2014黔西南中考数学试卷

合集下载

贵州省黔东南州2014年中考数学真题试题(解析版)

贵州省黔东南州2014年中考数学真题试题(解析版)

贵州省黔东南州2014年中考数学真题试题一、选择题:每个小题4分,10个小题共40分1.(4分)(2014年贵州黔东南)=()A. 3 B.﹣3 C.D.﹣考点:绝对值.分析:按照绝对值的性质进行求解.解答:解:根据负数的绝对值是它的相反数,得:|﹣|=.故选C.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)(2014年贵州黔东南)下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.(a+b)2=a2+b2D.+=考点:完全平方公式;实数的运算;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式不能合并,错误.解答:解:A、原式=a5,错误;B、原式=a6,正确;C、原式=a2+b2+2ab,错误;D、原式不能合并,错误,故选B点评:此题考查了完全平方公式,实数的运算,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.3.(4分)(2014年贵州黔东南)如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD=BC B.AB∥DC,AD∥BC C.AB=DC,AD=BC D. OA=OC,OB=OD考点:平行四边形的判定.分析:根据平行四边形的判定定理分别进行分析即可.解答:解:A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故选:A.点评:此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.(4分)(2014年贵州黔东南)掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上考点:随机事件.分析:根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.解答:解:A、是随机事件,故A正确;B、不是必然事件,故B错误;C、不是必然事件,故C错误;D、是随机事件,故D错误;故选:A.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)(2014年贵州黔东南)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5 B. 1.5 C.D. 1考点:旋转的性质.分析:解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC﹣BD计算即可得解.解答:解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选D.点评:本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.6.(4分)(2014年贵州黔东南)如图,已知⊙O的直径CD垂直于弦AB,∠ACD=22.5°,若CD=6cm,则AB 的长为()A.4cm B.3cm C.2cm D. 2cm考点:圆周角定理;等腰直角三角形;垂径定理.专题:计算题.分析:连结OA,根据圆周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断△OAE为等腰直角三角形,所以AE=OA=,然后利用AB=2AE进行计算.解答:解:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴AE=,∴AB=2AE=3(cm).故选B.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.7.(4分)(2014年贵州黔东南)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012 B.2013 C.2014 D. 2015考点:抛物线与x轴的交点.分析:把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.解答:解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得 m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.点评:本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.8.(4分)(2014年贵州黔东南)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x 轴于点C,则△ABC的面积为()A. 1 B. 2 C.D.考点:反比例函数系数k的几何意义.专题:计算题.分析:由于正比例函数y=x与反比例函数y=的图象相交于A、B两点,则点A与点B关于原点对称,所以S△AOC=S△BOC,根据反比例函数比例系数k的几何意义得到S△BOC=,所以△ABC的面积为1.解答:解:∵正比例函数y=x与反比例函数y=的图象相交于A、B两点,∴点A与点B关于原点对称,∴S△AOC=S△BOC,∵BC⊥x轴,∴△ABC的面积=2S△BOC=2××|1|=1.故选A.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9.(4分)(2014年贵州黔东南)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a+b+c >0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c <0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D选项正确;故选B.点评:本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.10.(4分)(2014年贵州黔东南)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C 与点A重合,则折痕EF的长为()A. 6 B.12 C.2 D. 4考点:翻折变换(折叠问题).分析:设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.解答:解:设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF===4.故选D.点评:本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.二、填空题:每个小题4分,6个小题共24分11.(4分)(2014年贵州黔东南)cos60°=.考点:特殊角的三角函数值.分析:根据特殊角的三角函数值计算.解答:解:cos60°=.点评:本题考查特殊角三角函数值的计算,特殊角三角函数值计算在中考中经常出现,要掌握特殊角度的三角函数值.12.(4分)(2014年贵州黔东南)函数y=自变量x的取值范围是x>1 .考点:函数自变量的取值范围.分析:根据二次根式被开方数非负、分母不等于0列式计算即可得解.解答:解:有意义的条件是x﹣1≥0,解得x≥1;又分母不为0,x﹣1≠0,解得x≠1.∴x>1.故答案为:x>1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(4分)(2014年贵州黔东南)因式分解:x3﹣5x2+6x= x(x﹣3)(x﹣2).考点:因式分解-十字相乘法等;因式分解-提公因式法.分析:先提取公因式x,再利用十字相乘法分解因式.解答:解:x3﹣5x2+6x=x(x2﹣5x+6)=x(x﹣3)(x﹣2).故答案是:x(x﹣3)(x﹣2).点评:本题考查了用提公因式法和十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(4分)(2014年贵州黔东南)若一元二次方程x2﹣x﹣1=0的两根分别为x1、x2,则+= ﹣1 .考点:根与系数的关系.分析:欲求+的值,先把此代数式变形为两根之积或两根之和的形式,再代入数值计算即可.解答:解:∵一元二次方程x2﹣x﹣1=0的两根分别为x1、x2,∴x1+x2=1,x1x2=﹣1,∴+===﹣1.故答案为﹣1.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.15.(4分)(2014年贵州黔东南)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为 5 .考点:由三视图判断几何体.分析:易得此几何体有三行,三列,判断出各行各列最少有几个正方体组成即可.解答:解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故答案为5.点评:本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最少正方体的个数.16.(4分)(2014年贵州黔东南)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为.考点:轴对称-最短路线问题;一次函数图象上点的坐标特征.分析:利用一次函数图象上点的坐标性质得出OA′=1,进而利用勾股定理得出即可.解答:解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时PA+PB最小,由题意可得出:OA′=1,BO=2,PA′=PA,∴PA+PB=A′B==.故答案为:.点评:此题主要考查了利用轴对称求最短路线以及一次函数图象上点的特征等知识,得出P点位置是解题关键.三、解答题:8个小题,共86分17.(8分)(2014年贵州黔东南)计算:2tan30°﹣|1﹣|+(2014﹣)0+.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=2×﹣(﹣1)+1+=﹣+1+1+=2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、绝对值、特殊角的三角函数值、二次根式化简等考点的运算.18.(8分)(2014年贵州黔东南)先化简,再求值:÷﹣,其中x=﹣4.考点:分式的化简求值.专题:计算题.分析:原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•﹣=﹣=,当x=﹣4时,原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(10分)(2014年贵州黔东南)解不等式组,并写出它的非负整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.分析:分别求出各不等式的解集,再求出其公共解集,找出符合条件的x的非负整数解即可.解答:解:,由①得,x>﹣,由②得,x<,故此不等式组的解集为:﹣<x<,它的非负整数解为:0,1,2,3.点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.20.(12分)(2014年贵州黔东南)黔东南州某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:学习时间t(分钟)人数占女生人数百分比0≤t<30 4 20%30≤t<60 m 15%60≤t<90 5 25%90≤t<120 6 n120≤t<150 2 10%根据图表解答下列问题:(1)在女生的频数分布表中,m= 3 ,n= 0.3 .(2)此次调查共抽取了多少名学生?(3)此次抽样中,学习时间的中位数在哪个时间段?(4)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?考点:频数(率)分布直方图;频数(率)分布表;中位数;列表法与树状图法.分析:(1)根据第一段中有4人,占20%,即可求得女生的总人数,然后根据频率的计算公式求得m、n的值;(2)把直方图中各组的人数相加就是男生的总人数,然后加上女生总人数即可;(3)求得每段中男女生的总数,然后根据中位数的定义即可判断;(4)利用列举法即可求解.解答:解:(1)女生的总数是:4÷20%=20(人),则m=20×15%=3(人),n==0.3;(2)男生的总人数是:6+5+12+4+3=30(人),则此次调查的总人数是:30+20=50(人);(3)在第一阶段的人数是:4+6=10(人),第二阶段的人数是:3+5=8(人),第三阶段的人数是:5+12=17(人),则中位数在的时间段是:60≤t<90;(4)如图所示:共有20种等可能的情况,则恰好抽到男女生各一名的概率是=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(12分)(2014年贵州黔东南)已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.(1)求证:△ACB∽△CDB;(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.考点:切线的性质;扇形面积的计算;相似三角形的判定与性质.分析:(1)由CP是⊙O的切线,得出∠BCD=∠BAC,AB是直径,得出∠ACB=90°,所以∠ACB=∠CDB=90°,得出结论△ACB∽△CDB;(2)求出△OCB是正三角形,阴影部分的面积=S扇形OCB﹣S△OCB=π﹣.解答:(1)证明:∵直线CP是⊙O的切线,∴∠BCD=∠BAC,∵AB是直径,∴∠ACB=90°,又∵BD⊥CP∴∠CDB=90°,∴∠ACB=∠CDB=90°∴△ACB∽△CDB;(2)解:如图,连接OC,∵直线CP是⊙O的切线,∠BCP=30°,∴∠COB=2∠BCP=60°,∴△OCB是正三角形,∵⊙O的半径为1,∴S△OCB=,S扇形OCB==π,∴阴影部分的面积=S扇形OCB﹣S△OCB=π﹣.点评:本题主要考查了切线的性质及扇形面积,三角形的面积,解题的关键是利用弦切角找角的关系.22.(10分)(2014年贵州黔东南)黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-仰角俯角问题.分析:过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25m.由小明站在B点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,继而得出得出AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m.在Rt△CEN中,由tan∠ECN==,代入CN、EN解方程求出x的值,继而可求得旗杆的高EF.解答:解:过点A作AM⊥EF于M,过点C作CN⊥EF于N,∴MN=0.25m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m,∵∠ECN=30°,∴tan∠ECN===,解得:x≈8.8,则EF=EM+MF≈8.8+1.5=10.3(m).答:旗杆的高EF为10.3m.点评:本题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.23.(12分)(2014年贵州黔东南)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组解决问题;(2)分情况:不大于20件;大于20件;分别列出函数关系式即可;(3)设购进玩具x件(x>20),分别表示出甲种和乙种玩具消费,建立不等式解决问题.解答:解:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,由题意得,解得,答:件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x﹣20)×30×0.7=21x+180;(3)设购进玩具x件(x>20),则乙种玩具消费27x元;当27x=21x+180,则x=30所以当购进玩具正好30件,选择购其中一种即可;当27x>21x+180,则x>30所以当购进玩具超过30件,选择购甲种玩具省钱;当27x<21x+180,则x<30所以当购进玩具少于30件,选择购乙种玩具省钱.点评:此题考查二元一次方程组,一次函数,一元一次不等式的运用,理解题意,正确劣势解决问题.24.(14分)(2014年贵州黔东南)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B (4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值,若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.考点:二次函数综合题.分析:(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC 的最大值.(3)根据直线AB的解析式,可求得直线AC的解析式y=﹣x+b,已知了点A的坐标,即可求得直线AC的解析式,联立抛物线的解析式,可求得C点的坐标;解答:解:(1)∵B(4,m)在直线线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,)、B(4,6)在抛物线y=ax2+bx﹣4上,∴,∵c=6,∴a=2,b=﹣8,∴y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n﹣)2+,∵PC>0,∴当n=时,线段PC最大且为.(3)设直线AC的解析式为y=﹣x+b,把A(,)代入得:=﹣+b,解得:b=3,∴直线AC解析式:y=﹣x+3,点C在抛物线上,设C(m,2m2﹣8m+6),代入y=﹣x+3得:2m2﹣8m+6=﹣m+3,整理得:2m2﹣7m+3=0,解得;m=3或m=,∴P(3,0)或P(,).点评:此题主要考查了二次函数解析式的确定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识;。

贵州省黔南州2014年中考数学真题试题(含解析)

贵州省黔南州2014年中考数学真题试题(含解析)

贵州省黔南州2014年中考数学真题试题一、单项选择题(每小题4分,共13小题,满分52分)1.(4分)(2014•黔南州)在﹣2,﹣3,0.1四个数中,最小的实数是()A.﹣3 B.﹣2 C.0D.1考点:实数大小比较分析:根据正数>0>负数,几个负数比较大小时,绝对值越大的负数越小解答即可.解答:解:∵﹣3<﹣2<0<1,∴最小的数是﹣3,故答案选:A.点评:本题主要考查了正、负数、0和负数间的大小比较.几个负数比较大小时,绝对值越大的负数越小.2.(4分)(2014•黔南州)计算(﹣1)2+20﹣|﹣3|的值等于()A.﹣1 B.0C.1D.5考点:实数的运算;零指数幂.分析:根据零指数幂、乘方、绝对值三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=1+1﹣3=﹣1,故选A.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、乘方、绝对值等考点的运算.3.(4分)(2014•黔南州)二元一次方程组的解是()A.B.C.D.考点:解二元一次方程组.专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①+②得:2x=2,即x=1,①﹣②得:2y=4,即y=2,则方程组的解为.故选B点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.(4分)(2014•黔南州)下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根考点:随机事件分析:根据必然事件的定义逐项进行分析即可做出判断,必然事件是一定会发生的事件.解答:解:A、抛掷一枚硬币四次,有两次正面朝上,随机事件,故本选项错误;B、打开电视频道,正在播放《十二在线》,随机事件,故本选项错误;C、射击运动员射击一次,命中十环,随机事件,故本选项错误;D、因为在方程2x2﹣2x﹣1=0中△=4﹣4×2×(﹣1)=12>0,故本选项正确.故选D.点评:解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)(2014•黔南州)下列计算错误的是()A.a•a2=a3B.a2b﹣ab2=ab(a﹣b)C.2m+3n=5mn D.(x2)3=x6考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-提公因式法.分析:根据合并同类项的法则,同底数幂的乘法,幂的乘方和提取公因式的知识求解即可求得答案.解答:解:A、a•a2=a3,故A选项正确;B、a2b﹣ab2=ab(a﹣b),故B选项正确;C、2m+3n不是同类项,故C选项错误;D、(x2)3=x6,故D选项正确.故选:C.点评:此题考查了合并同类项的法则,同底数幂的乘法,幂的乘方和提取公因式等知识,解题要注意细心.6.(4分)(2014•黔南州)下列图形中,∠2大于∠1的是()A.B.C.D.考点:平行四边形的性质;对顶角、邻补角;平行线的性质;三角形的外角性质.分析:根据平行线的性质以及平行四边形的性质,对顶角的性质、三角形的外角的性质即可作出判断.解答:解:A、∠1=∠2,故选项错误;B、根据三角形的外角的性质可得∠2>∠1,选项正确;C、根据平行四边形的对角相等,得:∠1=∠2,故选项错误;D、根据对顶角相等,则∠1=∠2,故选项错误;故选B.点评:本题考查了行线的性质以及平行四边形的性质,对顶角的性质、三角形的外角的性质,正确掌握性质定理是关键.7.(4分)(2014•黔南州)正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.考点:一次函数的图象;正比例函数的图象.分析:根据正比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.解答:解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.点评:此题考查一次函数,正比例函数中系数及常数项与图象位置之间关系.解题时需要“数形结合”的数学思想.8.(4分)(2014•黔南州)形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()A.B.C.D.考点:简单组合体的三视图分析:由实物结合它的俯视图,还原它的具体形状和位置,再判断主视图.解答:解:由实物结合它的俯视图可得该物体是由两个长方体木块一个横放一个竖放组合而成,由此得到它的主视图应为选项D.故选D.点评:本题考查了物体的三视图.在解题时要注意,看不见的线画成虚线.9.(4分)(2014•黔南州)下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x﹣2=0的根是x1=﹣1,x2=2C.的化简结果是D.a,b,c均为实数,若a>b,b>c,则a >c考点:二次根式有意义的条件;实数大小比较;分母有理化;解一元二次方程-因式分解法.分析:根据二次根式有意义,被开方数大于等于0,因式分解法解一元二次方程,分母有理化以及实数的大小比较对各选项分析判断利用排除法求解.解答:解:A、x<1,则x﹣1<0,无意义,故本选项错误;B、方程x2+x﹣2=0的根是x1=1,x2=﹣2,故本选项错误;C、的化简结果是,故本选项错误;D、a,b,c均为实数,若a>b,b>c,则a>c正确,故本选项正确.故选D.点评:本题考查了二次根式有意义的条件,实数的大小比较,分母有理化,以及因式分解法解一元二次方程,是基础题,熟记各概念以及解法是解题的关键.10.(4分)(2014•黔南州)货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.考点:由实际问题抽象出分式方程.专题:应用题;压轴题.分析:题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.解答:解:根据题意,得.故选C.点评:理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.11.(4分)(2014•黔南州)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.cm B.2cm C.3cm D.4cm考点:含30度角的直角三角形.分析:根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的记录相等得出ED=CE,即可得出CE的值.解答:解:∵ED⊥AB,∠A=30°,∴AE=2ED,∵AE=6cm,∴ED=3cm,∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm;故选C.点评:此题考查了含30°角的直角三角形,用到的知识点是在直角三角形中,30度所对的直角边等于斜边的一半和角平分线的基本性质,关键是求出ED=CE.12.(4分)(2014•黔南州)如图,圆锥的侧面积为15π,底面积半径为3,则该圆锥的高AO为()A.3B.4C.5D.15考点:圆锥的计算分析:要求圆锥的高,关键是求出圆锥的母线长,即圆锥侧面展开图中的扇形的半径.已知圆锥的底面半径就可求得底面圆的周长,即扇形的弧长,已知扇形的面积和弧长就可求出扇形的半径,即圆锥的高.解答:解:由题意知:展开图扇形的弧长是2×3π=6π,设母线长为L,则有×6πL=15π,解得:L=5,∵由于母线,高,底面半径正好组成直角三角形,∴在直角△AOC中高AO==4.故选B.点评:此题考查了圆锥体的侧面展开图的计算,揭示了平面图形与立体图形之间的关系,难度一般.13.(4分)(2014•黔南州)如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.A B=CD B.∠BAE=∠DCE C.E B=ED D.∠ABE一定等于30°考点:翻折变换(折叠问题).分析:根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.解答:解:∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A、B选项正确;在△AEB和△CED中,,∴△AEB≌△CED(AAS),∴BE=DE,故C正确;∵得不出∠ABE=∠EBD,∴∠ABE不一定等于30°,故D错误.故选:D.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.二、填空题(共6小题,每小题5分,满分30分)14.(5分)(2014•黔南州)在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是0.1考点:频数与频率分析:先用数据总数乘第五组的频率得出第五组的频数,再求出第六组的频数,然后根据频率=频数÷数据总数即可求解.解答:解:∵都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,∴第五组的频数为40×0.2=8,第六组的频数为40﹣(10+5+7+6+8)=4,∴第六组的频率是4÷40=0.1.故答案为0.1.点评:本题考查了频数与频率,用到的知识点:频数=数据总数×频率,频率=频数÷数据总数,各组频数之和等于数据总数.15.(5分)(2014•黔南州)如图,在△ABC中,点D、E分别在AB、AC上,DE∥BC.若AD=4,DB=2,则的值为.考点:相似三角形的判定与性质.分析:由AD=3,DB=2,即可求得AB的长,又由DE∥BC,根据平行线分线段成比例定理,可得DE:BC=AD:AB,则可求得答案.解答:解:∵AD=4,DB=2,∴AB=AD+BD=4+2=6,∵DE∥BC,△ADE∽△ABC,∴=,故答案为:.点评:此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.16.(5分)(2014•黔南州)如图,正比例函数y1=k1x与反比例函数y2=的图象交于A、B 两点,根据图象可直接写出当y1>y2时,x的取值范围是﹣1<x<0或x>1 .考点:反比例函数与一次函数的交点问题专题:计算题.分析:先根据正比例函数图象和反比例函数图象的性质得到点A与点B关于原点对称,则B 点坐标为(﹣1,﹣2),然后观察函数图象,当﹣1<x<0或x>1时,正比例函数图象都在反比例函数图象上方,即有y1>y2.解答:解:∵正比例函数y1=k1x与反比例函数y2=的图象交于A、B两点,∴点A与点B关于原点对称,∴B点坐标为(﹣1,﹣2),当﹣1<x<0或x>1时,y1>y2.故答案为:﹣1<x<0或x>1.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.17.(5分)(2014•黔南州)实数a在数轴上的位置如图,化简+a= 1 .考点:二次根式的性质与化简;实数与数轴.分析:根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.解答:解:+a=1﹣a+a=1,故答案为:1.点评:本题考查了实数的性质与化简,=a(a≥0)是解题关键.18.(5分)(2014•黔南州)已知==3,==10,==15,…观察以上计算过程,寻找规律计算= 56 .考点:规律型:数字的变化类.分析:对于C a b(b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.解答:解:∵==3,==10,==15,∴==56.故答案为56.点评:此题主要考查了数字的变化规律,利用已知得出分子与分母之间的规律是解题关键.19.(5分)(2014•黔南州)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.考点:勾股定理;圆周角定理;锐角三角函数的定义.分析:连接CD,易得CD是直径,在直角△OCD中运用勾股定理求出OD的长,得出cos∠ODC 的值,又由圆周角定理,即可求得cos∠OBC的值.解答:解:连接CD,∵∠COD=90°,∴CD是直径,即CD=10,∵点C(0,6),∴OC=6,∴OD==8,∴cos∠ODC===,∵∠OBC=∠ODC,∴cos∠OBC=.故答案为.点评:此题考查了圆周角定理,勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意掌握转化思想的应用.三、解答题(共7小题,满分68分)20.(10分)(2014•黔南州)(1)解不等式组,并把它的解集在数轴上表示出来.(2)先阅读以下材料,然后解答问题,分解因式.mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y);也可以mx+nx+my+ny=(mx+my)+(nx+ny)=m(x+y)+n(x+y)=(m+n)(x+y).以上分解因式的方法称为分组分解法,请用分组分解法分解因式:a3﹣b3+a2b﹣ab2.考点:解一元一次不等式组;因式分解-分组分解法;在数轴上表示不等式的解集.专题:阅读型.分析:(1)先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可;(2)式子变形成a3+a2b﹣(b3+ab2),然后利用提公因式法分解,然后利用公式法即可分解.解答:解:(1),解①得:x>1,解②得:x<3,,不等式组的解集是:1<x<3;(2)a3﹣b3+a2b﹣ab2=a3+a2b﹣(b3+ab2)=a2(a+b)﹣b2(a+b)=(a+b)(a2﹣b2)=(a+b)2(a﹣b).点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.21.(8分)(2014•黔南州)如下是九年级某班学生适应性考试文综成绩(依次A、B、C、D 等级划分,且A等为成绩最好)的条形统计图和扇形统计图,请根据图中的信息回答下列问题:(1)补全条形统计图;(2)求C等所对应的扇形统计图的圆心角的度数;(3)求该班学生共有多少人?(4)如果文综成绩是B等及B等以上的学生才能报考示范性高中,请你用该班学生的情况估计该校九年级400名学生中,有多少名学生有资格报考示范性高中?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)根据A等级的有15人,占25%,据此即可求得总人数,然后求得B等级的人数,即可作出直方图;(2)利用360°乘以对应的百分比即可求解;(3)根据(1)的计算即可求解;(4)利用总人数400乘以对应的百分比即可求解.解答:解:(1)调查的总人数是:15÷25%=60(人),则B类的人数是:60×40%=24(人).;(2)C等所对应的扇形统计图的圆心角的度数是:360°×(1﹣25%﹣40%﹣5%)=108°;(3)该班学生共有60人;(4)400×(25%+40%)=260(人).点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2014•黔南州)如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?考点:列表法与树状图法;几何概率分析:(1)直接利用概率公式计算即可;(2)列表或树状图后利用概率公式求解即可.解答:解:(1)P(小鸟落在草坪上)==;(2)用树状图或列表格列出所有问题的可能的结果:A B CA (A,B)(A,C)B (B,A)(B,C)C (C,A)(C,B)由树状图(列表)可知,共有6种等可能结果,编号为A、B的2个小方格空地种植草坪有2种,所以P(编号为A、B的2个小方格空地种植草坪)==.点评:此题主要考查了概率的求法:概率=所求情况数与总情况数之比.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.使用树状图分析时,一定要做到不重不漏.23.(10分)(2014•黔南州)两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.考点:旋转的性质;全等三角形的判定与性质;矩形的性质;正方形的判定.分析:(1)由全等三角形的判定定理SAS证得:△AED≌△GCD(如图②);(2)通过判定四边形MHND四个角是90°,且邻边DN=NH来判定四边形MHND是正方形.解答:证明:(1)如图②,∵由题意知,AD=GD,ED=CD,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE,即∠ADE=∠GDC,在△AED与△GCD中,,∴△AED≌△GCD(SAS);(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.点评:本题考查旋转的性质,全等三角形的判定以及正方形的判定的方法.(旋转的性质:对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.正方形的判定的方法:两邻边相等的矩形是正方形.)24.(10分)(2014•黔南州)如图,AB是⊙O的直径,弦CD⊥A B于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.(1)求证:△ADF∽△AED;(2)求FG的长;(3)求证:tan∠E=.考点:相似三角形的判定与性质;垂径定理;圆周角定理;解直角三角形.分析:①由AB是⊙O的直径,弦CD⊥AB,根据垂径定理可得:弧AD=弧AC,DG=CG,继而证得△ADF∽△AED;②由=,CF=2,可求得DF的长,继而求得CG=DG=4,则可求得FG=2;③由勾股定理可求得AG的长,即可求得t an∠ADF的值,继而求得tan∠E=.解答:解:①∵AB是⊙O的直径,弦CD⊥AB,∴DG=CG,∴弧AD=弧AC,∠ADF=∠AED,∵∠FAD=∠DAE(公共角),∴△ADF∽△AED;②∵=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;③∵AF=3,FG=2,③∵AF=3,FG=2,∴AG=,tan∠E=.点评:此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、勾股定理以及三角函数等知识.此题综合性较强,难度适中,注意掌握数形结合思想的应用.25.(10分)(2014•黔南州)已知某厂现有A种金属70吨,B种金属52吨,现计划用这两种金属生产M、N两种型号的合金产品共80000套,已知做一套M型号的合金产品需要A种金属0.6kg,B种金属0.9kg,可获利润45元;做一套N型号的合金产品需要A种金属1.1kg,B种金属0.4kg,可获利润50元.若设生产N种型号的合金产品大数为x,用这批金属生产这两种型号的合金产品所获总利润为y元.(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)在生产这批合金产品时,N型号的合金产品应生产多少套,该厂所获利润最大?最大利润是多少?考点:一次函数的应用分析:(1)根据总利润等于M、N两种型号时装的利润之和列式整理即可,再根据M、N两种合金所用A、B两种金属不超过现有金属列出不等式组求解即可;(2)根据一次函数的增减性求出所获利润最大值即可.解答:解:(1)y=50x+45(8000﹣x)=5x+360000,由题意得,,解不等式①得,x≤44000,解不等式②得,x≥40000,所以,不等式组的解集是40000≤x≤44000,∴y与x的函数关系式是y=5x+360000(40000≤x≤44000);(2)∵k=5>0,∴y随x的增大而增大,∴当x=44000时,y最大=580000,即生产N型号的时装44000套时,该厂所获利润最大,最大利润是580000元.点评:本题考查了一次函数的应用,一元一次不等式组的应用,利用一次函数求最值时,关键是应用一次函数的性质:即由函数y随x的变化,结合自变量的取值范围确定最值.26.(12分)(2014•黔南州)如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y 轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.考点:二次函数综合题专题:压轴题.分析:(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A点坐标代入其中,即可求出此二次函数的解析式;(2)根据抛物线的解析式,易求得对称轴l的解析式及B、C的坐标,分别求出直线AB、BD、CE的解析式,再求出CE的长,与到抛物线的对称轴的距离相比较即可;(3)过P作y轴的平行线,交AC于Q;易求得直线AC的解析式,可设出P点的坐标,进而可表示出P、Q的纵坐标,也就得出了PQ的长;然后根据三角形面积的计算方法,可得出关于△PAC的面积与P点横坐标的函数关系式,根据所得函数的性质即可求出△PAC的最大面积及对应的P点坐标.解答:解:(1)设抛物线为y=a(x﹣4)2﹣1,∵抛物线经过点A(0,3),∴3=a(0﹣4)2﹣1,;∴抛物线为;(3分)(2)相交.证明:连接CE,则CE⊥BD,当时,x1=2,x2=6.A(0,3),B(2,0),C(6,0),对称轴x=4,∴OB=2,AB==,BC=4,∵AB⊥BD,∴∠OAB+∠OBA=90°,∠OBA+∠EBC=90°,∴△AOB∽△BEC,∴=,即=,解得CE=,∵>2,∴抛物线的对称轴l与⊙C相交.(7分)(3)如图,过点P作平行于y轴的直线交AC于点Q;可求出AC的解析式为;(8分)设P点的坐标为(m,),则Q点的坐标为(m,);∴PQ=﹣m+3﹣(m2﹣2m+3)=﹣m2+m.∵S△PAC=S△PAQ+S△PCQ=×(﹣m2+m)×6=﹣(m﹣3)2+;∴当m=3时,△PAC的面积最大为;此时,P点的坐标为(3,).(10分)点评:此题考查了二次函数解析式的确定、相似三角形的判定和性质、直线与圆的位置关系、图形面积的求法等知识.。

2014年贵州省黔西南州中考数学试卷(含答案和解析)

2014年贵州省黔西南州中考数学试卷(含答案和解析)

2014年贵州省黔西南州中考数学试卷一、选择题〔每题4分,共40分〕1.〔4分〕〔2014•黔西南州〕﹣的倒数是〔〕A.B.﹣2 C.2D.﹣2.〔4分〕〔2014•黔西南州〕不等式2x﹣4>0的解集为〔〕B.x>2 C.x>﹣2 D.x>8A.x >3.〔4分〕〔2014•黔西南州〕已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为〔〕A.21 B.20 C.19 D.184.〔4分〕〔2014•黔西南州〕在一个不透明的盒子中装有12个白球,假设干个黄球,它们除颜色不同外,其余均相同.假设从中随机摸出一个球是白球的概率是,则黄球的个数为〔〕A.18 B.20 C.24 D.285.〔4分〕〔2014•黔西南州〕如图,已知AB=AD,那么添加以下一个条件后,仍无法判定△ABC≌△ADC的是〔〕A.C B=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°6.〔4分〕〔2014•黔西南州〕已知两圆半径分别为3、5,圆心距为8,则这两圆的位置关系为〔〕A.外离B.内含C.相交D.外切7.〔4分〕〔2014•黔西南州〕如下图,是由5个相同的小正方体组合而成的几何体,它的左视图是〔〕A.B.C.D.A.B.C.D.9.〔4分〕〔2014•黔西南州〕已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b >的解集为〔〕A.x<﹣3 B.﹣3<x<0或x>1 C.x<﹣3或x>1 D.﹣3<x<110.〔4分〕〔2014•黔西南州〕甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y〔米〕与乙出发的时间t〔秒〕之间的关系如下图,给出以下结论:①a=8;②b=92;③c=123.其中正确的选项是〔〕A.①②③B.仅有①②C.仅有①③D.仅有②③二、填空题〔共10小题,每题3分,共30分〕11.〔3分〕〔2014•黔西南州〕当x=1时,代数式x2+1=_________.12.〔3分〕〔2014•黔西南州〕20140000用科学记数法表示〔保留3个有效数字〕为_________.13.〔3分〕〔2014•黔西南州〕已知甲组数据的平均数为甲,乙组数据的平均数为乙,且甲=乙,而甲组数据的方差为S2甲=1.25,乙组数据的方差为S2乙=3,则_________较稳定.14.〔3分〕〔2014•黔西南州〕点P〔2,3〕关于x轴的对称点的坐标为_________.16.〔3分〕〔2014•黔西南州〕四边形的内角和为_________.17.〔3分〕〔2014•黔西南州〕如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.假设∠1=35°,则∠2的度数为_________.18.〔3分〕〔2014•黔西南州〕如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC=_________.19.〔3分〕〔2014•黔西南州〕如图,将矩形纸片ABCD折叠,使边AB、CD均落在对角线BD上,得折痕BE、BF,则∠EBF=_________°.20.〔3分〕〔2014•黔西南州〕在平面直角坐标系中,对于平面内任一点〔m,n〕,规定以下两种变换:〔1〕f〔m,n〕=〔m,﹣n〕,如f〔2,1〕=〔2,﹣1〕;〔2〕g〔m,n〕=〔﹣m,﹣n〕,如g 〔2,1〕=〔﹣2,﹣1〕按照以上变换有:f[g〔3,4〕]=f〔﹣3,﹣4〕=〔﹣3,4〕,那么g[f〔﹣3,2〕]=_________.三、解答题〔共12分〕21.〔12分〕〔2014•黔西南州〕〔1〕计算:〔〕﹣2+〔π﹣2014〕0+sin60°+|﹣2|.(2)解方程:=.四、解答题〔共1小题,总分值12分〕22.〔12分〕〔2014•黔西南州〕如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.〔1〕求证:AC是⊙O的切线;〔2〕求由线段AC、AD与弧CD所围成的阴影部分的面积.〔结果保留π〕五、解答题〔共1小题,总分值14分〕23.〔14分〕〔2014•黔西南州〕我州实施新课程改革后,学生的自主字习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类,A:特别好;B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答以下问题:〔1〕本次调查中,一共调査了_________名同学,其中C类女生有_________名;〔2〕将下面的条形统计图补充完整;〔3〕为了共同进步,学校想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.六、解答题〔共14分〕24.〔14分〕〔2014•黔西南州〕为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见表:一户居民一个月用电量的范围电费价格〔单位:元/千瓦时〕不超过160千瓦时的部分x超过160千瓦时的部分x+0.15某居民五月份用电190千瓦时,缴纳电费90元.〔1〕求x和超出部分电费单价;〔2〕假设该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.25.〔12分〕〔2014•黔西南州〕已知点P〔x0,y0〕和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式d=计算.例如:求点P〔﹣2,1〕到直线y=x+1的距离.解:因为直线y=x+1可变形为x﹣y+1=0,其中k=1,b=1.所以点P〔﹣2,1〕到直线y=x+1的距离为d====.根据以上材料,求:〔1〕点P〔1,1〕到直线y=3x﹣2的距离,并说明点P与直线的位置关系;〔2〕点P〔2,﹣1〕到直线y=2x﹣1的距离;〔3〕已知直线y=﹣x+1与y=﹣x+3平行,求这两条直线的距离.26.〔16分〕〔2014•黔西南州〕如下图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A〔﹣3,0〕、B〔1,0〕、C〔0,3〕三点,其顶点为D,连接AD,点P是线段AD上一个动点〔不与A、D重合〕,过点P作y轴的垂线,垂足点为E,连接AE.〔1〕求抛物线的函数解析式,并写出顶点D的坐标;〔2〕如果P点的坐标为〔x,y〕,△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;〔3〕在〔2〕的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.2014年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题〔每题4分,共40分〕1.〔4分〕〔2014•黔西南州〕﹣的倒数是〔〕A.B.﹣2 C.2D.﹣考点:倒数.分析:根据倒数的定义:假设两个数的乘积是1,我们就称这两个数互为倒数可得答案.解答:解:﹣的倒数是﹣2.故选:B.点评:此题主要考查了倒数,关键是掌握两个倒数之积为1.2.〔4分〕〔2014•黔西南州〕不等式2x﹣4>0的解集为〔〕A.B.x>2 C.x>﹣2 D.x>8 x>考点:解一元一次不等式.专题:计算题.分析:根据不等式的性质先移项得到2x>4,然后把x的系数化为1即可.解答:解:移项得2x>4,系数化为1得x>2.故选B.点评:此题考查了解一元一次不等式:解一元一次不等式的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.3.〔4分〕〔2014•黔西南州〕已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为〔〕A.21 B.20 C.19 D.18考点:等腰三角形的性质.分析:由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解.解答:解:8+8+5=16+5=21.故这个三角形的周长为21.故选:A.点评:考查了等腰三角形两腰相等的性质,以及三角形周长的定义.4.〔4分〕〔2014•黔西南州〕在一个不透明的盒子中装有12个白球,假设干个黄球,它们除颜色不同外,其余均相同.假设从中随机摸出一个球是白球的概率是,则黄球的个数为〔〕考点:概率公式.分析:首先设黄球的个数为x个,根据题意得:=,解此分式方程即可求得答案.解答:解:设黄球的个数为x个,根据题意得:=,解得:x=24,经检验:x=24是原分式方程的解;∴黄球的个数为24.故选C.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.5.〔4分〕〔2014•黔西南州〕如图,已知AB=AD,那么添加以下一个条件后,仍无法判定△ABC≌△ADC的是〔〕A.C B=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°考点:全等三角形的判定.分析:此题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA 后则不能.解答:解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.点评:此题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,假设有两边一角对应相等时,角必须是两边的夹角.6.〔4分〕〔2014•黔西南州〕已知两圆半径分别为3、5,圆心距为8,则这两圆的位置关系为〔〕A.外离B.内含C.相交D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是3、5,O1O2=8,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出⊙O1和⊙O2的位置关系.解答:解:∵⊙O1、⊙O2的半径分别是3、5,O1O2=8,又∵3+5=8,∴⊙O1和⊙O2的位置关系是外切.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.A .B .C .D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有看到的棱都应表现在左视图中.解答:解:此几何体的左视图是“日”字形.故选D.点评:此题考查了三视图的知识,左视图是从物体的左面看得到的视图.8.〔4分〕〔2014•黔西南州〕以下图形中,既是中心对称,又是轴对称图形的是〔〕A .B .C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误.故选:A.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.9.〔4分〕〔2014•黔西南州〕已知如图,一次函数y=ax+b和反比例函数y=的图象相交于A、B两点,不等式ax+b >的解集为〔〕A.x<﹣3 B.﹣3<x<0或x>1 C.x<﹣3或x>1 D.﹣3<x<1考点:反比例函数与一次函数的交点问题.分析:观察函数图象得到当﹣3<x<0或x>1时,一次函数图象都在反比例函数图象上方,即有ax+b>.解答:解:不等式ax+b>的解集为﹣3<x<0或x>1.故选B.点评:此题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了观察函数图象的能力.10.〔4分〕〔2014•黔西南州〕甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y〔米〕与乙出发的时间t〔秒〕之间的关系如下图,给出以下结论:①a=8;②b=92;③c=123.其中正确的选项是〔〕A.①②③B.仅有①②C.仅有①③D.仅有②③考点:一次函数的应用.专题:行程问题;压轴题.分析:易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.解答:解:甲的速度为:8÷2=4〔米/秒〕;乙的速度为:500÷100=5〔米/秒〕;b=5×100﹣4×〔100+2〕=92〔米〕;5a﹣4×〔a+2〕=0,解得a=8,c=100+92÷4=123〔秒〕,∴正确的有①②③.故选A.点评:考查一次函数的应用;得到甲乙两人的速度是解决此题的突破点;得到相应行程的关系式是解决此题的关键.二、填空题〔共10小题,每题3分,共30分〕11.〔3分〕〔2014•黔西南州〕当x=1时,代数式x2+1=2.考点:代数式求值.分析:把x的值代入代数式进行计算即可得解.解答:解:x=1时,x2+1=12+1=1+1=2.故答案为:2.点评:此题考查了代数式求值,是基础题,准确计算是解题的关键.12.〔3分〕〔2014•黔西南州〕20140000用科学记数法表示〔保留3个有效数字〕为 2.01×107.考点:科学记数法与有效数字.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于20140000有8位,所以可以确定n=8﹣1=7.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:20140000=2.014×107≈2.01×107.故答案为:2.01×107.点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字确实定方法.13.〔3分〕〔2014•黔西南州〕已知甲组数据的平均数为甲,乙组数据的平均数为乙,且甲=乙,而甲组数据的方差为S2甲=1.25,乙组数据的方差为S2乙=3,则甲较稳定.考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙方差可判断.解答:解:由于甲的方差小于乙的方差,所以甲组数据稳定.故答案为:甲.点评:此题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,说明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,说明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.〔3分〕〔2014•黔西南州〕点P〔2,3〕关于x轴的对称点的坐标为〔2,﹣3〕.考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P〔x,y〕关于x轴的对称点P′的坐标是〔x,﹣y〕得出即可.解答:解:∵点P〔2,3〕∴关于x轴的对称点的坐标为:〔2,﹣3〕.故答案为:〔2,﹣3〕.点评:此题主要考查了关于x轴、y轴对称点的性质,正确记忆坐标规律是解题关键.15.〔3分〕〔2014•黔西南州〕函数的自变量x的取值范围是x≥.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,2x﹣1≥0,解得x≥.故答案为:x≥.点评:此题考查了函数自变量的范围,一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式的分母不能为0;〔3〕当函数表达式是二次根式时,被开方数非负.16.〔3分〕〔2014•黔西南州〕四边形的内角和为360°.考点:多边形内角与外角.分析:根据n边形的内角和是〔n﹣2〕•180°,代入公式就可以求出内角和.解答:解:〔4﹣2〕×180°=360°.故四边形的内角和为360°.故答案为:360°.点评:此题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.17.〔3分〕〔2014•黔西南州〕如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.假设∠1=35°,则∠2的度数为55°.考点:平行线的性质;余角和补角.分析:先根据三角板的直角顶点在直线b上求出∠3的度数,再由平行线的性质即可得出结论.解答:解:∵三角板的直角顶点在直线b上,∠1=35°,∴∠3=90°﹣35°=55°,∵a∥b,∴∠2=∠3=55°.故答案为:55°.点评:此题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.18.〔3分〕〔2014•黔西南州〕如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC=.考点:圆周角定理;勾股定理;锐角三角函数的定义.分析:根据勾股定理求出BC的长,再将tan∠ADC转化为tanB进行计算.解答:解:∵AB为⊙O直径,∴∠ACB=90°,∴BC==12,∴tan∠ADC=tanB===,故答案为.点评:此题考查了圆周角定理和三角函数的定义,要充分利用转化思想.19.〔3分〕〔2014•黔西南州〕如图,将矩形纸片ABCD折叠,使边AB、CD均落在对角线BD上,得折痕BE、BF,则∠EBF=45°.考点:角的计算;翻折变换〔折叠问题〕.分析:根据四边形ABCD是矩形,得出∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,再根据∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,得出∠EBD+∠DBF=45°,从而求出答案.解答:解:∵四边形ABCD是矩形,根据折叠可得∠ABE=∠EBD=∠ABD,∠DBF=∠FBC=∠DBC,∵∠ABE+∠EBD+∠DBF+∠FBC=∠ABC=90°,∴∠EBD+∠DBF=45°,即∠EBF=45°,故答案为:45°.点评:此题考查了角的计算和翻折变换,解题的关键是找准图形翻折后,哪些角是相等的,再进行计算,是一道基础题.20.〔3分〕〔2014•黔西南州〕在平面直角坐标系中,对于平面内任一点〔m,n〕,规定以下两种变换:〔1〕f〔m,n〕=〔m,﹣n〕,如f〔2,1〕=〔2,﹣1〕;〔2〕g〔m,n〕=〔﹣m,﹣n〕,如g 〔2,1〕=〔﹣2,﹣1〕按照以上变换有:f[g〔3,4〕]=f〔﹣3,﹣4〕=〔﹣3,4〕,那么g[f〔﹣3,2〕]=〔3,2〕.考点:点的坐标.专题:新定义.分析:由题意应先进行f方式的运算,再进行g方式的运算,注意运算顺序及坐标的符号变化.解答:解:∵f〔﹣3,2〕=〔﹣3,﹣2〕,∴g[f〔﹣3,2〕]=g〔﹣3,﹣2〕=〔3,2〕,故答案为〔3,2〕.点评:此题考查了一种新型的运算法则,考查了学生的阅读理解能力,此类题的难点是判断先进行哪个运算,关键是明白两种运算改变了哪个坐标的符号.三、解答题〔共12分〕21.〔12分〕〔2014•黔西南州〕〔1〕计算:〔〕﹣2+〔π﹣2014〕0+sin60°+|﹣2|.〔2〕解方程:=.考点:实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值.分析:〔1〕此题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;〔2〕根据分式方程的步骤,可得方程的解.解答:解:〔1〕原式=9+1++2﹣=12﹣;〔2〕方程两边都乘以〔x+2〕〔x﹣2〕,得x+2=4,解得x=2,经检验x=2不是分式方程的解,原分式方程无解.点评:此题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算;注意分式方程要验根.四、解答题〔共1小题,总分值12分〕22.〔12分〕〔2014•黔西南州〕如图,点B、C、D都在⊙O上,过C点作CA∥BD交OD的延长线于点A,连接BC,∠B=∠A=30°,BD=2.〔1〕求证:AC是⊙O的切线;〔2〕求由线段AC、AD与弧CD所围成的阴影部分的面积.〔结果保留π〕考点:切线的判定;扇形面积的计算.分析:〔1〕连接OC,根据圆周角定理求出∠COA,根据三角形内角和定理求出∠OCA,根据切线的判定推出即可;〔2〕求出DE,解直角三角形求出OC,分别求出△ACO的面积和扇形COD的面积,即可得出答案.解答:〔1〕证明:连接OC,交BD于E,∵∠B=30°,∠B=∠COD,∴∠COD=60°,∵∠A=30°,∴∠OCA=90°,即OC⊥AC,∴AC是⊙O的切线;〔2〕解:∵AC∥BD,∠OCA=90°,∴∠OED=∠OCA=90°,∴DE=BD=,∵sin∠COD=,∴OD=2,在Rt△ACO中,tan∠COA=,∴AC=2,∴S阴影=×2×2﹣=2﹣.点评:此题考查了平行线的性质,圆周角定理,扇形的面积,三角形的面积,解直角三角形等知识点的综合运用,题目比较好,难度适中.五、解答题〔共1小题,总分值14分〕23.〔14分〕〔2014•黔西南州〕我州实施新课程改革后,学生的自主字习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类,A:特别好;B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答以下问题:〔1〕本次调查中,一共调査了50名同学,其中C类女生有8名;〔2〕将下面的条形统计图补充完整;〔3〕为了共同进步,学校想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.考点:条形统计图;扇形统计图;列表法与树状图法.分析:〔1〕由扇形图可知,B类总人数为10+15=25人,由条形图可知B类占50%,则样本容量为:25÷50%=50人;由条形图可知,C类占40%,则C类有50×40%=20人,结合条形图可知C类女生有20﹣12=8人;〔2〕根据〔1〕中所求数据补全条件统计图;〔3〕根据被调査的A类和D类学生男女生人数列表即可得出答案.解答:解:〔1〕样本容量:25÷50%=50,C类总人数:50×40%=20人,C类女生人数:20﹣12=8人.故答案为:50,8;〔2〕补全条形统计图如下:〔3〕将A类与D类学生分为以下几种情况:男A 女A1 女A2男D 男A男D 女A1男D 女A2男D女D 女D男A 女A1女D 女A2女D∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P〔一男一女〕==.点评:此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.六、解答题〔共14分〕24.〔14分〕〔2014•黔西南州〕为增强居民节约用电意识,某市对居民用电实行“阶梯收费”,具体收费标准见表:一户居民一个月用电量的范围电费价格〔单位:元/千瓦时〕不超过160千瓦时的部分x超过160千瓦时的部分x+0.15某居民五月份用电190千瓦时,缴纳电费90元.〔1〕求x和超出部分电费单价;〔2〕假设该户居民六月份所缴电费不低于75元且不超过84元,求该户居民六月份的用电量范围.考点:一元一次不等式的应用;一元一次方程的应用.分析:〔1〕等量关系为:不超过160千瓦时电费+超过160千瓦时电费=90;〔2〕设该户居民六月份的用电量是a千瓦时.则依据收费标准列出不等式75≤160×0.45+0.6〔a﹣160〕≤84.解答:解:〔1〕根据题意,得160x+〔190﹣160〕〔x+0.5〕=90,解得x=0.45;则超出部分的电费单价是x+0.15=0.6〔元/千瓦时〕.答:x和超出部分电费单价分别是0.45和0.6元/千瓦时;〔2〕设该户居民六月份的用电量是a千瓦时.则75≤160×0.45+0.6〔a﹣160〕≤84,解得165≤a≤180.答:该户居民六月份的用电量范围是165度到180度.点评:此题考查了一元一次不等式的应用,一元一次方程的应用.解答此题的关键是读懂题意,设出未知数,找出等量〔不等量〕关系,列方程〔不等式〕求解.七、解答题〔共12分〕25.〔12分〕〔2014•黔西南州〕已知点P〔x0,y0〕和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式d=计算.例如:求点P〔﹣2,1〕到直线y=x+1的距离.解:因为直线y=x+1可变形为x﹣y+1=0,其中k=1,b=1.所以点P〔﹣2,1〕到直线y=x+1的距离为d====.根据以上材料,求:〔1〕点P〔1,1〕到直线y=3x﹣2的距离,并说明点P与直线的位置关系;〔2〕点P〔2,﹣1〕到直线y=2x﹣1的距离;〔3〕已知直线y=﹣x+1与y=﹣x+3平行,求这两条直线的距离.考点:一次函数综合题.分析:〔1〕根据条件的P的坐标和点到直线的距离公式可以直接求出结论;〔2〕直接将P点的坐标代入公式d=就可以求出结论;〔3〕在直线y=﹣x+1任意取一点P,求出P点的坐标,然后代入点到直线的距离公式d=就可以求出结论.解答:解:〔1〕∵点P〔1,1〕,∴点P到直线y=3x﹣2的距离为:d==0,∴点P在直线y=3x﹣2上;〔2〕由题意,得∵y=2x﹣1∴k=2,b=﹣1.∵P〔2,﹣1〕,∴d==.∴点P〔2,﹣1〕到直线y=2x﹣1的距离为;〔3〕在直线y=﹣x+1任意取一点P,当x=0时,y=1.∴P〔0,1〕.∵直线y=﹣x+3,∴k=﹣1,b=3,∴d==,∴两平行线之间的距离为.点评:此题考查了一次函数的点与直线之间的距离公式的运用,由函数的解析式求点的坐标的运用,平行线的性质的运用,解答时掌握点到直线的距离公式是关键.八、解答题〔共16分〕26.〔16分〕〔2014•黔西南州〕如下图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A〔﹣3,0〕、B〔1,0〕、C〔0,3〕三点,其顶点为D,连接AD,点P是线段AD上一个动点〔不与A、D重合〕,过点P作y轴的垂线,垂足点为E,连接AE.〔1〕求抛物线的函数解析式,并写出顶点D的坐标;〔2〕如果P点的坐标为〔x,y〕,△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;〔3〕在〔2〕的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.考点:二次函数综合题.分析:〔1〕由抛物线y=ax2+bx+c经过A〔﹣3,0〕、B〔1,0〕、C〔0,3〕三点,则代入求得a,b,c,进而得解析式与顶点D.〔2〕由P在AD上,则可求AD解析式表示P点.由S△APE=•PE•y P,所以S可表示,进而由函数最值性质易得S最值.〔3〕由最值时,P为〔﹣,3〕,则E与C重合.画示意图,P'过作P'M⊥y轴,设边长通过解直角三角形可求各边长度,进而得P'坐标.判断P′是否在该抛物线上,将x P'坐标代入解析式,判断是否为y P'即可.解答:解:〔1〕∵抛物线y=ax2+bx+c经过A〔﹣3,0〕、B〔1,0〕、C〔0,3〕三点,∴,解得,∴解析式为y=﹣x2﹣2x+3∵﹣x2﹣2x+3=﹣〔x+1〕2+4,∴抛物线顶点坐标D为〔﹣1,4〕.〔2〕∵A〔﹣3,0〕,D〔﹣1,4〕,∴设AD为解析式为y=kx+b,有,解得,∴AD解析式:y=2x+6,∵P在AD上,∴P〔x,2x+6〕,∴S△APE=•PE•y P=•〔﹣x〕•〔2x+6〕=﹣x2﹣3x〔﹣3<x<﹣1〕,当x=﹣=﹣时,S取最大值.〔3〕如图1,设P′F与y轴交于点N,过P′作P′M⊥y轴于点M,∵△PEF沿EF翻折得△P′EF,且P〔﹣,3〕,∴∠PFE=∠P′FE,PF=P′F=3,PE=P′E=,∵PF∥y轴,∴∠PFE=∠FEN,∵∠PFE=∠P′FE,∴∠FEN=∠P′FE,∴EN=FN,设EN=m,则FN=m,P′N=3﹣m.在Rt△P′EN中,∵〔3﹣m〕2+〔〕2=m2,∴m=.∵S△P′EN=•P′N•P′E=•EN•P′M,∴P′M=.在Rt△EMP′中,∵EM==,∴OM=EO﹣EM=,∴P′〔,〕.当x=时,y=﹣〔〕2﹣2•+3=≠,∴点P′不在该抛物线上.点评:此题考查了待定系数法求抛物线解析式,二次函数图象、性质及设边长利用勾股定理解直角三角形等常规考点,题目考点适中,考法新颖,适合学生练习稳固.©2010-2014 菁优网。

黔西南州2014年初中毕业暨升学统一考试试卷

黔西南州2014年初中毕业暨升学统一考试试卷

2010年贵州省黔南州中考物理试卷第1页共 1页黔西南州2014年初中毕业暨升学统一考试试卷理综合(一)一、选择题(共8小题,每小题3分,满分18分)1.匀速上升的气球下面用细线拴着一个小石块,当细线突然断了以后,石块的运动状态将是()(不计空气阻力)A.继续匀速上升B.立即加速下降C.匀速上升一段距离后再加速下降D.减速上升一段距离后再加速下降2.某同学在探究“电流跟电压、电阻的关系”时,根据收集到的数据画出了如图所示的一个图象.下列结论与图象相符的是()A.电阻一定时,电流随着电压的增大而增大B.电阻一定时,电压随着电流的增大而增大C.电压一定时,电流随着电阻的增大而减小D.电压一定时,电阻随着电流的增大而减小3.如图甲所示,纸带穿过打点计时器(每隔一定时间在纸带上打下一个点)与一木块左端相连,木块在弹簧测力计作用下沿水平桌面(纸面)向右运动时,就能在纸带上打出一系列的点.图乙中①和②是打点计时器先后打出的两条纸带,与其对应的测力计的示数分别为F1、F2,木块运动的速度分别为v1、v2,那么()第1小题第3小题A.F1<F2,v1<v2B.F1=F2,v1<v2C.F1=F2,v1>v2D.F1>F2,v1>v24.当温度降到一定程度时,某些物质的电阻会变为零,这种物质叫超导体.下列物体可以用超导体来制作的是()A.家用保险丝B.白炽灯泡的灯丝C.电炉的电热丝D.输电导线第4小题第5小题5.如图所示的家庭电路中,有两个器件连接错误,它们是()A.闸刀开关和带开关的灯泡B.带开关的灯泡和带熔丝的二线插座C.带开关的灯泡和三线插座D.闸刀开关和三线插座6..一长方体铁块按如图所示,从下表面与液面刚刚接触处下放至图中虚线位置.能大致反映铁块下降过程中所受浮力的大小F浮与铁块下表面浸入液体深度h深关系的图象是()A.B.C.D.二、填空题(每空1分,满分17分)9.口技表演,从声音的特性来看,演员主要模仿的是声音的___.人们可以使用手机进行通话,是依靠______来传递信息的.在嘈杂的公共场所带耳机听MP3,往往需要增大音量,这是增大了声音的__________.10.如图甲所示,完全相同的木块A和B叠放在水平桌面上,在12N的水平拉力F1作用下,A、B一起作匀速直线运动,此时木块B所受的摩擦力为_____N;若将A、B紧靠着放在水平桌面上,用水平力F2推A使它们一起匀速运动(如图乙所示),则推力F2=_______N.11.如图所示,建筑工人用滑轮组提升重为220N的泥桶,其中桶重20N.动滑轮重为20N,不计滑轮与轴之间的摩擦及绳重;若工人在5s内将绳子匀速向上拉6m,则泥桶上升_____m,手拉绳子的力为____N,拉力的功率为_________W,滑轮组的机械效率为______.12.小明家的电冰箱铭牌如下表,小明控制只有冰箱工作的情况下,观察冰箱从启动到停止工作用了6min.电能表转盘转了18圈.则该冰箱启动1次耗电_____J;工作电流是______A.一天实际工作____h.每消耗1度电,电能表转盘转__________圈.耗电量0.72kW•h/24h额定电压220V冷冻量4kg 输入功率120W制冷剂R600a 气候类型NST13.暑期持续的“桑拿天”,居民家里的空调、电扇都闲不住,导致电路火灾时有发生,火警电话不断,消防车拉着警笛呼啸而出,赶往火灾现场,调查发现,起火原因如出一辙:电线超负荷使电线内的金属导线发热引燃了外面的绝缘皮.根据学过的物理知识回答:(1)“超负荷”是指电路中的__________过大(选填“电流”或“电阻”).(2)使火灾发生的理论依据是__________.(3)如果导线是超导材料结果如何?__________14.弹簧称下挂一个物体,弹簧秤示数为G.把物体没入甲液体中,弹簧秤示数为G/3;把物体没入乙液体中,弹簧秤示数G/4,则甲.乙两液体的密度之比是__________三、作图题(共3小题,每小题3分,满分9分)15.教学楼每层走廊的中间装有一盏路灯,而两头楼梯都有一个开关便于控制.为了从这一头开(或关)灯而到另一头能够关(或开)灯,请在图中按设计要求把灯和开关接入电路.16.如图所示,AB是由点光源S发出的一个入射光线,CD是由S发出的另一条入射光线的反射光线,请在图2010年贵州省黔南州中考物理试卷第 2 页 共 2 页中画出点光源S 点的位置.17.根据图中小磁针的位置,标出甲、乙两条磁铁的N 极和S 极.四、解答题(满分8分)18.如图所示,画面是鱼缸中过滤增氧泵增氧工作时的情景,水泵把水从进水管吸入,从出水管快速喷出时,空气就会从进气管进入水中,与水流一起喷出.(1)请根据所学的物理知识解释空气为什么会进入水中与水流一起喷出. (2)举一个生产或生活中利用此物理知识的例子. 五、实验题19.如图所示的电路,电源电压6V ,电灯L 1,L 2的电阻均为15Ω,当开关S 闭合后,两灯均正常发光.在某时刻.电路出现故障,电流表和电压表的示数出现异常.造成该现象的电路故障由多种可能,如下表中1,2列故障.请分析写出可能出现的第三种由电灯引起的电路故障(其中一盏灯完好),并填上与2,3的电流表和电压表的大约示数.20.撑杆跳高运动员要落在厚厚的海绵垫上,轮船靠近趸(dǔn)船时相互接触处挂有缓冲轮胎,警察对高楼坠落人员施救时,在地面铺上空气垫…(1)__________请你也举出一个类似的例子:__________.(2)根据以上现象,小明提出了一个问题,一个物体撞击其他物体时,撞击力的大小是否与相互作用的时间有关?你也提出一个问题:__________.(3)针对小明提出的问题,你的猜想是:__________.(4)在两个相同的玻璃槽中堆放不同厚度的面粉,从相同的____________________,先后落下同一只鸡蛋.落在面粉厚度大的槽中,留下较深的坑,鸡蛋完好无损;落在面粉厚度较小槽中,鸡蛋破裂.在这里,小明是通过比较____________________看出撞击时间的长短.由此,你得出的结论是____________________.六计算题21.如图所示的电路中,R 1=10Ω,R 2=20Ω,R 3=30Ω,电源电压保持不变.当S 1、S 2都闭合时,电流表的示数是0.6A ,求:(1)电源电压是多少?这时R 2中的电流是多少? (2)当S 1、S 2都断开时,1分钟R 1产生的热量是多少?22.如图所示,质量不计的光滑木板AB 长1.2m ,可绕固定点O 转动,离O 点0.4m 的B 端挂一重物G ,板的A 端用一根与水平地面成30°夹角的细绳拉住,木板在水平位置平衡时绳的拉力是9N .求:(1)重物G 的重力(2)若在O 点的正上方放一质量为0.6kg 的小球,若小球以15cm/s 的速度由O 点沿木板向A 端匀速运动,问小球至少运动多长时间细绳的拉力减小到零.(取g=10N/kg ,绳的重力不计)23.小军同学在学习了电路和安全用电的有关知识后,回家对家里的用电器及用电情况进行了全面的调查,调查记录如表.用电器 额定电功率 数量 照明灯 40 15盏 彩电 100 1台 洗衣机 200 1台 电冰箱 160 1台 电饭煲 800 1个 电脑1201台闸刀开关上保险丝的熔断电流为20A 电能表上标有“220V、20A”①星期天中午,小军用电饭煲煮饭的同时,观看电视新闻,为了节约能源,只开了厨房里的一盏灯,恰巧电冰箱正在工作.求这时小军家的家用电路中的总电流是多大?②小军的父母想在现有的电路上再安装一台1500w 的空调机,请通过计算说明是否可行?24.随着城市建设进程的加快,绵阳城内出现子许多高层建筑,电梯是高层建筑的重要组成部分.某电梯公寓的电梯某次在竖直向上,运行的过程中,速度随时间变化的情况如图所示,忽略电梯受到的空气阻力和摩擦阻力,向上运行的动力只有竖直向上的电动机拉力,电梯箱和乘客的总质量为600kg ,g=10N/kg .求: ①电梯在匀速运动阶段上升的高度h 1是多少?拉力F 1做了多少功?②电梯在加速阶段的平均速度等于该阶段速度的最大值和最小值的平均值.已知在加速阶段,电动机的拉力F 2做了11520J 的功;求加速阶段电动机拉力F 2的大小?③电梯开始向上运动后经过64s ,电动机的拉力的平均功率是多大?。

黔西南州2014年初中毕业生学业暨升学统一考试试卷

黔西南州2014年初中毕业生学业暨升学统一考试试卷

黔西南州2014年初中毕业生学业暨升学统一考试试卷综合理科考生注意:1、一律用黑色笔或2B铅笔将答案填写或填涂在答题卷制定位置2、本试卷共6页,物理满分90分,答题时间90分钟物理部分一、选择题(本大题共6小题,每小题3分,共18分。

每小题4个选项中,只有一个符合题意,多选、不选、错选均不得分)1下列关于利用物理学家作为单位错误的是A、牛顿是力的单位B、安培是电流的单位C、帕斯卡是压强的单位D、瓦特是电压的单位2、在经过居民区的高速公路两旁设置隔音板,这是利用哪一种途径减弱噪声A、在人耳处B、在声源处C、在传播过程中D、在人耳处和声源处3、贵州2台经常报道车祸的发生,大部分是酒驾所导致,交警常用酒精测试仪测驾驶员的酒精浓度,下列说法正确的是A车被撞变形说明力可以改变物体的运动状态B交警闻到味道是分子不停的作无规则的运动,车撞变形说明力可以使物体发生形变C力只能使物体发生形变D力只能改变物体的运动状态4、下列光现象中,属于折射现象的是A 桥在水中的倒影B 镜中的人像C海市蜃楼D 手影5、如图1所示电路图中,闭合开关S后灯泡L1、L2不亮电压表无示数,用一导线分别接在灯L1、L2开关S两端,发现接到L2两端时L1亮,其故障是A 、L1断路B、L2断路C 、L1短路D、L2短路6、有两灯如图所示,L1,L2 分别标有15V 、1A ;10V 、0.5A,的字样,其中一灯正常发光时,它们的功率之比是A 4:3B 3:4C 5:3D 3:2二、填空题(本大题包括 8个小题,每空1分,共15分)7、在森林游玩时不能乱丢矿泉水瓶,一旦瓶内进水后相当于镜,对光线有作用8、仲夏清晨叶片上出现晶莹剔透的露珠如图3所示,露珠的形成是现象,中午露珠不见了是现象图3 图4 图59、当你坐在一辆行驶的汽车中,看到前面另一辆车后退是以参照物,突然感觉汽车座椅的靠背在向前推你,这时所坐的车在做运动10、放在水平桌面上的杯子,质量为0.2kg,容积为5×10-4m3,然后装满水,其水的重力为N ,总重力N ,若杯子与桌面的接触面积为5×10-2m2,则杯子对桌面的压强为Pa11、如图4是许多城市路灯,都采用太阳能LED照明灯,主要由太阳能电池板和LED 灯头等组成,LED 是一种半导体二极管,通过电流能够发光,可以把电能直接转化为,能,太阳能是(选填“一次”、“二次”)能源,清洁无污染,如果LED灯用6V的电压,正常工作电流为2400mA,则LED的功率是12、两个电阻A 和B,在一定温度下,电流与其两端电压的关系如图5所示,A电阻为Ω,将他们并联后接在电压为 2.5V的电源上,通过它们的总电流是A,这时A电阻在1s内所产生的热量是J三、简答题(本大题共2小题,每小题4分,共8分)13、随着科技的发展和人们生活水平的提高,轿车进入家庭越来越多,轿车应用了许多物理知识,请写出有关力学的两点知识,并说明作用14、安全用电至关重要,如小明家某天正在煮饭,突然跳闸,所有电器不通电,请帮他分析出现的可能原因并提出合理建议四、作图题(本大题有3小题,每题3分,共9分)15、如图6所示,请根据已知光线,完成光路图16、如图7所示,放在水平桌面上静止的物体A ,请画出物体受力示意图17、如图8所示,请标出通电螺线管的N S 极,并用箭头画出磁感线的方向图6 图7 图8五、实验题(本大题共2个小题,每空2分,共20分)18、如图9所示小明在杠杆左边挂3个钩码(每个钩码重1N ),右边用一滑轮组吊起一个没入水中的物体A ,使杠杆处于平衡状态,(不考虑动滑轮自重及摩擦力)(1)绳子自由端的拉力是 N(2)当物体A 重为13N 时,则物体A 受到的浮力 N (3)物体A 排开水的体积为 m 3,排开水的质量是 kg(4)若考虑动滑轮重量为1N ,杠杆向 (选填 “左”或“ 右”)边倾斜 19、图10甲是测量灯泡(U 额=2.5V )电阻的电路,电源电压为4V(1)请将图10甲电路连接完整(导线不能交叉)。

2014年贵州省黔东南州中考数学试卷(含解析版)

2014年贵州省黔东南州中考数学试卷(含解析版)

2014年贵州省黔东南州中考数学试卷一、选择题:每个小题4分,10个小题共40分1.(4分)=()A.3B.﹣3C.D.﹣2.(4分)下列运算正确的是()A.a2•a3=a6 B.(a2)3=a6 C.(a+b)2=a2+b2 D.+=3.(4分)如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD=BC B.AB∥DC,AD∥BCC.AB=DC,AD=BC D.OA=OC,OB=OD4.(4分)掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上5.(4分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5B.1.5C.D.16.(4分)如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD =6cm,则AB的长为()A.4cm B.3cm C.2cm D.2cm7.(4分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012B.2013C.2014D.20158.(4分)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x轴于点C,则△ABC的面积为()A.1B.2C.D.9.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0。

其中正确结论的有()A.①②③B.①②④C.①③④D.②③④10.(4分)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C 与点A重合,则折痕EF的长为()A.6B.12C.2D.4二、填空题:每个小题4分,6个小题共24分11.(4分)计算cos60°=.12.(4分)函数y=自变量x的取值范围是.13.(4分)因式分解:x3﹣5x2+6x=.14.(4分)若一元二次方程x2﹣x﹣1=0的两根分别为x1、x2,则+=.15.(4分)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为.16.(4分)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B (2,0)是x轴上的两点,则P A+PB的最小值为.三、解答题:8个小题,共86分17.(8分)计算:2tan30°﹣|1﹣|+(2014﹣)0+.18.(8分)先化简,再求值:÷﹣,其中x=﹣4.19.(10分)解不等式组,并写出它的非负整数解.20.(12分)黔东南州某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:根据图表解答下列问题:(1)在女生的频数分布表中,m=,n=.(2)此次调查共抽取了多少名学生?(3)此次抽样中,学习时间的中位数在哪个时间段?(4)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?21.(12分)已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.(1)求证:△ACB∽△CDB;(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.22.(10分)黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)23.(12分)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.24.(14分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B (4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△P AC为直角三角形时点P的坐标.2014年贵州省黔东南州中考数学试卷参考答案与试题解析一、选择题:每个小题4分,10个小题共40分1.(4分)=()A.3B.﹣3C.D.﹣【考点】15:绝对值.【分析】按照绝对值的性质进行求解.【解答】解:根据负数的绝对值是它的相反数,得:|﹣|=.故选:C.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(4分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.(a+b)2=a2+b2D.+=【考点】2C:实数的运算;46:同底数幂的乘法;47:幂的乘方与积的乘方;4C:完全平方公式.【专题】11:计算题.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式利用完全平方公式展开得到结果,即可做出判断;D、原式不能合并,错误.【解答】解:A、原式=a5,错误;B、原式=a6,正确;C、原式=a2+b2+2ab,错误;D、原式不能合并,错误,故选:B.【点评】此题考查了完全平方公式,实数的运算,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.3.(4分)如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是()A.AB∥DC,AD=BC B.AB∥DC,AD∥BCC.AB=DC,AD=BC D.OA=OC,OB=OD【考点】L6:平行四边形的判定.【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故选:A.【点评】此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.(4分)掷一枚质地均匀的硬币10次,下列说法正确的是()A.可能有5次正面朝上B.必有5次正面朝上C.掷2次必有1次正面朝上D.不可能10次正面朝上【考点】X1:随机事件.【分析】根据随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.【解答】解:A、是随机事件,故A正确;B、不是必然事件,故B错误;C、不是必然事件,故C错误;D、是随机事件,故D错误;故选:A.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(4分)如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AC=,∠B=60°,则CD的长为()A.0.5B.1.5C.D.1【考点】R2:旋转的性质.【分析】解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC﹣BD计算即可得解.【解答】解:∵∠B=60°,∴∠C=90°﹣60°=30°,∵AC=,∴AB=AC•tan30°=×=1,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD是等边三角形,∴BD=AB=1,∴CD=BC﹣BD=2﹣1=1.故选:D.【点评】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD是等边三角形是解题的关键.6.(4分)如图,已知⊙O的直径CD垂直于弦AB,垂足为点E,∠ACD=22.5°,若CD =6cm,则AB的长为()A.4cm B.3cm C.2cm D.2cm【考点】KW:等腰直角三角形;M2:垂径定理;M5:圆周角定理.【专题】11:计算题.【分析】连结OA,根据圆周角定理得∠AOD=2∠ACD=45°,由于3⊙O的直径CD垂直于弦AB,根据垂径定理得AE=BE,且可判断△OAE为等腰直角三角形,所以AE=OA=,然后利用AB=2AE进行计算.【解答】解:连结OA,如图,∵∠ACD=22.5°,∴∠AOD=2∠ACD=45°,∵⊙O的直径CD垂直于弦AB,∴AE=BE,△OAE为等腰直角三角形,∴AE=OA,∵CD=6,∴OA=3,∴AE=,∴AB=2AE=3(cm).故选:B.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了等腰直角三角形的性质和垂径定理.7.(4分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012B.2013C.2014D.2015【考点】HA:抛物线与x轴的交点.【分析】把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.【解答】解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.【点评】本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.8.(4分)如图,正比例函数y=x与反比例函数y=的图象相交于A、B两点,BC⊥x轴于点C,则△ABC的面积为()A.1B.2C.D.【考点】G5:反比例函数系数k的几何意义.【专题】11:计算题.【分析】由于正比例函数y=x与反比例函数y=的图象相交于A、B两点,则点A与点B 关于原点对称,所以S△AOC=S△BOC,根据反比例函数比例系数k的几何意义得到S△BOC=,所以△ABC的面积为1.【解答】解:∵正比例函数y=x与反比例函数y=的图象相交于A、B两点,∴点A与点B关于原点对称,∴S△AOC=S△BOC,∵BC⊥x轴,∴△ABC的面积=2S△BOC=2××|1|=1.故选:A.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.9.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④【考点】H4:二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=﹣1时,x=2时二次函数的值的情况进行推理,进而对所得结论进行判断.【解答】解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴直线x=2,可得出b与a异号,即b<0,则abc<0,故①正确;把x=﹣1代入y=ax2+bx+c得:y=a﹣b+c,由函数图象可以看出当x=﹣1时,二次函数的值为正,即a﹣b+c>0,则b<a+c,故②选项正确;把x=2代入y=ax2+bx+c得:y=4a+2b+c,由函数图象可以看出当x=2时,二次函数的值为负,即4a+2b+c<0,故③选项错误;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,故④D 选项正确;故选:B.【点评】本题考查二次函数图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=4a+2b+c,然后根据图象判断其值.10.(4分)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C 与点A重合,则折痕EF的长为()A.6B.12C.2D.4【考点】PB:翻折变换(折叠问题).【分析】设BE=x,表示出CE=16﹣x,根据翻折的性质可得AE=CE,然后在Rt△ABE 中,利用勾股定理列出方程求出x,再根据翻折的性质可得∠AEF=∠CEF,根据两直线平行,内错角相等可得∠AFE=∠CEF,然后求出∠AEF=∠AFE,根据等角对等边可得AE=AF,过点E作EH⊥AD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解.【解答】解:设BE=x,则CE=BC﹣BE=16﹣x,∵沿EF翻折后点C与点A重合,∴AE=CE=16﹣x,在Rt△ABE中,AB2+BE2=AE2,即82+x2=(16﹣x)2,解得x=6,∴AE=16﹣6=10,由翻折的性质得,∠AEF=∠CEF,∵矩形ABCD的对边AD∥BC,∴∠AFE=∠CEF,∴∠AEF=∠AFE,∴AE=AF=10,过点E作EH⊥AD于H,则四边形ABEH是矩形,∴EH=AB=8,AH=BE=6,∴FH=AF﹣AH=10﹣6=4,在Rt△EFH中,EF===4.故选:D.【点评】本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口.二、填空题:每个小题4分,6个小题共24分11.(4分)计算cos60°=.【考点】T5:特殊角的三角函数值.【专题】11:计算题.【分析】根据记忆的内容,cos60°=即可得出答案.【解答】解:cos60°=.故答案为:.【点评】此题考查了特殊角的三角函数值,属于基础题,注意掌握特殊角的三角函数值,这是需要我们熟练记忆的内容.12.(4分)函数y=自变量x的取值范围是x>1.【考点】E4:函数自变量的取值范围.【分析】根据二次根式被开方数非负、分母不等于0列式计算即可得解.【解答】解:有意义的条件是x﹣1≥0,解得x≥1;又分母不为0,x﹣1≠0,解得x≠1.∴x>1.故答案为:x>1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.(4分)因式分解:x3﹣5x2+6x=x(x﹣3)(x﹣2).【考点】53:因式分解﹣提公因式法;57:因式分解﹣十字相乘法等.【分析】先提取公因式x,再利用十字相乘法分解因式.【解答】解:x3﹣5x2+6x=x(x2﹣5x+6)=x(x﹣3)(x﹣2).故答案是:x(x﹣3)(x﹣2).【点评】本题考查了用提公因式法和十字相乘法分解因式,一个多项式有公因式首先提取公因式,然后用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(4分)若一元二次方程x2﹣x﹣1=0的两根分别为x1、x2,则+=﹣1.【考点】AB:根与系数的关系.【分析】欲求+的值,先把此代数式变形为两根之积或两根之和的形式,再代入数值计算即可.【解答】解:∵一元二次方程x2﹣x﹣1=0的两根分别为x1、x2,∴x1+x2=1,x1x2=﹣1,∴+===﹣1.故答案为:﹣1.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.15.(4分)在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的个数为n,则n的最小值为5.【考点】U3:由三视图判断几何体.【分析】易得此几何体有三行,三列,判断出各行各列最少有几个正方体组成即可.【解答】解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故答案为:5.【点评】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需最少正方体的个数.16.(4分)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B (2,0)是x轴上的两点,则P A+PB的最小值为.【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】利用一次函数图象上点的坐标性质得出OA′=1,进而利用勾股定理得出即可.【解答】解:如图所示:作A点关于直线y=x的对称点A′,连接A′B,交直线y=x于点P,此时P A+PB最小,由题意可得出:OA′=1,BO=2,P A′=P A,∴P A+PB=A′B==.故答案为:.【点评】此题主要考查了利用轴对称求最短路线以及一次函数图象上点的特征等知识,得出P点位置是解题关键.三、解答题:8个小题,共86分17.(8分)计算:2tan30°﹣|1﹣|+(2014﹣)0+.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11:计算题.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2×﹣(﹣1)+1+=﹣+1+1+=2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、绝对值、特殊角的三角函数值、二次根式化简等考点的运算.18.(8分)先化简,再求值:÷﹣,其中x=﹣4.【考点】6D:分式的化简求值.【专题】11:计算题.【分析】原式第一项利用除法法则变形,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=•﹣=﹣=,当x=﹣4时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(10分)解不等式组,并写出它的非负整数解.【考点】CB:解一元一次不等式组;CC:一元一次不等式组的整数解.【分析】分别求出各不等式的解集,再求出其公共解集,找出符合条件的x的非负整数解即可.【解答】解:,由①得,x>﹣,由②得,x<,故此不等式组的解集为:﹣<x<,它的非负整数解为:0,1,2,3.【点评】本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.20.(12分)黔东南州某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:根据图表解答下列问题:(1)在女生的频数分布表中,m=3,n=30%.(2)此次调查共抽取了多少名学生?(3)此次抽样中,学习时间的中位数在哪个时间段?(4)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?【考点】V7:频数(率)分布表;V8:频数(率)分布直方图;W4:中位数;X6:列表法与树状图法.【专题】27:图表型.【分析】(1)根据第一段中有4人,占20%,即可求得女生的总人数,然后根据频率的计算公式求得m、n的值;(2)把直方图中各组的人数相加就是男生的总人数,然后加上女生总人数即可;(3)求得每段中男女生的总数,然后根据中位数的定义即可判断;(4)利用列举法即可求解.【解答】解:(1)女生的总数是:4÷20%=20(人),则m=20×15%=3(人),n=×100%=30%;(2)男生的总人数是:6+5+12+4+3=30(人),则此次调查的总人数是:30+20=50(人);(3)在第一阶段的人数是:4+6=10(人),第二阶段的人数是:3+5=8(人),第三阶段的人数是:5+12=17(人),则中位数在的时间段是:60≤t<90;(4)如图所示:共有20种等可能的情况,则恰好抽到男女生各一名的概率是=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.(12分)已知:AB是⊙O的直径,直线CP切⊙O于点C,过点B作BD⊥CP于D.(1)求证:△ACB∽△CDB;(2)若⊙O的半径为1,∠BCP=30°,求图中阴影部分的面积.【考点】MC:切线的性质;MO:扇形面积的计算;S9:相似三角形的判定与性质.【专题】152:几何综合题.【分析】(1)由CP是⊙O的切线,得出∠BCD=∠BAC,AB是直径,得出∠ACB=90°,所以∠ACB=∠CDB=90°,得出结论△ACB∽△CDB;(2)求出△OCB是正三角形,阴影部分的面积=S扇形OCB﹣S△OCB=π﹣.【解答】(1)证明:如图,连接OC,∵直线CP是⊙O的切线,∴∠BCD+∠OCB=90°,∵AB是直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°∴∠BCD=∠ACO,又∵∠BAC=∠ACO,∴∠BCD=∠BAC,又∵BD⊥CP∴∠CDB=90°,∴∠ACB=∠CDB=90°∴△ACB∽△CDB;(2)解:如图,连接OC,∵直线CP是⊙O的切线,∠BCP=30°,∴∠COB=2∠BCP=60°,∴△OCB是正三角形,∵⊙O的半径为1,∴S△OCB=,S扇形OCB==π,故阴影部分的面积=S扇形OCB﹣S△OCB=π﹣.【点评】本题主要考查了切线的性质及扇形面积,三角形的面积,解题的关键是利用弦切角找角的关系.22.(10分)黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】121:几何图形问题.【分析】过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25m.由小明站在B 点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,继而得出得出AM =ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m.在Rt△CEN中,由tan∠ECN==,代入CN、EN解方程求出x的值,继而可求得旗杆的高EF.【解答】解:过点A作AM⊥EF于M,过点C作CN⊥EF于N,∴MN=0.25m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m,∵∠ECN=30°,∴tan∠ECN===,解得:x≈8.8,则EF=EM+MF≈8.8+1.5=10.3(m).答:旗杆的高EF为10.3m.【点评】本题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.23.(12分)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.【考点】9A:二元一次方程组的应用;C9:一元一次不等式的应用;FH:一次函数的应用.【专题】12:应用题.【分析】(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,根据“5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元”列出方程组解决问题;(2)分情况:不大于20件;大于20件;分别列出函数关系式即可;(3)设购进玩具a件(a>20),分别表示出甲种和乙种玩具消费,建立不等式解决问题.【解答】解:(1)设每件甲种玩具的进价是x元,每件乙种玩具的进价是y元,由题意得,解得,答:每件甲种玩具的进价是30元,每件乙种玩具的进价是27元;(2)当0<x≤20时,y=30x;当x>20时,y=20×30+(x﹣20)×30×0.7=21x+180;(3)设购进玩具a件(a>20),则乙种玩具消费27a元;当27a=21a+180,则a=30所以当购进玩具正好30件,选择购其中一种即可;当27a>21a+180,则a>30所以当购进玩具超过30件,选择购甲种玩具省钱;当27a<21a+180,则a<30所以当购进玩具少于30件,多于20件,选择购乙种玩具省钱.【点评】此题考查二元一次方程组,一次函数,一元一次不等式的运用,理解题意,正确列式解决问题.24.(14分)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B (4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△P AC为直角三角形时点P的坐标.【考点】HF:二次函数综合题.【专题】152:几何综合题;16:压轴题.【分析】(1)已知B(4,m)在直线y=x+2上,可求得m的值,抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过联立方程组即可求得待定系数的值.(2)要弄清PC的长,实际是直线AB与抛物线函数值的差.可设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC与P点横坐标的函数关系式,根据函数的性质即可求出PC的最大值.(3)当△P AC为直角三角形时,根据直角顶点的不同,有三种情形,需要分类讨论,分别求解.【解答】解:(1)∵B(4,m)在直线y=x+2上,∴m=4+2=6,∴B(4,6),∵A(,)、B(4,6)在抛物线y=ax2+bx+6上,∴,解得,∴抛物线的解析式为y=2x2﹣8x+6.(2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6),∴PC=(n+2)﹣(2n2﹣8n+6),=﹣2n2+9n﹣4,=﹣2(n﹣)2+,∵PC>0,∴当n=时,线段PC最大且为.(3)∵△P AC为直角三角形,i)若点P为直角顶点,则∠APC=90°.由题意易知,PC∥y轴,∠APC=45°,因此这种情形不存在;ii)若点A为直角顶点,则∠P AC=90°.如答图3﹣1,过点A(,)作AN⊥x轴于点N,则ON=,AN=.过点A作AM⊥直线AB,交x轴于点M,则由题意易知,△AMN为等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).设直线AM的解析式为:y=kx+b,则:,解得,∴直线AM的解析式为:y=﹣x+3 ①又抛物线的解析式为:y=2x2﹣8x+6 ②联立①②式,解得:x=3或x=(与点A重合,舍去)∴C(3,0),即点C、M点重合.当x=3时,y=x+2=5,∴P1(3,5);iii)若点C为直角顶点,则∠ACP=90°.∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴抛物线的对称轴为直线x=2.如答图3﹣2,作点A(,)关于对称轴x=2的对称点C,则点C在抛物线上,且C(,).当x=时,y=x+2=.∴P2(,).∵点P1(3,5)、P2(,)均在线段AB上,∴综上所述,△P AC为直角三角形时,点P的坐标为(3,5)或(,).【点评】此题主要考查了二次函数解析式的确定、二次函数最值的应用以及直角三角形的判定、函数图象交点坐标的求法等知识.祝福语祝你考试成功!。

贵州省黔南州2014年中考数学真题试题(解析版)

贵州省黔南州2014年中考数学真题试题(解析版)

贵州省黔南州2014年中考数学真题试题(解析版)本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟。

第Ⅰ卷(选择题,共52分)一、单项选择题(每小题4分,共13小题,满分52分) 1.在﹣2,﹣3,0.1四个数中,最小的实数是( ) A . ﹣3 B . ﹣2 C . 0 D .12.计算(﹣1)2+20﹣|﹣3|的值等于( ) A . ﹣1 B . 0 C . 1 D .53.二元一次方程组31x y x y +=⎧⎨-=-⎩的解是( )A . 21x y =⎧⎨=⎩B .12x y =⎧⎨=⎩ C .12x y =⎧⎨=-⎩ D .21x y =⎧⎨=-⎩【答案】B . 【解析】试题分析:方程组利用加减消元法求出解即可.31x y x y +=⎧⎨-=-⎩①②,①+②得:2x=2,即x=1,①﹣②得:2y=4,即y=2,则方程组的解为12 xy=⎧⎨=⎩.故选B.考点:解二元一次方程组.4.下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根考点:随机事件.5.下列计算错误的是()A.a•a2=a3B.a2b﹣ab2=ab(a﹣b)C. 2m+3n=5mn D.(x2)3=x6故选C.考点:1.幂的乘方与积的乘方2.合并同类项3.同底数幂的乘法4.因式分解﹣提公因式法.6.下列图形中,∠2大于∠1的是()考点:1.平行四边形的性质2.对顶角3.平行线的性质4.三角形的外角性质.7.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()8.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()考点:简单组合体的三视图.9.下列说法中,正确的是()x 有意义B.方程x2+x﹣2=0的根是x1=﹣1,x2=2 A.当x<1时,1C.的化简结果是D.a,b,c均为实数,若a>b,b>c,则a>c2考点:1.二次根式有意义的条件2.分母有理化3.解一元二次方程﹣因式分解法.10.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.253520x x=-B.253520x x=-C.2535+20x x=D.2535+20x x=考点:分式方程.11.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.3B. 2cm C. 3cm D. 4cm考点:直角三角形.12.如图,圆锥的侧面积为15π,底面积半径为3,则该圆锥的高AO为()A. 3 B. 4 C. 5 D. 15考点:圆锥的计算.13.如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCE C.EB=ED D.∠ABE一定等于30°故选D.考点:翻折变换(折叠问题).第Ⅱ卷(非选择题,共68分)二、填空题(共6小题,每小题5分,满分30分)14.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是考点:频数与频率.15.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD =4,DB =2,则DEBC的值为 .考点:相似三角形的判定与性质.16.如图,正比例函数y 1=k 1x 与反比例函数y 2=2k x的图象交于A 、B 两点,根据图象可直接写出当y 1>y 2时,x 的取值范围是 .17.实数a ()21a -+a = .18.已知2332 12C⨯=⨯=3,35543123C⨯⨯=⨯⨯=10,4665431234C⨯⨯⨯=⨯⨯⨯=15,…观察以上计算过程,寻找规律计算58C= .故答案是56.考点:数字的变化规律.19.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【答案】4 5【解析】∵∠COD =90°, ∴CD 是直径, 即CD =10, ∵点C (0,6), ∴OC =6,∴OD =22106-=8, ∴cos ∠ODC =45OD CD =, ∵∠OBC =∠ODC , ∴cos ∠OBC = 45. 故答案是45. 考点:1.勾股定理2.圆周角定理3.锐角三角函数的定义. 三、解答题(共7小题,满分68分)20.(1)解不等式组1023632x x x -<⎧⎪⎨>-⎪⎩,并把它的解集在数轴上表示出来.(2)先阅读以下材料,然后解答问题,分解因式.mx +nx +my +ny =(mx +nx )+(my +ny )=x (m +n )+y (m +n )=(m +n )(x +y );也可以mx +nx +my +ny =(mx +my )+(nx +ny )=m (x +y )+n (x +y )=(m +n )(x +y ).以上分解因式的方法称为分组分解法,请用分组分解法分解因式:a 3﹣b 3+a 2b ﹣ab 2.解①得:x>1,解②得:x<3,,不等式组的解集是:1<x<3;(2)a3﹣b3+a2b﹣ab2=a3+a2b﹣(b3+ab2)=a2(a+b)﹣b2(a+b)=(a+b)(a2﹣b2)=(a+b)2(a﹣b).考点:1.解一元一次不等式组2.因式分解﹣分组分解法3.在数轴上表示不等式的解集.21.如下是九年级某班学生适应性考试文综成绩(依次A、B、C、D等级划分,且A等为成绩最好)的条形统计图和扇形统计图,请根据图中的信息回答下列问题:(1)补全条形统计图;(2)求C等所对应的扇形统计图的圆心角的度数;(3)求该班学生共有多少人?(4)如果文综成绩是B等及B等以上的学生才能报考示范性高中,请你用该班学生的情况估计该校九年级400名学生中,有多少名学生有资格报考示范性高中?(2)C等所对应的扇形统计图的圆心角的度数是:360°×(1﹣25%﹣40%﹣5%)=108°;(3)该班学生共有60人;(4)400×(25%+40%)=260(人).考点:1.条形统计图2.用样本估计总体3.扇形统计图.22.如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?【答案】(1)P(小鸟落在草坪上)=23;(2)P(编号为A、B的2个小方格空地种植草坪)=13.【解析】试题分析:(1)直接利用概率公式计算即可;(2)列表或树状图后利用概率公式求解即可.试题解析:(1)P(小鸟落在草坪上)=62 =93;(2)用树状图或列表格列出所有问题的可能的结果:A B CA(A,B)(A,C)B(B,A)(B,C)C(C,A)(C,B)由树状图(列表)可知,共有6种等可能结果,编号为A、B的2个小方格空地种植草坪有2种,所以P(编号为A、B的2个小方格空地种植草坪)=21 =63.考点:1.列表法与树状图法2.几何概率.23.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.考点:1.旋转的性质2.全等三角形的判定与性质3.矩形的性质4.正方形的判定.24.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足13CFFD,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.(1)求证:△ADF ∽△AED ;(2)求FG 的长;(3)求证:tan ∠E =5.∴△ADF ∽△AED ;(2)∵13CF FD =,CF =2, ∴FD =6,∴CD =DF +CF =8,∴CG =DG =4,∴FG =CG ﹣CF =2;(3)∵AF =3,FG =2,∴AG 225AF FG -=tan∠E=54 AGDG.考点:1.相似三角形的判定与性质2.垂径定理3.圆周角定理4.解直角三角形.25.已知某厂现有A种金属70吨,B种金属52吨,现计划用这两种金属生产M、N两种型号的合金产品共80000套,已知做一套M型号的合金产品需要A种金属0.6kg,B种金属0.9kg,可获利润45元;做一套N 型号的合金产品需要A种金属1.1kg,B种金属0.4kg,可获利润50元.若设生产N种型号的合金产品大数为x,用这批金属生产这两种型号的合金产品所获总利润为y元.(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)在生产这批合金产品时,N型号的合金产品应生产多少套,该厂所获利润最大?最大利润是多少?∴y与x的函数关系式是y=5x+360000(40000≤x≤44000);(2)∵k=5>0,∴y随x的增大而增大,∴当x=44000时,y最大=580000,答:生产N型号的时装44000套时,该厂所获利润最大,最大利润是580000元.考点:1.一次函数的应用2.不等式组.26.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.【答案】(1)抛物线为y=14(x﹣4)2﹣1=14x2﹣2x+3;试题解析:(1)设抛物线为y=a(x﹣4)2﹣1,∴OB =2,AB =2223=13+,BC =4,∵AB ⊥BD ,∴∠OAB +∠OBA =90°,∠OBA +∠EB C =90°,∴△AOB ∽△BEC ,∴AB OB BC CE=,即132CE =,解得CE =813, ∵81313>2, ∴抛物线的对称轴l 与⊙C 相交;(3)如图,过点P 作平行于y 轴的直线交AC 于点Q ;1 2x+3;可求出AC的解析式为y=﹣。

2014年贵州中考数学真题解析

2014年贵州中考数学真题解析


=2.01×107.

13.甲 【解析】∵x甲 =x乙 ,而甲组数据的方差为 s2甲 =1.25,乙组数据
的方差为 s2乙 =3,∴s2甲 <s2乙 ,即乙组数据的波动较大,∴甲组数据

较稳定.

14.(2,-3) 【解析】点 P(2,3)的横坐标为 2,纵坐标为 3,所以关于
x轴的对称点的坐标为(2,-3).
m2 -m=1.∴ m2 -m+2014=1+2014=

2015.故选 D.

8.A 【解析】∵正比例函数 y=x与反比例函数 y= 1的图象相交于 x

{ A、B两点,∴点 A与点
y=x
轴,联立
y=
1,解得 x
B关于原点对称,∴S△ AOC =S△ BOC,∵BC⊥x x=±1,当 x=-1时,y=-1∴△ABC的面

15.x≥
1 2 【解析】根据二次根-1≥0,解得
x≥
1. 2

16.360° 【解析】∵该多边形是四边形,∴n=4,∴四边形的内角和
为(4-2)×180°=360°.

17.55° 【解析】如解图,∵∠1=35°,∴∠3=∠1=35°,根据三角形
误;C.射击运动员射击一次,命中十环,随机事件,故 C错误;D.因 17.1 【解析】由题图可知,a<-1,∴a-1<0,∴ 槡(a-1)2 +a=1
为在方程 2x2-2x-1=0中,b2 -4ac=4-4×2×(-1)=12>0, -a+a=1.
故 D正确.故选 D. 5.C 【解析】

6.D 【解析】∵两圆的半径分别为 3、5,圆心距为 8,而 8=3+5,∴d
=R+r,故两圆的位置关系为外切.

黔西南州2014年初中毕业生学业暨升学统一考试试卷及答案

黔西南州2014年初中毕业生学业暨升学统一考试试卷及答案

秘密★启用前黔西南州2014年初中毕业生学业暨升学统一考试试卷综合文科参考答案及评分标准思品试题答案二.简答题(共4小题,每小题5分,共20分)21.①人民代表大会制度;②民族区域自治制度;③共产党领导的多党合作和政治协商制度;④人民民主专政的国家制度;⑤以公有制为主体,多种所有制经济共同发展的基本经济制度;⑥计划生育制度。

(答对其中5点即可)22.(1)宪法具有至高无上的权威(2)宪法规定了国家生活中最根本的问题(3)宪法具有更严格的制定与修改程序(4)宪法是公民基本权利的保障书。

23.(1)中国正处于并将长期处于社会主义初级阶段。

(1分)(2)社会主义初级阶段包括两层含义:第一、就社会性质而言,我国已经是社会主义社会;(2分)第二、就发展程度而言,我国的社会主义还处于初级阶段。

(2分)24.(1)点燃道德明灯(2)书写道德信条(3)人生有大德25.这种观点是错误的(1分)因为幸福没有统一的标准,也无法进行比较,只要我们在生活中用心体味,就能品尝到幸福的味道。

如果拿幸福同他人攀比,烦恼和痛苦就会产生,因为要攀比和较量,我们要不断去奋斗、努力,一切好像总没有尽头。

再者在攀比中,我们渐渐失去了本来可以拥有的闲暇和轻松,心里的弦越绷越紧,感觉就会越来越累。

所以这种观点是错误的(酌情给分)(4分)26.(1)反映了我国实施依法治国的基本方略。

(2分)(2)①有利于发展社会主义民主政治,实现人民当家作主。

②有利于维护社会主义公平正义,保证人民群众的根本利益,构建社会主义和谐社会;③有利于实现国家的长治久安;④有利于预防和打击各类违法犯罪活动(回答2点即可)(3)我们中学生应该:①要努力学习法律知识,增强法制观念,自觉学法、守法、用法、护法;②依法维护国家利益,依法规范自身行为,要敢于和善于同违法行为作斗争;③积极参与社会主义政治文明建设,依法参与政治生活;④积极做法律的宣传者,践行者、为建设社会主义国家做贡献。

2014年贵州省黔南州中考数学试卷

2014年贵州省黔南州中考数学试卷

2014年贵州省黔南州中考数学试卷一、单项选择题(每小题4分,共13小题,满分52分)1.(2014贵州黔南州)在-2,-3,0.1四个数中,最小的实数是() A.-3B.-2C.0D.12.(2014贵州黔南州)计算(-1)2+20-|-3|的值等于()A.-1B.0C.1D.53.(2014贵州黔南州)二元一次方程组的解是() A.B.C.D.4.(2014贵州黔南州)下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2-2x-1=0必有实数根5.(2014贵州黔南州)下列计算错误的是()A.a•a2=a3B.a2b-ab2=ab(a-b)C.2m+3n=5mn D.(x2)3=x66.(2014贵州黔南州)下列图形中,∠2大于∠1的是()B.A.C.D.7.(2014贵州黔南州)正比例函数y=k x(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.8.(威海中考)如图(1),形状相同、大小相等的两个小木块放置于桌面上,其俯视图如图(2)所示,则其主视图是()A.B.C.D.9.(2014贵州黔南州)下列说法中,正确的是()A.当x<1时,有意义B.方程x2+x-2=0的根是x1=-1,x2=2C.的化简结果是D.a,b,c均为实数,若a>b,b>c,则a>c10.(2010,益阳)货车行驶25千米与小轿车行驶35千米所用时间相同,已知小轿车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.11.(2014贵州黔南州)如图,在△A B C中,∠A C B=90°,B E平分∠A B C,E D⊥A B于D,如果∠A=30°,A E=6c m,那么C E 等于()A.cm B.2cm C.3cm D.4cm12.(2014贵州黔南州)如图,圆锥的侧面积为15π,底面积半径为3,则该圆锥的高A O为()A.3B.4C.5D.1513.(2014贵州黔南州)如图,把矩形纸片AB C D沿对角线B D折叠,设重叠部分为△E B D,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE一定等于30°二、填空题(共6小题,每小题5分,满分30分)14.(2014贵州黔南州)在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组到第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是________.15.(2014贵州黔南州)如图,在△A B C中,点D、E分别在A B、A C上,D E∥B C.若A D=4,D B=2,则的值为________.16.(2014贵州黔南州)如图,正比例函数y1=k1x与反比例函数的图象交于A、B两点,根据图象可直接写出当y1>y2时,x的取值范围是________.17.(2014贵州黔南州)实数a在数轴上的位置如图所示,化简.18.(2014贵州黔南州)已知,,,……观察以上计算过程,寻找规律计算.19.(2014贵州黔南州)如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则c o s∠O BC的值为________.三、解答题(共7小题,满分68分)20.(2014贵州黔南州)(1)解不等式组,并把它的解集在数轴上表示出来.(2)先阅读以下材料,然后解答问题.分解因式mx+n x+m y +n y=(m x+n x)+(m y+n y)=x(m+n)+y(m+n)=(m+n)(x+y);也可以m x+n x+m y+n y=(m x+m y)+(n x+n y)=m(x+y)+n(x+y)=(m+n)(x+y).以上分解因式的方法称为分组分解法.请用分组分解法分解因式:a3-b3+a2b-a b2.21.(2014贵州黔南州)如下是九年级某班学生适应性考试文综成绩(依次A、B、C、D等级划分,且A等为成绩最好)的条形统计图和扇形统计图,请根据图中的信息回答下列问题:(1)补全条形统计图;(2)求C等所对应的扇形统计图的圆心角的度数.(3)求该班学生共有多少人?(4)如果文综成绩是B等及B等以上的学生才能报考示范性高中,请你用该班学生的情况估计该校九年级400名学生中,有多少名学生有资格报考示范性高中?22.(2014贵州黔南州)如图所示的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?23.(2014贵州黔南州)两个长为2c m,宽为1c m的长方形,摆放在直线l 上(如图①),C E=2c m,将长方形A B C D绕着点C顺时针旋转α角,将长方形E F G H绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接A E、C G,求证:△A E D≌△G C D(如图②).(2)当α=45°时(如图③)求证:四边形M H N D为正方形.24.(2014贵州黔南州)如图,A B是⊙O的直径,弦C D⊥A B于点G,点F是C D上一点,且满足,连接A F并延长交⊙O 于点E,连接A D、D E,若C F=2,A F=3.(1)求证:△A D F∽△AE D;(2)求F G的长;(3)求证:.25.(2014贵州黔南州)已知某厂现有A种金属70吨,B种金属52吨,现计划用这两种金属生产M、N两种型号的合金产品共80000套.已知做一套M型号的合金产品需要A种金属0.6k g,B种金属0.9k g,可获利润45元;做一套N型号的合金产品需要A种金属 1.1k g,B种金属0.4k g,可获利润50元.若设生产N种型号的合金产品套数为x,用这批金属生产这两种型号的合金产品所获总利润为y元.(1)求y与x的函数关系式,并求出自变量x的取值范围;(2)在生产这批合金产品时,N型号的合金产品应生产多少套,该厂所获利润最大?最大利润是多少?26.(2014贵州黔南州)如图,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式.(2)过点B作线段A B的垂线交抛物线于点D,如果以点C为圆心的圆与直线B D相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明.(3)已知点P是抛物线上的一个动点,且位于A、C两点之间,问:当点P运动到什么位置时,△P A C的面积最大,并求出此时P点的坐标和△P A C 的最大面积.。

贵州省黔南州2014年中考数学真题试题(解析版)

贵州省黔南州2014年中考数学真题试题(解析版)

贵州省黔南州2014年中考数学真题试题(解析版)本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟。

第Ⅰ卷(选择题,共52分)一、单项选择题(每小题4分,共13小题,满分52分) 1.在﹣2,﹣3,0.1四个数中,最小的实数是( ) A . ﹣3 B . ﹣2 C . 0 D .12.计算(﹣1)2+20﹣|﹣3|的值等于( ) A . ﹣1 B . 0 C . 1 D .53.二元一次方程组31x y x y +=⎧⎨-=-⎩的解是( )A . 21x y =⎧⎨=⎩B .12x y =⎧⎨=⎩ C .12x y =⎧⎨=-⎩ D .21x y =⎧⎨=-⎩【答案】B . 【解析】试题分析:方程组利用加减消元法求出解即可.31x y x y +=⎧⎨-=-⎩①②,①+②得:2x=2,即x=1,①﹣②得:2y=4,即y=2,则方程组的解为12 xy=⎧⎨=⎩.故选B.考点:解二元一次方程组.4.下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《十二在线》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根考点:随机事件.5.下列计算错误的是()A.a•a2=a3B.a2b﹣ab2=ab(a﹣b)C. 2m+3n=5mn D.(x2)3=x6故选C.考点:1.幂的乘方与积的乘方2.合并同类项3.同底数幂的乘法4.因式分解﹣提公因式法.6.下列图形中,∠2大于∠1的是()考点:1.平行四边形的性质2.对顶角3.平行线的性质4.三角形的外角性质.7.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()8.形状相同、大小相等的两个小木块放置于桌面,其俯视图如下图所示,则其主视图是()考点:简单组合体的三视图.9.下列说法中,正确的是()A.当x<1B.方程x2+x﹣2=0的根是x1=﹣1,x2=2C.的化简结果是D.a,b,c均为实数,若a>b,b>c,则a>c考点:1.二次根式有意义的条件2.分母有理化3.解一元二次方程﹣因式分解法.10.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.253520x x=-B.253520x x=-C.2535+20x x=D.2535+20x x=考点:分式方程.11.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A.B. 2cm C. 3cm D. 4cm考点:直角三角形.12.如图,圆锥的侧面积为15π,底面积半径为3,则该圆锥的高AO为()A. 3 B. 4 C. 5 D. 15考点:圆锥的计算.13.如图,把矩形纸片ABCD沿对角线BD折叠,设重叠部分为△EBD,则下列说法错误的是()A.AB=CD B.∠BAE=∠DCE C.EB=ED D.∠ABE一定等于30°故选D.考点:翻折变换(折叠问题).第Ⅱ卷(非选择题,共68分)二、填空题(共6小题,每小题5分,满分30分)14.在全国初中数学竞赛中,都匀市有40名同学进入复赛,把他们的成绩分为六组,第一组一第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是考点:频数与频率.15.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD =4,DB =2,则DEBC的值为 .考点:相似三角形的判定与性质.16.如图,正比例函数y 1=k 1x 与反比例函数y 2=2k x的图象交于A 、B 两点,根据图象可直接写出当y 1>y 2时,x 的取值范围是 .17.实数a +a = .18.已知2332 12C⨯=⨯=3,35543123C⨯⨯=⨯⨯=10,4665431234C⨯⨯⨯=⨯⨯⨯=15,…观察以上计算过程,寻找规律计算58C= .故答案是56.考点:数字的变化规律.19.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),与x轴的正半轴交于点D,B是y轴右侧圆弧上一点,则cos∠OBC的值为.【答案】4 5【解析】∵∠COD=90°,∴CD是直径,即CD=10,∵点C(0,6),∴OC=6,∴OD=8,∴cos∠ODC=45 ODCD=,∵∠OBC=∠ODC,∴cos∠OBC=45.故答案是45.考点:1.勾股定理2.圆周角定理3.锐角三角函数的定义.三、解答题(共7小题,满分68分)20.(1)解不等式组1023632xx x-<⎧⎪⎨>-⎪⎩,并把它的解集在数轴上表示出来.(2)先阅读以下材料,然后解答问题,分解因式.mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y);也可以mx+nx+my+ny=(mx+my)+(nx+ny)=m(x+y)+n(x+y)=(m+n)(x+y).以上分解因式的方法称为分组分解法,请用分组分解法分解因式:a3﹣b3+a2b﹣ab2.解①得:x>1,解②得:x<3,,不等式组的解集是:1<x<3;(2)a3﹣b3+a2b﹣ab2=a3+a2b﹣(b3+ab2)=a2(a+b)﹣b2(a+b)=(a+b)(a2﹣b2)=(a+b)2(a﹣b).考点:1.解一元一次不等式组2.因式分解﹣分组分解法3.在数轴上表示不等式的解集.21.如下是九年级某班学生适应性考试文综成绩(依次A、B、C、D等级划分,且A等为成绩最好)的条形统计图和扇形统计图,请根据图中的信息回答下列问题:(1)补全条形统计图;(2)求C等所对应的扇形统计图的圆心角的度数;(3)求该班学生共有多少人?(4)如果文综成绩是B等及B等以上的学生才能报考示范性高中,请你用该班学生的情况估计该校九年级400名学生中,有多少名学生有资格报考示范性高中?(2)C等所对应的扇形统计图的圆心角的度数是:360°×(1﹣25%﹣40%﹣5%)=108°;(3)该班学生共有60人;(4)400×(25%+40%)=260(人).考点:1.条形统计图2.用样本估计总体3.扇形统计图.22.如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,问小鸟落在草坪上的概率是多少?(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少(用树形图或列表法求解)?【答案】(1)P(小鸟落在草坪上)=23;(2)P(编号为A、B的2个小方格空地种植草坪)=13.【解析】试题分析:(1)直接利用概率公式计算即可;(2)列表或树状图后利用概率公式求解即可.试题解析:(1)P(小鸟落在草坪上)=62 =93;(2)用树状图或列表格列出所有问题的可能的结果:由树状图(列表)可知,共有6种等可能结果,编号为A、B的2个小方格空地种植草坪有2种,所以P(编号为A、B的2个小方格空地种植草坪)=21 =63.考点:1.列表法与树状图法2.几何概率.23.两个长为2cm,宽为1cm的长方形,摆放在直线l上(如图①),CE=2cm,将长方形ABCD绕着点C顺时针旋转α角,将长方形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D、H重合时,连接AE、CG,求证:△AED≌△GCD(如图②).(2)当α=45°时(如图③),求证:四边形MHND为正方形.∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.考点:1.旋转的性质2.全等三角形的判定与性质3.矩形的性质4.正方形的判定.24.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足13CFFD,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.(1)求证:△ADF∽△AED;(2)求FG的长;(3)求证:tan∠E=4.∴△ADF∽△AED;(2)∵13CFFD=,CF=2,∴FD=6,∴CD=DF+CF=8,∴CG=DG=4,∴FG=CG﹣CF=2;(3)∵AF=3,FG=2,∴AG=tan ∠E =4AG DG 考点:1.相似三角形的判定与性质2.垂径定理3.圆周角定理4.解直角三角形.25.已知某厂现有A 种金属70吨,B 种金属52吨,现计划用这两种金属生产M 、N 两种型号的合金产品共80000套,已知做一套M 型号的合金产品需要A 种金属0.6kg ,B 种金属0.9kg ,可获利润45元;做一套N 型号的合金产品需要A 种金属1.1kg ,B 种金属0.4kg ,可获利润50元.若设生产N 种型号的合金产品大数为x ,用这批金属生产这两种型号的合金产品所获总利润为y 元.(1)求y 与x 的函数关系式,并求出自变量x 的取值范围;(2)在生产这批合金产品时,N 型号的合金产品应生产多少套,该厂所获利润最大?最大利润是多少?∴y 与x 的函数关系式是y =5x +360000(40000≤x ≤44000);(2)∵k =5>0,∴y 随x 的增大而增大,∴当x =44000时,y 最大=580000,答:生产N 型号的时装44000套时,该厂所获利润最大,最大利润是580000元.考点:1.一次函数的应用2.不等式组.26.如图,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧),已知A 点坐标为(0,3).(1)求此抛物线的解析式(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有怎样的位置关系,并给出证明;(3)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积.【答案】(1)抛物线为y=14(x﹣4)2﹣1=14x2﹣2x+3;试题解析:(1)设抛物线为y=a(x﹣4)2﹣1,∴OB =2,AB ,BC =4,∵AB ⊥BD ,∴∠OAB +∠OBA =90°,∠OBA +∠EB C =90°, ∴△AOB ∽△BEC ,∴AB OB BC CE=2CE =,解得CE2, ∴抛物线的对称轴l 与⊙C 相交;(3)如图,过点P 作平行于y 轴的直线交AC 于点Q ;1 2x+3;可求出AC的解析式为y=﹣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档