC、AC边上的高.求证:△DCE∽△ACB.
21.如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.
(1)求证:△ABD∽△DCE;
(2)当△ADE是等腰三角形时,求AE的长.
22.如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q 从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?
23.如图,四边形ABCD和ACED都是平行四边形,B,C,E在一条直线上,点R为DE的中点,BR分别交AC,CD于点P,Q.
(1)则图中相似三角形(相似比为1除外)共有对;
(2)求线段BP:PQ:QR,并说明理由.
24.如图,在正方形ABCD中,E为BC上任意一点(与B、C不重合)∠AEF=90°.观察图形:
(1)△ABE与△ECF是否相似?并证明你的结论.
(2)若E为BC的中点,连结AF,图中有哪些相似三角形?并说明理由.
25.如图,在Rt△ACB中,AC=8m,BC=6m,点P、Q同时由C、B两点出发分别沿CA、BC向点A、C 匀速移动,它们的速度分别是2米/秒、1米/秒,问几秒后△PCQ与△ACB相似?
26.如图,巳知AB丄BD,CD丄BD.
(1)若AB=9,CD=4,BD=10,请问在BD上是否存在P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为顶点的三角形相似?若存在,求BP的长;若不存在.请说明理由;
(2)若AB=9,CD=4,BD=12,请问在BD上存在多少个P点,使以P、A、B三点为顶点的三角形与以P、C、D三点为頂点的三角形相似?并求BP的长.
27.如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发,运动时间为t(s).
(1)当t为何值时,△APQ与△AOB相似?
(2)当t为何值时,△APQ的面积为8cm2?
28.如图①,△ABC中,∠ACB=90°,∠ABC=α,将△ABC绕点A顺时针旋转得到△AB′C′,设旋转的角度是β.
(1)如图②,当β=°(用含α的代数式表示)时,点B′恰好落在CA的延长线上;
(2)如图③,连接BB′、CC′,CC′的延长线交斜边AB于点E,交BB′于点F.请写出图中两对相似三角形,(不含全等三角形),并选一对证明.。