1.3.1函数的最大(小)值

合集下载

函数的最大(小)值

函数的最大(小)值

第一章 1.3. 1(下)函数的最大(小)值教学目的:⑴初步了解复合函数单调性的判断方法. ⑵理解函数的最大(小)值及其几何意义; ⑶学会运用函数图象理解和研究函数的性质;教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值. 教学过程:一.复习引入1、函数单调性定义----上升的意义为单调递增,下降的意义为单调上升.,如何精确说明x 越大(小),y 越大(小),单调函数的定义.2、初等函数:一次函数)0(≠+=k b kx y 、二次函数)0(2≠++=a c bx ax y ,对称轴为界,反比例函数)0(≠=k xk y 的单调性,单调区间:3、单调性的判定、单调区间的求法:(1)初等函数直接给出(2)画函数图象(3)定义法 比如作业:《作业本》1.3.1(一)10. 若函数()()215f x ax a x =--+在区间1,12⎛⎫⎪⎝⎭上是增函数,求实数a 的范围.解:若0a =,则()5f x x =-+,符合 若0a >,则对称轴11022a x a a -=≤⇒>若0a <,则对称轴11102a x a a-=≥⇒-≤<综上:1a ≥-4、单调性的证明方法:单调性的证明一般分五步:取 值 → 作 差 → 变 形 → 定 号 → 下结论5、补充作业:证明函数f(x)=x 3在(-∞,+∞)上是增函数.错解:分类12120,0x x x x <<<<讨论,只说明了在()(),0,0,-∞+∞上递增,但并不是(),-∞+∞上递增;即使再分120x x <<讨论也还不够,12,x x 中可以有0吗?就此说明:(1)并不因为0x >递增,0x <递增,而得出R 上递增.也可以有解法:2222222121122122132422x x x x x x x x x x x ⎛⎛⎫++=++=+++ ⎪ ⎝⎭⎝或22222222121211221222x x x x x x x x x x ++++≥+-=(2)确定符号时,因式分解到底:比如作业:《作业本》1.3.1(一)11. 判断函数()21x f x x =-在区间()1,1-上的单调性,并给出证明.解:任意的()1212,1,1,x x x x ∈-<,()()()()()()1221122212111x x x x f x f x xx +--===-- ,充分说明符号.6、如上例,完全可能()21x f x x =-在某一区间上有两种或以上的单调性,怎样去划分呢?比如:讨论函数2y x =在区间()1,1-上的单调性. 二.新课教学(一)复合函数单调性------用增减的通俗语言解释对于函数)(u f y =和)(x g u =,如果)(x g u =在区间),(b a 上是具有单调性,当),(b a x ∈时,),(n m u ∈,且)(u f y =在区间),(n m 上也具有单调性,则复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表:以上规律还可总结为:“同向得增,异向得减”或“同增异减”. 以X 越大Y 越大(小)的通俗语言解释,不作证明 例1.求函数. 解:首先定义域为[]1,1-,()()21f x u x x ==-, []1,0x ∈-时,()21u x x =-为增函数,[]0,1x ∈时,()21u x x =-为减函数,因为()f x =[]1,0-为()f x 的递增区间,[]0,1为()f x 的递减区间.练习:已知函数y=f(x)在(-∞,+∞)上是减函数,则y=f(|x+2|)的单调递减区间是 ( B ) A.(-∞,+∞) B.[-2,+∞] C.[2,+∞] D.(-∞,-2)(二)函数最大(小)值定义 观察图象引入1.最大值一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:⑴对于任意的x ∈I ,都有f(x)≤M ;⑵存在x 0∈I ,使得f(x 0) = M 那么,称M 是函数y=f(x)的最大值(Maximum Value ).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value )的定义.(学生活动)①函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ② 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ). 简单结论;讨论:初等函数:一次函数)0(≠+=k b kx y 、二次函数)0(2≠++=a c bx ax y 反比例函数)0(≠=k xk y 的最大值和最小值:2.利用函数单调性的判断函数的最大(小)值的方法(1)如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);(2)如果y=f(x)在定义域上并非单一的单调函数,则进行单调区间分割,求出每一段上的最大值和最小值,再取各最大值中的最大者为y=f(x)的最大值,各最小值中的最小者为y=f(x)的最小值.练习:(教材P 32练习5)(三)典型例题例2.菊花烟花是最壮观的烟花之一,制造时一般期望它达到最高点爆炸.如果烟花距地面的高度hm 与时间ts 之间的关系为2() 4.914.718h t t t =-++,那么烟花冲出后何时是它爆炸的最佳时刻?这时距地高度是多少(精确到1m)?解:作出函数2() 4.914.718h t t t =-++的图象,显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆炸的最佳时刻,纵坐标就是这时距地高度对于2() 4.914.718h t t t =-++, 当14.7 1.52( 4.9)t =-=?时,函数有最大值24( 4.9)1814.7294( 4.9)h ??=?故烟花冲出后1.5s 是它爆炸的最佳时刻, 这时距地高度约为29m.说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值. 例3. 旅 馆 定 价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设y 为旅馆一天的客房总收入,x 为与房价160相比降低的房价,因此当房价为)160(x -元时,住房率为)%102055(⋅+x ,于是得y =150·)160(x -·)%102055(⋅+x .由于)%102055(⋅+x ≤1,可知0≤x ≤90.因此问题转化为:当0≤x ≤90时,求y 的最大值的问题.将y 的两边同除以一个常数0.75,得y 1=-x 2+50x +17600.由于二次函数y 1在x =25时取得最大值,可知y 也在x =25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元). 所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的)例4.求函数12-=x y 在区间[2,6]上的最大值和最小值.解:设12,x x 是区间[2,6]上的任意两个实数,且12x x <,则211212122()22()()11(1)(1)x x f x f x x x x x --=-=----由12211226,0,(1)(1)0x x x x x x ≤<≤->-->得,故1212()()0,()()f x f x f x f x ->>即,故函数12-=x y 是区间[2,6]上的减函数.max max 2,2,6,0.4x y x y ∴====当当.注意:利用函数的单调性求函数的最大(小)值的方法与格式.例5.已知函数f(x)= - x 2+2ax+1-a 在0≤x ≤1时有最大值2,求a 的值. 思维分析:一般配方后结合二次函数图象对参数分类讨论 解:f(x)= -(x-a)2+a 2-a+1(0≤x ≤1),对称轴x=a 10a<0时,121)0()(max -=∴=-==a a f x f20 0≤a ≤1时 )(25121)()(2max 舍得±==+-==a a a a f x f30 a>1时,22)1()(max =∴===a a f x f 综上所述:a= - 1或a=2深化讨论:已知y=f(x)=x 2-2x+3,当x ∈[t,t+1]时,求函数的最大值函数()t g 和最小值函数()t h ,并求()t h 的最小值。

函数的基本性质

函数的基本性质
f(x1) f(x1) f(x2) f(x2) x1 x2o x2 x1 x
例1. 如图是定义在区间[-5, 5]上的函数 y=f(x), 根据图象说出函数的单调区间, 以及在每一单调区间 上, 它是增函数还是减函数? y
解: 函数的单调区
间有 [-5, -2), [-2, 1). [1, 3), [3, 5].
例题(补充). 如图是函数 y=f(x) 的图象, 其定义域 为[-p, p], x0 为何值时, 有f(x)≥f(x0), 或 f(x)≤f(x0)? 函数的最大值是多少? 最小值是多少? 解: (1) 当 x0 = - p 时, f(x)≥f(x0),
2
-p y
-p 2
1
这时函数取得最小值
o
-1
[解析] 任取 x1、x2,使得-1<x1<x2<1, 则 Δx=x2-x1>0. ax1x2+1x1-x2 Δy=f(x2)-f(x1)= , 2 x2 - 1 x - 1 1 2
∵-1<x1<x2<1,
2 ∴x1x2+1>0,x2 1-1<0,x2-1<0,
Байду номын сангаас
x1x2+1x1-x2 ∴ 2 <0, x1-1x2 - 1 2 ∴当 a>0 时,f(x2)-f(x1)<0, 故此时函数 f(x)在(-1,1)上是减函数, 当 a<0 时,f(x2)-f(x1)>0, 故此时 f(x)在(-1,1)上是增函数. 综上所述,当 a>0 时,f(x)在(-1,1)上为减函数, 当 a<0 时,f(x)在(-1,1)上为增函数.
• 3.函数单调性在图象上的反映:若f(x)是区间A上的单调增 函数,则图象在A上的部分从左向右是逐渐________ 的,若 上升 f(x)是单调减函数,则图象在相应区间上从左向右是逐渐 下降 的. ________ 取值 作差 , • 4.用定义证明单调性的步骤:__________ ,________ 变形 ,________ 定号 ,________. 结论 ________

第一章 1.3 1.3.1 第二课时 函数的最大(小)值

第一章   1.3   1.3.1   第二课时   函数的最大(小)值
(1)对于任意的x∈I,都有 f(x)≤M ; (2)存在x0∈I,使得 f(x0)=M . 那么,我们称M是函数y=f(x)的最大值.
返回
2.最小值
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:
(1)对于任意的x∈I,都有 f(x)≥M ;
(2)存在x0∈I,使得 f(x0)=M .
返回
3.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数 a的值是________. 解析:a>0时,由题意得2a+1-(a+1)=2,即a=2; a<0时,a+1-(2a+1)=2,∴a=-2.
返回
解:设销售价为 x 元/瓶(3≤x≤4),则根据题意(销售量等于进货 4-x 量),正好当月销售完的进货量为 ×40+400(瓶),即 400(9 0.05 -2x)瓶. 此时所得的利润为 f(x)=400(9-2x)(x-3)=400(-2x2+15x-27)(元), 15 根据函数性质,当 x= 时,f(x)取得最大值 450. 4 15 这时进货量为 400(9-2x)=400(9-2× )=600(瓶). 4 15 答:销售价定为每瓶 元,并且从工厂购进 600 瓶时,才可获 4 得最大利润 450 元.
返回
[活学活用] 1 在题设条件不变的情况下,求 f(x)在[ ,2]上的最值. 3
1 1 解:设 x1x2∈[ ,1],并且 x1<x2,同理可证 f(x1)>f(x2),即 f(x)在[ , 3 3 1]上是减函数. 1 结合例题可知,函数 f(x)在[ ,1]上单调递减,在(1,2)上单调递增. 3 ∴当 x=1 时,f(x)取得最小值 f(1)=2; 1 1 10 5 1 10 又 f( )= +3= >f(2)= ,∴f(x)在[ ,2]上的最大值为 ,最小 3 3 3 2 3 3 值为 2.

1.3.1.第二课时_函数的最大(小)值

1.3.1.第二课时_函数的最大(小)值

1.3.1. 第二课时 函数的最大(小)值1、函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( )A .9B .9(1-a )C .9-aD .9-a 22、函数y =x +1-x -1的值域为( )A .(-∞, 2 ]B .(0, 2 ]C .[2,+∞)D .[0,+∞)3、函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为( )A .0或1B .1C .2D .以上都不对4、函数f (x )=x 2在[0,1]上的最小值是( )A .1B .0 C.14 D .不存在 5、函数f (x )=⎩⎨⎧ 2x +6,x ∈[1,2]x +7,x ∈[-1,1],则f (x )的最大值、最小值分别为( ) A .10,6 B .10,8 C .8,6 D .以上都不对6、函数y =-x 2+2x 在[1,2]上的最大值为( )A .1B .2C .-1D .不存在7、函数y =1x -1在[2,3]上的最小值为( ) A .2 B.12 C.13 D .-128、某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元9、已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( )A .-1B .0C .1D .210、已知x ,y ∈R +,且满足x 3+y 4=1.则xy 的最大值为________. 11、函数y =2x 2+2,x ∈N *的最小值是________.12、已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________.13、函数f (x )=xx +2在区间[2,4]上的最大值为________;最小值为________.14、已知函数f (x )=⎩⎪⎨⎪⎧ x 2-12≤x ≤11x 1<x ≤2,求f (x )的最大、最小值.15、某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金为3600元时,能租出多少辆车?(2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?16、求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值.17、已知函数f (x ) = x 2 – 2x – 3,若x [t ,t +2]时,求函数f (x )的最值.18、、甲、乙两地相距s km ,汽车从甲地匀速行驶到乙地,已知汽车每小时的运输成本(单位:元)由可变部分和固 定部分组成,可变部分与速度x (km / h)的平方成正比,比例系数为a ,固定部分为b 元,请问,是不是汽车的行驶速度越快,其全程成本越小?如果不是,那么为了使全程运输成本最小,汽车应以多大的速度行驶?19、 已知函数f (x ) =22x x a x ++,x ∈[1,+∞).(Ⅰ)当a =12时,求函数f (x )的最小值;(Ⅱ)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.20、 已知函数f (x )对任意x ,y R,总有f (x ) + f ( y ) = f (x + y ),且当x >0时,f (x )<0,f (1) =23-.(1)求证f (x )是R 上的减函数;(2)求f (x )在[–3,3]上的最大值和最小值.。

高中数学 1.3.1 单调性与最大(小)值 第2课时 函数的最值课件 新人教A版必修1

高中数学 1.3.1 单调性与最大(小)值 第2课时 函数的最值课件 新人教A版必修1
(1)令 x 为年产量,y 表示利润,求 y=f(x)的表达式; (2)当年产量为何值时,工厂的利润最大?其最大值是多 少?
第三十四页,共48页。
(3)求解:选择合适的数学方法求解函数. (4)评价:对结果进行验证或评估,对错误加以改正,最后 将结果应用于现实,做出解释或预测. 也可认为分成“设元——列式——求解——作答”四个步
第三十三页,共48页。
3
某工厂生产一种机器的固定成本为 5 000 元,且每生产 1 部,需要增加投入 25 元,对销售市场进行调查后得知,市场对 此产品的需求量为每年 500 部,已知销售收入的函数为 N(x)= 500x-12x2,其中 x 是产品售出的数量(0≤x≤500).
(3)最大(小)值定义中的“存在”是说定义域中至少有一个 实数(shìshù)满足等式,也就是说y=f(x)的图象与直线y=M至 少有一个交点.
第十一页,共48页。
2.最值 定义 函数的__最__大__值__和__最__小_值___统称为函数的最值 几何 函数y=f(x)的最值是图象_最__高__点___或_最__低__点___的 意义 纵坐标 说明 函数的最值是在整个定义域内的性质
第二十三页,共48页。
②由①知,f(x)在(0,+∞)上是增函数,所以若函数 f(x)的 定义域与值域都是[12,2],则ff122==122,,
即1a1a--212==122,, 解得 a=25.
第二十四页,共48页。
规律总结:1.利用单调性求最值 的一般步骤
(1)判断函数的单调性.(2)利用单调性写出最值. 2.利用单调性求最值的三个常用结论 (1)如果函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间 [a,b]的左、右端点(duān diǎn)处分别取得最小(大)值和最大 (小)值. (2)如果函数f(x)在区间(a,b]上是增函数,在区间[b,c)上 是减函数,则函数f(x)在区间(a,c)上有最大值f(b). (3)如果函数f(x)在区间(a,b]上是减函数,在区间[b,c)上 是增函数,则函数f(x)在区间(a,c)上有最小值f(b).

1.3.1 单调性与最大(小)值 教案

1.3.1 单调性与最大(小)值 教案

1。

3.1 单调性与最大(小)值第1课时错误!教学目标1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合的思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.重点难点教学重点:函数单调性的概念、判断及证明.教学难点:归纳抽象函数单调性的定义以及根据定义证明函数的单调性.教学方法教师启发讲授,学生探究学习.教学手段计算机、投影仪.错误!创设情境,引入课题课前布置任务:(1)由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事.下图是北京市某年8月8日一天24小时内气温随时间变化的曲线图.图1引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时达到;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.问题:还能举出生活中其他的数据变化情况吗?预案:水位高低、燃油价格、股票价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.【设计意图】由生活情境引入新课,激发兴趣.归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中时同学们就有了一定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数y=x+2,y=-x+2,y=x2,y =错误!的图象,并且观察自变量变化时,函数值有什么变化规律?图2预案:(1)函数y=x+2在整个定义域内y随x的增大而增大;函数y=-x+2在整个定义域内y随x的增大而减小.(2)函数y=x2在[0,+∞)上y随x的增大而增大,在(-∞,0)上y随x的增大而减小.(3)函数y=错误!在(0,+∞)上y随x的增大而减小,在(-∞,0)上y随x的增大而减小.引导学生进行分类描述(增函数、减函数),同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的理解说说什么是增函数、减函数?预案:如果函数f(x)在某个区间上随自变量x的增大,y也越来越大,我们说函数f(x)在该区间上为增函数;如果函数f(x)在某个区间上随自变量x的增大,y 越来越小,我们说函数f(x)在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观认识.【设计意图】从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数y=x+错误!(x>0)的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?图3学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究.【设计意图】使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明f(x)=x2在[0,+∞)为增函数?预案:(1)在给定区间内取两个数,例如1和2,因为12<22,所以f(x)=x2在[0,+∞)为增函数.(2)仿(1),取很多组验证均满足,所以f(x)=x2在[0,+∞)为增函数.(3)任取x1,x2∈[0,+∞),且x1<x2,因为x12-x22=(x1+x2)(x1-x2)<0,即x12<x22,所以f(x)=x2在[0,+∞)为增函数.对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量x1,x2。

函数的基本性质-1.3.1单调性与最大(小)值-学生用

函数的基本性质-1.3.1单调性与最大(小)值-学生用

三人行学堂学科老师个性化教案教师 陈永福学生姓名上课日期 上课时段 年 月 日 到 学科数学年级高一(上) 必修一类型新课讲解□ 复习课讲解□教学目标教学内容 单调性与最大(小)值学习问题解决1、函数单调性的证明及判断方法2、由函数的单调性求参数的取值范围3、由函数的单调性解不等式4、求函数的最大(小)值知识清单1、增函数与减函数的定义 条件 一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的 两个自变量的值x 1,x 2,当x 1 <x 2时结论 那么就说函数f(x)在区间D 上是 函数 那么就说函数f(x)在区间D 上是函数图示2、如果函数)(x f y =在区间D 上是 函数或 函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做函数)(x f y =的 。

3、函数的最大(小)值一般地,设函数)(x f y =的定义域为I ,如果存在实数M 满足 (1)对于任意的I x ∈,都有 (1)对于任意的I x ∈,都有 (2)存在I x ∈0,使得 (2)存在I x ∈0,使得 那么就称M 是函数)(x f y =的最大值 那么就称M 是函数)(x f y =的最小值方法探究一、函数单调性的证明及判断方法 方法点拨1、函数单调性的证明:现阶段只能用定义证明,其步骤为(1)取值:设x 1,x 2为该区间内任意两个自变量的值,且x 1 <x 2;(2)作差变形:作差f(x 1)-f(x 2),并通过通分、因式分解、配方、有理化等方法,向有利于判断差值符号的方向变形;(3)定号:确定差值的符号,当符号不确定时,可考虑分类讨论; (4)作结论:根据定义作出结论;其中最关键的步骤为作差变形,在变形时一般尽量化成几个最简因式的乘积或几个完全平方式,直到符号判断水到渠成。

2、函数单调性的判断方法(1)图像法:先作出函数图象,利用图象直观判断函数单调性;(2)直接法:就是对于我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接判断它们单调性。

2019-2020学年高中数学(人教A版必修一)教师用书:第1章 1.3.1 第2课时 函数的最大(小)值 Word版含解析

2019-2020学年高中数学(人教A版必修一)教师用书:第1章 1.3.1 第2课时 函数的最大(小)值 Word版含解析

第2课时 函数的最大(小)值1.理解函数的最大(小)值的概念及其几何意义.(重点)2.了解函数的最大(小)值与定义区间有关,会求一次函数、二次函数及反比例函数在指定区间上的最大(小)值.(重点、难点)[基础·初探]教材整理 函数的最大(小)值阅读教材P 30至“例3”以上部分,完成下列问题.1.函数f (x )=1x ,x ∈[-1,0)∪(0,2]( ) A .有最大值12,最小值-1 B .有最大值12,无最小值 C .无最大值,有最小值-1D .无最大值,也无最小值【解析】 函数f (x )=1x 在[-1,0)上单调递减,在(0,2]上也单调递减,所以无最大值,也无最小值,故选D.【答案】 D2.函数f (x )=x 2-2x +2,x ∈[-1,2]的最小值为________;最大值为________.【解析】 因为f (x )=x 2-2x +2=(x -1)2+1,x ∈[-1,2],所以f (x )的最小值为f (1)=1,最大值为f (-1)=5.【答案】 1 5[小组合作型]【精彩点拨】 先把y =x -|x -1|化成分段函数的形式,再画出其图象,并由图象求值域. 【自主解答】 y =x -|x -1|=⎩⎨⎧1,x≥12x -1,x<1,画出该函数的图象如图所示.由图可知,函数y =x -|x -1|的值域为(-∞,1].1.函数的最大值、最小值分别是函数图象的最高点、最低点的纵坐标.对于图象较容易画出来的函数,可借助于图象直观的求出其最值,但画图时要求尽量精确.2.利用图象法求函数最值的一般步骤作图象→找图象的最高点和最低点→确定最高点和最低点的纵坐标→确定最值[再练一题]1.已知函数f (x )=错误!(1)在如图1-3-2给定的直角坐标系内画出f (x )的图象; (2)写出f (x )的单调递增区间及值域. 【导学号:97030053】图1-3-2【解】 (1)图象如图所示:(2)由图可知f (x )的单调递增区间为[-1,0),(2,5],值域为[-1,3].求函数f (x )=x +4x 在[1,4]上的最值.【精彩点拨】 先利用单调性的定义判断函数的单调性,再根据单调性求最值即可. 【自主解答】 设1≤x 1<x 2≤2,则f (x 1)-f (x 2)=x 1+4x1-x 2-4x2=x 1-x 2+错误!=(x 1-x 2)·⎝ ⎛⎭⎪⎫1-4x1x2=(x 1-x 2)x1x2-4x1x2=错误!. ∵1≤x 1<x 2≤2,∴x 1-x 2<0,x 1x 2-4<0,x 1x 2>0,∴f (x 1)>f (x 2),∴f (x )是减函数. 同理f (x )在(2,4]上是增函数.∴当x =2时,f (x )取得最小值4,当x =1或x =4时,f (x )取得最大值5.函数的单调性与其最值的关系1.若函数f(x)在闭区间[a,b]上是减函数,则f(x)在闭区间[a,b]上的最大值为f(a),最小值为f(b).2.若函数f(x)在闭区间[a,b]上是增函数,则f(x)在闭区间[a,b]上的最大值为f(b),最小值为f(a).3.求函数的最值时一定要注意所给的区间是闭区间还是开区间,若是开区间,则不一定有最大值或最小值.[再练一题]2.已知函数f(x)=1x-2,(1)判断f(x)在[3,5]上的单调性,并证明;【导学号:97030054】(2)求f(x)在[3,5]上的最大值和最小值.【解】(1)f(x)在[3,5]上为减函数.证明:任取x1,x2∈[3,5],有x1<x2,∴f(x1)-f(x2)=1x1-2-1x2-2=错误!.∵x1<x2,∴x2-x1>0.又∵x1,x2∈[3,5],∴(x1-2)(x2-2)>0,∴错误!>0,∴f(x1)-f(x2)>0,即f(x1)>f(x2),∴f(x)在[3,5]上是减函数.(2)∵f(x)在[3,5]上是减函数,∴f(x)在[3,5]上的最大值为f(3)=1,f(x)在[3,5]上的最小值为f(5)=1 3.某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每提高1元,租不出去的自行车就增加3辆.规定:每辆自行车的日租金不超过20元,每辆自行车的日租金x 元只取整数,并要求出租所有自行车一日的总收入必须超过一日的管理费用,用y 表示出租所有自行车的日净收入(即一日中出租所有自行车的总收入减去管理费后的所得).(1)求函数y =f (x )的解析式及定义域;(2)试问日净收入最多时每辆自行车的日租金应定为多少元?日净收入最多为多少元? 【精彩点拨】 (1)函数y =f (x )=出租自行车的总收入-管理费;当x ≤6时,全部租出;当6<x ≤20时,每提高1元,租不出去的就增加3辆,所以要分段求出解析式;(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值. 【自主解答】 (1)当x ≤6时,y =50x -115,令50x -115>0,解得x >2.3. ∵x ∈N ,∴3≤x ≤6,且x ∈N .当6<x ≤20时,y =[50-3(x -6)]x -115=-3x 2+68x -115, 综上可知y =⎩⎨⎧50x -115,3≤x≤6,x ∈N-3x2+68x -115,6<x≤20,x ∈N.(2)当3≤x ≤6,且x ∈N 时,∵y =50x -115是增函数,∴当x =6时,y m ax =185元. 当6<x ≤20,x ∈N 时,y =-3x 2+68x -115=-3⎝ ⎛⎭⎪⎫x -3432+8113,∴当x =11时,y m ax =270元.综上所述,当每辆自行车日租金定在11元时才能使日净收入最多,为270元.1.本题建立的是分段函数模型,分段求出各段的最大值,两段中的最大值即为所求,其中求一次函数的最值应用单调性,求二次函数的最值则应用配方法.2.解决实际应用问题,首先要理解题意,然后建立数学模型转化成数学模型解决;分清各种数据之间的关系是正确构造函数关系式的关键.[再练一题]3.某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x (百台),其总成本为G (x )(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R (x )(万元)满足R (x )=错误!假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y =f (x )的解析式(利润=销售收入-总成本); (2)工厂生产多少台产品时,可使盈利最多? 【解】 (1)由题意得G (x )=2.8+x . ∵R (x )=错误! ∴f (x )=R (x )-G (x ) =错误!(2)当x >5时,函数f (x )递减, ∴f (x )<f (5)=3.2(万元).当0≤x ≤5时,函数f (x )=-0.4(x -4)2+3.6, 当x =4时,f (x )有最大值为3.6(万元).所以当工厂生产4百台时,可使盈利最大为3.6万元.[探究共研型]探究1 函数f (x )=x 1,0],[-1,2],[2,3]上的最大值和最小值分别是什么?【提示】 函数f (x )=x 2-2x +2的图象开口向上,对称轴为x =1.(1)因为f (x )在区间[-1,0]上单调递减,所以f (x )在区间[-1,0]上的最大值为f (-1)=5,最小值为f (0)=2.(2)因为f (x )在区间[-1,1]上单调递减,在[1,2]上单调递增,则f (x )在区间[-1,2]上的最小值为f (1)=1,又因为f (-1)=5,f (2)=2,f (-1)>f (2),所以f (x )在区间[-1,2]上的最大值为f (-1)=5.(3)因为f (x )在区间[2,3]上单调递增,所以f (x )在区间[2,3]上的最小值为f (2)=2,最大值为f (3)=5.探究2 你能说明二次函数f (x )=ax 2+bx +c 的单调性吗?若求该函数f (x )在[m ,n ]上的最值,应考虑哪些因素?【提示】 当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递减,在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递增;当a <0时,f (x )在⎝ ⎛⎭⎪⎫-b 2a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫-∞,-b 2a 上单调递增.若求二次函数f (x )在[m ,n ]上的最值,应考虑其开口方向及对称轴x =-b2a 与区间[m ,n ]的关系.已知函数f (x )=x 2-ax +1, (1)求f (x )在[0,1]上的最大值;(2)当a =1时,求f (x )在闭区间[t ,t +1](t ∈R )上的最小值. 【精彩点拨】 (1)根据二次函数图象的对称性求函数的最大值.(2)根据函数在区间[t ,t +1]上的单调性分三种情况讨论,分别求出f (x )的最小值. 【自主解答】 (1)因为函数f (x )=x 2-ax +1的图象开口向上,其对称轴为x =a2,所以区间[0,1]的哪一个端点离对称轴远,则在哪个端点取到最大值,当a 2≤12,即a ≤1时,f (x )的最大值为f (1)=2-a ; 当a 2>12,即a >1时,f (x )的最大值为f (0)=1.(2)当a =1时,f (x )=x 2-x +1,其图象的对称轴为x =12, ①当t ≥12时,f (x )在其上是增函数,∴f (x )min =f (t )=t 2-t +1; ②当t +1≤12,即t ≤-12时,f (x )在其上是减函数, ∴f (x )min =f (t +1)=⎝ ⎛⎭⎪⎫t +122+34=t 2+t +1;③当t <12<t +1,即-12<t <12时,函数f (x )在⎣⎢⎡⎦⎥⎤t ,12上单调递减,在⎣⎢⎡⎦⎥⎤12,t +1上单调递增,所以f (x )min =f ⎝ ⎛⎭⎪⎫12=34.探求二次函数的最值问题,要根据函数在已知区间上的单调性求解,特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,如果二者的位置关系不确定,那么就应对其位置关系进行分类讨论来确定函数的最值.[再练一题]4.求f(x)=x2-2ax-1在区间[0,2]上的最大值和最小值.【导学号:97030055】【解】f(x)=(x-a)2-1-a2,对称轴为x=a.(1)当a<0时,由图①可知,f(x)在区间[0,2]上是增函数,所以f(x)min=f(0)=-1,f(x)m ax=f(2)=3-4a.(2)当0≤a≤1时,由图②可知,对称轴在区间[0,2]内,所以f(x)min=f(a)=-1-a2,f(x)m ax =f(2)=3-4a.(3)当1<a≤2时,由图③可知,对称轴在区间[0,2]内,所以f(x)min=f(a)=-1-a2,f(x)m ax =f(0)=-1.(4)当a>2时,由图④可知,f(x)在[0,2]上为减函数,所以f(x)min=f(2)=3-4a,f(x)m ax=f(0)=-1.1.函数f(x)=-2x+1(x∈[-2,2])的最小、最大值分别为( )A.3,5 B.-3,5C.1,5 D.5,-3【解析】因为f(x)=-2x+1(x∈[-2,2])是单调递减函数,所以当x=2时,函数的最小值为-3.当x=-2时,函数的最大值为5.【答案】 B2.函数y=x2-2x,x∈[0,3]的值域为( )A.[0,3] B.[-1,0]C.[-1,+∞) D.[-1,3]【解析】∵函数y=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,函数y取得最小值为-1,当x=3时,函数取得最大值为3,故函数的值域为[-1,3],故选D.【答案】 D3.若函数y=ax+1在[1,2]上的最大值与最小值的差为2,则实数a的值是( )【导学号:97030056】A.2 B.-2C.2或-2 D.0【解析】由题意,a≠0,当a>0时,有(2a+1)-(a+1)=2,解得a=2;当a<0时,有(a +1)-(2a+1)=2,解得a=-2.综上知a=±2.【答案】 C4.函数f(x)=6-x-3x在区间[2,4]上的最大值为________.【解析】∵6-x在区间上是减函数,-3x在区间上是减函数,∴函数f(x)=6-x-3x在区间上是减函数,∴f(x)m ax=f(2)=6-2-3×2=-4.【答案】-45.已知函数f(x)=2x-1(x∈[2,6]).(1)判断函数f(x)的单调性,并证明;(2)求函数的最大值和最小值.【解】(1)函数f(x)在x∈[2,6]上是增函数.证明:设x1,x2是区间[2,6]上的任意两个实数,且x1<x2,则f(x1)-f(x2)=2x1-1-2x2-1=错误!=错误!.由2≤x1<x2≤6,得x2-x1>0,(x1-1)(x2-1)>0,于是f(x1)-f(x2)>0,即f(x1)>f(x2),所以函数f(x)=2x-1是区间[2,6]上的减函数.(2)由(1)可知,函数f(x)=2x-1在区间[2,6]的两个端点处分别取得最大值与最小值,即在x=2时取得最大值,最大值是2,在x=6时取得最小值,最小值是0.4.。

19【数学】1.3.1《函数的最大(小)值》教案(人教A版必修1)

19【数学】1.3.1《函数的最大(小)值》教案(人教A版必修1)

课题:§1.3.1函数的最大(小)值教学目的:(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;教学重点:函数的最大(小)值及其几何意义.教学难点:利用函数的单调性求函数的最大(小)值.教学过程:一、引入课题画出下列函数的图象,并根据图象解答下列问题:○1 说出y=f(x)的单调区间,以及在各单调区间上的单调性; ○2 指出图象的最高点或最低点,并说明它能体现函数的什么特征? (1)32)(+-=x x f(2)32)(+-=x x f ]2,1[-∈x (3)12)(2++=x x x f(4)12)(2++=x x x f ]2,2[-∈x 二、新课教学(一)函数最大(小)值定义1.最大值一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x 0∈I ,使得f(x 0) = M那么,称M 是函数y=f(x)的最大值(Maximum Value ).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value )的定义.(学生活动)注意:○1 函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M (f(x)≥M ).2.利用函数单调性的判断函数的最大(小)值的方法○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);(二)典型例题例1.(教材P 36例3)利用二次函数的性质确定函数的最大(小)值.解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为25cm 的圆形木头锯成矩形木料, 如果矩形一边长为x ,面积为y试将y 表示成x 的函数,并画出25函数的大致图象,并判断怎样锯才能使得截面面积最大?例2.(新题讲解)旅 馆 定 价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下: 房价(元)住房率(%) 16055 140 65 12075 100 85欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设y 为旅馆一天的客房总收入,x 为与房价160相比降低的房价,因此当房价为)160(x -元时,住房率为)%102055(⋅+x ,于是得 y =150·)160(x -·)%102055(⋅+x . 由于)%102055(⋅+x ≤1,可知0≤x ≤90. 因此问题转化为:当0≤x ≤90时,求y 的最大值的问题.将y 的两边同除以一个常数0.75,得y 1=-x 2+50x +17600.由于二次函数y 1在x =25时取得最大值,可知y 也在x =25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的) 例3.(教材P 37例4)求函数12-=x y 在区间[2,6]上的最大值和最小值. 解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式.巩固练习:(教材P 38练习4)三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 → 作 差 → 变 形 → 定 号 → 下结论四、作业布置1. 书面作业:课本P 45 习题1.3(A 组) 第6、7、8题.提高作业:快艇和轮船分别从A 地和C 地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h 和15 km/h ,已知AC=150km ,经过多少时间后,快艇和轮船之间的距离最短? ABCD。

《函数单调性与最大(小)值(第2课时)》教学设计

《函数单调性与最大(小)值(第2课时)》教学设计

第三节 函数的基本性质1.3.1 第二课时 函数的最大(小)值(李波)一、教学目标(一)核心素养教材以二次函数2()f x x =图象为例,观察出函数图象的最低点(0,0),这给我们提供了一种求函数最值的方法“图象观察法”,这也是一种最直接,最直观的方法.结合上一课时函数的单调性,学生通过函数图象,研究函数性质,寻求最值.在实际生活中,常遇到最值问题,我们是通过建立函数模型来进行研究,体现了数学与社会生活紧密联系.本节课,在探究函数的最值问题中,不断培育学生的数学运算、数学抽象、数学建模等数学核心素养.(二)学习目标1.通过函数图象,理解函数最大(小)值及几何意义.2.结合函数单调性求最大(小)值.3.函数最大(小)值的实际问题中的应用.(三)学习重点1.理解函数最大(小)值的概念及几何意义.2.求函数的最大(小)值.(四)学习难点结合函数单调性求最大(小)值.二、教学设计(一)课前设计1.预习任务一般地,设函数()f x 的定义域为I ,如果存在实数M 满足:(1)对任意的x I ∈,都有______;(2)存在0x I ∈,使得_______,那么我们称M 是函数()y f x =的最____值. 详解:()f x M ≤;0()f x M =;大或 ()f x M ≥;0()f x M =;小.2.预习自测(1)作函数22y x x =-+的图象,指出函数是否有的最值?若有,请求出最值. 详解:有最大值,无最小值;最大值为1.(二)课堂设计1.知识回顾(1)常见初等函数的图象.(2)函数的单调性.2.问题探究探究一 通过函数图象,函数最高(低)点的位置特征及几何意义●活动① 学生作函数y x =,1y x =,2y x =图象,观察图象的最高(低)点生:y x =图象上下无限延伸,没有最高点,也没有最低点;1y x=图象上下无限延伸,没有最高点,也没有最低点,且中间断开; 2y x =图象往上无限延伸,没有最高点,最低点在(0,0)处;师:结合图像观察结论,能否阐述函数图象最高(低)点的位置特质及几何意义? 生:2y x =图象最低点在(0,0)处.仔细观察发现,位置特征:最低点位于函数图象上,不是图像外的其他点;几何意义:函数图象上所有点在坐标系中的位置都高于它或和它一样高(最低点本身).【设计意图】观察图象易找到最高(低)点,教学时对最高(低)点的位置特征、几何意义进行探究,展现数学概念生成的过程,培养学生严谨的逻辑推理能力. ●活动② 图象的最高(低)点所体现的函数对应关系本质师:点之间位置高度的如何量化,更显数学的严谨性.由第一课时函数单调性推导,我们在描述()f x 随着x 的增大而增大,任取点11(,)A x y 到22(,)B x y ,其中12x x <刻画x 的增大,因此,我们是借助于点的坐标来探究.同学们可以想一想:在坐标系中,图象的点的高度,是由构成图象点的纵坐标决定的.师:下面以2y x =图象最低点在(0,0)O 为例,探究函数对应关系本质图象上其他点的位置不低于点O⇔图象上任意点(,)Q x y 位置不低于点(0,0)O⇔任意点(,)Q Q Q x y 的纵坐标Q y 的值与(0,0)O 纵坐标O y 的值关系:Q O y y ≥;而任意点(,)Q Q Q x y 的横坐标Q x 的值与(0,0)O 横坐标O x 的关系:,Q O x x R ∈(定义域) ⇔定义域R 内,寻求纵坐标的最小值因此,我们可以下结论:函数图象的最高(低)点(,)Q Q Q x y 的实质是:函数在定义域内任取x 所对应的y 值小于或等于(大于或等于)该点的函数值Q y ;也可以这样描述,函数整个定义域I 内的函数值y 在Q x x =处有最大(小)值Q y ,称Q y 为函数的最大(小)值.关系流程如图:【设计意图】从图象的最高(低)点的“形”,如何过渡到最大(小)值这个“数”,是教学设计的重点.我们从最高(低)点的位置特征,几何意义分析,让学生充分认识到点的坐标,是图象的构成元素点的数量体现,对“形”的认识自然过渡到“数”的分析.点的坐标由横、纵坐标组成,在坐标系中图象上的点投影在x 轴所覆盖的范围、y 轴所覆盖的范围,分别对应了函数的定义域和值域.最高(低)点的横、纵坐标,在坐标系中该点投影在x 轴是其横坐标取值、y 轴上是其纵坐标取值,与其他点投影到y 轴上的值相比较,是最大(小)值,同时该点横、纵坐标分别对应了定义域内某个值,值域内的最大(小)值.●活动③函数最大(小)值的概念师:由以上的推导,我们能否生成函数最大(小)值的概念?生:存在某个值使得所有函数值都比它大(小)也可相等.师:由几何特征,这个值在值域中吗?请继续完善.生:这个值在值域中.值域中存在某个值,使得所有函数值都比它大(小). 师:函数定义域优先,值域中某个值是否有一个x 与之对应?生:至少有一个x 与之对应,即存在性.师:一般地,设函数()f x 的定义域为I ,如果存在实数M 满足:(1)对任意的x I ∈,都有()f x M ≤(()f x M ≥);(2)存在0x I ∈,使得0()f x M =,那么我们称M 是函数()y f x =的最大(小)值.【设计意图】学生要充分认识图象的最高(低)点的位置、该点坐标形式、坐标的对应实质这三者之间的联系,才能从“形”的位置特征及几何意义,到“数”对应方式,呈现了函数最大(小)值概念的生成过程.探究二 结合函数单调性求最大(小)值●活动①由图象观察函数最值.例1已知函数()11f x x x =++-.(1)画出()f x 的图象;(2)根据图象写出()f x 的最小值.【知识点】函数单调性 最值.【数学思想】数形结合思想.【解题过程】(1)解:()11f x x x =++-2,12,112,1x x x x x -≤-⎧⎪=-<<⎨⎪≥⎩其图象如图所示:(2)由图象,得函数()f x 的最小值为2.【思路点拨】画出函数()y f x =的图象,依据函数最值的几何意义,借助图象写出最值.【答案】(1)略;(2)2.同类训练 如图为函数()y f x =,[4,7]x ∈-的图象,指出它的最大值、最小值.【知识点】函数单调性.【数学思想】数形结合思想.【解题过程】观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是( 1.5,2)--,所以当3x =时取得最大值,最大值是3;当 1.5x =-时取得最小值,最小值是-2.【思路点拨】从左至右观察图象,在最高(低)点对应的纵坐标值,为函数的最大(小)值.【答案】3,-2.【设计意图】考查学生如何观察函数最值●活动②利用函数单调性求最值例2:求函数21y x =-在区间[2,6]上的最大值和最小值. 【知识点】函数单调性 最值.【数学思想】数形结合思想.【解题过程】解:12,[2,6]x x ∀∈,且12x x <211212122()22()()11(1)(1)x x f x f x x x x x --=-=----, 12,[2,6]x x ∈,12(1)(1)0x x ∴-->.12x x <,120x x ∴->,12()()0f x f x ∴->,即12()()f x f x >.21y x ∴=-是区间[2,6]上的减函数. 因此,函数21y x =-在区间[2,6]的两个端点分别取得最大值与最小值,即在2x =时取得最大值,最大值为2,在6x =时取得最小值,最小值为0.4.【思路点拨】由图象可观察函数单减,在2x =处有最大值,在6x =处有最小值.在实际解答题中,能说明函数的单调性应先证明,再求最值.【答案】2,0.4.同类训练 求函数4()f x x x=+在[1,2]x ∈上的最大值与最小值. 【知识点】函数单调性.【数学思想】数形结合思想.【解题过程】解:12,[1,2]x x ∀∈,且12x x <,则121212121212444()()()()()x x f x f x x x x x x x x x --=+-+=-. 12x x <,120x x ∴-<,1212,[1,2](1,4)x x x x ∈∴∈,,1212401x x x x ∴-<,>,1212()()0()().f x f x f x f x ∴->,即>4()f x x x∴=+在[1,2]x ∈上是减函数. 从而函数的最大值是(1)145f =+=,最小值是(2)224f =+=.【思路点拨】由函数单调性求最值.【答案】5,4.【设计意图】求函数最值时,首先判定函数在给定区间的单调性,结合函数图象,在区间的端点值处取得最值.●活动③二次函数的最值问题例3求函数2()22f x x ax =-+在[2,4]上的最小值.【知识点】二次函数图象性质.【数学思想】数形结合思想、分类讨论思想.【解题过程】解:函数2()22f x x ax =-+的对称轴是x a =,当2a <时,()f x 在[2,4]上单增,min ()(2)64f x f a ==-,当4a >时,()f x 在[2,4]上单减,min ()(4)188f x f a ==-,当24a ≤≤时,2min ()()2f x f a a ==-.综上所述2min64,2()2,24188,4a a f x a a a a -<⎧⎪=-≤≤⎨⎪->⎩【思路点拨】二次函数在闭区间上求最值,关键是根据图象的对称轴相对于所给区间的位置来确定,对于含字母系数的二次函数的最值,要注意分类讨论.【答案】2min 64,2()2,24188,4a a f x a a a a -<⎧⎪=-≤≤⎨⎪->⎩同类训练 求函数2()22f x x x =-+在[,1]t t +上的最小值.【知识点】二次函数图象性质.【数学思想】数形结合思想、分类讨论思想.【解题过程】解:函数2()22f x x x =-+的对称轴是1x =.当110t t +<⇒<时,()f x 在[,1]t t +上单减,2min ()(1)1f x f t t =+=+; 当1t >时,()f x 在[,1]t t +上单增,2min ()()22f x f t t t ==-+;当1101t t t ≤≤+⇒≤≤时,min ()(1)1f x f ==.综上所述2min21,0()1,0122,1t t f x t t t t ⎧+<⎪=≤≤⎨⎪-+>⎩【思路点拨】二次函数在闭区间上求最值,关键是根据图象的对称轴相对于所给区间的位置来确定,对于含字母系数的二次函数的最值,要注意分类讨论.【答案】2min 21,0()1,0122,1t t f x t t t t ⎧+<⎪=≤≤⎨⎪-+>⎩例4 函数2()34f x x x =--的定义域为[0,]m (0m >),值域为25[,4]4--,求m 的取值范围.【知识点】二次函数图象性质.【数学思想】数形结合思想.【解题过程】解:2()34(4)(1)f x x x x x =--=-+如图min 325()()24f x f ==-,=-43[,3]2m ∴∈. 【思路点拨】由值域求定义域,本质是求值域方法的逆向思维,根据图象找到最值所对应的图象段,投影到x 轴,找到相应的变化范围.同类训练:函数2()23f x x x =-+在[0,]a (0a >)上最大值是3,最小值是2,求a 的取值范围.【知识点】二次函数图象性质.【数学思想】数形结合思想.【解题过程】解:22()23(1)2f x x x x =-+=-+如图:要取到最小值2,a 必须对称轴1x =右侧取值.最大值为3,则a 的必须在对称轴1x =左侧取值.[1,2]a ∴∈.【答案】[1,2]a ∈.【思路点拨】由值域求定义域,本质是求值域方法的逆向思维,根据图象找到最值所对应的图象段,投影到x 轴,找到相应的变化范围.【设计意图】通过值域寻求定义域的问题,结合二次函数图象,找出对应的坐标轴的取值范围.●活动④函数关系中恒成立问题例5已知函数223()x x f x x++=([2,)x ∈+∞). (1)求()f x 的最小值;(2)若()f x a >恒成立,求a 的取值范围.【知识点】函数单调性求最值,恒成立问题转化.【数学思想】变量分离思想、等价转化思想.【解题过程】解:(1) 12,[2,)x x ∀∈+∞,且12x x <,223()x x f x x++=则12121212(3)()()()x x f x f x x x x x --=-.12x x <,120x x ∴-<,12,[2,)x x ∈+∞,124x x ∴>,1230x x ∴->,12()()0f x f x ∴-<,即12()()f x f x <. 故函数223()x x f x x++=在[2,)+∞上为增函数. ∴当2x =时,()f x 有最小值,即11(2)2f =. (2) ()f x 有最小值为11(2)2f =. ()f x a >恒成立,只需min ()f x a >,即112a <. 【思路点拨】恒成立问题,常分离变量,转化为求函数最值问题.【答案】(1)112;(2)112a <. 同类训练 函数2()3f x x x a =++-,[1,1]x ∈-时,()0f x ≥恒成立,求实数a 的取值范围.【知识点】函数单调性、不等式恒成立问题.【数学思想】变量分离思想、等价转化思想.【解题过程】解:[1,1],()0x f x ∈-≥恒成立,23a x x ∴≤++,[1,1]x ∈-时恒成立.记:2()3g x x x =++, 只需min 11()4a g x ≤=,即114a ≤. 【思路点拨】恒成立问题,常分离变量,转化为求函数最值问题. 【答案】114a ≤. 例6 函数2()3,f x x ax a =++-若[2,3]a ∈-时,()0f x ≥恒成立,求实数x 的取值范围.【知识点】一次函数图象性质、不等式恒成立问题.【数学思想】变量分离思想、等价转化思想、分类讨论思想.【解题过程】解:22()3(1)(3)f x x ax a a x x =++-=-++,[2,3]a ∈-,()0f x ≥恒成立,记:2()(1)(3)g a a x x =-++,转化为()0g a ≥恒成立,[2,3]a ∈-.当1x =时,()40g a =>恒成立1x ∴=…………….①当1x >时,2()(1)(3)g a a x x =-++在[2,3]-上单增,22min ()(2)25(1)40g a g x x x =-=-+=-+>恒成立,1x ∴>…………….②当1x <时,2()(1)(3)g a a x x =-++在[2,3]-上单减,2min ()(3)30g a g x x ==+> 31x x ∴≤-≤<或0…………….③由①②③:(,3][,)x ∈-∞-⋃+∞0.【思路点拨】也可用二次函数图象问题求解,若向一次函数图象问题转化,问题变得相对容易.【答案】(,3][,)-∞-⋃+∞0.同类训练 函数2()3,f x x ax a =++-[2,2]x ∈-时,()0f x ≥恒成立,求实数a 的取值范围.【知识点】一次函数图象性质、不等式恒成立问题.【数学思想】分类讨论思想.【解题过程】函数2()3f x x ax a =++-图象的对称轴是2a x =-. 当22a -≤-,即4a ≥时,()f x 在[2,2]-上单增,min ()(2)730f x f a =-=-≥73a ∴≤. a ∴∈Φ………….① 当22a -≥,即4a ≤-时,()f x 在[2,2]-上单减,min ()(2)70f x f a ==+≥7a ∴≥-, [7,4]a ∴∈--.…………….②当222a -<-<,即44a -<<时,2min 412()()024a a a f x f ---+==≥62a ∴-≤≤, (4,2]a ∴∈-.………….③由①②③:[7,2]a ∈-.【思路点拨】对称轴与给定区间位置不同关系,由函数图象观察单调性,结合最值求解.【答案】[7,2]a ∈-.【设计意图】函数的最值与单调性的关系:若函数在闭区间[,]a b 上是减函数,则()f x 在[,]a b 上的最大值为()f a ,最小值为()f b ;若函数在闭区间[,]a b 上是增函数,则()f x 在[,]a b 上的最大值为()f b ,最小值为()f a .探究三 函数最大(小)值的实际问题中的应用●活动① 生活问题构建函数模型例7 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:2400,0400()280000,400x x x R x x ⎧-≤≤⎪=⎨⎪>⎩,其中x 是仪器的月产量. (1)将利润表示为月产量的函数()f x ;(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)【知识点】数学建模.【数学思想】函数与方程思想.【解题过程】解:(1)月产量为x 台,则总成本为20000100x +元,从而⎪⎩⎪⎨⎧>-≤≤-+-=)400(,10060000)4000(,2000030021)(2x x x x x x f(2)当0400x ≤≤时,21()(300)25000,2f x x =--+ 当300x =时,max ()25000f x =;当400x >时,()60000100f x x =-是减函数,()60001004002000025000.f x <-⨯=<综上所述:300x ∴=时,max ()25000f x =.即每月生产300台仪器时利润最大,最大利润为25000元.【思路点拨】分段函数模型要注意x 的不同取值范围,所对应的利润求值问题.【答案】(1)2130020000,(0400)()260000100,(400)x x x f x x x ⎧-+-≤≤⎪=⎨⎪->⎩;(2)每月生产300台仪器时利润最大,最大利润为25000元.同类训练 将进货单价为40元的商品按50元一个出售时,能卖出500个,已知这种商品每涨价1元,其销售量就减少10个,为得到最大利润,售价应为多少元?最大利润是多少?【知识点】数学建模.【数学思想】函数与方程思想.【解题过程】解:设售价为x 元,利润为y 元,单个涨价50x -元,销量减少10(50)x -个. 2(40)[50010(50)](40)(100010)10(70)9000.y x x x x x =---=--=--+故当70x =时,max 9000y =所以售价为70元时,利润最大为9000元.【思路点拨】构建一元二次方程求最值.【答案】售价为70元时,利润最大为9000元.【设计意图】 (1)解决实际问题,首先要理解题意,然后建立数学模型转化成数学问题解决.(2)分清各种数据之间的关系是正确构造函数关系式的关键.3. 课堂总结知识梳理(1)通过函数图象,探究函数最大(小)值及几何意义.(2)结合函数单调性求函数最大(小)值.(3)函数最大(小)值在实际问题中的应用.重难点归纳(1)函数最大(小)值概念的生成.(2)求函数最大(小)值.(三)课后作业基础型 自主突破1.若函数()f x x =则( ) A ()f x 的最大值为0,无最小值 B ()f x 无最大值,最小值为0C ()f x 的最大值为+∞,最小值为0D ()f x 的最大值为0,最小值为-∞【知识点】图象应用【数学思想】数形结合思想【解题过程】如图: ()f x x =在(,0),[0,)-∞+∞在0x =处有最小值(0)0f =,无最大值【思路点拨】由图象观察求最值【答案】B 2.若函数26,12()7,11x x f x x x +<≤⎧=⎨+-≤≤⎩,则()f x 的最大值、最小值分别为( ) A 10,6 B 10,8 C 8,6 D 8,8【知识点】一次函数图象性质【数学思想】【解题过程】解:由一次函数单调性26,(1,2]y x x =+∈,7,[1,1]y x x =+∈-,因此26,12()7,11x x f x x x +<≤⎧=⎨+-≤≤⎩在区间[1,2]x ∈-,min max ()(1)6,()(2)10f x f f x f =-===【思路点拨】也可用图象观察的方法.【答案】A3.函数2()2f x x x =+(1)在(2,5]-的最大值,最小值分别是________(2)在(1,2]-的最大值,最小值分别是________【知识点】二次函数图象【数学思想】数形结合思想【解题过程】函数2()2f x x x =+对称轴1x =-(1)(2,5]x ∈-,函数在1x =-处有最小值,min ()(1)1f x f =-=-在5x =处有最大值,max ()(5)35f x f ==(2)函数在(1,2]-上单增,在2x =处有最大值,max ()(2)8f x f ==【思路点拨】给定区间求最值,作图观察.【答案】(1)35,-1;(2)8,无4.函数1()12f x x=--在(2,5]x ∈上的值域是______ 【知识点】函数单调性【数学思想】数形结合思想【解题过程】解:函数11()122x f x x x-=-=--,定义域为(,2)(2,)-∞⋃+∞ 由一次分函数图象知: ()f x 在(2,5]上单减min 4()(5)3f x f ==,函数无最大值【思路点拨】可用定义法证明函数单调性,也可分析法2y x =-在(2,5]为减,12y x =-在(2,5]为增, 112y x=--在(2,5]为减. 【答案】4[,)3+∞ 5. 已知二次函数()f x 满足且()f x 的最大值为8,求此二次函数的解析式【知识点】待定系数法求函数解析式 【数学思想】函数与方程的思想【解题过程】解:设2()(0)f x ax bx c a =++≠ (2)(1)1f f =-=-,()f x 的最大值为824211484a b c a b c ac b a ⎧⎪++=-⎪⎪-+=-⎨⎪-⎪=⎪⎩解得447a b c =-⎧⎪=⎨⎪=⎩2()447f x x x ∴=-++【思路点拨】也可以用顶点式、两点式求解【答案】2()447f x x x =-++6. ()1f x ax =+在[1,2]上的最大值与最小值之差为2,求a 的值【知识点】一次函数单调性【数学思想】分类讨论思想【解题过程】解:()1f x ax =+当0a =时,()1f x =常值函数,在[1,2]上无单调性当0a >时,()1f x ax =+在[1,2]上单增,min max ()(1)1,()(2)21f x f a f x f a ==+==+ max min ()()(21)(1)2f x f x a a a ∴-=+-+==当0a <时,()1f x ax =+在[1,2]上单减,max min ()(1)1,()(2)21f x f a f x f a ==+==+max min ()()(1)(21)22f x f x a a a a ∴-=+-+=-=⇒=-【思路点拨】一次函数y kx b =+的单调性,0,();0,()k f x k f x ><【答案】2或-2能力型 师生共研7.已知2()2(1)2f x x a x =+-+在区间[1,5]上的最小值为(5)f ,求a 的范围【知识点】二次函数单调性【数学思想】数形结合思想【解题过程】解:2()2(1)2f x x a x =+-+对称轴为1x a =- min ()(5)f x f =2()2(1)2f x x a x ∴=+-+在区间[1,5]单减,称轴为154x a a =-≥⇒≤-【思路点拨】【答案】4a ≤-8.设1()1f x kx x =--,其中1k >,若()f x 在[2,)+∞上有最小值,求k 的值 【知识点】单调性应用【数学思想】【解题过程】解:11()11f x kx kx x x =-=+--,其中y kx =,11y x =-在[2,)+∞均单调递增1()1f x kx x ∴=--在[2,)+∞单增min 3()(2)2f x f k ⇒=⇒= 【思路点拨】性质法判断函数单调性【答案】32k = 探究型 多维突破9.若函数2(),[1,1]f x ax x a x =+-∈-的最大值为178,求a 的值.【知识点】二次函数根的分布【数学思想】数形结合思想、分类讨论思想【解题过程】解:函数2(),[1,1]f x ax x a x =+-∈-当0a =时,()f x x =在[1,1]-上单增,max ()(1)1f x f ==矛盾当0a >时,函数2()f x ax x a =+-图象对称轴102x a =-< max ()(1)1f x f ∴==矛盾当0a <时,函数2()f x ax x a =+-图象对称轴102x a=-> 当112a -≤,即12a ≤-时, 2max14117()()248a f x f a a --=-==,2a ∴=- 当112a ->,即102a -<<时max ()(1)1f x f ∴== 矛盾 综上所述:2a =-【思路点拨】二次函数根的分布问题,结合函数图象及函数在区间上的单调性讨论【答案】2a =-10.建造一个容积为6400立方米,深为4米的长方体无盖蓄水池,池壁的造价为每平方米200元,池底的造价为每平方米100元.(1)把总造价y 元表示为池底的一边长x 米的函数;(2)由于场地原因,蓄水池的一边长不能超过40米,问蓄水池的这个底边长为多少时总造价最低?总造价最低是多少?【知识点】数学建模【数学思想】函数与方程思想【解题过程】解:(1)由已知池底的面积为640016004=平方米,底面的另一边长为1600x 米, 则池壁的面积为:160024()x x⨯⨯+平方米. 所以总造价: 16001600()160000,(0,)y x x x=++∈+∞ (2)由题意知16001600()160000,(0,40]y x x x=++∈ 设12040x x <<≤,则121212121212(1600)160016001600()1600()1600()x x y y x x x x x x x x --=+-+=- 12040x x <<≤,120x x ∴-<,1201600x x ∴<<1216000x x ∴-<,120y y ∴->即12y y >从而这个函数在(0,40]上是减函数,故当40x =时,min 288000y =所以当池底是边长为40米的正方形时,总造价最低为288000元.【思路点拨】函数单调性求最值【答案】边长为40米的正方形时,总造价最低为288000元.自助餐1.函数2()43,[1,4]f x x x x =-+∈,则()f x 的最大值为( )A. -1B.0C.3D.-2【知识点】二次函数求最值【数学思想】数形结合思想【解题过程】解:2()43(1)(3)f x x x x x =-+=--, 如图:max ()(4)3f x f ==【思路点拨】给定区间求最值【答案】C2.函数()21f x x x =-+的值域为( )A.1[,)2+∞B.1(,]2-∞ C.[1,)+∞ D.(0,)+∞ 【知识点】函数值域【数学思想】等价转化思想【解题过程】()21f x x x =-+定义域1[,)2+∞ 21,y x y x =-=在1[,)2+∞上单增 ()21f x x x ∴=-+在1[,)2+∞上单增,∴值域1[,)2+∞ 【思路点拨】性质法判断函数单调性,再求最值【答案】A3. 函数2202,()02,x x x f x x x -≤≤⎧--=⎨<≤⎩,则()f x 的最大值、最小值分别为______ 【知识点】分段函数求最值【数学思想】数形结合思想【解题过程】解:如图所示max ()(2)2f x f ==min ()(2)(0)0f x f f =-==【思路点拨】分段函数在对应区间求一次函数、二次函数的最值【答案】2,04.函数2()45f x x x =-+在[0,]m 上的最大值5,最小值1,则m 的取值范围______【知识点】二次函数图象性质【数学思想】数形结合思想【解题过程】解:22()45(2)1f x x x x =-+=-+如图所示:max ()(0)(4)5f x f f ===min ()(2)1f x f == [2,4]m ∴∈【思路点拨】由值域反推定义域【答案】[2,4]5.已知函数2()22,[5,5]f x x ax x =++∈-(1)当1a =-时,求函数()f x 的最大值和最小值(2)函数()y f x =在区间[5,5]-上是单调函数,则a 的取值范围【知识点】二次函数图象性质【数学思想】数形结合思想【解题过程】解:(1)当1a =-时,22()22(1)1f x x x x =++=++ [5,5]x ∈-,min ()(1)1f x f ∴=-=,max ()(5)37f x f =-=(2)22()()2f x x a a =++-,函数对称轴x a =-函数在区间[5,5]-上是单调函数,5a ∴≤-或5a ≥【思路点拨】二次函数的对称轴与开口方向,决定了函数单调区间6.求函数223,[1,2]y x ax x =--∈的最大值()M a 和最小值()m a .【知识点】二次函数单调性【数学思想】分类讨论思想【解题过程】解:函数2()23f x x ax =--的对称轴是x a = 当1a <时,()f x 在[1,2]上单增,min ()(1)22()f x f a m a ==--=max ()(2)14()f x f a M a ==-=当2a >时,()f x 在[1,2]上单减,max ()(1)22()f x f a M a ==--=min ()(2)14()f x f a m a ==-=当12a ≤≤时,2min ()()3()f x f a a m a ==--= 最大值由区间端点与对称轴决定1 1.5a ≤≤max ()(2)14()f x f a M a ==-=1.52a <≤max ()(1)22()f x f a M a ==--=综上所述:222,1()3,1214,2a a m a a a a a --<⎧⎪=--≤≤⎨⎪->⎩,14, 1.5()22, 1.5a a M a a a -<⎧=⎨--≥⎩ 【思路点拨】对称轴与区间的位置关系,分类讨论【答案】222,1()3,1214,2a a m a a a a a --<⎧⎪=--≤≤⎨⎪->⎩,14, 1.5()22, 1.5a a M a a a -<⎧=⎨--≥⎩。

必修1函数的最值

必修1函数的最值

(2)若x∈[0,3],求函数的最大值,最小值;
(3)若x∈[3,5],求函数的最大值,最小值;
(4)若f(x)在(0,a)上为增函数,求a的范围。
练习:已知函数f(x)= 2x2-mx+3,x∈R, (1)当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函 数,则f(1)=__________.
最大值和最小值。
求函数最值的基本方法:
1、利用函数的图象,找到最高点(或最低点) 对应的纵坐标就是函数的最大值(或最小值)。 2、利用函数的单调性求函数的最值。
“其实求函数的最值问题等价于求函数的值域问题”
例3 (1)求 f ( x) x 2ax 1 在区间[0,2]
2
上的最小值 (2)求 f ( x) x 2 2ax 1 在区间[0,2] 上的最大值
1.3.1 函数的最大(小)值
如图为某地区2008年元旦24小时内的气 温变化图.观察这张气温变化图:
问题1:说出这一天中的最高温度和最低温度?
1.最大值 一般地,设函数y=f(x)的定义域为I,如果 存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0) = M 那么,称M是函数y=f(x)的最大值
(2)若x∈(0,+∞)时f(x) 是增函数,a的范围___
x 例2、求函数 f ( x ) 在区间[2,5]上的 x 1
最大值和最小值。
4 变式1、求函数 f ( x) x 在 x [2,5]上的 x
最大值和最小值。
4 变式2、求函数 f ( x) x 在 x [1,5]上的 x
ax 1、若函数 f ( x) 在 (2,) 上为增函数, x 1

1.3.1 单调性与最大(小)值(2)(教案)

1.3.1  单调性与最大(小)值(2)(教案)

§1.3 函数的基本性质§1.3.1 单调性与最大(小)值(2)【教学目标】l.知识与技能理解函数的最大(小)值及其几何意义;学会运用函数图象理解和研究函数的性质。

2. 过程与方法通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识。

3. 情感态度与价值观利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性。

【教学重点】函数的最大(小)值及其几何意义。

【教学难点】利用函数的单调性求函数的最大(小)值。

【教学方法】学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤。

【教学过程】【导入新课】思路:画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+; ②()3[1,2]f x x x =-+∈-;③2()21f x x x =++; ④2()21[2,2]f x x x x =++∈-。

【推进新课】【新知探究】【知识点1】1、函数的最大(小)值的定义:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)存在0x I ∈,使得()0f x M =;(2)对于任意的x I ∈,都有()f x M ≤(或()f x M ≤)。

那么称M 是函数()y f x =的最大(小)值。

【注意】(1)函数的最大(小)值首先应该是该函数的函数值,即存在0x I ∈,使得()0f x M =;(2)函数的最大(小)值应该是所有函数值中最大(小)的,即对任意的x I ∈,都有()f x M ≤(或()fx M ≤)。

【知识点2】2、求函数最值的方法: (1)图像法;(2)配方法;(3)换元法;(4)分离常数法;(5)判别式法; (6)单调性法。

结论:最大值:已知函数()y f x =的定义域为[],a b ,a c b <<,当[],x a c ∈时,()f x 是单调增函数;当[],x c b ∈时,()f x 是单调减函数,则当x c =时()f x 取得最大值()()m ax f x f c =。

人教A版必修一第一章1.3.1 第1课时单调性与最大(小)值

人教A版必修一第一章1.3.1 第1课时单调性与最大(小)值

k≠0)与一次函数(y= kx+b,k≠0)
k<0

R
反比例函数 (y=kx,k≠0)
k>0

k<0 (-∞,0)和 (0,+∞)
(-∞,0)和 (0,+∞)

二次函数 (y=ax2+bx+c,
a≠0)
a>0 a<0
[-2ba,+∞) (-∞,-2ba]
(-∞,-2ba] [-2ba,+∞)
• 1.函数y=f(x)在区间(a,b)上是减函数,x1,x2∈(a,b),
• 『规律方法』 利用函数的单调性解函数值的不等式就是 利用函数在某个区间内的单调性,去掉对应关系“f”,转
化为自变量的不等式,此时一定要注意自变量的限制条件, 以防出错.
• 〔跟踪练习3〕 • 已知函数g(x)是定义在R上为增函数,且g(t)>g(1-2t),求
实数t的取值范围.
[解析] ∵g(x)在R上为增函数,且g(t)>g(1-2t), ∴t>1-2t,∴t>13,即所求t的取值范围为(13,+∞).
• 『规律方法』 1.函数单调性的证明方法——定义法 • 利用定义法证明或判断函数单调性的步骤是:
• 2.用定义证明函数单调性时,作差f(x1)-f(x2)后,若f(x)为 多项式函数,则“合并同类项”,再因式分解;若f(x)是 分式函数,则“先通分”,再因式分解;若f(x)解析式是 根式,则先“分子有理化”再分解因式.
(2)设x1>x2>-1, 则x1-x2>0,x1+1>0, x2+1>0, y1-y2=x12+x11-x22+x21 =x12+x11-xx2+2 1>0, ∴y1>y2, ∴函数y=x+2x1在(-1,+∞)上为增函数.

高中数学1.3.1函数的单调性与最大小值第2课时教学设计新人教A版必修1

高中数学1.3.1函数的单调性与最大小值第2课时教学设计新人教A版必修1

1.3.1单调性与最大(小)值(第二课时)教学设计一、学情分析本节课是人教版《数学》(必修Ⅰ)第一章第3节函数的单调性与最大(小)值的第二课时,次要学惯用符号言语刻画函数的的最大(小)值,并能用函数的单调性和函数的图象进行一些常见函数最值的求值.在此之前,先生对函数曾经有了一个初步的了解,同时,由于上一节曾经学习函数单调性的定义,先生能初步理解用数学言语抽象概括函数概念的必要性和表达方式,为函数最值概念的构成提供极大帮助.因而本节课经过函数的图象,先生容易找出相应的最大值和最小值.但这只是感性上的认识.为了让先生有一个从具体到抽象、特殊到普通的认识过程,本节课经过设计成绩串,逐渐让先生用数学言语描述函数最值的概念,并利用对概念的辨析深化了解最值的内涵.二、教学目标:1.知识与技能(1)理解函数的最大(小)值的概念及其几何意义.理解函数的最大(小)值是函数的全体性质.(2)能解决与二次函数有关的最值成绩,和利用函数的单调性和函数的图象求函数的最值,掌握用函数的思想解决一些理论成绩.2.过程与方法经过日常生活实例,引导先生进行分析、归纳、概括函数最值的概念.并借助函数的单调性,从数到形,以形助数,逐渐浸透、培养先生数形结合思想、分类讨论思想、优化思想.3.情感、态度与价值观以丰富的实例背景引入,让先生领会数学与日常生活毫不相关.在概念的构成过程中,培养先生从特殊到普通、从直观到抽象的思想提升过程,让先生感知数学成绩求解途径与方法,享用成功的快乐.三、重点、难点:重点:建构函数最值的概念过程,利用函数的单调性和函数的图象求函数的最值.难点:函数最值概念的构成.高一先生的逻辑思想和抽象概括能力较弱,面对抽象的方式化定义,容易产生思想妨碍.对此,本课紧紧捉住新旧知识间的内在联系,设置一系列成绩,让先生充分参与定义的符号化过程,从图形言语和自然言语向数学符号言语转化,逐渐打破难点.四、教学过程:(一)提出成绩,引入目标背景1:成绩1:求函数2)(x x f -=的最大值.意图:从熟习的二次函数动手,将求函数的最大值转化为研讨函数图象的最高点,引导先生经过图象分析.背景2:请看下图,这是某气象观测站某日00:00—24:00这24小时内的气温变化图.(图)成绩2:.(1)我们常说昼夜温差大,是指一天当中的最高温度和最低温度之差.请问,该天的最高气温是多少?(2)该图象能否建立一个函数关系?如何定义自变量?意图:明确是在函数背景下研讨成绩.回顾函数的定义和函数的表示法(图象法) 师:我们称此时该函数的最大值是32.意图:启发先生明确函数图象中存在最高点与函数存在最大值之间是分歧的,即明确函数图象和函数解析式是反映函数关系的不同表现方式,从而无认识地培养先生以形助数解决成绩的认识,并引出课题——《函数的最大(小)值》(二)层层深化,概念建构成绩3:经过这两个成绩,我们能否用数学言语给出普通函数最大值的定义? 意图:以具体实例为背景,让先生用数学言语来进行归纳表达,引导先生过渡到任意化的符号化表示,呈现知识的自然生成,领会从特殊到普通的思想.定义:普通地,设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(成立;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值.(预设:函数最大值定义中的第(1)点成绩不大,第(2)点容易被忽略。

高中数学人教版A版必修一课件:第一章 《集合与函数概念》 1.3.1 第2课时 函数的最大值、最小值

高中数学人教版A版必修一课件:第一章 《集合与函数概念》 1.3.1 第2课时 函数的最大值、最小值

(1) 解析
作出函数 f(x) 的图象 ( 如图 ) .由图象可知,当 x =±1
时,f(x)取最大值为f(±1)=1.当x=0时,f(x)取最小值f(0)=0,
故f(x)的最大值为1,最小值为0. 答案 1 0
(2)解
任取 2≤x1<x2≤5,
x1 x2 则 f(x1)= ,f(x2)= , x1-1 x2-1 x1-x2 x2 x1 f(x2)-f(x1)= - = , x2-1 x1-1 x2-1x1-1 ∵2≤x1<x2≤5,∴x1-x2<0,x2-1>0,x1-1>0, ∴f(x2)-f(x1)<0,∴f(x2)<f(x1). x ∴f(x)= 在区间[2,5] 上是单调减函数. x-1 2 5 5 ∴f(x)max=f(2)= =2,f(x)min=f(5)= =4. 2-1 5-1

(1)设月产量为 x 台,则总成本为 20 000+100x,
1 2 - x +300x-20 0000≤x≤400, 从而 f(x)= 2 60 000-100xx>400. 1 (2)当 0≤x≤400 时,f(x)=-2(x-300)2+25 000; ∴当 x=300 时,f(x)max=25 000, 当 x>400 时,f(x)=60 000-100x 是减函数, f(x)<60 000-100×400<25 000. ∴当 x=300 时 ,f(x)max=25 000. 即每月生产 300 台仪器时利润最大,最大利润为 25 000 元.
规律方法
求解实际问题的四个步骤
(1)读题:分为读懂和深刻理解两个层次,把“问题情景” 译为数学语言,找出问题的主要关系(目标与条件的关系).
(2)建模:把问题中的关系转化成函数关系,建立函数解析

《1.3.1单调性与最大(小)值》课件 必修1

《1.3.1单调性与最大(小)值》课件 必修1

类型一 函数单调性的判断与证明 9 【例1】 求证:y=x+ (0<x≤3)为减函数. x
证明:任取 x1,x2∈(0,3]且 x1<x2(即 x2-x1>0), 9(x1-x2) 9 9 则 f(x2)-f(x1)=x2+ -(x1+ )=x2-x1+ x2 x1 x1x2 x1x2-9 9 =(x2-x1)(1- )=(x2-x1)· . x1x2 x1x2 ∵x2-x1>0,x1x2>0,0<x1<x2≤3, ∴x1x2<9,有 x1x2-9<0, ∴f(x2)-f(x1)<0,故 f(x)在(0,3]上为减函数.
)
A.[-4,4]
B.[-4,-3]∪[1,4] C.[-3,1] D.[-3,4] 答案:C
3.函数f(x)在R上是减函数,则有
(
)
A.f(3)<f(5)
C.f(3)>f(5) ∴f(3)>f(5). 答案:C
B.f(3)≤f(5)
D.f(3)≥f(5)
解析:∵函数f(x)在R上是减函数,3<5,
类型二 求函数的单调区间 【例2】 求函数f(x)=-2 9-4x2的单调区间.
解:设9-4x2=t(t≥0), 3 3 2 由9-4x ≥0,得- ≤x≤ . 2 2 3 当- ≤x≤0时,随着x增大,t增大; 2 3 当0<x≤ 时,随着x增大,t减小. 2 又函数y=-2 t在[0,+∞)上是减函数, 3 2 所以,f(x)=-2 9-4x 在[- ,0]上是减函数,在 2 3 (0, ]上是增函数. 2 3 即函数f(x)的单调减区间为[- ,0],单调增区间为 2 3 (0, ]. 2
求下列函数的单调区间: 1 2 (1)y= -x +2x;(2)y= . x+1

教案10 最大(小)值

教案10 最大(小)值

教案10 最大(小)值备课人授课时间课题§1.3.1函数的最大(小)值教学目标知识与技能理解函数的最大(小)值及其几何意义.利用函数的单调性和图象求函数的最大(小)值过程与方法启发引导,充分发挥学生的主体作用情感态度价值观利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性.重点函数的最大(小)值及其几何意义难点利用函数的单调性求函数的最大(小)值第 2 页第 3 页第 4 页注意:①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有()(())f x M f x m ≤≥.2.利用函数单调性来判断函数最大(小)值的方法. ①配方法 ②换元法 ③数形结合法(三)质疑答辩,排难解惑. 例1.(教材P 30例3)利用二次函数的性质确定函数的最大(小)值.例2.(选讲)将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品教学设计教学内容教学环节与活动设计求函数最值的常用方法有:(1)配方法:即将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的最值.(2)换元法:通过变量式代换转化为求二次函数在某区间上的最值.(3)数形结合法:利用函数图象或几何方法求出最值.(四)巩固深化,反馈矫正:求函数1y x x=--的最大值.教学小结利用函数的单调性求函数的最大(小)值课后反思第 5 页。

必修1第二章基本初等函数人教版·数学Ⅰ_§1.3.1函数的最大(小)值

必修1第二章基本初等函数人教版·数学Ⅰ_§1.3.1函数的最大(小)值

高中数学资料归纳 1课题:§1.3.1函数的最大(小)值教学目的:(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;教学重点:函数的最大(小)值及其几何意义. 教学难点:利用函数的单调性求函数的最大(小)值. 教学过程: 一、引入课题画出下列函数的图象,并根据图象解答下列问题:○1 说出y=f(x)的单调区间,以及在各单调区间上的单调性; ○2 指出图象的最高点或最低点,并说明它能体现函数的什么特征? (1)32)(+-=x x f(2)32)(+-=x x f]2,1[-∈x(3)12)(2++=x x x f(4)12)(2++=x x x f ]2,2[-∈x二、新课教学(一)函数最大(小)值定义1.最大值 一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足: (1)对于任意的x ∈I ,都有f(x)≤M ; (2)存在x 0∈I ,使得f(x 0) = M那么,称M 是函数y=f(x)的最大值(Maximum Value).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义.(学生活动)注意:○1 函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f(x 0) = M ; ○2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f(x)≤M(f(x)≥M). 2.利用函数单调性的判断函数的最大(小)值的方法○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值○3 利用函数单调性的判断函数的最大(小)值高中数学资料归纳2如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b); 如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); (二)典型例题例1.(教材P 36例3)利用二次函数的性质确定函数的最大(小)值. 解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为 25cm 的圆形木头锯成矩形木料, 如果矩形一边长为x,面积为y 试将y 表示成x 的函数,并画出 函数的大致图象,并判断怎样锯 才能使得截面面积最大? 例2.(新题讲解)旅 馆 定 价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设y 为旅馆一天的客房总收入,x 为与房价160相比降低的房价,因此当房价为)160(x -元时,住房率为)%102055(⋅+x,于是得 y =150·)160(x -·)%102055(⋅+x. 25高中数学资料归纳 3由于)%102055(⋅+x≤1,可知0≤x ≤90. 因此问题转化为:当0≤x ≤90时,求y 的最大值的问题.将y 的两边同除以一个常数0.75,得y 1=-x 2+50x +17600.由于二次函数y 1在x =25时取得最大值,可知y 也在x =25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的)例3.(教材P 37例4)求函数12-=x y 在区间[2,6]上的最大值和最小值. 解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式. 巩固练习:(教材P 38练习4) 三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取 值 → 作 差 → 变 形 → 定 号 → 下结论 四、作业布置1. 书面作业:课本P 45 习题1.3(A 组) 第6、7、8题.提高作业:快艇和轮船分别从A 地和C 地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h 和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?ABC。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1函数的最值
【学习目标】 知识与技能:理解函数的最大(小)值及其几何意义.能利用函数的单调性求函数
的最值;学会运用函数图象理解和研究函数的性质.
过程与方法:通过实例,体会到函数的最大(小)值,实际上是函数图象的最高
(低) 点的纵坐标,借助函数图象的直观性可得出函数的最值,培养以形识数的解题意识.
情感态度与价值观:利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学习的积极性.
【使用说明及方法指导】1.精读教材必修的内容,用红笔标出疑难和重点。

2.限时完成导学案,书写规范。

3.找出自己的疑惑和需要讨论的问题准备课上讨论质疑 。

4.带“*”的C 层可以不做,带“附加”的B,C 层可以不做。

【预习案】 1、画出下列函数的图象,并根据图象解答下列问题: (1)32)(+-=x x f (2)12)(2++=x x x f
(1)说出函数()y f x =的单调区间,以及在各单调区间上的单调性; (2)这些函数的图象有最高点或最低点吗?如果有,说明了函数的什么特征?
函数最大(小)值定义
【探究案】 例 1 将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个
涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?
例2 已知函数1
1y x =- 在 上的单调区间和最大值,最小值。

讨论求最值的常用方法有什么?
[]
2,3
【当堂检测】
一、教材课本P 32练习5;39页B-1
二、补充练习
1.函数2()42f x x ax =++在区间 (– ≦,6] 内递减,则a 的取值范围是( )
(A )a ≥ 3 (B )a ≤ 3 (C )a ≥ – 3 (D )a ≤ – 3
2.在已知函数2()41f x x mx =-+在(,2]-∞-上递减,在(2,]-+∞上递增,则()f x 在
[1,2]上的值域是
3.求函数322+-=x x y 当自变量x 在下列范围内取值时的最值.
①10x -≤≤ ② 03x ≤≤ ③(,)x ∈-∞+∞
【课堂小结】。

相关文档
最新文档