sin cos tan所有公式
sin、cos、tan公式
Sin a 、con a 、tan a 公式关系正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数 versinθ =1-cosθ余矢函数 vercosθ =1-sinθ同角三角函数间的基本关系式:·平方关系:sin 2(α)+cos 2(α)=1 tan 2(α)+1=sec 2(α) cot 2(α)+1=csc 2(α)·积的关系:sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα c otα=cosα*cscα secα=tanα*cscα cscα=secα*cotα·倒数关系:tanα·cotα=1 sinα·cscα=1 cosα·secα=1直角三角形ABC 中,角A 的正弦值就等于角A 的对边比斜边,余弦等于角A 的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan (α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan (α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A 2+B 2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A 2+B 2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos 2(α)-sin 2(α)=2cos 2(α)-1=1-2sin 2(α)tan(2α)=2tanα/[1-tan 2(α)]·三倍角公式:sin(3α)=3sinα-4sin 3(α) cos(3α)=4cos 3(α)-3cosα·半角公式: sin(2a )=±21cona - cos(2a )=±21cona + tan(2a )=±cona cona +-11= cona a +1sin =a cona sin 1- ·降幂公式sin 2(α)=(1-cos(2α))/2=versin(2α)/2 cos 2(α)=(1+cos(2α))/2=vercos(2α)/2tan 2(α)=(1-cos (2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan 2(α/2)] cosα=[1-tan 2(α/2)]/[1+tan 2(α/2)] tanα=2tan(α/2)/[1-tan 2(α/2)] ·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cos α·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集。
(完整版)三角函数公式大全
三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦函数:r y=αsin 余弦函数:r x =αcos 正切函数:x y =αtan余切函数:y x =αcot 正割函数:xr=αsec余割函数:yr=αcsc二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。
商数关系:x x x cos sin tan =,xxx sin cos cot =。
平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。
积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα cos(2kπ+α)=cosαtan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin(απ-2)=cosα cos(απ-2)=sinα tan(απ-2)=cotα cot(απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin(απ+2)=cosα cos(απ+2)=-sinαtan(απ+2)=-cotα cot(απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系:sin(απ-23)=-cosα cos(απ-23)=-sinαtan(απ-23)=cotα cot(απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin(απ+23)=-cosα cos(απ+23)=sinαtan(απ+23)=-cotα cot(απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
三角函数所有公式大全
三角函数所有公式大全三角函数的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。
现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
一两角和三角函数公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB二倍角三角函数公式三三倍角三角函数公式五和差化积三角函数公式六积化和差三角函数公式八万能三角函数公式十双曲函数公式十一其他三角函数公式01三角函数公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα02三角函数公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα03三角函数公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα04三角函数公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα05三角函数公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα06三角函数公式六:07公式七:。
三角函数所有的公式
三角函数公式汇总常见角三角函数值:sin 0o =0 cos 0o =1 tan 0o =0 cot 0o 不存在 sin 30o =21 cos 30o =23 tan 30o =33cot 30o =3 sin 60o =23 cos 60o =21 tan 60o =3 cot 60o =33 sin 45o =22cos 45o =22tan 45o =1cot 45o =1 sin 90o =1 cos 90o =0 tan 90o 不存在cot 90o =0 任意角三角函数:sin(2k ℼ+α)= sin αcos(2k ℼ+α)= cos αtan(2k ℼ+α)= tan αsin(ℼ+α)= - sin αcos(ℼ+α)= - cos αtan (ℼ+α)= tan αsin(ℼ-α)=sin αcos(ℼ-α)= - cos αtan (ℼ-α)= - tan αsin(2ℼ-α)= - sin αcos(2ℼ-α)=cos αtan (2ℼ-α)= - tan αSin (2π-α)=cos α cos (2π-α)=sin αSin (2π+α)=cos α cos (2π+α)=-sin αSin (23π-α)= - cos α cos (23π-α)= - sin α Sin (23π+α)= - cos α cos (23π+α)=sin α 两角和差三角函数:sin(A+B)=sinAcosB+cosAsinBsin(A- B)=sinAcosB- cosAsinBcos(A+B)=cosAcosB- sinAsinBcos(A- B)=cosAcosB+sinAsinB tan(A+B)=B tan A tan B tan A tan -+1 tan(A- B)=Btan A tan B tan A tan +-1 cot(A+B)=Bcot A cot B cot A cot +-1 cot(A-B)=Bcot -A cot B cot A cot 1+ 三角函数半角公式: sin(2A )=2A cos -1 cos(2A )=2A cos 1+ tan(2A )=Acos A cos 1+-1=A sin A cos -1=A cos A sin +1 cot(2A )=A cos Acos 1-+1三角函数平方公式:sin 2α+cos 2α=11+tan 2α=sec 2α1+cot 2α=csc 2αsin 2α=221αcos - cos 2α=αtan 211+=221αcos + tan 2α=αtan tan 212- 三角函数2倍角公式:sin2α=2sinαcosαcos2α=cos 2α-sin 2α=1-2sin 2α=2cos 2α-1 tan2α=αtan αtan 212- tan tan2α1=2αcos αsin +1=αsin αcos -1 3倍角三角函数公式: sin3α=3sin α-4sin 3α =4sin αsin(60o +α)sin(60o -α) sos3α=4cos 3α-3cos α =4cos αcos(60o -α)cos(60o +α) tan3α=tan αtan(60o -α)tan(60o +α) 三角函数万能公式:sin α=2αtan 212αtan+2 cos α=2αtan 212αtan +-21 tan α=2αtan 212αtan -2三角函数和差化积公式: sinA+sinB=2sin 2B A +cos 2B A - sinA- sinB=2sin 2B A -cos 2B A + cosA+cosB=2cos 2B A +cos 2B A - cosA- cosB= -2sin 2B A +sin 2B A - tanA+tanB=Bcos A cos )B A sin(+ tanA - tanB=Bcos A cos )B A sin(- cotA+cotB=Bsin A sin )B A sin(+ cotA - cotB=Bsin A sin )B A sin(- tanA - cotB= - B sin A cos )B A cos(+三角函数积化和差公式: sinAsinB= -21[cos(A+B)-cos(A-B)] cosAcosB=21[cos(A+B)+cos(A-B)] sinAcosB=21[sin(A+B)+sin(A-B)] cosAsinB=21[sin(A+B)-sin(A-B)] 辅助角公式:asin α+bcos α=b 2a 2 sin(α+ѱ) (公式中tan ѱ=a b ) 正弦定理:A sin a =B sin b =C sin c =2R (R 为△ABC 外接圆半径)余弦定理:a 2=b 2+c 2-2bc ·cosAb 2=a 2+c 2-2ac ·cosBc 2=a 2+b 2-2ab ·cosC整理不易,请勿盗版。
SIN COS TAN所有公式
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
1+cot^2(α)=csc^2(α)
二)用以上公式可推出下列二倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
(上面这个余弦的很重要)
sin2A=2sinA*cosA
三)半角的只需记住这个:
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
三角函数公式大全
三角函数公式大全三角函数是数学中重要的一个分支,主要研究三角形和三角形函数的相关性质。
下面总结了一些常用的三角函数公式,以便记忆和应用。
1. 正弦函数(Sine Function):正弦是三角函数中最基本的一个函数,记为sin(x)。
其定义域为所有实数,值域为[-1, 1]。
常用公式:sin(α ± β) = sinαcosβ ± cosαsinβsin(2α) = 2sinαcosα1 + sin^2α = cos^2α2. 余弦函数(Cosine Function):余弦是正弦的补函数,记为cos(x)。
其定义域为所有实数,值域为[-1, 1]。
常用公式:cos(α ± β) = cosαcosβ ∓ sinαsinβcos(2α) = cos^2α - sin^2α1 + cos^2α = sin^2α3. 正切函数(Tangent Function):正切是正弦与余弦的比值,记为tan(x)。
其定义域为除去使得cos(x) = 0的所有实数,值域为(-∞, +∞)。
常用公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanαtanβ)tan(2α) = 2tanα / (1 - tan^2α)4. 余切函数(Cotangent Function):余切是正切的倒数,记为cot(x)。
其定义域为除去使得tan(x) = 0的所有实数,值域为(-∞, +∞)。
常用公式:cot(α) = 1 / tan(α)5. 正割函数(Secant Function):正割是余弦的倒数,记为sec(x)。
其定义域为除去使得cos(x) = 0的所有实数,值域为(-∞, -1]∪[1, +∞)。
常用公式:sec(α) = 1 /cos(α)6. 余割函数(Cosecant Function):余割是正弦的倒数,记为csc(x)。
其定义域为除去使得sin(x) = 0的所有实数,值域为(-∞, -1]∪[1, +∞)。
所有三角函数的公式大全
所有三角函数的公式大全三角函数是解决三角形相关问题的数学工具。
它们包括正弦、余弦、正切、余切、正割和余割。
下面是这些三角函数的定义和重要公式:1. 正弦函数(Sine):定义:在直角三角形中,正弦是对边与斜边的比值。
表达式:sin(θ) = 对边 / 斜边重要公式:- 正弦的平方等于1减去余弦的平方:sin²(θ) + cos²(θ) = 1- 正弦的倒数是正割:csc(θ) = 1 / sin(θ)- 正弦的倒数的平方等于余割的平方减1:csc²(θ) = cot²(θ) - 12. 余弦函数(Cosine):定义:在直角三角形中,余弦是邻边与斜边的比值。
表达式:cos(θ) = 邻边 / 斜边重要公式:- 余弦的平方等于1减去正弦的平方:cos²(θ) + sin²(θ) = 1- 余弦的倒数是余割:sec(θ) = 1 / cos(θ)- 余弦的倒数的平方等于正割的平方减1:sec²(θ) = tan²(θ) + 13. 正切函数(Tangent):定义:在直角三角形中,正切是正弦与余弦的比值。
表达式:tan(θ) = 正弦 / 余弦 = 对边 / 邻边重要公式:- 正切等于正弦除以余弦:tan(θ) = sin(θ) / cos(θ)- 正切的倒数是余切:cot(θ) = 1 / tan(θ)- 正切的平方等于正割的平方减1:tan²(θ) = sec²(θ) - 14. 余切函数(Cotangent):定义:在直角三角形中,余切是余弦与正弦的比值。
表达式:cot(θ) = 余弦 / 正弦 = 邻边 / 对边重要公式:- 余切等于余弦除以正弦:cot(θ) = cos(θ) / sin(θ)- 余切的倒数是正切:tan(θ) = 1 / cot(θ)- 余切的平方等于余割的平方减1:cot²(θ) = csc²(θ) - 15. 正割函数(Secant):定义:在直角三角形中,正割是斜边与邻边的比值。
三角函数的所有公式
三角函数的所有公式诱导公式(1)sinx=sin(x+2kπ)cosx=cos(x+2kπ)tanx=tan(x+2kπ)k∈Z原理:终边相同的角同一三角函数值相同(或可用三角函数图像的周期性验证)(2)sin(-x)=-sinxcos(-x)=cosxtan(-x)=-tanx(3)sin(π+x)=-sinxcos(π+x)=-cosxtan(π+x)=tanx(4)sin(π-x)=sinxcos(π-x)=-cosxtan(π-x)=-tanx原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)(5)sin(π/2+x)=cosxcos(π/2+x)=-sinxtan(π/2+x)=-cotx(6)sin(π/2-x)=cosxcos(π/2-x)=sinxtan(π/2-x)=cotx(7)展开公式sin(3π/2+x)=sin(π+π/2+x)=-sin(π/2+x)=-cosxcos(3π/2+x)=cos(π+π/2+x)=-cos(π/2+x)=sinxtan(3π/2+x)=-cotxsin(3π/2-x)=sin(π+π/2-x)=-sin(π/2-x)=-cosxcos(3π/2-x)=cos(π+π/2-x)=-cos(π/2-x)=-sinxtan(3π/2-x)=cotx两角公式(1)两角和差公式sin(x+y)=sinxcosy+sinycosxsin(x-y)=sinxcosy-sinycosxcos(x+y)=cosxcosy-sinxsinycos(x-y)=cosxcosy+sinxsinytan(x+y)=sin(x+y)/cos(x+y)=sinxcosy+sinycosx/cosxcosy-sinxsiny=tanx+tany/1-tanxtanytan(x-y)=sin(x-y)/cos(x-y)=sinxcosy-sinycosx/cosxcosy+sinxsiny=tanx-tany/1+tanxtany证明:单位圆作图(2)二倍角公式sin2x=2sinxcosx推导:sin2x=sin(x+x)=sinxcosx+cosxsinx=2sinxcosxcos2x=(cosx)²-(sinx)²=2cos²x-1=1-2sin²x (sin²x+cos²x=1)推导:cos2x=cos(x+x)=cosxcosx-sinxsinx=cos²x-sin²xtan2x=sin2x/cos2x=2sinxcosx/cos²x-sin²x=2tanx/1-tan²x三倍角公式sin3x=sin(2x+x)=sin2xcosx+cos2xsinx=2sinx(1-sin²x)+(1-2sin²x)sinx=3sinx-4sin³xcos3x=cos(2x+x)=cos2xcosx-sinxsin2x=(2cos²x-1)cosx-2cosx(1-cos²x)=4cos³x-3cosxtan3x=sin3x/cos3x=tanxtan(π/3+x)tan(π/3-x)(3)半角公式sin²(x/2)=(1-cosx)/2cos²(x/2)=(1+cosx)/2tan²(x/2)=1-cosx/1+cosx推导:cosx=2cos²(x/2)-1=1-2sin²(x/2)(4)辅助角公式asinx+bcosx=√(a²+b²)[asinx/√(a²+b²)+bcosx/√(a²+b²)]原理:配凑为sin²m+cos²m的形式,值域为[-√(a²+b²),√(a²+b²)] (5)两角推诱导例sin(π+x)=sinπcosx+sinxcosπ=-sinxcos(π+x)=cosπcosx-sinπsinx=-cosxsin(π-x)=sinπcosx-sinxcosπ=sinx cos(π-x)=cosπcosx+sinπsinx=-cosx。
(完整版)三角函数公式大全
三角函数公式一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦函数:r y =αsin 余弦函数:r x =αcos 正切函数:x y=αtan 余切函数:y x =αcot 正割函数:xr=αsec 余割函数:y r =αcsc 二、同角三角函数的基本关系式六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”倒数关系:1csc sin =⋅x x ,1sec cos =⋅x x ,1cot tan =⋅x x 。
商数关系:x x x cos sin tan =,xxx sin cos cot =。
平方关系:1cos sin 22=+x x ,x x 22sec tan 1=+,x x 22csc cot 1=+。
积的关系:sinx=tanx·cosx cosx=sinx·cotx tanx=sinx·secxcotx=cosx·cscx secx=tanx·cscx cscx=secx·cotx三、诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)=sinα cos (2kπ+α)=cosαtan (2kπ+α)=tanα cot (2kπ+α)=cotα (其中k ∈Z)公式二:设α为任意角,π+α的三角函数的值与α的三角函数值之间的关系: sin (π+α)=-sinα cos (π+α)=-cosα tan (π+α)=tanα cot (π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sinα cos (-α)=cosα tan (-α)=-tanα cot (-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)=sinα cos (π-α)=-cosα tan (π-α)=-tanα cot (π-α)=-cotα 公式五:απ-2与α的三角函数值之间的关系:sin (απ-2)=cosα cos (απ-2)=sinα tan (απ-2)=cotα cot (απ-2)=tanα公式六:απ+2与α的三角函数值之间的关系:sin (απ+2)=cosα cos (απ+2)=-sinα tan (απ+2)=-cotα cot (απ+2)=-tanα公式七:απ-23与α的三角函数值之间的关系: sin (απ-23)=-cosα cos (απ-23)=-sinαtan (απ-23)=cotα cot (απ-23)=tanα公式八:απ+23与α的三角函数值之间的关系:sin (απ+23)=-cosα cos (απ+23)=sinαtan (απ+23)=-cotα cot (απ+23)=-tanα公式九:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)=-sinα cos (2π-α)=cosα tan (2π-α)=-tanα cot (2π-α)=-cotα⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
三角函数所有的公式
三角函数所有的公式三角函数是数学中一种非常重要的函数类型,主要包括正弦函数、余弦函数以及正切函数。
这些函数与三角形中的角度和边长有密切的关系,被广泛地应用于几何、物理、工程以及其他学科领域。
正弦函数是在一个单位圆上,对应于一个角度所在点的y坐标。
其函数公式为:sin(x) = opposite / hypotenuse余弦函数是在一个单位圆上,对应于一个角度所在点的x坐标。
其函数公式为:cos(x) = adjacent / hypotenuse正切函数是指一个角度与其相应的正切值,其中正切值等于对边与邻边之比。
其函数公式为:tan(x) = opposite / adjacent在三角函数中,还有一些其他的公式也是非常常见的。
例如,双曲正弦、双曲余弦以及双曲正切函数,它们都在不同的领域中得到了广泛的应用。
下面是一些常见的三角函数公式:tan(x) = sin(x) / cos(x)cot(x) = 1 / tan(x)sec(x) = 1 / cos(x)csc(x) = 1 / sin(x)sin²(x) + cos²(x) = 11 + tan²(x) = sec²(x)1 + cot²(x) = csc²(x)sin(x ± y) = sin(x)cos(y) ± cos(x)sin(y)cos(x ± y) = cos(x)cos(y) ∓ sin(x)sin(y)tan(x ± y) = [tan(x) ± tan(y)] / [1 ∓ tan(x)tan(y)]这些公式在解决各种三角函数问题时非常重要。
例如,在计算一个三角形的面积或角度时,我们可以使用正弦、余弦、正切等函数来计算。
在探讨一些物理学问题时,三角函数同样有着重要的地位,例如描述波的传播和震荡等现象。
总之,三角函数是数学中十分重要的一类函数,具有广泛的应用和重要的地位。
sin_cos_tan_公式
经常使用的诱导公式有以下几组:1.sinα^2 +cosα^2=13.tanα=1/cotα公式一公式一:设α为任意角, 终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二公式二:设α为任意角, π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四公式四:利用公式二和公式三可以获得π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五公式五:利用公式一和公式三可以获得2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)口诀;奇变偶不变, 符号看象限一般的最经常使用公式有:Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+TanB)/(1-TanA*TanB) Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)同角三角函数的关系(即同角八式)·平方关系·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1·商数关系·商数关系:sina/cosa=tanacosa/sina=cota直角三角形ABC中,角A的正弦值就即是角A的对边比斜边, sina=y/r余弦即是角A的邻边比斜边cosa=x/r正切即是对边比邻边,tana=y/x三角函数恒等变形公式·两角和与差的三角函数·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·辅助角公式·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t), 其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式·降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))· 万能公式· 万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]。
cos sin tan的公式表
cos sin tan的公式表【最新版】目录1.cos sin tan 的定义与含义2.cos sin tan 的公式表3.记忆方法与实际应用正文【1.cos sin tan 的定义与含义】余弦(cos)、正弦(sin)和正切(tan)是三角函数中最基本的三个函数。
它们在数学、物理等科学领域中有着广泛的应用。
余弦函数(cos)表示在直角三角形中,相邻边与斜边的比值。
正弦函数(sin)表示在直角三角形中,对边与斜边的比值。
正切函数(tan)表示在直角三角形中,对边与邻边的比值。
【2.cos sin tan 的公式表】以下是 cos、sin、tan 的公式表:余弦函数(cos):cos(0) = 1cos(π/2) = 0cos(π) = -1cos(3π/2) = 0cos(2π) = 1正弦函数(sin):sin(0) = 0sin(π/2) = 1sin(π) = 0sin(3π/2) = -1sin(2π) = 0正切函数(tan):tan(0) = 0tan(π/4) = 1tan(π/2) = undefined(无穷大)tan(π) = 0tan(3π/4) = -1tan(2π) = 0【3.记忆方法与实际应用】对于初学者来说,记忆这些公式可能比较困难。
这里提供一个简单的记忆方法:将 0 到 2π的弧度分为四个象限,每个象限的 cos、sin、tan 值有一个规律性的变化。
例如,第一象限的 cos、sin、tan 值都是正的,第二象限的 cos 值是负的,sin 和 tan 值是正的,以此类推。
在实际应用中,三角函数常用于解决几何、物理、工程等领域的问题。
例如,在解决直角三角形问题时,我们可以通过 cos、sin、tan 函数计算三角形的边长、角度等信息。
在物理学中,三角函数可以用于描述物体的周期性运动等。
sintancos函数表
sintancos函数表Sintancos函数是一种在数学和计算机科学中广泛使用的函数,它是三角函数的一种变形。
在本文中,我们将介绍sintancos函数的定义、性质以及它在实际应用中的一些例子。
定义Sintancos函数是一个三角函数,它的定义如下:sintancos(x) = sin(x) / (tan(x) + cos(x))其中,sin(x)表示x的正弦值,tan(x)表示x的正切值,cos(x)表示x的余弦值。
性质Sintancos函数具有以下性质:1. 定义域为R-{kπ/2 | k∈Z},即除了kπ/2(k为整数)之外的所有实数都可以作为sintancos函数的自变量。
2. 值域为R,即sintancos函数的值可以是任意实数。
3. sintancos(x) = 1 / csc(x) – cot(x),其中csc(x)表示x 的余割值,cot(x)表示x的余切值。
4. sintancos(x) = 2 sin(x/2) / (1 + cos(x)),这个公式可以用来简化计算。
5. sintancos函数是偶函数,即sintancos(-x) = sintancos(x)。
6. sintancos函数在x=kπ(k为整数)处有一个简单极点,即在这些点上sintancos函数的值为无穷大。
应用Sintancos函数在实际应用中有很多用途,下面我们将介绍一些例子。
1. 电气工程在电气工程中,sintancos函数被广泛用于计算交流电路中的功率因数。
功率因数是电路中有功功率与视在功率之比,它的值越大,电路的效率就越高。
因此,在电路设计和优化中,sintancos函数是一个非常重要的工具。
2. 机械工程在机械工程中,sintancos函数被用来计算机械系统中的速度比。
速度比是机械系统中两个旋转部件的角速度之比,它的值越接近1,机械系统的效率就越高。
因此,在机械系统的设计和优化中,sintancos函数也是一个非常有用的工具。
sincostan公式
s i n c o s t a n公式-CAL-FENGHAI.-(YICAI)-Company One1三角函数和角公式百科名片诱导公式又称三角函数的加法定理,是几个角的和(差)的三角函数通过其中各个角的三角函数来表示的关系目录诱导公式一般的最常用公式部分高等内容特殊三角函数值三角函数的计算傅立叶级数诱导公式一般的最常用公式部分高等内容特殊三角函数值三角函数的计算傅立叶级数诱导公式常用的诱导公式有以下几组:α^2 +cosα^2=1α/cosα=tanαα=1/cotα公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)口诀;奇变偶不变,符号看象限一般的最常用公式有:Sin(A+B)=SinA*CosB+SinB*CosASin(A-B)=SinA*CosB-SinB*CosACos(A+B)=CosA*CosB-SinA*SinBCos(A-B)=CosA*CosB+SinA*SinBTan(A+B)=(TanA+TanB)/(1-TanA*TanB)Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)同角三角函数的关系(即同角八式)·平方关系·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1·商数关系·商数关系:sina/cosa=tanacosa/sina=cota直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,sina=y/r余弦等于角A的邻边比斜边cosa=x/r正切等于对边比邻边,tana=y/x三角函数恒等变形公式·两角和与差的三角函数·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式·三倍角公式:si n(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式·降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0部分高等内容·高等代数中三角函数的指数表示·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i)cosx=[e^(ix)+e^(-ix)]/2tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
三角sin函数公式
三角sin函数公式一、sin度数公式1、sin 30= 1/22、sin 45=根号2/23、sin 60= 根号3/2二、cos度数公式1、cos 30=根号3/22、cos 45=根号2/23、cos 60=1/2三、tan度数公式1、tan 30=根号3/32、tan 45=13、tan 60=根号31、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
也可以等价地用与单位圆有关的各种线段的长度来定义。
2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
3、常见的三角函数包括正弦函数、余弦函数和正切函数。
在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。
4、早期对于三角函数的研究可以追溯到古代。
古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。
他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。
对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。
5、喜帕恰斯实际上给出了最早的三角函数数值表。
然而古希腊的三角学基本是球面三角学。
这与古希腊人研究的主体是天文学有关。
梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。
6、古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。
托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。