高中数学 解不等式(一)
人教版高一必修一数学不等式解法步骤
人教版高一必修一数学不等式解法步骤高中数学不等式是数学学科的一个重要部分,不等式在实际生活和科学技术领域中都有着广泛的应用。
在高中必修一数学课程中,学生需要学习不等式的解法步骤,掌握不等式的基本概念和解题方法,提高解决实际问题的能力。
人教版高一必修一数学不等式解法步骤主要包括以下内容:1.不等式的基本概念和性质:首先,学生需要了解不等式的基本概念和性质。
不等式是指两个数或者两个代数式之间的大小关系,包括大于、小于、大于等于、小于等于等不等式关系。
在学习不等式的过程中,学生还需要掌握不等式的可加性、可乘性等基本性质,这些性质是解不等式问题的关键。
2.不等式的解法方法:解不等式是数学学科中的一个重要问题,不等式的解法方法有很多种,包括直接法、间接法、分情况讨论法、参数法等。
学生需要掌握这些解法方法,根据不同的不等式问题选择合适的解法,并且要熟练运用这些解法方法解决实际问题。
3.一元一次不等式的解法:在学习不等式的过程中,学生首先需要掌握一元一次不等式的解法。
一元一次不等式是指不等式中只含有一个未知数,并且未知数的最高次数为一次的不等式。
解一元一次不等式的关键是通过变形和等价变换将不等式化为标准形式,然后通过对不等式进行加减乘除等操作来求解未知数的取值范围。
4.一元二次不等式的解法:学生在学习一元一次不等式之后,需要进一步学习一元二次不等式的解法。
一元二次不等式是指不等式中含有一个未知数,并且未知数的最高次数为二次的不等式。
解一元二次不等式一般需要借助图像或者特殊的代数方法来求解,学生需要掌握各种解法方法,并熟练应用到实际问题中去。
5.不等式组的解法:在学习一元不等式之后,学生还需要学习不等式组的解法。
不等式组是由多个不等式组成的一种复合不等式,解不等式组的关键是找出其解的交集或者并集,并求出满足所有不等式的未知数的取值范围。
学生需要通过练习不等式组的解题方法,提高解决实际问题的能力。
6.不等式问题的应用:在学习不等式的过程中,学生还需要了解不等式在实际问题中的应用。
高中数学解题技巧之分式不等式
高中数学解题技巧之分式不等式分式不等式是高中数学中的一个重要知识点,也是一种常见的解题形式。
在解决分式不等式时,我们需要掌握一些技巧和方法。
本文将以具体的题目为例,通过分析、说明和举一反三的方式,介绍解决分式不等式的一些常用技巧。
一、简化分式不等式考虑以下的例子:求解不等式$\frac{3}{x+1}>\frac{2}{x}$。
首先,我们可以通过通分的方式,将不等式转化为$\frac{3x}{x(x+1)}>\frac{2(x+1)}{x(x+1)}$。
接下来,我们可以通过消去分母的方式,将不等式转化为$3x>2(x+1)$。
然后,我们可以展开并整理不等式,得到$3x>2x+2$。
最后,我们可以解这个一元一次方程,得到$x>2$。
通过这个例子,我们可以看到,在解决分式不等式时,我们可以通过简化分式、通分、消去分母等步骤,将分式不等式转化为一元一次方程,从而求解不等式的解集。
二、分析分式不等式的定义域考虑以下的例子:求解不等式$\frac{x-2}{x+3}<0$。
首先,我们需要分析不等式的定义域。
对于分式不等式$\frac{f(x)}{g(x)}<0$,其中$f(x)$和$g(x)$为多项式,我们需要找到所有使得$g(x)\neq0$的$x$的取值。
在这个例子中,我们需要找到所有使得$x+3\neq0$的$x$的取值,即$x\neq-3$。
接下来,我们可以通过定义域的分析,将不等式分为不同的区间,并在区间上进行讨论。
当$x<-3$时,$x+3<0$,$x-2<0$,所以$\frac{x-2}{x+3}>0$。
当$x>-3$时,$x+3>0$,$x-2<0$,所以$\frac{x-2}{x+3}<0$。
综上所述,不等式的解集为$x\in(-\infty,-3)\cup(-3,2)$。
通过这个例子,我们可以看到,在解决分式不等式时,我们需要先分析分式的定义域,然后将不等式分为不同的区间,并在区间上进行讨论,最终得到不等式的解集。
高一数学不等式知识点归纳
高一数学不等式知识点归纳数学不等式是高中数学中重要的一部分内容。
在高一数学学习中,了解不等式的概念、性质以及解不等式的方法,对于学习数学和解决实际问题都有着重要的作用。
下面将对高一数学不等式知识点进行归纳和总结。
一、不等式的概念不等式是一种数学关系式,它表达了两个数的大小关系。
一般形式为a ≠ b或a < b或a > b,其中a、b为实数。
不等式中的关系符号有"≠"、“<”、“>”分别表示不等、小于和大于的关系。
二、不等式的性质1. 传递性:如果a < b且b < c,则有a < c。
类似的,大于的情况也满足这个性质。
2. 加减性:对于不等式,可以同时加上一个数或减去一个数,不等号的方向不变。
例如,如果a < b,则有a + c < b + c。
减法的情况也类似。
3. 倍乘性:对于正数k,不等式中的关系符号不改变。
例如,如果a < b,则有ka < kb。
当k为负数时,不等号的方向改变。
4. 乘方性:对于正实数k,不等式中的关系符号不改变。
例如,如果a < b,则有a^k < b^k。
当k为负数时,不等号的方向改变,但必须保证a和b皆大于0。
三、不等式的解集表示方法1. 用图形表示:可以通过将不等式转化为坐标系中的区域表示来解释和表示不等式关系。
2. 用集合表示:通过列举满足不等式的所有实数,将这些实数写成一个集合的形式来表示不等式的解集。
3. 用不等式表示:将不等式的解集写成一个由不等号和式子组成的不等式形式,来表示不等式的解集。
四、不等式的求解方法1. 加减法解不等式:利用加减性质,将不等式中的常数项移到一边,以求得未知数的范围。
2. 乘除法解不等式:利用倍乘性质,将不等式中的系数移到一边,并对系数符号进行考虑,以求得未知数的范围。
3. 绝对值不等式的解法:分为绝对值大于、小于和大于等于、小于等于两种情况,根据不等式的形式分别求解。
不等式知识点高一必修一
不等式知识点高一必修一高中数学是学生学习数学的重要阶段,而不等式是高一数学必修一的重要知识点之一。
不等式的学习对于高中数学的发展和理解具有重要意义。
本文将从不等式的概念、性质以及解不等式的方法等方面进行阐述。
不等式是数学中的一种重要关系,它描述了数之间大小关系的不同情况。
不等式通常使用符号“<”、“>”、“≤”、“≥”来表示。
根据不确定关系和确定关系的性质,不等式又分为严格不等式和非严格不等式两种。
严格不等式用<表示,表示两个数之间的关系不等于;非严格不等式用≤或≥表示,表示两个数之间的关系可以等于。
在学习不等式的过程中,我们需要了解不等式的一些基本性质。
首先是不等式的传递性。
不等式的传递性指的是当a<b,b<c时,可以推出a<c。
这种传递性在解不等式时非常有用,它可以帮助我们推导出更多的解集。
其次是不等式的加减性。
不等式加减性表明,如果a<b,那么a±c<b±c,这里的c可以是任意实数。
例如,当我们在不等式两边同时加上或减去相同的数时,不等式的关系保持不变。
另外,不等式还具有乘除性。
当遇到乘法或除法运算时,我们需要根据乘除数的正负情况对不等式的符号进行变化。
如果乘除数是正数,不等式的符号关系保持不变;如果乘除数是负数,不等式的符号关系需要改变。
解不等式是我们学习不等式时的重要内容。
在解不等式时,我们需要找到使得不等式成立的数的集合,这个集合称为不等式的解集。
解不等式的时候,我们需要注意一些常见的解法技巧。
首先是一元一次不等式的解法。
对于一元一次不等式,我们可以通过移项、合并同类项等方法将其转化为一个等价的不等式,然后解方程找到不等式的解集。
其次是分段函数法解不等式。
在一些复杂的不等式中,我们可以将其转化为分段函数的形式,然后通过分析函数的定义域和值域来确定不等式的解集。
最后是借助图形法解不等式。
有些不等式可以通过画出对应函数的图像来确定其解集。
高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!
开篇语:不等式恒成立问题在高中数学是一类重点题型,高考也是必考内容。
由于不等式问题题型众多,题目也比较灵活。
所以在学习过程中,同学们要学会总结各种解题方法!方法一:分离参数法解析:分离参数法适用的题型特征:当不等式的参数能够与其他变量完全分离出来,并且分离后不等式其中一边的函数的最值或范围可求时,则将参数式放在不等式的一边,分离后的变量式放在另一边,将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min方法二:变换主元法(也可称一次函数型)解析:学生通常习惯把x当成主元(未知数),把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,则可简便解题。
适用于变换主元法的题型特征是:题目有两个变量,且已知取值范围的变量只有一次项,这时就可以将不等式转化为一次函数求解。
方法三:二次函数法解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析 1,判断二次函数的开口方向2,二次函数的判别式是大于0还是小于03,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性 方法四:判别式法解析:不等式一边是分式,且分式的分子和分母的最高次项都是二次项时,利用判别式法可以快速的解题,分离参数将会使解题变得复杂。
方法五:最值法解析:不等式两边是两个函数,且含有参数时,我们可以分出出参数,构造新函数,求函数的导数来求得新函数的最值。
总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。
平时练习过程中,应注意观察,总结!。
北师大版高中数学必修5第三章《不等式》一元二次不等式的解法(一)
3或 x 2
时,原函数的值是正数。 3
3)函数值是负数,即x2-4x+1<0,解得: ,即,当 {x | 2 3 x 2 3}
2 3 x 2 3 时,原函数的值是负数。
13
课堂练习3. 是什么实数时,
x x 12
2
有意义?
2 解:要想原式有意义,即要使 x x 12 0 , 解这个不等式得:{x|x<-4或x>3} 所以,原式当x<-4或x>3时有意义。
2
准备知识
1、一元一次函数y=ax+b(a≠0) 函数图像是一条直线 2、一元二次函数y=ax2+bx+c(a≠0) 当a>0时图象开口 向上 ; 当a<0时图象开口 向下 ; b 4ac b ( 其顶点坐标为 2a , 4a ) ; 对称轴为直线 x= -b/2a 。 2.不等式|x|<a的解集是 {x|-a<x<a} ; |x|>a的解集是 {x|x<-a或x>a}。
2
3
探析新课
一、一元一次方程、一元一次不等式与一次函数 的关系
x y 2 -3 2.5 -2 3 -1 3.5 0 4 1 4.5 2 5 3 y y=2x-7
1、作一元一次函数y=2x-7的图象。它的对应值表 与图 像如下:
由对应值表与图像可以知道:
当x=3.5时,y__0, = 即2x-7__0; = > 即2x-7__0; > 当x<3.5时,y__0, < 即2x-7__0; < 当x>3.5时,y__0, 不等式2x-7>0的解即为 ﹛x|x>3.5﹜ 不等式2x-7<0的解即为 ﹛x|x<3.5﹜
高中数学不等式题解题方法
高中数学不等式题解题方法高中数学中,不等式是一个重要的考点,也是学生们普遍感到困惑的一个难点。
解不等式题需要掌握一定的方法和技巧,下面我将以具体的题目为例,详细介绍高中数学不等式题的解题方法。
一、一元一次不等式1. 题目:求解不等式2x + 3 > 5。
解析:这是一个一元一次不等式,我们可以通过移项和化简来求解。
首先,将不等式中的常数项移到一边,得到2x > 2。
然后,将不等式两边都除以2,得到x > 1。
所以,不等式的解集为{x | x > 1}。
2. 题目:求解不等式3x - 4 ≤ 7。
解析:这是一个一元一次不等式,我们可以通过移项和化简来求解。
首先,将不等式中的常数项移到一边,得到3x ≤ 11。
然后,将不等式两边都除以3,得到x ≤ 11/3。
所以,不等式的解集为{x | x ≤ 11/3}。
通过以上两个例子,我们可以总结出解一元一次不等式的方法:将不等式中的常数项移到一边,然后将不等式两边都除以系数,最后根据不等号的方向确定解集。
二、一元二次不等式1. 题目:求解不等式x^2 - 3x + 2 > 0。
解析:这是一个一元二次不等式,我们可以通过求解方程来确定不等式的解集。
首先,将不等式转化为方程x^2 - 3x + 2 = 0。
然后,求解方程得到x = 1或x = 2。
接下来,我们需要确定不等式在这两个解的两侧的取值情况。
取一个介于1和2之间的数,比如1.5,代入不等式中,得到1.5^2 - 3(1.5) + 2 = 0.25 > 0。
所以,不等式在x = 1和x = 2之间是大于0的。
综合起来,不等式的解集为{x | 1 < x < 2}。
通过以上例子,我们可以总结出解一元二次不等式的方法:先求解方程,然后确定不等式在解的两侧的取值情况,最后根据不等号的方向确定解集。
三、绝对值不等式1. 题目:求解不等式|2x - 1| > 3。
高中数学中的不等式解题方法与实例分析
高中数学中的不等式解题方法与实例分析不等式是数学中常见的一类问题,解决不等式问题需要我们掌握一些解题方法和技巧。
本文将对高中数学中的不等式解题方法进行分析,并通过实例来进一步说明。
一、绝对值不等式的解法绝对值不等式是不等式中常见的一种形式,解决该类问题可以分以下几种情况进行讨论:1. 若|x| < a,则x的取值范围为(-a, a);例如,若|3x + 2| < 5,则-5 < 3x + 2 < 5,解得-7/3 < x < 1。
2. 若|x| > a,则x的取值范围为(-∞, -a)∪(a, +∞);例如,若|2x - 1| > 3,则2x - 1 < -3或2x - 1 > 3,解得x < -1 或 x > 2。
二、一次不等式的解法一次不等式是指不等式中最高次项为一次的情况。
解决一次不等式问题的方法如下:1. 将一次不等式化简为数轴上的区间问题,确定不等式的解集和表示方法;例如,若2x - 3 > 5,则解不等式可得x > 4。
2. 注意一次不等式中系数的正负对不等号的影响;例如,若4x + 6 < 10,则解不等式可得x < 1/2。
三、二次及以上次数不等式的解法对于二次及以上次数的不等式,我们通常会进行如下步骤来解决问题:1. 将不等式转化为二次函数的零点问题,求出二次函数的零点。
2. 根据二次函数的图像特点,确定不等式的解集和表示方法。
实例分析:例如,解不等式x^2 - 4x + 3 > 0。
首先,将不等式化简为(x-1)(x-3) > 0。
得到二次函数的两个零点为x=1和x=3。
其次,根据二次函数的图像特点,我们知道当x小于1或大于3时,二次函数的值大于零。
因此,不等式的解集为x < 1 或 x > 3。
综上所述,我们通过绝对值不等式、一次不等式和二次及以上次数不等式的解题方法及实例分析,详细介绍了高中数学中解决不等式问题的技巧与方法。
高中数学不等式解法15种典型例题
c
= =
− + = − 1
1 = (− 1 )(−
− 1
1
),
,
a
∴ x2 + b x + a 0 ,即 x2 + (− 1 − 1 )x + (− 1 )(− 1 ) 0 , 即 (x − 1 )(x − 1 ) 0 . 又 0 ,∴ 1 1 ,
画数轴,找因式根,分区间,定符号. (x − 1)(x − 5) 符号 (x + 2)(x − 6)
解之,得原不等式的解集为{x −1 x 2或x 3}.
说明:此题易出现去分母得 x2 + 2x − 2 x(3 + 2x − x2 ) 的错误解法.避免误解的方法是移项使一边为0再解. 另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.
不等式解法 15 种典型例题
例 1 解不等式:(1) 2x3 − x2 −15x 0 ;(2) (x + 4)(x + 5)2 (2 − x)3 0 .
分析:如果多项式 f (x) 可分解为 n 个一次式的积,则一元高次不等式 f (x) 0(或 f (x) 0 )可用“穿根法”求解,
但要注意处理好有重根的情况. 解:(1)原不等式可化为
当 a 2 时,不等式组(1)无解,(2)的解是 x a . 2
) 综上可知,当 0 a 2 时,原不等式的解集是 a + 1 −
2a ,+
;当 a
2
时,原不等式的解集是
a 2
,+
.
说明:本题分类讨论标准“ 0 a 2 , a 2 ”是依据“已知 a 0 及(1)中‘ x a , x 1 ’,(2)中‘ x a , x 1 ’”
高一基本不等式题型及解题方法
高一基本不等式题型及解题方法高一基本不等式是数学中的重要内容,它在实际生活中有着重要的应用价值。
通过学习基本不等式,可以帮助学生理解数学的逻辑推理和解决实际问题的能力。
在高中数学的学习中,基本不等式是一个非常基础的知识点,因此学生需要掌握其基本概念和解题方法。
一、基本不等式的定义基本不等式是指在数字和代数问题中最基础的不等式关系。
它通常以不等式的形式表示,包括大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。
不等式的解是指满足不等式关系的一组实数。
在解不等式时,通常需要找出使不等式成立的一组解集。
解不等式的方法通常包括化简、加减法则、乘除法则、分拆法则、平方法则等。
学生需要掌握这些方法,并能够灵活应用于解题过程中。
二、基本不等式的题型在高一的数学学习中,基本不等式通常包括一元一次不等式、一元二次不等式、绝对值不等式等。
以下将分别介绍这些不等式的解题方法。
1.一元一次不等式一元一次不等式是指含有一个未知数的一次不等式。
其一般形式为ax+b>0或者ax+b<0,其中a和b为常数,x为未知数。
解一元一次不等式的基本步骤通常为:(1)移项:把不等式中的常数项移到一边,未知数移到另一边;(2)合并同类项;(3)整理化简;(4)根据不等式的正负情况给出解的范围。
例如,解不等式2x+3>5,首先将常数项3移到另一边,得到2x >2,然后除以2得到x>1。
因此,不等式的解为x的取值范围为大于1的实数。
2.一元二次不等式一元二次不等式是指含有一个未知数的二次不等式。
其一般形式为ax^2+bx+c>0或者ax^2+bx+c<0,其中a、b和c为常数,x为未知数。
解一元二次不等式的基本步骤通常为:(1)化简:将不等式化为标准形式,即将不等式移项并合并同类项;(2)求解方程:求出二次方程ax^2+bx+c=0的两个根;(3)根据方程的根和系数的关系求解不等式的解集。
例如,解不等式x^2+2x-3>0,首先化简得到(x+3)(x-1)>0,然后求出方程x^2+2x-3=0的解为x=-3和x=1,再根据不等式的正负情况得到不等式的解集为x<-3或者x>1。
不等式的解法高中数学公式
不等式的解法高中数学公式
高中数学常见的不等式解法有如下几种公式:
1. 二次函数法:
对于一元二次不等式,可以将其转化为二次函数的求解问题。
首先对不等式中的二次项与常数项进行合并,得到一个一元二次函数。
然后通过求解二次函数的根或者根的位置来确定不等式的解集。
2. 直接法:
对于一些简单的不等式,可以直接通过对不等式进行变形,化简得到最终结果。
常见的直接法有加减法、乘除法等。
3. 分段讨论法:
对于一个包含多个不等式的复合不等式,可以将复合不等式拆分成若干个简单的不等式,并通过讨论每个简单不等式的解集的情况来确定复合不等式的解集。
4. 取模法:
对于一些涉及取模的不等式,可以通过取模运算的性质来进行求解。
通过去除不等式中的取模运算,将其转化为普通的不等式,进而求解得到最终结果。
5. 绝对值法:
对于一些含有绝对值的不等式,可以通过绝对值的性质来进行求解。
通过分情况讨论绝对值的取值范围,进而求解得到最终结果。
以上是高中数学中常见的不等式解法公式,通过灵活应用这些公式,可以有效地解决各种不等式问题。
不等式的解法高中数学
不等式的解法高中数学高中数学:不等式与不等式组的解法1.一元一次不等式的解法任何一个一元一次不等式经过变形后都可以化为ax>b或axb而言,当a>0时,其解集为(ab,+∞),当a<0时,其解集为(-∞,ba),当a=0时,b<0时,期解集为R,当a=0,b≥0时,其解集为空集。
例1:解关于x的不等式ax-2>b+2x解:原不等式化为(a-2)x>b+2①当a>2时,其解集为(b+2a-2,+∞)②当a<2时,其解集为(-∞,b+2a-2)③当a=2,b≥-2时,其解集为φ④当a=2且b<-2时,其解集为R.2.一元二次不等式的解法任何一个一元二次不等式都可化为ax2+bx+c>0或ax2+bx+c<0(a>0)的形式,然后用判别式法来判断解集的各种情形(空集,全体实数,部分实数),如果是空集或实数集,那么不等式已经解出,如果是部分实数,则根据“大于号取两根之外,小于号取两根中间”分别写出解集就可以了。
例2:解不等式ax2+4x+4>0(a>0)解:△=16-16a①当a>1时,△<0,其解集为R②当a=1时,△=0,则x≠-2,故其解集(-∞,-2)∪(-2,+∞)③当a<1时,△>0,其解集(-∞,-2-21-aa)∪(-2+21-aa,+∞)3.不等式组的解法将不等式中每个不等式求得解集,然后求交集即可.例3:解不等式组m2+4m-5>0(1)m2+4m-12<0(2)解:由①得m<-5或m>1由②得-6,故原不等式组的解集为(-6,-5)∪(1,2)4.分式不等式的解法任何一个分式不等都可化为f(x)g(x)>0(≥0)或f(x)g(x)<0(≤0)的形式,然后讨论分子分母的符号,得两个不等式组,求得这两个不等式组的解集的并集便是原不等式的解集.例4:解不等式x2-x-6-x2-1>2解:原不等式化为:3x2-x-4-x2-1>0它等价于(I)3x2-x-4>0-x2-1>0和(II)3x2-x-4<0-x2-1<0解(I)得解集空集,解(II)得解集(-1,43).故原不等式的解集为(-1,43).5.含有绝对值不等式的解法去绝对值号的主要依据是:根据绝对值的定义或性质,先将含有绝对值的不等式中的绝对值号去掉,化为不含绝对值的不等式,然后求出其解集即可。
高中数学必修5常考题型:一元二次不等式及其解法
一元二次不等式及其解法(一)【知识梳理】1.一元二次不等式我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式,即形如ax2+bx +c >0(≥0)或ax2+bx +c <0(≤0)(其中a ≠0)的不等式叫做一元二次不等式.2.一元二次不等式的解与解集使一元二次不等式成立的x 的值,叫做这个一元二次不等式的解,其解的集合,称为这个一元二次不等式的解集.3.一元二次不等式与相应的二次函数及一元二次方程的关系如表 判别式Δ=b2-4ac Δ>0Δ=0Δ<0一元二次方程ax2+bx +c =0(a>0)的根有两相异实根x1,x2,(x1<x2)有两相等实根x1=x2=-b2a没有实数根二次函数y =ax2+bx +c (a>0)的图象ax2+bx +c>0(a>0)的解集 错误!或x>x2}⎩⎨⎧⎭⎬⎫x|x ≠-b 2aRax2+bx +c<0(a>0)的解集 {}x|x1<x<x2∅ ∅题型一、一元二次不等式的解法【例1】解下列不等式: (1)2x2+7x +3>0; (2)x2-4x -5≤0; (3)-4x2+18x -814≥0;(4)-12x2+3x -5>0;(5)-2x2+3x -2<0.[解] (1)因为Δ=72-4×2×3=25>0,所以方程2x2+7x +3=0有两个不等实根x1=-3,x2=-12.又二次函数y =2x2+7x +3的图象开口向上,所以原不等式的解集为{x|x >-12,或x<-3}.(2)原不等式可化为(x -5)(x +1)≤0,所以原不等式的解集为{x|-1≤x ≤5}.(3)原不等式可化为⎝ ⎛⎭⎪⎫2x -922≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x|x =94.(4)原不等式可化为x2-6x +10<0,Δ=(-6)2-40=-4<0,所以方程x2-6x +10=0无实根,又二次函数y =x2-6x +10的图象开口向上,所以原不等式的解集为∅.(5)原不等式可化为2x2-3x +2>0,因为Δ=9-4×2×2=-7<0,所以方程2x2-3x +2=0无实根,又二次函数y =2x2-3x +2的图象开口向上,所以原不等式的解集为R.【类题通法】解一元二次不等式的一般步骤(1)通过对不等式变形,使二次项系数大于零; (2)计算对应方程的判别式;(3)求出相应的一元二次方程的根,或根据判别式说明方程没有实根; (4)根据函数图象与x 轴的相关位置写出不等式的解集. 【对点训练】 1.解下列不等式:(1)x2-5x -6>0;(2)-x2+7x>6.(3)(2-x)(x +3)<0;(4)4(2x2-2x +1)>x(4-x). 解:(1)方程x2-5x -6=0的两根为x1=-1, x2=6.结合二次函数y =x2-5x -6的图象知,原不等式的解集为{x|x<-1或x>6}. (2)原不等式可化为x2-7x +6<0. 解方程x2-7x +6=0得,x1=1,x2=6.结合二次函数y =x2-7x +6的图象知,原不等式的解集为 {x|1<x<6}.(3)原不等式可化为(x -2)(x +3)>0. 方程(x -2)(x +3)=0两根为2和-3.结合二次函数y =(x -2)(x +3)的图象知,原不等式的解集为{x|x<-3或x>2}. (4)由原不等式得8x2-8x +4>4x -x2. ∴原不等式等价于9x2-12x +4>0.解方程9x2-12x +4=0,得x1=x2=23.结合二次函数y =9x2-12x +4的图象知,原不等式的解集为{x|x ≠23}.题型二、解含参数的一元二次不等式【例2】解关于x 的不等式x2+(1-a)x -a <0.[解]方程x2+(1-a)x -a =0的解为x1=-1,x2=a ,函数y =x2+(1-a)x -a 的图象开口向上,则当a <-1时,原不等式解集为{x|a <x <-1};当a =-1时,原不等式解集为∅;当a >-1时,原不等式解集为{x|-1<x <a}. 【类题通法】解含参数的一元二次不等式时:(1)若二次项系数含有参数,则需对二次项系数大于0与小于0进行讨论; (2)若求对应一元二次方程的根需用公式,则应对判别式Δ进行讨论; (3)若求出的根中含有参数,则应对两根的大小进行讨论. 【对点训练】2.解关于x 的不等式:ax2-(a -1)x -1<0(a ∈R). 解:原不等式可化为: (ax +1)(x -1)<0, 当a =0时,x <1,当a >0时⎝ ⎛⎭⎪⎫x +1a (x -1)<0 ∴-1a <x <1.当a =-1时,x ≠1,当-1<a <0时,⎝ ⎛⎭⎪⎫x +1a (x -1)>0, ∴x >-1a 或x <1.当a <-1时,-1a <1,∴x >1或x <-1a ,综上原不等式的解集是:当a =0时,{x|x <1};当a >0时,⎩⎨⎧⎭⎬⎫x|-1a <x <1;当a =-1时,{x|x ≠1}; 当-1<a <0时,⎩⎨⎧⎭⎬⎫x|x <1或x >-1a .当a <-1时,⎩⎨⎧⎭⎬⎫x|x <-1a 或x >1, 题型三、一元二次不等式与相应函数、方程的关系【例3】已知关于x 的不等式x2+ax +b <0的解集为{x|1<x <2},求关于x 的不等式bx2+ax +1>0的解集.[解]∵x2+ax +b <0的解集为{x|1<x <2}, ∴1,2是x2+ax +b =0的两根.由韦达定理有⎩⎪⎨⎪⎧-a =1+2,b =1×2,得⎩⎪⎨⎪⎧a =-3,b =2,代入所求不等式,得2x2-3x +1>0.由2x2-3x +1>0⇔(2x -1)(x -1)>0⇔x <12或x >1.∴bx2+ax +1>0的解集为⎝ ⎛⎭⎪⎫-∞,12∪(1,+∞). 【类题通法】1.一元二次不等式ax2+bx +c >0(a ≠0)的解集的端点值是一元二次方程ax2+bx +c =0的根,也是函数y =ax2+bx +c 与x 轴交点的横坐标.2.二次函数y =ax2+bx +c 的图象在x 轴上方的部分,是由不等式ax2+bx +c >0的x 的值构成的;图象在x 轴下方的部分,是由不等式ax2+bx +c <0的x 的值构成的,三者之间相互依存、相互转化.【对点训练】3.已知方程ax2+bx +2=0的两根为-12和2.(1)求a 、b 的值;(2)解不等式ax2+bx -1>0.解:(1)∵方程ax2+bx +2=0的两根为-12和2,由根与系数的关系,得⎩⎪⎨⎪⎧-12+2=-b a,-12×2=2a .解得a =-2,b =3.(2)由(1)知,ax2+bx -1>0可变为-2x2+3x -1>0, 即2x2-3x +1<0,解得12<x <1.∴不等式ax2+bx -1>0的解集为{x|12<x <1}.【练习反馈】1.不等式x(2-x)>0的解集为( ) A .{x|x >0} B .{x|x <2} C .{x|x >2或x <0}D .{x|0<x <2}解析:选D 原不等式化为x(x -2)<0,故0<x <2. 2.已知集合M ={x|x2-3x -28≤0},N ={x|x2-x -6>0}, 则M ∩N 为( )A .{x|-4≤x <-2或3<x ≤7}B .{x|-4<x ≤-2或3≤x <7}C .{x|x ≤-2或x >3}D .{x|x <-2或x ≥3}解析:选A ∵M ={x|x2-3x -28≤0} ={x|-4≤x ≤7},N ={x|x2-x -6>0}={x|x <-2或x >3}, ∴M ∩N ={x|-4≤x <-2或3<x ≤7}.3.二次函数y =x2-4x +3在y <0时x 的取值范围是________. 解析:由y <0得x2-4x +3<0, ∴1<x <3 答案:(1,3)4.若不等式ax2+bx +2>0的解集为⎩⎨⎧⎭⎬⎫x|-12<x <2,则实数a =________,实数b =________.解析:由题意可知-12,2是方程ax2+bx +2=0的两个根.由根与系数的关系得⎩⎪⎨⎪⎧-12+2=-b a,-12×2=2a ,解得a =-2,b =3. 答案:-23 5.解下列不等式: (1)x(7-x)≥12; (2)x2>2(x -1).解:(1)原不等式可化为x2-7x +12≤0,因为方程x2-7x +12=0的两根为x1=3,x2=4, 所以原不等式的解集为{x|3≤x ≤4}. (2)原不等式可以化为x2-2x +2>0,因为判别式Δ=4-8=-4<0,方程x2-2x +2=0无实根,而抛物线y =x2-2x +2的图象开口向上,所以原不等式的解集为R.。
高中一年级数学不等式解法经典例题
∴ 或
故原不等式的解集为 .
解法二:原不等式等价于
即 ∴ .
典型例题四
例4解不等式 .
分析:这是一个分式不等式,其左边是两个关于 二次式的商,由商的符号法则,它等价于下列两个不等式组:
或
所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解.
解法一:原不等式等价下面两个不等式级的并集:
而 , .
对方程 两边同除以 得
.
令 ,该方程即为
,它的两根为 , ,
∴ , .∴ , ,
∴方程 的两根为 , .
∵ห้องสมุดไป่ตู้,∴ .
∴不等式 的解集是 .
说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有 , 是已知量,故所求不等式解集也用 , 表示,不等式系数 , , 的关系也用 , 表示出来;(3)注意解法2中用“变换”的方法求方程的根.
典型例题五
例5解不等式 .
分析:不等式左右两边都是含有 的代数式,必须先把它们移到一边,使另一边为0再解.
解:移项整理,将原不等式化为 .
由 恒成立,知原不等式等价于 .
解之,得原不等式的解集为 .
说明:此题易出现去分母得 的错误解法.避免误解的方法是移项使一边为0再解.
另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.
;
(3)当 (即 或1)时,不等式的解集为:
.
说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根 , ,因此不等式的解就是 小于小根或 大于大根.但 与 两根的大小不能确定,因此需要讨论 , , 三种情况.
高中数学第3章不等式3.2一元二次不等式第1课时一元二次不等式及其解法(一)数学
第十页,共四十三页。
解不含参数的一元二次不等式 解下列不等式. (1)2x2+5x-3<0; (2)-3x2+6x≤2; (3)4x2-4x+1>0; (4)-x2+6x-10>0.
12/10/2021
第十一页,共四十三页。
【解】
(1)Δ=49>0,方程 2x2+5x-3=0 的两根为 x1=-3,x2=12, 作出函数 y=2x2+5x-3 的图象.如图所示,用阴影部分描出 原不12/等10/20式21 的解,由图可得原不等式的解集为x-3<x<12.
12/10/2021
第二十一页,共四十三页。
含参数不等式中对参数进行讨论的标准 (1)讨论二次项系数的符号,即相应二次函数图象的开口方向. (2)讨论判别式符号,即相应二次函数图象与 x 轴交点的个数. (3)当 Δ>0 时,讨论相应一元二次方程两根的大小.简记为 “一 a、二 Δ、三两根大小”. (4)最后对系数中的参数进行完全分类,即将(-∞,+∞)分成 若干区间,根据相应二次函数在各个区间的值,写出一元二次 不等式的解集.
第十二页,共四十三页。
(2)原不等式等价于 3x2-6x+2≥0.
因为 Δ=12>0,解方程 3x2-6x+2=0,
得 x1=3-3 3,x2=3+3 3,作出函数 y=3x2-6x+2 的图象,
如图所示,
由图可得原不等式的解集为xx≤3-3
3或x≥3+3
3 .
12/10/2021
第十三页,共四十三页。
第二页,共四十三页。
1.一元二次不等式 只含有_一__个___未知数,并且未知数的最高次数是__2__的不等式 叫做一元二页,共四十三页。
2.一元二次不等式与相应的二次函数及一元二次方程的关系
高一数学不等式知识点框架
高一数学不等式知识点框架随着教育改革的深入推进,我国的高中数学教育也正在发生着改变。
数学作为一门基础学科,对于学生综合能力的培养具有重要意义。
在高中数学的课程中,不等式是一个重要的内容,十分有必要对其进行系统地掌握和学习。
本文将为大家介绍高一数学不等式的知识点框架,希望能够帮助广大高一学生更好地理解和掌握这个内容。
一、不等式的基本概念了解不等式的基本概念对于深入学习不等式是至关重要的。
不等式是数学中表示数之间大小关系的一种形式,是数学中的一种基本代数关系。
在不等式中,常常会出现大于、小于的符号,还有不等号两边的表达式。
理解不等式的形式和组成部分,有助于帮助我们快速理解和分析不等式的性质。
二、不等式的性质与性质运算学习不等式的性质是进一步理解不等式的重要方式之一。
不等式的性质包括不等式转化、不等式的加减倍性、不等式的乘法性质、不等式的倒置等。
理解不等式的性质有助于我们在解决实际问题时有效地运用不等式,加快解题速度。
三、一元一次不等式一元一次不等式是高中数学中比较基础的不等式内容,也是我们学习不等式的第一步。
在学习一元一次不等式时,我们需要了解不等式的解集、不等式的解集的求法以及不等式的图示。
四、一元二次不等式一元二次不等式是高中数学学习的一个重要内容,也是在学习不等式过程中的一个重要步骤。
在一元二次不等式的学习中,我们需要了解不等式的判别式、不等式的解集、一元二次不等式的图示等内容。
此外,还需要注意特殊情况的判断和处理。
五、不等式的求解策略对于不等式的求解过程,我们需要掌握一些常用的求解策略。
比如,利用因式分解和开平方等方法,将不等式转化成一元一次不等式或者一元二次不等式;利用绝对值的性质,将不等式的绝对值符号去掉等。
六、不等式的应用不等式在现实生活中有着广泛的应用,包括数学建模、经济学、物理学等多个领域。
学习不等式的过程中,我们需要注意将所学的知识与实际问题相结合,培养我们的解决实际问题的能力。
高中数学中的不等式组求解方法
高中数学中的不等式组求解方法不等式组是高中数学中的一个重要概念,它由多个不等式组成,需要找到满足所有不等式的解集。
在解不等式组时,我们需要运用一些方法和技巧,下面将介绍几种常见的不等式组求解方法。
一、图像法图像法是一种直观且易于理解的不等式组求解方法。
通过将不等式转化为图像,我们可以直观地看出解集的范围。
例如,对于一个简单的一元一次不等式组,我们可以将其转化为一条直线的图像。
通过观察直线与坐标轴的交点,我们可以得出解集的范围。
二、代数法代数法是一种常用的不等式组求解方法。
通过代数运算,我们可以将不等式组转化为等价的形式,从而找到解集。
例如,对于一个二元一次不等式组,我们可以通过消元法或代入法将其转化为一个只含有一个变量的不等式,然后求解这个不等式即可得到解集。
三、区间法区间法是一种常用的不等式组求解方法,特别适用于含有绝对值的不等式组。
通过将不等式组中的变量范围划分成若干个区间,然后分别求解每个区间内的不等式,最后将解集合并起来,即可得到整个不等式组的解集。
这种方法可以有效地简化求解过程,提高求解效率。
四、求导法求导法是一种适用于含有函数的不等式组求解方法。
通过求解函数的导数,我们可以找到函数的增减性,从而确定不等式的解集。
例如,对于一个含有二次函数的不等式组,我们可以通过求解函数的导数和零点,来确定函数的增减性和极值点,从而得到不等式的解集。
五、数列法数列法是一种适用于含有数列的不等式组求解方法。
通过构造递推数列,我们可以找到数列的通项公式,并通过分析数列的性质来确定不等式的解集。
例如,对于一个含有递推数列的不等式组,我们可以通过构造数列的递推关系式和递推初值,来确定数列的通项公式和解集。
六、综合运用在实际的不等式组求解过程中,我们常常需要综合运用多种方法和技巧。
通过灵活运用各种方法,我们可以更准确地确定不等式的解集。
例如,对于一个复杂的不等式组,我们可以先通过图像法或代数法简化不等式,然后再运用区间法或求导法求解。
高一数学不等式经典例题与解析
高一数学不等式经典例题与解析
对于即将升入高中的同学来说,高中数学是一个让人比较头疼的科
目,下面是小编为大家整理的高一数学不等式经典例题与解析,希望能对大
家有所帮助。
高一数学不等式经典例题与解析 例1 解下列不等式(1)(x-1)(3-x);3(x2+2)分
析将不等式适当化简变为ax2+bx+c>;0(;4}解关于x的不等式(x-2)(ax-2)>;0.
分析不等式的解及其结构与a相关,所以必须分类讨论.解1° 当a=0时,
原不等式化为x-2;0,其解集是{x|x≠2};从而可以写出不等式的解集为:a=0
时,{x|x 例2 若不等式ax2+bx+c>;0的解集为{x|α分析
由一元二次函数、方程、不等式之间关系,一元二次不等式的解集实质上
是用根来构造的,这就使“解集”通过“根”实现了与“系数”之间的联系.考虑使
用韦达定理:解法一由解集的特点可知a;0,c;0解为α说明:要在一题多解
中锻炼自己的发散思维.分析将一边化为零后,对参数进行讨论.进一步化为
(ax+1-a)(x-1);0时,不等式化为(2)a=0时,不等式化为x-1 例3 绝对值大
于2且不大于5的最小整数是[ ]A.3 B2C.-2 D5分析列出不等式.解根据题意得2 例5 实数a,b满足ab;|a-
b|C.|a+b|;0,原不等式的解集为{x|a-b答选D.说明:本题实际上是利用端点
的位置关系构造新不等式组.以上是小编整理的《高一数学不等式经典例题与
解析》,了解更多关于高中数学的最新资讯,请随时关注!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲 解不等式(一)
一、知识梳理
(一)考点目标定位
高考中解不等式主要涉及到一元一次不等式(组)、一元二次不等式(组)、分式不等式(组)、绝对值不等式(组)、指数不等式(组)、对数不等式(组)、三角不等式(组)以及含参数的不等式等。
其中尤以一元二次不等式、分式不等式、对数不等式、三角不等式为热门。
解不等式在高考中的题型主要是在综合题中作为解题的一个步骤有所涉及,在填空题中和集合结合为简单题型。
(二)复习方略指南
熟悉各种不等式的解题方法,特别是要注意分式不等式、对数不等式和三角不等式的定义域情况以及一元二次不等式的判别式情况。
二、知识回顾
1、不等式|2x 2-1|≤1的解集为
2、已知全集U R =,集合{}
240M x x =-≤,则U M ð= 3、不等式09
311421
2≥-x x 的解集为_______________
4、不等式3
2-+x x x )(<0的解集为 5、不等式()210ax ab x b +++>的解集为{}
12x x <<,则a b +=____ ___. 6、不等式||52||1
x x ->-+的解集是 . 三、典型例题
例1、解不等式:()R a x a ax ∈+<+2
1
例2、2232
->-x x
例3、解不等式
3252---x x x <-1.
例4、关于实数x 的不等式()()2
12122-≤+-a a x 与()()()R a a x a x ∈≤+++-其中0132132的解集依次记为A 与B ,求使B A ⊆的a 的取值范围。
四、巩固评价
(一)选择题: 1、若不等式26ax +<6的解集为()1,2-,则实数a 等于…………………………………( )
A.8
B.2
C.-4
D.-8
2、不等式221
x x +>+的解集是……………………………………………………………( ) A.(-1,0)∪(1,+∞)
B.(-∞,-1)∪(0,1)
C.(-1,0)∪(0,1)
D.(-∞,-1)∪(1,+∞) 3、已知函数()f x 是R 上的增函数,()()0,131A B -、,是其图象上的两点,那么()11f x +<的解集是……………………………………………………………………………………………( )
A.(1,4)
B.(-1,2)
C.(-∞,1]∪[4,+∞)
D.(-∞,-1]∪[2,+∞)
4、设()f x 和()g x 都是定义域为R 的奇函数,不等式()0f x >的解集为(),m n ,不等式
()0g x >的解集为,22m n ⎛⎫ ⎪⎝⎭,其中02n m <<,则不等式()()0f x g x ⋅>的解集是………( ) A.,2n m ⎛
⎫ ⎪⎝⎭ B.,,22n n m m ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭ C. (),,22m n n m ⎛⎫-- ⎪⎝⎭ D.,,2222m n n m ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭
(二)填空题:
5、设集合{}|0,|12x A x B x x x ⎧
⎫=>=<⎨⎬-⎩⎭
,则A B ⋃= 。
6、不等式a ax x ->-32对一切43≤≤x 恒成立,则实数a 的取值范围是 .
7、设a 、R b ∈,把三阶行列式x a x 12
14532
+中元素3的余子式记为)(x f ,若关于x 的不等式
0)(<x f 的解集为),1(b -,则=+b a ________.
8、已知集合{}
15A x x x Z =-<<∈,,集合10,4x B x x Z x -⎧⎫=>∈⎨⎬-⎩⎭.在集合A 中任取一个元素
x ,则事件“B A x ∈”发生的概率是 .
(三)解答题:
9、已知关于x 的不等式01
a x x -≥+的解集为P ,不等式11x -<的解集为Q 。
(1)若3a =,求P ;(2)若P Q P ⋃=,求正数a 的取值范围。
10、已知关于x 的不等式2
(4)(4)0kx k x --->,其中k R ∈。
(1)求上述不等式的解;
(2)是否存在实数k ,使得上述不等式的解集A 中只有有限个整数?若存在,求出使得A 中
整数个数最少的k 的值;若不存在,请说明理由。
11、若不等式022>++bx ax 的解为132<<-
x ,求不等式022≥++ax bx 的解集。
12、集合A=()}042{22<-++a ax x x ,B=()(){}
02<--x a x x ,若A B A =⋃,求实数a 的取值范围。