高一数学下册期末考试试卷7
湖北省五市州2023-2024学年高一下学期7月期末考试数学试题
湖北省五市州2023-2024学年高一下学期7月期末考试数学试题一、单选题 1.已知3i z =+,则1iz=+( ) A .42i -B .42i +C .2i -D .2i +2.当()0,2πx ∈时,曲线2cos y x =+与直线13y x =的交点个数为( )A .2B .3C .4D .53.已知()2,0a =r ,()1,1b =r ,则a r 在b r上的投影向量为( )A .)B .()1,1C .()2,1D .()2,24.已知1z ,2z ∈C ,则下列说法正确的是( ) A .若3z ∈C ,1323z z z z =,则12z z = B .若12z z =,则12=z z C .若1212z z z z +=-,则120z z ⋅=D .1212z z z z +=-5.如图所示,角x (π0,2x ⎛⎫∈ ⎪⎝⎭)的顶点为坐标原点,始边与x 轴的非负半轴重合,其终边与单位圆的交点为P ,分别过点A 作x 轴的垂线,过点B 作y 轴的垂线交角x 的终边于T ,S ,根据三角函数的定义,tan x AT =.现在定义余切函数cot y x =,满足1cot tan x x=,则下列表示正确的是( )A .cot x OT =B .cot x PS =C .cot x OS =D .cot x BS =6.已知单位向量a r ,b r互相垂直,若存在实数t ,使得()1a t b +-r r 与()1t a b -+r r 的夹角为60o ,则t =( )A B .1-C D .1-7.1cos 20cos 40cos 202︒-︒︒=( )A .14-B .14C .12-D .128.已知函数()sin sin 2f x x x =+,下面关于函数()f x 的图象与性质描述正确的是( ) A .函数()f x 的图象关于y 轴对称 B .函数()f x 的最小正周期为πC .方程()0f x =在[]π,π-上有5个不同的实根D .()f x ≤二、多选题9.某同学统计了某校高一男生的身高数据(单位:cm ),并整理得到下表根据表中数据,下列说法正确的是( ) A .该校高一年级男生身高的中位数小于170cm B .该校高一年级男生身高的众数和中位数相同 C .该校高一年级男生身高的极差介于15cm 至25cm 之间 D .该校高一年级男生身高的平均数介于170cm 到175cm 之间10.阻尼器是一种以提供阻力达到减震效果的专业工程装置,其提供阻力的运动过程可近似为单摆运动.若某阻尼器离开平衡位置的位移y (单位:m )和时间x (单位:s )满足函数关系:()sin y A x ωϕ=+(0A >,0ω>,π2ϕ<),某同学通过“五点法”计算了一个周期内的部分数据如下(其中a ,b ,c ,d 为未知数),则下列有关函数()y f x =的描述正确的是( )A .函数()f x 的图象关于点16,03⎛⎫⎪⎝⎭对称B .函数()f x 的图象可由函数sin y A xω=的图象向右平移13个单位得到C .函数()f x 的图象上相邻的最高点与最低点之间的距离为4D .函数()f x 的图象与函数ππ23y x ⎛⎫=+ ⎪⎝⎭的图象重合11.在棱长为2的正方体1111ABCD A B C D -中,Q 是1CC 的中点,下列说法正确的是( )A .若P 是线段1AC 上的动点,则三棱锥P BQD -的体积为定值B .三棱锥1A BQD -C .若AQ 与平面AC ,平面1AD ,平面1AB 所成的角分别为i θ(1,2,3i =),则321cos 2i i θ==∑D .若平面ABQ 与正方体各个面所在的平面所成的二面角分别为()1,,6i i θ=L ,则612sin 4ii θ==∑三、填空题12.已知()tan 1αβ+=,()tan 2αβ-=,则tan2α=. 13.在ABC V 中,π2A =,3BC BA CA CB ⋅=⋅u u ur u u u r u u u r u u u r ,则ABC V 中最小角的余弦值为. 14.设x ∈R ,m ∈Z ,若1122x m -<-≤,则称m 为离实数x 最近的整数,记作{}x ,即{}x m =,如{}2.42-=-.另外,定义[]x 表示不超过x 的最大整数,如[]2.63-=-.令()f x x x=⎡⎤-⎣⎦,(){}g x x x =-,当[]2024,2024x ∈-时,如果存在i x (1,2,,i n =⋅⋅⋅)满足()()i i f x g x =,那么112025ni i x ==∑.四、解答题15.已知ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,且b 最大,πsin cos 2cos sin 3A C B C ⎛⎫-=+ ⎪⎝⎭.(1)求B ;(2)若AC 边上的高为4,求ABC V 面积的最小值.16.已知函数()224sin cos sin 3cos 1f x x x x x =-+-.(1)求函数()f x 的最值与单调递增区间;(2)若方程()()()2220f x a f x a -++=在[]0,π上恰有4个不同的实数根,求a 的值.17.在三棱锥-P ABC 中,AC CB ⊥,AB BP ⊥,CB CP CA ==,12BP AP =.点C 在平面PAB 上的射影D 恰好在PA 上.(1)若E 为线段BP 的中点,求证:BP ⊥平面CDE ; (2)求二面角C AB P --的余弦值.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)19.在直三棱柱111ABC A B C -中,AB BC ⊥,2AB =,1BC AA ==M 是平面ABC 上的动点.(1)若点M 在线段BC 上(不包括端点),设α为异面直线AC 与1B M 所成角,求cos α的取值范围;(2)若点M 在线段AC 上,求112A M MC +的最小值;(3)若点M 在线段BA 上,作MN 平行AC 交BC 于点N ,Q 是1BB 上一点,满足2MB BQ +=.设MB x =,记三棱锥Q MBN -的体积为()V x .我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.据此,判断函数()y V x =在定义域内是否存在0x ,使得函数()y V x =在()00,x 上的图象是中心对称图形,若存在,求0x 及对称中心;若不存在,说明理由.。
新高一数学下期末试卷(含答案)
新高一数学下期末试卷(含答案)新高一数学下期末试卷(含答案)一、选择题1.已知三角形ABC的内角A、B、C的对边分别为a、b、c,且a=b,则A选2.2.设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=5选3.3.已知三角形ABC中,A为60度,c=2,cosA=1/2,则ABC为有一个内角为30°的等腰三角形选D。
4.已知对任意实数x、y,不等式(x+y)/(1+xy)≥9恒成立,则实数a的最小值为2选D。
5.已知ABC为等边三角形,AB=2,设P,Q满足AP=λAB,AQ=(1-λ)AC(λ∈R),若BQ·CP=-2,则λ=1/2选A。
6.已知f(x)=sin(ωx+ϕ)+cos(ωx+ϕ),ω>π/2,f(x)是奇函数,直线y=2与函数f(x)的图像的两个相邻交点的横坐标之差的绝对值为π/2,则f(x)在[π/3.π/8]上单调递减选B。
7.已知函数y=f(x)定义域是[-2,3],则y=f(2x-1)的定义域是[-1,2]选B。
8.若α,β均为锐角,sinα=2/5,sin(α+β)=3/5,则cosβ=4/5或-3/5选C。
9.要得到函数y=2/3cos2x+1/3的图像,只需将函数y=2sin2x的图像向左平移π/4个单位选C。
10.已知sin(π/3-α)=-1/2,cos(2α+π/3)=2/3,则cosα=7/8选D。
分析】详解】1) 当 $a=1$ 时,$f(x)=-x^2+x+4$,$g(x)=|x+1|+|x-1|$。
因为 $f(x)$ 是一个开口向下的二次函数,所以其图像在顶点处取得最大值。
顶点横坐标为 $x=\frac{-b}{2a}=-\frac{1}{2}$,纵坐标为 $f(-\frac{1}{2})=\frac{15}{4}$。
而 $g(x)$ 的图像是由两个 V 形图像组成的,分别在 $x=-1$ 和 $x=1$ 处取得最小值$0$。
高一下学期期末考试数学试题07(含答案)
高一下学期期末考试数学试题07(含答案)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分,考试时间120分钟.第I 卷 (选择题 共60分)一、选择题:本大题共12小题,每题5分,共60分。
每小题给出的四个选项中,只有一项符合题目要求。
1、已知集合{}2,0,2A =-,{}2=20B x x x --=,则A B=( )2、不等式22x x ≥的解集是( )A .{}2x x ≥ {}.2B x x ≤ {}.02C x x≤≤ {}.02D x x x ≤≥或 3、经过两直线1:2320l x y -+=与2:3420l x y --=的交点,且平行于直线4270x y -+=的直线方程是( )A .290x y -+=B .4290x y -+=C .2180x y --=D .2180x y ++= 4、已知a b >,则下列不等式一定成立的是( )A. 11a b< B.1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C. ln ln a b >D. 33a b > 5、已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .2BC .1D .46、在△ABC 中,角A ,B ,C 所对的边分别为,,a b c ,若2cos a b C =,则这个三角形一定是( ) A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形7、过点(2,2)P 的直线与圆22(1)5x y -+=相切,且与直线10ax y -+=垂直,则a =( ) A .12-B .1C .2 D.128、设0.13592,ln,log 210a b c ===,则,,a b c 的大小关系是( ) A. a b c >> B. a c b >> C. b a c >> D.b c a >>9、已知D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A .0BD BE FC --= B .0BD CF DF -+= C.0AD CE CF +-=D .0AD BE CF ++=10、已知0ω>,2π<ϕ,函数()sin()f x x =+ωϕ的部()sin g x x =ω的图象,只分图象如图所示.为了得到函数要将()f x 的图象( )A.∅B. {}2C. {}0D. {}2-A .向右平移4π个单位长度 B .向右平移8π个单位长度 C .向左平移4π个单位长度 D .向左平移8π个单位长度11、在三棱柱111ABC A B C -中,已知1AA ABC ⊥平面,12,2AA BC BAC π==∠=,此三棱柱各个顶点都在一个球面上,则球的体积为( )A .323π B .16π C .253π D .312π12、[]x 表示不超过x 的最大整数,例如[][]2.92, 4.15=-=-,已知[]()f x x x =-,()x R ∈,4()log (1)g x x =-,则函数()()()h x f x g x =-的零点个数为( )A .4B .3C .2D .1第II 卷 (非选择题 共90分)二、填空题:本大题共4小题,每题5分,共20分。
高一数学(下)期末考试试卷(含详细答案)
高一数学 (下 )期末考试试卷 ( 含详细答案 )理科数学考试注意事项:1.本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第 I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第 II 卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第I 卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知 sin α=4,α ∈(0) ,则 tan α等于( ) .5A.4B.3C.±4D.±33 4 3 42. cos4sin 4等于()8 8A . 0 B.2C . 1D .-2 2 23.在△ ABC中, a= 5,b=15,A= 30°,则 c 等于 ()A . 2 5 B. 5 C .25或5 D .以上都不对4.在△ ABC中,角 A、 B、 C的对边分别为a、 b、 c,若 a2+b2= c2+ ab,则 C= () A. 60°B. 120° C . 45°D. 30°5.给出平面区域如下图所示,其中 A( 5,3),B( 1,1),C( 1,5),若使目标函数 z=ax+y(a>0)取得最大值的最优解有无穷多个,则a的值是()A.2 B .1 C .2 D .33 2 26.在△ ABC中, A=60°, AB=2,且△ ABC的面积S = 2 ,则边 BC的长为 ()△ABC 3A. 3 B . 3 C. 7 D . 71 / 8高一数学 (下 )期末考试试卷 ( 含详细答案 )7. 等差数列 a n 的首项 a 11 ,公差 d0 ,如果 a 1、 a 2、 a 5 成等比数列,那么d 等于( )A . 3B .2C .- 2D.28. 半径为 R 的半圆卷成一个圆锥,则它的体积为()A . 3 R 3B .3 R 3 C . 5 R 3 D. 5 R 3248 248D 1C19. 如图长方体中, AB=AD=2 3 , CC1= 2 ,则二面角 A11BC 1— BD — C 的大小为( )DC ( A) 30 0 0 ( C )60 0 (D )90 0 ( B )45 AB 10. 直线 a,b,c 及平面 α , β , γ , 下列命题正确的是()A 、若 a α , b α ,c⊥a, c ⊥ b 则 c ⊥ α B 、若 b α , a//b 则 a// α C 、若 a// α , α ∩ β=b 则 a//b D 、若 a ⊥ α , b ⊥ α 则a//b 11.已知 x 3y 2 0,则3 x27 y1 的最小值是 ()A. 339 B. 1 2 2 C. 6 D. 712. 已知数列 {an} 的通项公式 an = n2 +- 11n - 12, 则此数列的前 n 项和取最小值时,项数 n 等于 ( ) A. 10或 11 B.12C.11或 12 D.12 或 13第Ⅱ卷本卷包括必考题和选考题两部分。
福建省福建师范大学附属中学2023-2024学年高一下学期7月期末考试数学试题(含答案)
福建师大附中2023-2024学年第二学期期末考试高一数学试卷时间:120分钟满分:150分试卷说明:(1)本卷共四大题,20小题,解答写在答卷的指定位置上,考试结束后,只交答卷.(2)考试过程中不得使用计算器或具有计算功能的电子设备.第Ⅰ卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设i 为虚数单位,复数满足,则复数的虚部是( )A .B .C .3iD .32.某汽车生产厂家用比例分配的分层随机抽样方法从A ,B ,C 三个城市中抽取若干汽车进行调查,各城市的汽车销售总数和抽取数量如右表所示,则样本容量为( )城市销售总数抽取数量A 420m B 28020C 700nA .60B .80C .100D .1203.某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B .C .D .4.设是两条不同的直线,是两个不同的平面,给出下列说法,其中正确的是( )A .若,则B .若,则C .若,则D .若,则5.如图,在三棱锥中,分别是,的中点,则异面直线所成角的余弦值为()z ()i 142i z +=+z i-1-16131223,m n ,αβ,,m n m n αβ⊥⊥∥αβ⊥,m m αβ⊥∥αβ⊥,,m n m n αβ⊥⊂⊂αβ⊥,,m n m n αβ⊥⊂⊥αβ⊥A BCD -6,4,,AB AC BD CD AD BC M N ======AD BC ,AN CMA.B .C .D .6.有一组样本数据:,其平均数为2024.由这组数据得到一组新的样本数据:,那么这两组数据一定有相同的( )A .极差B .中位数C .方差D .众数7.已知正四棱台上底面边长为1,下底面边长为2,体积为7,则正四棱台的侧棱与底面所成角的正切值为( )ABCD .8.已知三棱锥中,平面,底面是以为直角顶点的直角三角形,且,三棱锥,过点作于,过作于,则三棱锥外接球的体积为()A .BCD .二、选择题:本题共3小题,每小题6分,共18分。
高一下学期数学期末考试试题(带答案)
高一下学期数学期末考试试题(带答案)高一下学期数学期末考试试题(带答案)一、选择题(每题4分,共40分)1. 设函数f(x) = 2x + 3,那么f(-1)等于()A. -5B. -1C. 1D. 5【答案】A2. 已知等差数列的首项为2,公差为3,那么第10项等于()A. 29B. 30C. 31D. 32【答案】A3. 下列四个选项中,哪个选项不是函数()A. y = 2x + 3B. y = |x|C. y = x²D. x = 2y + 3【答案】D4. 设函数f(x) = x² - 4x + 3,那么f(2)等于()A. -1B. 1C. 3D. 5【答案】C5. 已知函数f(x) = 3x² - 2x + 1,那么f(-1)等于()A. -2B. -1C. 1D. 2【答案】D6. 下列四个选项中,哪个选项是等比数列()A. 2, 4, 6, 8B. 2, 4, 8, 16C. 1, 3, 9, 27D. 1, 2, 4, 8【答案】C7. 设函数f(x) = x³ - 6x² + 9x - 1,那么f'(x)等于()A. 3x² - 12x + 9B. 3x² - 6x + 9C. 3x² + 6x - 9D. 3x² - 6x - 9【答案】A8. 已知等比数列的首项为2,公比为3,那么第5项等于()A. 16B. 48C. 12D. 8【答案】B9. 下列四个选项中,哪个选项是正确的三角形全等的条件()A. SASB. SSSC. ASAD. AAS【答案】B10. 在直角坐标系中,点A(2,3)关于y轴的对称点坐标是()A. (-2,3)B. (-2,-3)C. (2,-3)D. (-3,3)【答案】A二、填空题(每题4分,共40分)1. 若函数f(x) = 2x + 3的图象经过点(0, 5),则实数m的值为____。
四川省泸州市2023-2024学年高一下学期7月期末考试 数学含答案
泸州市高2023级高一学年末统一考试数学(答案在最后)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题的答案标号涂黑.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题共58分)一、选择题:本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若集合{}{}2Z 25,4A x x B x x x=∈-<<=<,则A B = ()A.(0,4)B.{1,2,3}C.{}1- D.(2,4)-2.设复数z 满足3(1i)3i z -=-,则z =()A.2i+ B.2i- C.12i - D.12i+3.设 1.30.4118,,lg 23a b c -⎫⎛=== ⎪⎝⎭,则()A.a c b <<B.a b c<< C.c b a<< D.c<a<b4.已知2tan 2α=,则cos2α=()A.14 B.13C.12D.235.平面α与平面β平行的充分条件可以是()A.α内有无穷多条直线都与β平行B.直线,m m αβ⊄⊄,且//,//m m αβC.直线m α⊂,直线n β⊂,且//,//m n βαD.α内的任何一条直线都与β平行6.如图,AOB 为直角三角形,1OA =,2OB =,C 为斜边AB 的中点,P 为线段OC 的中点,则AP OP ⋅=()A .1B.116C.14D.12-7.若圆台侧面展开图扇环的圆心角为180,︒其母线长为2,下底面圆的半径是上底面圆的半径的2倍,则该圆台的高为()A.B.C.D.8.已知函数41,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x k =有4个不同的根1234,,,x x x x ,且1234x x x x <<<,则3412x x x x --的值为()A.3B.0C.2D.6二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.任意向量a ,b ,若a b > 且a 与b同向,则a b> B.若向量PA PB PC λμ=+,且1(01)λμλ+=<<,则,,A B C 三点共线C.若0a b ⋅>,则a 与b 的夹角是锐角D.已知|6a = ,b 为单位向量,且3,π4a b = ,则a 在b上的投影向量为-10.已知函数()sin(2)f x x ϕ=+,满足ππ33f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,且()ππ2f f ⎛⎫> ⎪⎝⎭,则()A.()f x 的图象关于π2x =对称 B.1sinφ2=-C.()f x 在π,π2⎛⎫⎪⎝⎭上单调递减 D.()f x 的图象关于点13π,012⎛⎫⎪⎝⎭对称11.正方体1111ABCD A B C D -的棱长为2,已知平面1AC α⊥,则关于平面α截正方体所得截面的判断正确的是()A.截面形状可能为正三角形B.平面α与平面ABCD 所成二面角的正弦值为3C.截面形状可能为正六边形D.截面面积的最大值为第Ⅱ卷(非选择题共92分)三、填空题:本大题共3小题,每小题5分,共计15分.12.已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()2xf x =,则72f ⎛⎫ ⎪⎝⎭的值为____________.13.计算:1sin10cos10-=︒︒__________.14.已知三棱锥S ABC -的底面是边长为3的等边三角形,且SA AB SB ==,当该三棱锥的体积取得最大值时,其外接球的表面积为____________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,1,a b =-= ,且()3a b b +⋅=.(1)求向量a 与b的夹角.(2)若向量ka b + 与a kb -互相垂直,求k 的值.16.已知函数π()sin()(0,0,||2f x A x A ωϕωϕ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式.(2)若将函数()f x 的图象上所有点的纵坐标保持不变,横坐标缩短到原来的14倍,再将其图象沿x 轴向左平移π6个单位得到函数()g x 的图象,求不等式()1g x >的解集.17.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2cos 2b C a c =+.(1)求B ;(2)若b =,且1sin sin 4A C =,求a c +.18.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,,E F 分别为,PB PC 的中点,G 为线段AC 上一动点,PD⊥平面ABCD .(1)证明:平面⊥BDF 平面A E G ;(2)当3CG AG =时,证明://EG 平面BDF ;(3)若2AD PD =,四面体BGEF 的体积等于四棱锥P ABCD -体积的332,求GC AC的值.19.对于三个实数,,a b k ,若()()()()22111a b k a b ab --≥--成立,则称,a b 具有“性质k ”(1)写出一个数a 使之与2具有“性质1”,并说明理由;(2)若22x x --具有“性质0”,求x 的取值范围;(3)若ππ42x ≤≤,且sin x ,cos x 具有“性质k ”,求实数k 的最大值.泸州市高2023级高一学年末统一考试数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.共150分.考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题的答案标号涂黑.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,作图题可先用铅笔绘出,确认后再用0.5毫米黑色签字笔描清楚,写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题共58分)一、选择题:本大题共8小题,每小题5分,共40分.每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若集合{}{}2Z 25,4A x x B x x x=∈-<<=<,则A B = ()A.(0,4)B.{1,2,3}C.{}1- D.(2,4)-【答案】B 【解析】【分析】先求出,A B ,再根据交集的定义即可得解.【详解】{}{}Z 251,0,1,2,3,4A x x =∈-<<=-,{}{}2404B x x x x x =<=<<,所以{1,2,3}A B ⋂=.故选:B.2.设复数z 满足3(1i)3i z -=-,则z =()A.2i +B.2i- C.12i- D.12i+【答案】C 【解析】【分析】先根据复数的除法计算复数,再结合共轭复数定义即可.【详解】因为()()()()323i 1i 3i 3i 33i i+i 24i12i 1i 1i 1i 1i 22z ++-++++======+---+,所以12i z =-.故选:C.3.设 1.30.4118,,lg 23a b c -⎫⎛=== ⎪⎝⎭,则()A.a c b <<B.a b c<< C.c b a<< D.c<a<b【答案】D 【解析】【分析】分别利用指数函数和对数函数的单调性进行比较,借助于中间值“0”即可判断三个值的大小.【详解】因为函数2x y =在R 上单调递增,所以. 1..130.31422220182b a -⎛⎫== ⎪=>=>⎝>⎭,又因为函数lg y x =在(0,)+∞上单调递增,所以1lg lg103c =<=,所以c<a<b .故选:D.4.已知tan 2α=,则cos2α=()A.14 B.13C.12D.23【答案】B 【解析】【分析】根据给定条件,利用二倍角公式,结合正余弦齐次式法求值.【详解】依题意,222222222111cos sin 1tan 122cos2cos sin 1cos sin 1tan 3122ααααααααα----=-===+++.故选:B5.平面α与平面β平行的充分条件可以是()A.α内有无穷多条直线都与β平行B.直线,m m αβ⊄⊄,且//,//m m αβC.直线m α⊂,直线n β⊂,且//,//m n βαD.α内的任何一条直线都与β平行【答案】D 【解析】【分析】由直线与平面、平面与平面的位置关系结合充分条件的概念依次判断即可.【详解】对于A ,若α内有无穷多条直线都与β平行,则,αβ平行或相交,故充分性不成立,故A 错误;对于B ,如图,在正方体1111ABCD A B C D -中,11//C D 平面ABCD ,11//C D 平面11ABB A ,而平面11ABB A 平面ABCD AB =,故充分性不成立,故B 错误;对于C ,如图,在正方体1111ABCD A B C D -中,11//A B 平面ABCD ,//CD 平面11ABB A ,而平面11ABB A 平面ABCD AB =,故充分性不成立,故C 错误;对于D ,由面面平行的定义知能推出平面α与平面β平行,故充分性成立,故D 正确.故选:D .6.如图,AOB 为直角三角形,1OA =,2OB =,C 为斜边AB 的中点,P 为线段OC 的中点,则AP OP⋅ =()A.1B.116C.14D.12-【答案】B 【解析】【分析】利用数量积的定义、运算律以及向量的线性运算即可求解.【详解】因为()()1111111122222224PQ PO PA CO PA CO AO AC CA BA ⎛⎫⎡⎤=+=+=-+== ⎪⎢⎥⎝⎭⎣⎦,所以2211512444PQ BA ==+ ,取AO 中点Q ,连接PQ ,144AP OP PA PO PA PO⋅=⋅=⋅⋅()()22221511416416PA PO PA PO PQ AQ ⎡⎤=+--=-=-⎢⎥⎣⎦.故选:B.7.若圆台侧面展开图扇环的圆心角为180,︒其母线长为2,下底面圆的半径是上底面圆的半径的2倍,则该圆台的高为()A.23B.132C.3D.332【答案】C 【解析】【分析】设圆台的上底面的圆心为H ,下底面的圆心为O ,圆台的母线交于点S ,由已知易求得圆锥的母线4SB =,进而可求得上下底面的半径,利用直角梯形的性质可求圆台的高.【详解】设圆台的上底面的圆心为H ,下底面的圆心为O ,设圆台的母线交于点S ,AB 为圆台的母线,且2AB =,下底面圆的半径是上底面圆的半径的2倍,所以12SA HA SB OB ==,所以2SA =,所以4SB =,由圆台侧面展开图扇环的圆心角为180︒,所以下底面圆的周长为4π,所以2π4πOB = ,所以2,1OB HA ==,在直角梯形HABO 中,易求得22213OH =-=.故选:C.8.已知函数41,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()f x k =有4个不同的根1234,,,x x x x ,且1234x x x x <<<,则3412x x x x --的值为()A.3 B.0C.2D.6【答案】A 【解析】【分析】作出函数图象,由对称性可知,122x x +=-,4344log log x x =,计算得341x x =,再计算3412x x x x --的结果;【详解】作出函数41,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图象如下由对称性可知,122x x +=-,因为4344log log x x =,由图可知3401x x <<<,所以43444344log 0,log 0log log x x x x ⇒-=则43434log 0,1x x x x =∴=,34121(2)3x x x x ---=-=,故选:A .二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.任意向量a ,b ,若a b > 且a 与b 同向,则a b> B.若向量PA PB PC λμ=+,且1(01)λμλ+=<<,则,,A B C 三点共线C.若0a b ⋅>,则a 与b 的夹角是锐角D.已知|6a =,b 为单位向量,且3,π4a b = ,则a 在b 上的投影向量为-【答案】BD 【解析】【分析】举反例判断A ,C ,利用向量共线定理判断B ,利用投影向量的定义判断D 即可.【详解】对于A ,向量不能比较大小,故A 错误,对于B ,向量PA PB PC λμ=+且1(01)λμλ+=<<时,由向量共线定理的推论,知,,A B C 三点共线,故B 正确,对于C ,当,a b 同向共线时,0a b a b ⋅=⋅>,此时夹角不是锐角,故C 错误,对于D ,由题意得1b = ,由投影向量定义得投影向量为3πcos 4b a b⋅=-,故D 正确.故选:BD10.已知函数()sin(2)f x x ϕ=+,满足ππ33f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,且()ππ2f f ⎛⎫> ⎪⎝⎭,则()A.()f x 的图象关于π2x =对称 B.1sinφ2=-C.()f x 在π,π2⎛⎫⎪⎝⎭上单调递减 D.()f x 的图象关于点13π,012⎛⎫⎪⎝⎭对称【答案】BD 【解析】【分析】由已知结合正弦函数的对称性与单调性可先求出ϕ,即可判断A ,B ;然后结合正弦函数的对称性及单调性检验选项C ,D 即可判断.【详解】因为函数函数()sin(2)f x x ϕ=+,满足ππ33f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以()sin(2)f x x ϕ=+的图象关于π3x =对称,故A 错误;所以πsin(2)13ϕ⨯+=±,所以2πππ,Z 32k k ϕ+=+∈,所以ππ,Z 6k k ϕ=-∈,因为()ππ2f f ⎛⎫>⎪⎝⎭,()()sin πsin 2πϕϕ+>+,即sin 0ϕ<,所以2,Z k n n =∈,所以1sin 2ϕ=-,故B 正确;则π()sin(2)6f x x =-,由π,π2x ⎛⎫∈ ⎪⎝⎭,可得π5π11π(,)2666x ∈-,所以()f x 在π,π2⎛⎫⎪⎝⎭上不单调,故C 错误;由1313ππππ0i 1212()sin(2)s n 26f =⨯==-,所以()f x 的图象关于点13π,012⎛⎫⎪⎝⎭对称,故D 正确.故选:BD .11.正方体1111ABCD A B C D -的棱长为2,已知平面1AC α⊥,则关于平面α截正方体所得截面的判断正确的是()A.截面形状可能为正三角形B.平面α与平面ABCD 所成二面角的正弦值为3C.截面形状可能为正六边形D.截面面积的最大值为【答案】ACD 【解析】【分析】借助正方体,画出截面图形,再对选项进行一一判断.【详解】如图,在正方体1111ABCD A B C D -中,连接11,,,B A D BD AC A,因为1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1AA BD ⊥,因为四边形ABCD 为正方形,则BD AC ⊥,又因为1AA AC A = ,1,AA AC ⊂平面11AA C C ,所以,BD ⊥平面11AA C C ,因为1AC ⊂平面11AA C C ,则1BD AC ⊥,同理可证11A B AC ⊥,因为1A B BD B ⋂=,1,A B BD ⊂平面1A BD ,则1AC ⊥平面1A BD ,所以平面α与平面1A BD 平行或重合,所以平面1A BD 与正方体的截面形状可以是正三角形,故A 正确;平面α与平面ABCD 所成二面角的正弦值为即为平面1A BD 与平面ABCD 所成的角,设AC 与BD 交于O ,连接1OA ,因为四边形ABCD 是正方形,所以AC BD ⊥,又1AA ⊥平面ABCD ,又BD ⊂平面ABCD ,所以1AA BD ⊥,又1AA AC A = ,1,AA AC ⊂平面1AA O ,又1A O ⊂平面1AA O ,所以1BD AA ⊥,所以1AOA ∠是平面平面1A BD 与平面ABCD 所成二面角的平面角,由题意可得12A A =,进而可得12AO AC ==1A O ==,所以111sin 3AA AOA A O ∠===,所以平面α与平面ABCD 所成二面角的正弦值为3,故B 错误;当,,,,,E F N M G H 分别为对应棱的中点时,截面EFNMGH 为正六边形,因为,E H 分别为111,BB A B 的中点,则1EHA B ,因为EH ⊄平面1A BD ,1A B ⊂平面1A BD ,则//EH 平面1A BD ,同理可得//EF 平面1A BD ,又因为EH EF E =I ,,EH EF ⊂平面EFNMGH ,则平面//EFNMGH 平面1A BD ,所以,1AC ⊥平面EFNMGH ,此时截面为正六边形,故C 正确;如图设截面为多边形GMEFNH ,设1A G x =,则02x ≤≤,则,),GH ME NF MG HN EF x MN ======-=,所以多边形GMEFNH 的面积为两个等腰梯形的面积和,所以1211()()22S GH MN h MN EF h =+++ ,因为1h ==2h ==,所以11)22S x =++-=11)22S x =+-221)x =++=-+,当1x =时,max S =,故D 正确.故选:ACD.【点睛】关键点点睛:本题考查空间几何体的截面问题,求解时要注意从动态的角度进行分析问题和求解问题,结合函数思想求解最值.第Ⅱ卷(非选择题共92分)三、填空题:本大题共3小题,每小题5分,共计15分.12.已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()2xf x =,则72f ⎛⎫⎪⎝⎭的值为____________.【答案】##122-【解析】【分析】根据周期性和奇函数的性质可得7122f f ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭,从而可以求值.【详解】根据题意,()f x 是定义在R 上周期为2的奇函数,所以127111422222f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-=-=-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故答案为:13.计算:1sin10cos10-=︒︒__________.【答案】4【解析】【详解】()2sin 3010141sin10cos10sin202︒-︒-==︒︒︒14.已知三棱锥S ABC -的底面是边长为3的等边三角形,且SA AB SB ==,当该三棱锥的体积取得最大值时,其外接球的表面积为____________.【答案】15π【解析】【分析】先分析得三棱锥的体积取得最大值时,有平面SAB ⊥平面ABC ,分别求得ABC ,SAB △的外接圆的半径,进而可求外接球的半径,由此得解.【详解】依题意,三棱锥S ABC -的底面ABC 面积是个定值,侧面SAB 是等边三角形,顶点S 到边AB 的距离也是一个定值,所以当该三棱锥的体积取得最大值时,平面SAB ⊥平面ABC ,取AB 的中点,连接,SH CH ,,N M 分别为正三角形SAB ,ABC 的中心,所以,SH AB CH AB ⊥⊥,所以SHC ∠为二面角S AB C --的平面角,可得SH CH ⊥,过,N M 分别作平面SAB ,平面ABC 的垂线,NO MO ,两垂线交于O ,则O 为外接球的球心,由正三角形的性质可求得332SH CH ==,进而可得32NH HM ==,SN CM ==易得四边形OMHN 是正方形,所以2OM =,由勾股定理可得2OC ==,其外接球的表面积为24π15π2⎛= ⎝⎭.故答案为:15π.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,1,a b =-= ,且()3a b b +⋅=.(1)求向量a 与b的夹角.(2)若向量ka b + 与a kb -互相垂直,求k 的值.【答案】(1)π3(2)1k =或1k =-【解析】【分析】(1)由向量模的坐标运算得出||a =,再根据向量数量积的定义及运算律求解即可;(2)由已知得()()·0ka b a kb +-=,根据向量数量积的运算律及已知条件代入求解即可.【小问1详解】由()1,1a =-,得||a ==a 与b的夹角为[0,π]θ∈,由()3a b b +⋅= ,23a b b ⋅+= ,又b = ,所以1a b ⋅= ,所以||||cos 1a b θ⋅= ,解得1cos 2θ=,所以向量a 与b 的夹角为π3.【小问2详解】由向量向量ka b + 与a kb - 互相垂直,得()()·0ka b a kb +-=,所以2220ka k a b a b kb -+-= ,即22120k k k -+-=,解得1k =或1k =-.16.已知函数π()sin()(0,0,||2f x A x A ωϕωϕ=+>><的部分图象如下图所示.(1)求函数()f x 的解析式.(2)若将函数()f x 的图象上所有点的纵坐标保持不变,横坐标缩短到原来的14倍,再将其图象沿x 轴向左平移π6个单位得到函数()g x 的图象,求不等式()1g x >的解集.【答案】(1)1π()2sin(26f x x =+(2)ππ(π,πZ 66k k k -+∈【解析】【分析】(1)由图象求出A ,ω和ϕ的值即可求出函数的解析式.(2)根据函数图象变换求出()g x 的解析式,进而解不等式()1g x >即可.【小问1详解】由图象知2A =,18π2π2π233T =-=,即4πT =,又0ω>,所以2π4πω=,所以12ω=,则1()2sin()2f x x ϕ=+又函数过点2π(,2)3,所以2π12π()2sin()2323f ϕ=⨯+=,所以πsin()13ϕ+=,所以ππ2π,Z 32k k ϕ+=+∈,解得πZ π2,6k k ϕ=+∈.又π||2ϕ<,所以π6ϕ=,即1π()2sin()26f x x =+.【小问2详解】将函数()f x 的图象上所有点的纵坐标保持不变,横坐标缩短到原来的14倍,可得函数()1ππ42sin(4)2sin(2)266f x x x =⨯+=+,再将其图象沿x 轴向左平移π6个单位得到函数()g x 的图象,所以()ππ2sin[2()]2cos 266g x x x =++=,由()1g x >,可得2cos 21x >,所以1cos 22x >,所以ππ2π22π,Z 33k x k k -<<+∈,所以ππππ,Z 66k x k k -<<+∈,所以不等式()1g x >的解集为ππ(π,πZ 66k k k -+∈.17.在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知2cos 2b C a c =+.(1)求B ;(2)若b =,且1sin sin 4A C =,求a c +.【答案】(1)2π3(2)2【解析】【分析】(1)利用余弦定理定理化简等式,再根据余弦定理的推论和角的范围解出答案;(2)利用正弦定理公式结合已知条件求出1ac =,再由余弦定理求出答案.【小问1详解】因为余弦定理可得222222a b c b a c ab+-⨯=+,所以222a b c ac -+=-,因为2221cos ,(0,π)22a cb B B ac +-==-∈,所以2π3B =.【小问2详解】因为正弦定理得2sin sin sin 2a b c A B C====,所以sin ,sin ,22a cA C ==又1sin sin 4A C =,所以1224a c ⨯=,即1ac =,由余弦定理得2222cos b a c ac B =+-,即221322a c ac ⎛⎫=+-⨯-⎪⎝⎭,222233()4()a c ac ac a c a c =++⇒+=+⇒=+因为,0a c >,所以2a c +=.18.如图,在四棱锥P ABCD -中,底面ABCD 是正方形,,E F 分别为,PB PC 的中点,G 为线段AC 上一动点,PD⊥平面ABCD.(1)证明:平面⊥BDF 平面A E G ;(2)当3CG AG =时,证明://EG 平面BDF ;(3)若2AD PD =,四面体BGEF 的体积等于四棱锥P ABCD -体积的332,求GCAC的值.【答案】(1)证明见解析(2)证明见解析(3)34【解析】【分析】(1)设AC 与BD 交于O ,连接OE ,易得AC BD ⊥,由已知可证PD BD ⊥,进而可证OE BD ⊥,利用线面垂直的判定定可证BD ⊥平面A E G ,可证结论成立;(2)连接CE 交BF 于点M ,连接EF ,连接OM ,则O 为AC 的中点,利用相似比证明//OM GE ,再根据线面平行的判定定理即可得证;(3)由题意可得34A BEF G BEF V V --=,可求得GCAC的值.【小问1详解】设AC 与BD 交于O ,连接OE ,因为四边形ABCD 是正方形,所以AC BD ⊥,且O 为BD 的中点,又PD⊥平面ABCD ,又BD ⊂平面ABCD ,所以PD BD ⊥,因为E 是PB 的中点,所以//PD OE ,所以OE BD ⊥,又OE AC O ⋂=,,OE AC ⊂平面A E G ,所以BD ⊥平面A E G ,又BD ⊂平面BDF ,所以平面⊥BDF 平面A E G ;【小问2详解】连接CE 交BF 于点M ,连接EF ,连接OM ,则O 为AC 的中点,因为3CG AG =,所以12OG OC =,因为,E F 分别为,PB PC 的中点,所以M 为PBC 的重心,所以12ME MC =,所以ME OGMC OC=,所以//OM GE ,又OM ⊂平面BDF ,EG ⊄平面BDF ,所以//EG 平面BDF ;【小问3详解】由PD⊥平面ABCD ,可得22P ABCD P ABC A PBC V V V ---==,因为,E F 分别为,PB PC 的中点,所以14BEF PEF PBC S S S ==,所以4A PBC A BEF V V --=,所以228P ABCD P ABC A PBC A BEF V V V V ----===又四面体BGEF 的体积等于四棱锥P ABCD -体积的332,所以34A BEF G BEF V V --=,所以点,G A 平面BEF 的距离之比为34,所以34GC AC =.19.对于三个实数,,a b k ,若()()()()22111a b k a b ab --≥--成立,则称,a b 具有“性质k ”(1)写出一个数a 使之与2具有“性质1”,并说明理由;(2)若22x x --具有“性质0”,求x 的取值范围;(3)若ππ42x ≤≤,且sin x ,cos x 具有“性质k ”,求实数k 的最大值.【答案】(1)2a =(答案不唯一),理由见解析.(2)443535log log 22x x x ⎧-+⎪≤≥⎨⎬⎪⎪⎩⎭或(3)0【解析】【分析】(1)2a =代入a 与2具有“性质1”的不等式进行验证;(2)根据题意得不等式()()2222110x x-⎡⎤---≥⎢⎥⎣⎦,化简得4403x x -+-≥,解不等式求出x 的取值范围;(3)根据题意条件列出不等式进行化简分离变量()()22cos sin sin cos 1sin cos x xk x x x x ≤--,令[]t=sin cos ,0,1x x t -∈,变形得2224321()12222112t t t k t t t t --+≤=+⎛⎫--⎪⎝⎭,构造新函数43212,22t t y t t++-=利用导数求得新函数的最小值,从而得到实数k 的最大值;【小问1详解】2a =与2具有“性质1”.当2a =时,()()()()222121122122--≥⨯--⨯,即90>,则2与2具有“性质1”【小问2详解】若22x x --具有“性质0”,所以()()2222110x x -⎡⎤---≥⎢⎥⎣⎦,即()22210442104430x x x x x x -----≥⇒+--≥⇒+-≥,令4,0xt t =>,所以2131300t t t t t -++-≥⇒≥,所以2310t t -+≥,解得302t -<≤或32t ≥即3042x <≤或342x +≥所以43log 2x -≤或43log 2x ≥因此x 的取值范围443535log log 22x x x ⎧+⎪≤≥⎨⎬⎪⎪⎩⎭或【小问3详解】若ππ42x ≤≤,且sin x ,cos x 具有“性质k ”,所以()()()()22sin 1cos 1sin cos 1sin cos x x k x x x x --≥--,因为ππ42x ≤≤,所以sin x >cos x ,cos 0,1cos 0sin sin x x x x ->->,化简得()()()()2222cos sin cos sin sin cos 1sin cos sin cos 1sin cos x x x x k x x x x k x x x x ≥--⇒≤--,令[]t=sin cos ,0,1x x t -∈,两边平方得212t sinxcosx -=,2224321()12222112t t t k t t t t --+≤=+⎛⎫-- ⎪⎝⎭令43212,22t t y t t ++-=求导得()()()()()()3324264222322442212265512221t t t t t t t t t t y t t t t -++--+++--=+'=+,令462551()h t t t t =+--,求导得534220102(3105)()6h t t t t t t t '=+-=+-令()0h t '=,解得0,1t t ==,当()0,()t h t h t '=<在上单调递减;当()0,()t h t h t '=>在上单调递增;又因为(0)1,(1)0,h h =-=所以()0h t <,因此0'<y ,即y 在[]0,1单调递减,当1t =时,y 取最小值为0,进而得到0k ≤,实数k 的最大值为0.【点睛】含参不等式恒成立问题1.对参数分类讨论2.函数恒等变形和不等式放缩法相结合解题3.参变分离和函数导数结合解题。
2023-2024学年北京市海淀区高一下学期7月期末考试数学试题+答案解析
2023-2024学年北京市海淀区高一下学期7月期末考试数学试题一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若复数z满足,则z的虚部为()A. B.2 C. D.i2.已知向量,则()A.0B.C.D.3.函数的部分图象如图所示,则其解析式为()A. B.C. D.4.若,且,则()A. B. C. D.75.在中,点D满足,若,则()A. B. C.3 D.6.已知,则下列直线中,是函数对称轴的为()A. B. C. D.7.在平面直角坐标系xOy中,点,点,其中若,则()A. B. C. D.8.在中,已知则下列说法正确的是()A.当时,是锐角三角形B.当时,是直角三角形C.当时,是钝角三角形D.当时,是等腰三角形9.已知是非零向量,则“”是“对于任意的,都有成立”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.定义域为、的函数的图象的两个端点分别为点是的图象上的任意一点,其中,点N满足向量,点O为坐标原点.若不等式恒成立,则称函数在上为k函数.已知函数在上为k函数,则实数k的取值范围是()A. B. C. D.二、填空题:本题共5小题,每小题5分,共25分。
11.知复数z满足,则__________,__________.12.在中,,P满足,则__________.13.在中,若,则k的一个取值为__________;当时,__________.14.一名学生想测算某风景区山顶上古塔的塔尖距离地面的高度,由于山崖下河流的阻碍,他只能在河岸边制定如下测算方案:他在河岸边设置了共线的三个观测点A,B,如图,相邻两观测点之间的距离为200m,并用测角仪器测得各观测点与塔尖的仰角分别为,,,根据以上数据,该学生得到塔尖距离地面的高度为___________________15.已知函数,给出下列四个结论:①对任意的,函数是周期函数;②存在,使得函数在上单调递减;③存在,使得函数的图象既是轴对称图形,又是中心对称图形;④对任意的,记函数的最大值为,则其中所有正确结论的序号是__________.三、解答题:本题共4小题,共48分。
山东省淄博市2023-2024学年高一下学期7月期末教学质量检测数学试卷(含解析)
山东省淄博市2023-2024学年高一下学期7月期末教学质量检测数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知复数,则z 的实部为( )A.2 B.-2 C.5 D.-52.已知一组数据2,3,4,1,5,则其上四分位数为( )A.1B.2C.3D.43.在中,角A,B,C 的对边分别为a,b,c ,若,( )4.向量在向量上的投影向量为( )A. B. C. D.5.若( )6.如图,在矩形中,,,E 为上一点,.若,则的值为( )7.已知梯形按斜二测画法得到的直观图为如图所示的梯形,且,,,现将梯形绕㯀转一周得到一个几何体,则该25i i z -=ABC △3a c =sin C =A =()6,2a =()2,1b =-()4,2-11,2⎛⎫- ⎪⎝⎭()2,1-()3,1πsin 6α⎛⎫-= ⎪⎝⎭π23α⎛⎫-= ⎪⎝⎭ABCD 3AB =4BC =AD 0BE AC ⋅= BE BA BC λμ=+ λμ+ABCO A B CO '''1A B ''=2O A ''=4O C ''=ABCO OA几何体的侧面积为( )A . B. C. D.8.已知函数在上有且仅有4个零点,直线图象的一条对称轴,则( )A.二、多项选择题9.下列说法正确的是( )A.用简单随机抽样从含有50个个体的总体中抽取一个容量为10的样本,个体甲被抽到的概率是0.2B.已知一组数据的平均数为4,则的值为5C.数据27,12,14,30,15,17,19,23的中位数是17D.若样本数据,,,的标准差为8,则数据,,,的标准差为1610.如图,在四边形中,,点M 满足,N 是的中点.设,则下列等式正确的是( )A. B. C. D.11.已知函数,则( )A.的最小正周期是B.的图象关于点中心对称15π18π25π28ππ()sin (0)6f x x ωω⎛⎫=+> ⎪⎝⎭[]0,2πx =()y f x =π3f ⎛⎫= ⎪⎝⎭1,2,,6,7m m 1x 2x ⋯10x 121x -221x -⋯1021x -ABCD 3AB DC = 2CM MD = BC AB a = AD b = BD a b =- 13AC a b =+ 89BM a b =-+ 2133AN a b =+ ()cos21f x x x =++()f x π()f x π,112⎛⎫- ⎪⎝⎭C.是偶函数D.在上恰有4个零点三、填空题12.平行四边形中,,,交于O ,则等于_____________.13.如图,在正方体中,M,N,P 分别为,和的中点,则下列说法正确的序号有_____________.(1)N,P,B,M 四点共面;(2)平面;(3)与所成角为.14.已知正四棱台的上底面与下底面的边长之比为,其内切球的半径为1,则该正四棱台的体积为__________.四、解答题15.设两个向量,满足,.(1)求方向的单位向量;(2)若向量与向量反向,求实数t 的值.16.如图,在三棱柱中,,,点D 是的中点.π12f x ⎛⎫+ ⎪⎝⎭()f x π3π,62⎡⎤-⎢⎥⎣⎦ABCD 4AB =2AD =AC BD AO BD ⋅ 1111ABCD A B C D -11B C 1DD 1BB 1//AD NMP PN 1BC 60︒1:2a b ()2,0a =12b ⎛= ⎝ a b + 27ta b + a tb + 111ABC A B C -BC AC ⊥1BC CC ⊥AB(1)求证:平面;(2)若侧面为菱形,求证:平面.17.在中,角A,B,C 所对的边分别为a,b,c ,且.(1)求A ;(2)若,求的面积S .18.如图,在四棱锥中,,,,E 为棱的中点,平面,二面角的大小为.(1)求证:平面平面;(2)求直线与平面所成角的正弦值;(3)求点C 到平面的距离.19.从某小区抽100户居民进行月用电量调查,发现他们的月用电量(单位:度)都在内,进行适当分组,得到如图所示的频率分布直方图.(1)求频率分布直方图中x 的值;(2)请结合频率分布直方图,估计本小区月用电量落在内的用户月用电量的平均数;(3)抽取的100户居民月用电量落在内的用户月用电量的方差为1600,所有这100户的月用电量的平均数为188度,方差为5200,且小区月用电量落在内1//AC 1CDB 11AAC C 1AC ⊥1A BC ABC △22cos b c a B =-a =2b =ABC △P ABCD -//AD BC AD DC ⊥112BC CD AD ===AD PA ⊥ABCD P CD A --45︒PAB ⊥PBD PA PBD PAB []50,350[]50,200[]50,200[]50,200的用户数的频率恰好与频率分布直方图中的数据相同,估计本小区月用电量在内的用户月用电量的标准差.[]200,350参考答案1.答案:D 解析:,则z 的实部为-5.故选:D.2.答案:D解析:数据从小到大排序得到1,2,3,4,5,上四分位数即为分位数.由于,则第4个数即4为上四分位数.故选:D.3.答案:C 解析:,则故选:C.4.答案:A解析:根据向量数量积的定义和投影向量的定义得,,故选:A.5.答案:B 解析:因为所以所以,25i i(25i)52i i 1z ---===--75%75%5 3.75⨯=3a c = sin C ==sin 3sin AC ==22622(1)(2,1)(4,2)2(1)⨯+⨯-=-=-+-πsin 6α⎛⎫-= ⎪⎝⎭πππsin sin sin 666ααα⎡⎤⎛⎫⎛⎫⎛⎫-=--=--= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦22πππcos 2cos 212sin 120366ααα⎛⎡⎤⎛⎫⎛⎫⎛⎫-=-=--=-⨯= ⎪ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎝⎭⎣⎦⎝故选:B.6.答案:C 解析:由题意建立如图所示直角坐标系因为,,则,,,所以,,设,因为,即,解得因为,所以,所以,解得则故选:C.7.答案:C解析:由题意将梯形复原为原图,即直角梯形,其中,,,则,故将梯形绕㯀转一周得到一个几何体为圆台,圆台上底面半径为1,下底面半径为4,高为4,母线长为5,故该几何体的侧面积为,故选:C8.答案:C3AB =4BC =(0,0)B (0,3)A (4,0)C (0,3)BA = (4,3)AC =- (,3)BE a = 0AC BE ⋅= 490a -=a =BE BA BC λμ=+ 9,3(0,3)(4,0)4λμ⎛⎫=+ ⎪⎝⎭94433μλ⎧=⎪⎨⎪=⎩λμ=⎧⎪⎨=⎪⎩λμ+=AB CO ''ABCO 1AB =4OA =4OC =5BC ==ABCO OA (14)525π+⨯=π解析:因为,且,则,由题意可得:又因为直线图象的一条对称轴,,,解得,,可知,,即,所以故选:C.9.答案:AD解析:10.答案:BC解析:11.答案:ABD解析:12.答案:-6解析:如图所示,故答案为:-6.13.答案:②③解析:0ω>[]0,2πx ∈πππ,2π666x ωω⎡⎤+∈+⎢⎥⎣⎦π4π2π5π6ω≤+<ω≤<x =()y f x =πππ62k +=+k ∈Z 62k ω=+k ∈Z 0k =2ω=π()sin 26f x x ⎛⎫=+ ⎪⎝⎭π2ππππsin sin πsin 33666f ⎛⎫⎛⎫⎛⎫=+=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11()22AD BD AB AD AD AB ⎛⎫⋅=+⋅- ⎪⎝⎭()()222211||||24622AD AB =-=⨯-=-解析:15.答案:(1)(2)解析:(1)由已知,由即方向的单位向量为;(2)设,即,则,得得16.答案:(1)见解析(2)见解析解析:证明:(1)连接,连接()152,022a b⎛⎛+=+=⎝⎝ b == a b + a b + ()27,(0)ta b k a tb k +=+< 27ta b ka ktb +=+ 27t k kt=⎧⎨=⎩t =t =11BC B C O = DO三棱柱侧面是平行四边形为的中点,又为的中点,又平面,平面平面(2),,,平面又平面,侧面为菱形,又平面.解析:(1)因为中,,由正弦定理可得,得因为,所以,所以(2)由余弦定理得,因为,所以,所以,因为,所以, O ∴1BC D AB1//DO AC ∴DO ⊂ 1CDB 1AC ⊄1CDB 1//AC ∴1CDB BC AC ⊥ 1BC CC ⊥1AC CC C = BC ∴⊥11AAC C 1AC ⊂ 11AA C C 1BC AC ∴⊥ 11AAC C 11AC AC ∴⊥1A C BC C= 1AC ∴⊥1A BC ABC △22cos b c a B =-sin 2sin 2sin cos B C A B =-()sin 2sin 2sin cos 2sin cos 2cos sin 2sin cos 2cos sin B A B A B A B A B A B A B =+-=+-=sin 0B >cos A =πA <<A =222222cos a b c bc A b c bc =+-=+-2a c b ==222227423b b b b =+-=3b =±0b >3,6b c ==所以18.答案:(1)见解析解证:(1)连接,为中点,,四边形,在中,,又平面,平面,,又,平面又平面,平面平面(2)由平面,平面,所以,又,,,平面,又平面,所以,故为二面角的平面角,,在中,作,垂足为M ,由(1)知,平面平面,平面平面,平面,所以平面,则直线为直线在平面上的射影,所以为直线与平面所成的角,,四边形为平行四边形,在中,,,ABC △1sin 362A =⨯⨯=BE E AD 1ED ∴= ∴BCDE 1BE CD ∴==ABD △12BE AD =AB BD ∴⊥PA ⊥ ABCD BD ⊂ABCD PA BD ∴⊥AB PA A = BD ∴⊥PABBD ⊂ PBD ∴PAB ⊥PBDPA ⊥ABCD CD ⊂ABCD PA CD ⊥CD AD ⊥PA AD A = PA AD ⊂PAD PD ⊂PAD CD PD ⊥PDA ∠P CD A --45PDA ∠=︒2PA AD ==Rt PAB △AM PB ⊥PBD ⊥PAB PBD PAB PB =AM ⊂PAB AM ⊥PBD PM AP PBD APM ∠AP PBD 1BC AE == ∴ABCE AB CE ∴==Rt PAB △AB =2PA =PB =(3)在三棱锥中,平面,为三棱锥底面上的高,又在三棱锥中,设C 到平面的距离为d ,,又,19.答案:(1)0.0044(2)140度(3)解析:(1)由频率分布直方图,可得,所以.(2)月用电量落在内的用户数分别为:,所以估计本小区月用电量落在内的用户月用电量的平均数为:(度)(3)由(2)知月用电量落在的户数为60,用户的月用电量的平均数为140,则月用电量落在内的户数为设前60户的月用电量分别为,方差,sin AB APB PB ∠===P ABC -PA ⊥ABC PA ∴P ABC -ABC 1112ABC S =⨯⨯= △111123323P ABC ABC V S PA -∴=⨯⨯=⨯⨯=△C PAB -PAB 122PAB S =⨯= △1133C PAB PAB V S d d -∴=⨯⨯==△P ABC C PAB V V --= d ∴=()0.00240.00360.00600.00240.0012501x +++++⨯=0.0044x =[)[)[)50,100100,150150,200、、0.00245010012,0.00365010018,0.00605010030⨯⨯=⨯⨯=⨯⨯=[)50,200()()75121251817530121830140⨯+⨯+⨯÷++=[)50,200[]200,350100-(i i 1,2,,60x = 140=211600s =后40户的月用电量分别为,,,.,,所以,所以所以月用电量在区间内的用户的月用电量的标准差为(1,2,,40n y n = 22()1,2,,100m = 260=602221i i 1114060s x ==-=∑602121200i i x ==10022211188100m m s z ==-=∑2140544m z ==40100602222222111112604040n m i n m i s y y z x ===⎫⎛=-=--⎪ ⎝⎭∑∑∑()21100405446021200260196040=⨯-⨯-=2s =[]200,350。
辽宁省鞍山市第一中学等校2023-2024学年高一下学期7月期末考试数学试题
辽宁省鞍山市第一中学等校2023-2024学年高一下学期7月期末考试数学试题一、单选题1.与20-o 角终边相同的角是( ) A .300-o B .280-o C .320oD .340o2.函数()2tan 26f x x π⎛⎫=-+ ⎪⎝⎭的定义域是( )A .6x x π⎧⎫≠⎨⎬⎩⎭B .12x x π⎧⎫≠-⎨⎬⎩⎭C .,6x x k k ππ⎧⎫≠+∈⎨⎬⎩⎭ZD .,26k x x k ππ⎧⎫≠+∈⎨⎬⎩⎭Z 3.已知复数z 满足()1i i +=z ,则z =( )A .1i -B .1i +C .22i -D .22i +4.用斜二测画法画出的水平放置的平面图形OAB V 的直观图为如图所示的OAB '''V ,已知OAB '''V 是边长为2的等边三角形,则顶点B 到x 轴的距离是( )A.B .4 C.D.5.已知函数()2ππsin 2sin 22cos 1(0)66f x x x x ωωωω⎛⎫⎛⎫=++-+-> ⎪ ⎪⎝⎭⎝⎭,则下列结论正确的是( )A .若()f x 相邻两条对称轴的距离为π2,则2ω=;B .若1ω=,则π0,2x ⎡⎤∈⎢⎥⎣⎦时,()f x 的值域为[]1,1-;C .若()f x 在π0,2⎡⎤⎢⎥⎣⎦上单调递增,则203ω<≤;D .若()f x 在[]0,π上恰有2个零点,则11171212ω≤<. 6.已知20α=︒,则tan 4sin αα+的值为( )A .1BC .2D .7.设m 、n 为空间中两条不同直线,α、β为空间中两个不同平面,下列命题中正确的为( )A .若m 上有两个点到平面α的距离相等,则m αPB .若m α⊥,n β⊂,则“m n ∥”是“αβ⊥”的既不充分也不必要条件C .若αβ⊥,m α⊂,n β⊂,则m n ⊥D .若m 、n 是异面直线,m α⊂,m βP ,n β⊂,n α∥,则αβ∥8.如图,在正四面体ABCD 中,,E F 是棱CD 上的三等分点,记二面角C AB E --,,E AB F F AB D ----的平面角分别为123,,θθθ,则( )A .123θθθ==B .123θθθ<<C .132θθθ=>D .132θθθ=<二、多选题9.下列命题正确的是( )A .:p “α是第二象限角或第三象限角”,:q “cos 0α<”,则p 是q 的充分不必要条件B .若α= C .在ABC V 中,若tan tan 1A B ⋅>,则ABC V 为锐角三角形D .已知π0,4α⎛⎫∈ ⎪⎝⎭,且cos2α=,则tan α=10.下列有关向量的命题正确的是( )A .若,,a b c r r r 均为非零向量,且a b a c ⋅=⋅r r r r ,则b c =r rB .已知单位向量,,a b c r r r 满足2340a b c ++=r rr r ,则14a b ⋅=r rC .在ABC V 中,若0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭u u u r u u u r u u u r u u ur u u u r ,且12AB AC AB AC ⋅=u u u r u u u r u u u r u u u r ,则ABC V 为等边三角形 D .若点P 在ABC V 所在平面内,且,2cos cos OB OC AB AC OP AB B AC C λλ⎛⎫+ ⎪=++∈ ⎪ ⎪⎝⎭R uu u r uuu r uu u r uuu r uu u r uu u r uuu r ,则点P 的轨迹经过ABC V 的外心.11.如图,已知正三棱台111ABC A B C -由一个平面截棱长为6的正四面体所得,112,,AA M M =分别是11,AB A B 的中点,P 是棱台的侧面11AA B B 上的动点(包含边界),则下列结论中正确的是( )AB .平面11MMC C ⊥平面11AA B BC .直线CP 与平面11AA B BD.若CP =P 的轨迹的长度为2π三、填空题12.在ABC V 中,角A ,B ,C 的对边分别为,,a b c ,且222,4a c b +-==,则A B B C ⋅=u u u r u u u r.13.四棱锥P ABCD -的底面是边长为1的正方形,如图所示,点E 是棱PD 上一点,35PE PD =,若PF PC λ=u u u r u u u r 且满足//BF 平面ACE ,则λ=14.榫卯结构是中国古代建筑文化的瑰宝,在连接部分通过紧密的拼接,使得整个结构能够承受大量的重量,并且具有较高的抗震能力.这其中木楔子的运用,使得榫卯配合的牢度得到最大化满足,木楔子是一种简单的机械工具,是用于填充器物的空隙使其牢固的木橛、木片等.如图为一个木楔子的直观图,其中四边形ABCD 是边长为2的正方形,且,ADE BCF V V 均为正三角形,EF P ,4CD EF =,则该木楔子的外接球的体积为.四、解答题15.在ABC V 中,内角,,A B C 所对的边分别为,,,6a b c b =,且满足cos sin b C a B =. (1)求角B ;(2)若角B 的角平分线交AC 于点,D BD 点E 在线段AC 上,2EC EA =,求B D E V 的面积.16.如图,在直三棱柱111ABC A B C -中,6AC =,10AB =,3cos 5CAB ∠=,18AA =,点D 是AB 的中点.(1)求证:1//AC 平面1CDB ; (2)求证:1AC BC ⊥; (3)求三棱锥11A B CD -的体积.17.已知向量(cos ,2sin ),(2cos )a x x b x x ==r r ,函数()f x a b =⋅rr . (1)求函数()f x a b =⋅rr 在[0,π]上的单调递减区间;(2)若()0115f x =,且0ππ,63x ⎛⎫∈ ⎪⎝⎭,求0cos2x 的值; (3)将()g x 图象上所有的点向左平移π6个单位,然后再向上平移1个单位,最后使所有点的纵坐标变为原来的2倍,得到函数()f x 的图象,当π0,2x ⎡⎤∈⎢⎥⎣⎦时,方程()g x m =有一解,求实数m 的取值范围.18.已知函数π()sin (0,π)2f x A x A ϕϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,点B ,D ,F 为()f x 与x轴的交点,点C ,E 分别为()f x 的最高点和最低点,而函数()f x 在12x =-处取得最小值.(1)求参数φ的值;(2)若1A =,求向量2BC CD -u u u r u u u r 与向量3BC CD +u u u r u u u r夹角的余弦值;(3)若点P 为()f x 函数图象上的动点,当点P 在C ,E 之间运动时,1BP PF ⋅≥u u u r u u u r恒成立,求A的取值范围.19.如图,四面体ABCD 中,AD CD ⊥,AD CD =,ADB BDC ∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2AB BD ==,60ACB ∠=︒,点F 在BD 上;①点F为BD中点,求CF与AB所成角的余弦值;②当AFC△的面积最小时,求CF与平面ABD所成的角的正弦值.。
高一数学下学期期末模拟试卷7 及答案
高一数学下学期期末模拟试卷7 姓名:___________1.(终边相同角问题) 的值为( )B.D.2.(向量计算)已知则与的夹角为 ()A.B.C.D .3π3.(数列基本概念)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },则1225是数列{a n }中的第( )项. A.49 B. 50 C. 51 D. 52 4(不等式的性质)设a <b ,则下列不等式中一定成立的是( )A.1a >1bB. 22a b <C. 33a b < D. a b < 5.(三角变换求值)已知2sin 3α=,则()cos 32πα-等于( ) A.3-B.19C.19-D.3/5已知3sin cos 8x x =,且(,)42x ππ∈,则cos sin x x -=_________.6.(平面区域问题)设动点),(y x P 满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+00502402y x y x y x ,则y x z 25+=的最大值是( )A. 50B. 60C. 70D. 1007.(三角函数线)设0≤α<2π,若sin α>cos α,则α的取值范围是( ) A. (,)42ππ B. (,)4ππ C. 3(,)44ππ D. 5(,)44ππ sin 585︒8.等差数列基本计算)已知{}n a 是公差为2的等差数列,且317111a a a +++是与的等比中项, 则数列{}n a 的通项公式;( )A. 21n -B. 21n +C. 2nD. 32n + 9.(向量坐标形式计算)设,,x y ∈R 向量(,1),(1,),(a x b y c a c bc ab===-⊥+且则( )A B C .D .1010.(图象变换)把函数=()y sin x x R ∈的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( ) A 、=(2-),R 3y sin x x π∈ B 、=(+),R 26x y sin x π∈ C 、=(2+),R 3y sin x x π∈ D 、 2=(2+),R 3y sin x x π∈ 11.(三角函数图象)函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 的部分图象如图所示.( )A. ()sin(2)12f x x π=+B. ()sin()6f x x π=+C. ()sin(2)3f x x π=+D. ()sin(2)6f x x π=+12(解三角形与三角变换)在∆ABC 中,A,B,C 为内角,且sin cos sin cos A A B B =,则∆ABC 是 ( ) A.等腰三角形 B.直角三角形C.等腰直角三角形D.等腰或直角三角形二,填空题(每题3分,共18分) 13.(已知三角函数值求角) 边长为的三角形的最大角与最小角的和是________14.(利用基本不等式求最值)求已知xy y x R y x ,则,且14,=+∈+的最大值为 15.(向量计算) 若向量a ,b 满足|a |=1,|b |=2且a 与b 的夹角为3π,则|a +b |=______ 16.(三角函数性质) 关于函数()x x x f 2cos 2sin -=有下列命题: ①函数()x f y =的周期为π;②直线4π=x 是()x f y =的一条对称轴; ③点⎪⎭⎫⎝⎛0,8π是()x f y =的图象的一个对称中心; ④将()x f y =的图象向左平移4π个单位,可得到x y 2sin 2=的图象.其中真命题的序号是______.(把你认为真命题的序号都写上) 17 (等差数列前n 项和问题) 在等差数列中,912162a a =+,则数列的前11项和S 11等于_______18(解三角形与三角变换) 在△ABC 中,角A ,B ,C 的对边为a ,b ,c ,若45a ==︒,则角A= 。
辽宁省大连市2023-2024学年高一下学期7月期末考试数学试题(含答案)
大连市2023~2024学年度第二学期期末考试高一数学注意事项:1.请在答题纸上作答,在试卷上作答无效;2、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟.第Ⅰ卷(选择题)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知复数满足,则( )A B. C.D.2. 已知,则的值为( )A.B. 3C. D. 3. 已知圆锥的底面半径是1,则圆锥的侧面积是( )A. B.C.D. 4. 下列四个函数中,以为最小正周期,且为奇函数的是( )A. B. C. D. 5. 将函数图象上所有点向右平移个单位,得到函数的图象,则图象的一条对称轴为( )A. B. C. D. 6. 设,是两个不重合平面,,是两条不重合直线,则( )A. 若,,则 B. 若,,则C. 若,,,则 D. 若,,,则7. 已知平面直角坐标系内点,为原点,线段绕原点按逆时针方向旋且长度变为原来的一半,得到线段,若点的纵坐标为,则( ).的z ()1i 1z -=z =i1i+1i 211i 22+tan 2α=sin cos sin cos αααα+-1313-3-π4π2πππsin 22y x ⎛⎫=-⎪⎝⎭πcos 22y x ⎛⎫=+⎪⎝⎭()tan 2πy x =+()sin 2πy x =-()sin2f x x =π8()g x ()g x π8x =-π8x =3π16x =5π16x =αβm l //l αm α⊂//m l //m ααβ⊥m β⊥m α⊥l β⊥//m l //αβαβ⊥//m αl //βm l⊥A O OA (0π)αα<<OA 'A '513cos α=A.B.C.D.8. 已知中,,,为所在平面内一点,,则的最小值为( )A B. C. 0 D.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 已知复数,,则下列说法正确是( )A. 若,则的共轭复数为B. 若为纯虚数,则C. 若,则D. 10. 已知角的顶点与坐标原点重合,角的始边落在轴的正半轴上,如果是角终边上不同于坐标原点的任意一点,记,当角的终边不在轴上时,称为角的正割,记作.则下列说法正确的是( )A. B. 函数的最小正周期为,其图象的对称轴为C. (其中和的取值使各项都有意义)D. 在锐角中,角,,的对边分别为,,,则11. 如图,正三棱台上、下底面边长分别为1和3,侧棱长为2,则下列说法正确的是( ).的的ABC V 4AB =3AC =2AB AC +=P ABC V 8AP AB ⋅=PA PC ⋅ 5-14-741z 2z 132i z =+1z 32i -()()()11i m m m -++∈R 1m =12z z =12z z =1212z z z z =ααx (),P x y αr =αy rxαsec απsec23=()sec f x x =2πππ(Z)2x k k =+∈()sec sec sec 1tan tan αβαβαβ+=-αβABC V A B C a b c sec sec b c a B C=+111ABC A B C -A.B. 若过点的平面与平面平行,则平面C. 若点在棱上,则的最小值为D.第Ⅱ卷(非选择题)三、填空题(本大题共4小题,每小题5分,共15分.其中第14题第一空2分,第二空3分.)12. 已知向量,,若,则实数____.13. 已知函数在上单调递增,则的最大值为____.14. 已知矩形中,,,将沿折至,得到三棱锥,则该三棱锥体积的最大值为____;该三棱锥外接球的表面积为____.四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15. 已知,角,,的对边分别为,,.(1)求角的大小;(2)若,,求的面积.16. 如图,在直三棱柱中,,.(1)求证:平面平面;(2)求证:.17. 如图,某沿海地区计划铺设一条电缆联通,两地,地位于岸边东西方向的直线上,地1C α11ABB A αP 1BB AP CP +()3,a x = ()1,1b =- a b ⊥x =()π2sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭π0,4⎡⎤⎢⎥⎣⎦ωABCD 4AB =3AD =ACD V AC ACD '△D ABC '-ABC V A B C a b c cos sin B b A =B 7b =13a c +=ABC V 111ABC A B C -1AB BB =AB BC ⊥1A BC ⊥11ABB A 11AC A B ⊥M N M AB N位于海上一个灯塔处,在地用测角器测得的大小,设,已知.在地正东方向的点处,用测角器测得.在直线上选一点,设,且,先沿线段在地下铺设电缆,再沿线段在水下铺设电缆.已知地下、水下的电缆铺设费用分别为3万元,6万元.(1)求,两点间的距离;(2)设铺设电缆总费用为.①求的表达式;②求铺设电缆总费用的最小值,并确定此时的长度.18. 如图,在四棱锥中,底面为菱形,,,为的中点.(1)证明:平面;(2)若,.①求二面角的余弦值;②求直线与平面所成角的正弦值.19. 已知函数,,若对于任意实数,,,都能构成三角形的三条边长,则称函数为上的“完美三角形函数”.(1)试判断函数是否为上的“完美三角形函数”,并说明理由;(2)设向量,,若函数为上的“完美三角形函数”,求实数的取值范围;M NMB ∠0NMB ∠α=05tan 12α=M 7km 5P π4NPB ∠=AB Q NQB ∠α=0π2αα<≤MQ QN /km /km M N ()f α()fαMQ P ABCD -ABCD 60∠= BAD PA PD ⊥E PC //PA BDE PA PB ==2PD =P AD B --BC ABP ()y f x =x D ∈a b c ∈,,D ()f a ()f b ()f c ()y f x =D ()215cos sin 4f x x x =++R ()2sin 2cos m k x x = ,()cos 2cos n x k x = ,()21g x m n k =⋅-+ π0,4⎡⎤⎢⎥⎣⎦k(3)已知函数为(为常数)上的“完美三角形函数”.函数的图象上,是否存在不同的三个点,满足,?若存在,求的值;若不存在,说明理由.()πsin 26h x x ⎛⎫=+⎪⎝⎭π,6θ⎡⎤⎢⎥⎣⎦θ()h x ()()()111123,A x h x i =,,1322x x x +=()()()132h x h x x +=()13cos x x -大连市2023~2024学年度第二学期期末考试高一数学答案第Ⅰ卷(选择题)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】D二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)【9题答案】【答案】ABD【10题答案】【答案】AC【11题答案】【答案】BC第Ⅱ卷(非选择题)三、填空题(本大题共4小题,每小题5分,共15分.其中第14题第一空2分,第二空3分.)【12题答案】【答案】3【13题答案】【答案】【14题答案】【答案】①.②. 四、解答题(本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)【15题答案】【答案】(1); (2).【16题答案】【答案】(1)证明略 (2)证明略【17题答案】【答案】(1); (2)①;②万元,.【18题答案】【答案】(1)证明略 (2)①;②【19题答案】【答案】(1)是,理由略(2)(3)不存在,理由略.2324525ππ3B =13km 5()()032cos 36π(5sin 2fααααα-=+<≤365+12513122⎛⎫ ⎪ ⎪⎝⎭。
北京市通州区2023-2024学年高一下学期期末数学试卷含答案
2024北京通州高一(下)期末数学(答案在最后)2024年7月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,请将答题卡交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.复平面内点(1,2)A -所对应复数的虚部为()A.1 B.2- C.iD.2i-【答案】B 【解析】【分析】根据题意,由复数的几何意义即可得到点A 对应的复数,从而得到结果.【详解】复平面内点(1,2)A -所对应复数为12i -,其虚部为2-.故选:B2.样本数据3,5,7,2,10,2的中位数是()A.7 B.6C.4D.2【答案】C 【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【详解】解:先对这组数据按从小到大的顺序重新排序:2,2,3,5,7,10.位于最中间的数是3,5,所以这组数的中位数是3542+=.故选:C .3.已知向量(1,2)a =- ,a b ⊥ ,那么向量b可以是()A.(2,1)B.(2,1)- C.(2,1)- D.()1,2-【答案】A 【解析】【分析】由a b ⊥ 可得0a b ⋅=,逐个验证即可.【详解】因为a b ⊥ ,所以0a b ⋅=,对于A ,若(2,1)b = ,则220a b ⋅=-+=r r,所以A 正确,对于B ,若(2,1)b =-,则220a b ⋅=--≠r r,所以B 错误,对于C ,若(2,1)b =- ,则220a b ⋅=+≠r r,所以C 错误,对于D ,若(1,2)b =-,则140a b ⋅=--≠r r,所以D 错误.故选:A4.在三角形ABC 中,角,,A B C 所对的边分别为,,a b c,已知π,1,6A a b ===B =()A.π3B.π4C.π4或3π4D.π3或2π3【答案】C 【解析】【分析】由b a >得B A >,再由正弦定理计算即可.【详解】由题意,π,1,6A a b ===,因为b a >,所以B A >,由正弦定理得sin sin a bA B=,即1sin 2sin 12b A B a ===,因为()0,πB ∈,所以π4B =或3π4.故选:C.5.已知圆锥的底面半径是1,则圆锥的侧面积是()A.πB.C.4πD.2π【答案】D 【解析】【分析】根据题意求出圆锥的母线长,再利用圆锥的侧面积公式可求得答案.【详解】因为圆锥的底面半径是1,2=,所以圆锥的侧面积为ππ221⨯⨯=.故选:D6.如图,在正方体1111ABCD A B C D -中,则11AC 与1B C 所成角为()A.π6B.π4C.π3D.π2【答案】C 【解析】【分析】连接1,AC AB ,根据定义,得到1ACB ∠即为11A C 与1B C 所成角,即可求解.【详解】如图所示:连接1,AC AB ,由正方体的性质可得,11//AC AC ,则1ACB ∠即为11A C 与1B C 所成角,又11AC B C AB ==,所以1π3ACB ∠=.故选:C.7.在下列关于直线l m 、与平面αβ、的命题中,真命题是()A.若l β⊂,且αβ⊥,则l α⊥B.若l β⊥,且//αβ,则l α⊥C.若//αβ,l ⊂α,m β⊂,则//l mD.若l β⊥,且αβ⊥,则//l α【答案】B 【解析】【分析】利用线面垂直的判定条件说明、推理判断AB ;利用面面平行的判定说明判断C ,利用线面平行的判定说明判断D.【详解】对于A ,αβ⊥,当平面,αβ的交线为l 时,满足l β⊂,此时l ⊂α,A 错误;对于B ,由l β⊥,得存在过直线l 的平面,γδ,,a b γβδβ== ,由于//αβ,则平面,γδ与平面α必相交,令,a b γαδα''== ,于是//,//a a b b '',显然,l a l b ⊥⊥,而,,l a a γ'⊂,则l a ⊥',同理l b ⊥',又,a b ''是平面α内的两条相交直线,因此l α⊥,B 正确;对于C ,//αβ,l ⊂α,m β⊂,//l m 或,l m 异面,C 错误;对于D ,αβ⊥,令⋂=c αβ,当直线l 在平面α内,且l c ⊥时,满足l β⊥,此时//l α不成立,D 错误.故选:B8.一个口袋内装有大小、形状相同的红色、黄色和绿色小球各2个,不放回地逐个取出2个小球,则与事件“2个小球都为红色”互斥而不对立的事件有()A.2个小球恰有一个红球B.2个小球至多有1个红球C.2个小球中没有绿球D.2个小球至少有1个红球【答案】A 【解析】【分析】根据题意,由互斥事件的定义依次分析选项,即可得到结果.【详解】2个小球恰有一个红球包括2个小球1个红球1个黄球和2个小球1个红球1个绿球,与事件“2个小球都为红色”互斥而不对立,符合题意,故A 正确;2个小球至多有1个红球包括2个小球都不是红球和2个小球恰有1个红球,则2个小球至多有1个红球与事件“2个小球都为红色”是对立事件,故B 错误;2个小球中没有绿球包括2个小球都为红色,2个小球都为黄色和2个小球1个红球1个黄球,则事件“2个小球都为红色”是2个小球中没有绿球的子事件,故C 错误;2个小球至少有1个红球包括2个小球都是红球和2个小球1个红球1个不是红球,则事件“2个小球都为红色”是2个小球至少有1个红球的子事件,故D 错误;故选:A9.一个长为,宽为2的长方形,取这个长方形的四条边的中点依次为A ,B ,C ,D ,依次沿AB ,BC ,CD ,DA ,DB 折叠,使得这个长方形的四个顶点都重合而得到的四面体,称为“萨默维尔四面体”,如下图,则这个四面体的体积为()A.12B.23C.1D.2【答案】B 【解析】【分析】根据题意,由线面垂直的判定定理可得⊥AE 平面BCD ,再由锥体的体积公式代入计算,即可得到结果.【详解】由题意可得,BC CD AD AB ====2==AC BD ,取BD 中点E ,连接,AE CE ,又AB AD =,所以AE BD ⊥,且AE ===CE ===则222AE CE AC +=,所以AE CE ⊥,且CE BD E = ,,CE BD ⊂平面BCD ,所以⊥AE 平面BCD ,则111223323A BCD BCD V S AE -=⋅=⨯⨯ .故选:B10.达⋅芬奇方砖是在正六边形上画了具有视觉效果的正方体图案,把六片这样的达·芬奇方砖拼成下图的组合,这个组合再转换成几何体,则需要10个正方体叠落而成,若一个小球从图中阴影小正方体出发,等概率向相邻小正方体(具有接触面)移动一步,则经过两步移动后小球又回到阴影小正方体的概率为()A.14B.13C.512D.712【答案】D 【解析】【分析】,根据题意,由全概率公式代入计算,即可得到结果.【详解】由题意可得,一个小球从图中阴影小正方体出发,可以向上,向下或水平移动,设小球向上移动为事件A ,小球水平移动为事件B ,小球向下移动为事件C ,小球回到阴影为事件D ,则()()()()()()11111,,,1,,42423P A P B P C P D A P D B P D C ======,则()()()()()()()P D P A P D A P B P D B P C P D C=++1111174224312=+⨯+⨯=.故选:D第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.设复数z 满足()1i 2i z -=(i 为虚数单位),则z 的模为________.【答案】2【解析】【分析】由复数的除法、乘法运算以及模的计算公式即可得解.【详解】()()()()222i 1i 1i,1121i 1i z z +==-+=-+-+2.12.从写有数字1,2,3,4,5的5张卡片中有放回的抽取两次,两次抽取的卡片数字和为5的概率是________.【答案】425【解析】【分析】根据条件,求出样本空间及事件B 包含的样本点,再利用古典概率公式,即可求出结果..【详解】用(,)x y 中的x 表示第一次取到的卡片数字,y 表示第一次取到的卡片数字,由题知,样本空间为{Ω(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),=}(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25个,记事件B :两次抽取的卡片数字和为5,事件B 包含的样本点为(1,4),(2,3),(3,2),(4,1),共4个,所以两次抽取的卡片数字和为5的概率是425,故答案为:425.13.已知,,a b c 分别是ABC 的角,,A B C 的对边,若5b =,4c =,10⋅=-AB AC ,则A =______,ABC 的面积为______.【答案】①.2π3②.【解析】【分析】根据给定条件,利用向量夹角公式计算即得A ,再利用三角形面积公式求出面积.【详解】依题意,10101cos 202||||AB AC A bcAB AC ⋅-===-=-,在ABC 中,0πA <<,所以2π3A =;ABC 的面积11sin 20222S bc A ==⨯⨯=.故答案为:2π3;14.在正方形ABCD 中,E 是DC 边上一点,且2DE EC =,点F 为AE 的延长线上一点,写出可以使得AF AB AD λμ=+成立的λ,μ的一组数据(),λμ为________.【答案】()2,3(答案不唯一)【解析】【分析】根据向量的线性运算表示出AE,再结合向量的共线即可求得答案.【详解】由题意知DC AC AD =-,而2DE EC =,故2()3DE AC AD =- ,则()212122()333333AE AD DE AD AC AD AD AC AD AB AD AB AD =+=+-=+=++=+,又点F 为AE 的延长线上一点,故,(1)A t AE t F =>,可取3t =,则(23)233AB F A AB A D AD +=+=,故使得AF AB AD λμ=+成立的,λμ的一组数据(),λμ为(2,3),故答案为:()2,3.15.如图,正方体1111ABCD A B C D -的棱长为1,E 为BC 的中点,F 为线段1CC 上的动点,过点A ,E ,F 的平面截该正方体所得截面记为S ,则下列命题正确的是________.①直线1D D 与直线AF相交;②当102CF <<时,S 为四边形;③当F 为1CC 的中点时,平面AEF 截正方体所得的截面面积为98;④当34CF =时,截面S 与11A D ,11C D 分别交于,M N ,则MN .【答案】②③④【解析】【分析】①,由1//D D 平面11ACC A ,可知直线1D D 与直线AF不可能相交,即可判断;②,由102CF <<可得截面S 与正方体的另一个交点落在线段1DD 上,即可判断;③,由E 为BC 的中点,F 为1CC 的中点,可得截面为等腰梯形,求出等腰梯形的上、下底和高,即可求得截面面积,即可判断;④,当34CF =时,延长1DD 至R ,使112D R =,连接AR 交11A D 于M ,连接RF 交11C D 于N 连接MN ,取AD 的中点S ,1DD 上一点Q ,使34DQ =,连接SE SQ QF 、、,可求得11,D N D M ,再利用勾股定理求出MN ,即可判断.【详解】①,因为F 为线段1CC 上的动点,所以AF ⊂平面11ACC A ,由正方体可知1//D D 平面11ACC A ,所以直线1D D 与直线AF 不可能相交,故①错误;②,当102CF <<时,截面S 与正方体的另一个交点落在线段1DD 上,如图所示:所以截面为四边形;又1A G ⊂面1A MG ,故1A G //面AEF ,故②正确;③,连接111,,,AD D F AE BC ,如下所示:因为E 为BC 的中点,F 为1CC 的中点,则11////EF BC AD ,故面1AEFD 即为平面AEF 截正方体所得截面;在11Rt D C F 和Rt ABE △中,又12D F AE ===,故该截面为等腰梯形,又1122EF BC ===,1A D ==,故截面面积()111922248S EF AD ⎛=+⨯⨯+⨯ ⎝,故③正确;④,当34CF =时,延长1DD 至R ,使112D R =,连接AR 交11A D 于M ,连接RF 交11C D 于N 连接MN ,取AD 的中点S ,1DD 上一点Q ,使34DQ =,连接SE SQ QF 、、,如图所示:因为//SE DC 且SE DC =,//QF DC 且QF DC =,所以//SE QF 且SE QF =,所以四边形SEFQ 是平行四边形,则//SQ EF ,由112D R =,34DQ =,所以111134QR QD D R DD DQ D R =+=-+=,则Q 为DR 中点,则//SQ AR ,所以//EF AR ,又1111,RD N FC N RD M AA M ,可得11111111111222,31214D N D R D M D R C N C F A M A A ======-,所以1111112211,3333D N D C D M D A ====,则在1Rt MD N中3MN ===,故④正确;故答案为:②③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知向量(1,0)a =-,(2,1)b =- .(1)求|2|+a b ;(2)若AB a b =+ ,2BC a b =- ,CD a =-,求证:A ,C ,D 三点共线.【答案】(1(2)证明见解析【解析】【分析】(1)结合向量的坐标运算,以及向量模公式,即可求解;(2)结合向量共线的性质,即可求解.【小问1详解】解:(1,0)a =-,(2,1)b =-,则()()()21,04,23,2a b +=-+-=-,故|2|a b +==【小问2详解】证明:AB a b =+,2BC a b =-,则23AC AB BC a b a b a =+=++-= ;13CD a AC =-=-,所以CD AC ∥ ,所以A ,C ,D 三点共线.17.在中小学生体质健康测试中,甲、乙两人各自测试通过的概率分别是0.6和0.8,且测试结果相互独立,求:(1)两人都通过体质健康测试的概率;(2)恰有一人通过体质健康测试的概率;(3)至少有一人通过体质健康测试的概率.【答案】(1)0.48(2)0.44(3)0.92【解析】【分析】根据题意,由相互独立事件的概率乘法公式,代入计算,即可得到结果.【小问1详解】根据题意,记甲通过体能测试为事件A ,乙通过体能测试为事件B ,且事件A 与事件B 相互独立,则两人都通过体能测试的概率()()()10.60.80.48P P AB P A P B ===⨯=.由事件A 与事件B 相互独立,则恰有一人通过体能测试的概率为()()()()()20.40.80.60.20.44P P AB AB P A P B P A P B =+=+=⨯+⨯=.【小问3详解】由事件A 与事件B 相互独立,则至少有一人通过体能测试的概率为()()()30.480.440.92P P AB AB AB P AB P AB AB =++=++=+=.18.如图,在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱11,BB DD 的中点.求证:(1)BD ∥平面1C EF ;(2)EF ⊥平面11ACC A ;(3)求三棱锥11B C EF -的体积.【答案】(1)证明见解析(2)证明见解析(3)23【解析】【分析】(1)先证明四边形BDFE 为平行四边形,得出BD EF ∥,再根据线面平行的判定定理即可得证;(2)根据线面垂直的判定与性质定理即可得证;(3)利用F 到平面11BCC B 距离为三棱锥的高2h CD ==,结合等体积法求解即可.【小问1详解】证明:E ,F 分别为1BB ,1DD 的中点,11BB DD =,11BB DD ∥,BE DF ∴∥且BE DF =,∴四边形BDFE 为平行四边形,BD EF ∴∥,又EF ⊂平面1C EF ,BD 不在平面1C EF ,BD ∴∥平面1C EF ;证明: 四边形ABCD 为正方形,BD AC ∴⊥,BD EF ∥ ,AC EF ∴⊥,1AA ⊥ 平面ABCD ,BD ⊂平面ABCD ,1AA BD ∴⊥,BD EF ∥ ,1AA EF ⊥,又1AC AA A = ,AC ,1AA ⊂平面11ACC A ,EF ∴⊥平面11ACC A ;【小问3详解】F 到平面11BCC B 距离为三棱锥的高2h CD ==,1111121122BC E S B C B E =⋅=⨯⨯= ,故三棱锥11B C EF -的体积11111111212333B C EF F B C E B C E V V S h --==⋅=⨯⨯= .19.某地区高考实行新方案,规定:语文、数学和英语是考生的必考科目,考生还要从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.为了解某校学生选科情况,现从高一、高二、高三学生中各随机选取了100名学生作为样本进行调查,调查数据如下表,用频率估计概率.选考情况第1门第2门第3门第4门第5门第6门物理化学生物历史地理政治高一选科人数807035203560高二选科人数604555404060高三选科人数504060404070(1)已知该校高一年级有400人,估计该学校高一年级学生中选考历史的人数;(2)现采用分层抽样的方式从样本中随机抽取三个年级中选择历史学科的5名学生组成兴趣小组,再从这5人中随机抽取2名同学参加知识问答比赛,求这2名参赛同学来自不同年级的概率;(3)假设三个年级选择选考科目是相互独立的.为了解不同年级学生对各科目的选择倾向,现从高一、高二、高三样本中各随机选取1名学生进行调查,设这3名学生均选择了第k 门科目的概率为(12345,6)k P k =,,,,,当k P 取得最大值时,写出k 的值.(结论不要求证明)【答案】(1)80人(2)45(3)6【解析】【分析】(1)样本中高一学生共有100人,其中选择历史学科的学生有20人,由此能估计高一年级选历史学科的学生人数.(2)应从样本中三个年级选历史的学生中分别抽取人数为1,2,2,编号为1A ,2A ,3A ,4A ,5A ,从这5名运动员中随机抽取2名参加比赛,利用列举法能求出事件“这2名参赛同学来自相同年级”的概率.(3)利用相互独立事件概率乘法公式求解.【小问1详解】解:由题意知,样本中高一学生共有100人,其中选择历史学科的学生有20人,故估计高一年级选历史学科的学生有20400=80100⨯人.【小问2详解】解:应从样本中三个年级选历史的学生中分别抽取人数为1,2,2,编号为1A ,2A ,3A ,4A ,5A ,从这5名运动员中随机抽取2名参加比赛,所有可能的结果为{}12,A A ,{}13,A A ,{}14,A A ,{}15,A A ,{}23,A A ,{}24,A A ,{}25,A A ,{}34,A A ,{}35,A A ,{}45,A A ,共10种,设A 为事件“这2名参赛同学来自不同年级”,则A 为事件“这2名参赛同学来自相同年级”有2{A ,3}A ,4{A ,5}A 共2种,所以事件A 发生的概率24()1()1105P A P A =-=-=.【小问3详解】解:10.80.60.50.24P =⨯⨯=,20.70.450.40.126P =⨯⨯=,30.350.550.60.1155P =⨯⨯=,40.20.40.40.032P =⨯⨯=,50.350.40.40.056P =⨯⨯=,60.60.60.70.252P =⨯⨯=,∴当k P 取得最大值时,6k =.20.在△ABC 中,角,,A B C 所对的边为,,a b c ,△ABC 的面积为S ,且2224a b c S +-=.(1)求角C ;(2)若2cos c b b A -=,试判断△ABC 的形状,并说明理由.【答案】(1)π4C =(2)等腰直角三角形,理由见解析【解析】【分析】(1)应用面积公式及余弦定理得出正切进而得出角;(2)先应用正弦定理及两角和差的正弦公式化简得出2A B =,结合π4C =判断三角形形状即可.【小问1详解】在ABC 中,因为2224a b c S +-=,则12cos sin 24ab C ab C =,整理得tan 1C =,且π0,2C ⎛⎫∈ ⎪⎝⎭,所以π4C =.【小问2详解】由正弦定理得sin sin 2sin cos C B B A -=,()sin sin sin cos cos sin C A B A B A B =+=+ ,sin cos cos sin sin 2sin cos A B A B B B A ∴+-=,sin cos cos sin sin A B A B B ∴-=,于是()sin sin A B B -=,又(),0,πA B ∈,故ππA B -<-<,所以()πB A B =--或B A B =-,因此πA =(舍去)或2A B =,所以2A B =.πππ,,,424C A B =∴==ABC 是等腰直角三角形.21.如图,七面体ABCDEF 中,菱形ABCD 所在平面与矩形ACEF 交于AC ,平面CDF 与平面ABF 交于直线l .(1)求证://AB l ;(2)再从条件①、条件②这两个条件中选择一个作为已知条件,试求当BDAF为何值时,平面DEF ⊥平面BEF 并证明你的结论.条件①:ABCD ACEF ⊥平面平面;条件②:CE AB ⊥.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)证明见解析(2)答案见解析【解析】【分析】(1)由于//AB 平面CDF ,由线面平行的性质定理可证//AB l ;(2)若选①,设AC BD O = ,取EF 的中点M ,连结,,OM BM DM 如图所示,由平面ABCD ⊥平面ACEF ,可得AF ⊥平面ABCD ,从而AF AD ⊥,进一步由CDE ADF ≅△△,得DM EF ⊥,假设平面DEF ⊥平面BEF ,可得DM EF ⊥,DM BM ⊥,从而2BDAF=;若选②,可得CE ⊥平面ABCD ,可得,CE AF ⊥平面ABCD ,从而AF AD ⊥,进一步由CDE ADF ≅△△,得DM EF ⊥,假设平面DEF ⊥平面BEF ,可得DM EF ⊥,DM BM ⊥,从而2BDAF=.【小问1详解】菱形ABCD 中,//AB CD ,又CD ⊂平面CDF ,AB ⊄平面CDF ,//AB ∴平面CDF ,又AB ⊂平面ABF ,平面ABF 平面CDF l =.AB//l ∴;【小问2详解】若选①当2BDAF=时,平面DEF ⊥平面BEF ,设AC BD O = ,取EF 的中点M ,连结,,OM BM DM 如图所示,平面ABCD ⊥平面ACEF ,平面ABCD ⋂平面ACEFAC =,矩形ACEF 中AF AC ⊥,AF ∴⊥平面ABCD ,AD ⊂ 平面ABCD ,AF AD ∴⊥,同理可得:CE CD ⊥,90DCE DAF ∴∠=∠= ,因为菱形ABCD 中CD AD =,矩形ACEF 中CE AF =,CDE ADF ∴≅ ,DE DF ∴=,M 是EF 的中点,DM EF \^,假设平面DEF ⊥平面BEF 成立,平面DEF ⋂平面BEF EF =,且DM EF ⊥,DM ∴⊥平面BEF ,BM ⊂ 平面BEF ,DM BM ∴⊥,矩形ACEF 中M 是EF 的中点,菱形ABCD 中O 是AC 的中点,//,OM AF OM AF ∴=,OM ∴⊥平面ABCD ,BD ⊂平面ABCD ,OM BD ∴⊥,又DMBM ⊥ ,O 是BD 的中点,可知△BDM 为等腰直角三角形,,22OM OB OD BD OB OD OM AF ∴==∴=+==,2BD AF ∴=,故当2BDAF =时,平面DEF ⊥平面BEF ;若选②当2BDAF=时,CE AB ⊥ ,矩形ABEF 中,⊥ CE AC AC AB A ⋂=,,AC AB ⊂平面ABCD ,CE ∴⊥平面ABCD ,矩形ACEF 中//CE AF ,AF ∴⊥平面ABCD ,AD ⊂ 平面ABCD ,AF AD ∴⊥,同理可得:CE CD ⊥,90DCE DAF ∴∠=∠= ,因为菱形ABCD 中CD AD =,矩形ACEF 中CE AF =,CDE ADF ∴≅ ,DE DF ∴=,M 是EF 的中点,DM EF \^,假设平面DEF ⊥平面BEF 成立,平面DEF ⋂平面BEF EF =,且DM EF ⊥,DM ∴⊥平面BEF ,BM ⊂ 平面BEF ,DM BM ∴⊥,矩形ACEF 中M 是EF 的中点,菱形ABCD 中O 是AC 的中点,//,OM AF OM AF ∴=,OM ∴⊥平面ABCD ,BD ⊂平面ABCD ,OM BD ∴⊥,又DMBM ⊥ ,O 是BD 的中点,可知△BDM 为等腰直角三角形,,22OM OB OD BD OB OD OM AF ∴==∴=+==,2BD AF ∴=,故当2BDAF=时,平面DEF ⊥平面BEF .【点睛】关键点点睛:第(2)问求当BDAF为何值时,平面DEF ⊥平面BEF ,在解析时先假设平面DEF ⊥平面BEF 成立,从而利用面面垂直的性质定理进一步推理.。
2023-2024学年广东省部分学校高一(下)期末数学试卷+答案解析
2023-2024学年广东省部分学校高一(下)期末数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数,则()A. B. C. D.12.已知圆锥的表面积为,它的侧面展开图是个半圆,则此圆锥的体积为()A.3B.C.9D.3.已知正方体的棱长为2,E,F分别是BC和CD的中点.则两条平行线EF和间的距离为()A. B. C. D.4.端午节吃粽子是我国的一个民俗,记事件“甲端午节吃甜粽子”,记事件“乙端午节吃咸粽子”,且,事件A与事件B相互独立,则()A. B. C. D.5.菏泽市博物馆里,有一条深埋600多年的元代沉船,对于研究元代的发展提供了不可多得的实物资料.沉船出土了丰富的元代瓷器,其中的白地褐彩龙风纹罐如图的高约为36cm,把该瓷器看作两个相同的圆台拼接而成如图,圆台的上底直径约为20cm,下底直径约为40cm,忽略其壁厚,则该瓷器的容积约为()A. B. C. D.6.人脸识别就是利用计算机检测样本之间的相似度,余弦距离是检测相似度的常用方法.假设二维空间中有两个点,,O为坐标原点,定义余弦相似度为,余弦距离为已知,,若P,Q的余弦距离为则()A. B. C. D.7.在棱长为1的正方体中,,E是线段含端点上的一动点,则①;②面;③三棱锥的体积为定值;④OE与所成的最大角为上述命题中正确的个数是()A.1B.2C.3D.48.已知正方体的棱长为2,M 是棱的中点,空间中的动点P 满足,且,则动点P 的轨迹长度为()A.B.3C.D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.下列有关复数的说法正确的是()A.若,则B.C.D.若,则的取值范围为10.已知点,,则下列结论正确的是()A.与向量垂直的向量坐标可以是B.与向量平行的向量坐标可以是C.向量在方向上的投影向量坐标为D.对,向量与向量所成角均为锐角11.在正方体中,,E 是棱的中点,则下列结论正确的是()A.若F 是线段的中点,则异面直线EF 与AB 所成角的余弦值是B.若F 为线段上的动点,则的最小值为C.若F 为线段上的动点,则平面ABF 与平面CDF 夹角的余弦值的取值范围为D.若F 为线段上的动点,且与平面ABCD 交于点G ,则三棱锥的体积为三、填空题:本题共3小题,每小题5分,共15分。
湖南省长沙市2023-2024学年高一下学期期末考试数学试卷含答案
长沙市2023~2024学年高一年级期末考试数学试卷(答案在最后)2024年7月时量:120分钟满分:150分命题:高一数学组审题:高一数学组一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数2i z =-,则zz z =-()A.1i 2-+ B.1i 2- C.1i 2+ D.1i 2--2.有一组互不相等的样本数据126,,,x x x ,平均数为x .若随机剔除其中一个数据,得到一组新数据,记为125,,,y y y ,平均数为y ,则下列说法错误的是()A.新数据的极差可能等于原数据的极差B.新数据的中位数不可能等于原数据的中位数C.若x y =,则新数据的方差一定大于原数据方差D.若x y =,则新数据的40%分位数一定大于原数据的40%分位数3.设ABC 的内角A B C 、、所对边分别为,,a b c ,若π3A =,且不等式(230x x -+<的解集为{}x b x a <<∣,则B =()A.π6B.5π6C.π6或5π6 D.2π34.在侧棱长为S ABC -中,40ASB BSC CSA ∠∠∠=== ,过A 作截面AEF ,则截面的最小周长为()A. B.4C.6D.105.设,a b 是非零向量,则“存在实数λ,使得b a λ= ”是“a b a b +=+ ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件6.如图,在直三棱柱111ABC A B C -中,1,AC BC CC AC BC ==⊥,点D 是AB 的中点,则直线1B B 和平面1CDB 所成角的正切值为()A.22B.3222D.227.在正方体1111ABCD A B C D -中边长为2,点P 是上底面1111A B C D 内一动点,若三棱锥P ABC -的外接球表面积恰为41π4,则此时点P 构成的图形面积为()A.πB.25π16C.41π16D.2π8.已知平面向量12312312,,,1,,60e e e e e e e e ====.若对区间1,12⎡⎤⎢⎥⎣⎦内的三个任意的实数123,,λλλ,都有11223312312e e e e e e λλλ++≥++,则向量13,e e 夹角的最大值的余弦值为()A.366-B.356+-C.366-D.356-二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分.9.一个正八面体的八个面上分别标以数字1到8,将其随机抛掷两次,记与地面接触面上的数字依次为12,x x ,事件A =“13x =”,事件B =“26x =”,事件12“9C x x =+=”,则()()A.AB C ⊆B.AC B ⊆C.,B C 互斥D.,B C 独立10.已知函数()23sin 2sin (0)2xf x x ωωω=+>的图象在区间[]0,π上有且仅有三个对称中心,则()A.ω的取值范围是102,3⎡⎫⎪⎢⎣⎭B.()f x 的图象在区间[]0,π上有2条或3条对称轴C.()f x 在区间π0,4⎛⎫⎪⎝⎭上的最大值不可能为3D.()f x 在区间π0,6⎛⎫⎪⎝⎭上为增函数11.如图,已知正方体1111ABCD A B C D -的棱长为1,,,E F G 分别为棱11,,AA CC BC 上的点,()10,1A E CF CG λ===∈,则()A.EG GF⊥B.平面EFG 经过棱AB 的中点HC.平面EFG 截该正方体,截面面积的最大值为4D.点D 到平面EFG 距离的最大值为2三、填空题:本题共3小题,每小题5分,共15分.12.如图,函数()()2sin (0,0π)f x x ωϕωϕ=+><<的图象与坐标轴交于点,,A B C ,直线BC 交()f x 的图象于点,D O (坐标原点)为ABD 的重心(三条边中线的交点),其中()π,0A -,则ABD 的面积为__________.13.明德中学为提升学校食堂的服务水平,组织全校师生对学校食堂满意度进行评分,按照分层抽样方法,抽取200位师生的评分(满分100分)作为样本,在这200个样本中,所有学生评分样本的平均数为x ,方差为2x s ,所有教师评分样本的半均数为y ,方差为2y s ,总样本的平均数为z ,方差为2s ,若245x y x s y s s ==,抽取的学生样本多于教师样本,则总样本中学生样本的个数至少为__________.14.正四棱锥的外接球半径为R ,内切球半径为r ,则Rr的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在四棱锥P ABCD -中,平面PAB ⊥平面,2,22,,ABCD PA AB PB AD BC AB BC AD =====⊥∥,BC M 为棱AP 的中点.(1)求证:BM ∥平面PCD ;(2)求直线PC 与平面BCM 所成角的正弦值.16.(15分)在ABC 中,角,,A B C 的对边分别为,,a b c ,且满足cos sin 3a b C C =-.(1)求B 的大小;(2)若ABC 的面积为,且3BC BD =,当线段AD 的长最短时,求AC 的长.17.(15分)袋中装有除颜色外完全相同的黑球和白球共7个,其中白球3个,现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取,...,取后不放回,直到两人中有一人取到白球时终止.每个球在每一次被取出的机会是等可能的.(1)求取球2次即终止的概率:(2)求甲取到白球的概率.18.(17分)如图,已知四边形ABCD 为菱形,四边形ACEF 为平行四边形,且6AB =,60BAD BAF DAF ∠∠∠=== .(1)证明:直线BD ⊥平面ACEF ;(2)设平面BEF ⋂平面ABCD l =,且二面角E l D --的平面角为26,tan 3θθ=,设G 为线段AF 的中点,求DG 与平面ABCD 所成角的正弦值.19.(17分)点A 是直线PQ 外一点,点M 在直线PQ 上(点M 与,P Q 两点均不重合),我们称如下操作为“由A 点对PQ 施以视角运算”:若点M 在线段PQ 上,记()sin ,;sin AP PAM P Q M AQ MAQ∠∠=;若点M 在线段PQ 外,记()sin ,;sin AP PAM P Q M AQ MAQ∠∠=-.(1)若M 在正方体1111ABCD A B C D -的棱AB 的延长线上,且22AB BM ==,由1A 对AB 施以视角运算,求(),;A B M 的值:(2)若M 在正方体1111ABCD A B C D -的棱AB 上,且2AB =,由1A 对AB 施以机角运算,得到()1,;2A B M =,求AM MB的值;(3)若1231,,,,n M M M M - 是ABC 的边BC 的()2n n ≥等分点,由A 对BC 施以视角运算,证明:()()(),;,;11,2,3,,1k n k B C M B C M k n -⨯==- .长沙市2023~2024学年高一年级期末考试数学答案题号12345678答案ADACBDAA【解析】因为2i z =-,所以2i z =+,所以()()()2i i 2i 2i 12i 1i 2i 2i 2i 2i i 22z z z +⋅++-+=====-+---+--⋅.故选:A.2.【答案】D【解析】不妨设原数据126x x x <<< ,新数据.125y y y <<< .,A :例如原数据为1,2,3,4,5,6,新数据为,此时极差均为615-=,故A 正确;B :原数据中位数为342x x +,新数据中位数为3y ,可知33y x =或34y x =,若33y x =,可得34332x x x y +>=;若34y x =,可得34432x xx y +<=;综上所述:新数据的中位数不可能等于原数据的中位数,故B 正确;C :若x y =,可知去掉的数据为x ,则652211(()i i x x y y ==-=-∑∑,可得652211111,3,4,5,6()()65i i x x y y ==-<-∑∑,所以新数据的方差一定大于原数据方差,故C 正确;D:若x y =,可知去掉的数据为x ,因为640% 2.4⨯=,可知原数据的40%分位数为第3位数,540%2⨯=,可知新数据的40%分位数为第2位数与第3位数的平均数,例如原数据为2,2,3,4,5,6-,新数据为2,2,4,5,6-,此时新数据的40%分位数、原数据的40%分位数均为3,故D 错误;故选:ABC.3.【答案】A【解析】不等式(230x x -+<即()(30x x -<3x <<,所以,3,a b ==,由正弦定理可得sin sin b a B A=,所以,πsin 13sin 32b A B a ===,b a < ,所以B A <,可得B 是锐角,所以π6B =,故选A .4.【答案】C【解析】如图三棱锥以及侧面展开图,要求截面AEF 的周长最小,就是侧面展开图中AG 的距离,因为侧棱长为2的正三棱锥V ABC -的侧棱间的夹角为40,120AVG ∠=,所以由余弦定理可知22222cos12036,6AG VA VG VA VG AG =+-⋅==∴= ,故选C.5.【答案】B【解析】若“a b a b +=+,则平方得2222|2||2|a a b b a a b b +⋅+=+⋅+ ,即a b a b ⋅=⋅ ,即cos ,a b a b a b a b ⋅=⋅=⋅ ,则cos ,1a b = ,即,0a b = ,即,a b同向共线,则存在实数λ使得b a λ= ;反之当,πa b = 时,存在0λ<,满足b a λ= ,但“a b a b +=+ ”不成立,即“存在实数λ使得b a λ= ”是“a b a b +=+ ”的必要不充分条件.故选:B.6.【答案】D【解析】由题意,以C 为坐标原点,以1,,CA CB CC 为,,x y z 轴建立空间坐标系,如下图所示:令12AC BC CC ===,则()0,0,0C ,()()()()12,0,0,0,2,0,1,1,0,0,2,2A B D B 故()()()110,0,2,1,1,0,0,2,2B B CD CB =-==设(),,n x y z = 为平面1CDB 的一个法向量,则100CD n CB n ⎧⋅=⎪⎨⋅=⎪⎩ ,即0220x y y z +=⎧⎨+=⎩令1x =,则1,1y z =-=,从而()1,1,1n =-,设直线1B B 和平面1CDB 所成角为θ,则111sin cos ,3||n B B n B B n B Bθ⋅=<>==⋅,故cos 3θ=,从而tan 2θ=.故选:D.7.【答案】A【解析】如下图所示,设三棱锥P ABC -的外接球为球O ',分别取11AC A C 、的中点1O O 、,则点O '在线段1OO 上,由于正方体1111ABCD A B C D -的棱长为2,则ABC的外接圆的半径为OA =O 的半径为R ,则2414ππ4R =,解得4R =.所以,34OO ==',则1135244OO OO OO '=-=-=,易知,点P 在上底面1111A B C D 所形成的轨迹是以1O为圆心的圆,由于4O P R ==',所以,11O P ==,因此,点P 所构成的图形的面积为21ππO P ⨯=.故选:A.8.【答案】A【解析】设()cos ,sin C θθ,如图,不妨设()()12311,0,,,cos ,sin 22e OA e OB e CO θθ⎛⎫======-- ⎪ ⎪⎝⎭.设M 为AB 的中点,G 为OC 的中点,F 为BD 的中点,E 为AD 的中点.则()1233111,,cos ,sin ,44222M G e e e GO OM GM θθ⎛⎫⎛⎫++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭,设112233e e e HO OP HP λλλ++=+=,点P 在平行四边形EDFM 内(含边界).由题知HP GM ≥恒成立.为了使13,e e最大,则思考13,e e为钝角,即思考C 点在第一或第四象限.思考临界值即P 与M 重合,G 与H 重合,且GM 不能充当直角三角形斜边,否则可以改变H 的位置,使得HM GM <,此时θ最小,所以GM OC ⊥ ,即()311cos ,sin cos ,sin 04242θθθθ⎛⎫--⋅= ⎪⎪⎝⎭,即22311cos cos sin 04242θθθθ-+-=.即331cos sin 1222θθ⎛⎫+= ⎪ ⎪⎝⎭,即π1cos 262θ⎛⎫-= ⎪⎝⎭.所以πcos 63θ⎛⎫-= ⎪⎝⎭.所以ππππππcos cos cos cos sin sin 666666θθθθ⎡⎤⎛⎫⎛⎫⎛⎫=-+=---⋅ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1332326+=⨯+=,其中向量1e 与3e 夹角为πθ-,故1e 与3e 夹角的最大值的余弦值为36+-.故选:A.9.【答案】ABD【解析】AB =“13x =且26x =",事件C 的基本事件有121212121,8;2,7;3,6;4,5x x x x x x x x ========;121212125,4;6,3;7,2;8,1x x x x x x x x ========共8个,所以AB C ⊆,故A 正确;AC ="13x =且129"x x +=="13x =且26"x =,所以AC B ⊆,故B 正确;对于C ,当13x =且26x =时,事件,B C 同时发生,所以,B C 不互斥,故C 错误;对于()()181D,,8888P B P C ===⨯,而BC =“13x =且26x =”,则()164P BC =,所以()()()P BC P B P C =,所以,B C 独立,故D 正确.故选:ABD.10.【答案】BD【解析】()1cos π2cos 12sin 126xf x x x x x ωωωωω-⎛⎫=+⨯=-+=-+ ⎪⎝⎭,令()ππ6x k k ω-=∈Z ,得()()61πππ66k k x k ωωω+=+=∈Z ,由()()61π0π6k k ω+≤≤∈Z 结合0ω>,得()1166k k ω-≤≤-∈Z ,依题意.k .有且只有三个整数值,所以1236ω≤-<,得131966ω≤<,故A 不正确;令()πππ62x k k ω-=+∈Z ,得()()32ππ2π33k k x k ωωω+=+=∈Z ,由()()32π0π3k k ω+≤≤∈Z 结合0ω>,得()2233k k ω-≤≤-∈Z ,当13863ω≤<时,32223ω≤-<,此时0k =或1k =,函数()f x 的图象在区间[]0,π上有2条对称轴,为2π5π,33x x ωω==,当81936ω≤<时,25232ω≤-<,此时0k =或1k =或2k =,函数()f x 的图象在区间[]0,π上有2条对称轴,为2π5π8π,,333x x x ωωω===,所以()f x 的图象在区间[]0,π上有2条或3条对称轴,故B 正确;当π0,4x ⎛⎫∈ ⎪⎝⎭时,ππππ,6646x ωω⎛⎫-∈-- ⎪⎝⎭,因为131966ω≤<,所以ππ3π5π,4688ω⎡⎫-∈⎪⎢⎣⎭,所以当ππ62x ω-=,即2π3x ω=时,()f x 取得最大值3,故C 不正确;由π0,6x ⎛⎫∈ ⎪⎝⎭,得ππππ,6666x ωω⎛⎫-∈-- ⎪⎝⎭,因为131966ω≤<,所以ππ7π13π,663636ω⎡⎫-∈⎪⎢⎣⎭,因为0ω>,所以()f x 在区间π0,6⎛⎫⎪⎝⎭上为增函数,故D 正确.故选:BD11.【答案】ABD【解析】记M 为11D C 的中点,棱AB 的中点H ,取线段11A D 上的点N 使得1A N λ=,正方体1111ABCD A B C D -的中心为O .则根据对称性,E 和,F G 和,N H 和M 分别关于点O 对称.从而O 在平面EFG 内,而FG ∥1BC ∥HM ,故FG ∥HO ,从而H 在平面EFG 内.由于前面的对称性,及,,,,E F G H O 在平面EFG 内,知平面EFG 截该正方体的截面就是中心为O 的六边形EHGFMN ,从而H 一定在平面EFG 内,至此我们得到选项B 正确.前面已经证明FG ∥MH ,同理有NE ∥MH ,故FG ∥MH ∥NE .由于11A N A E CF CG λ====,故111D N AE C F BG λ====-,同时显然有1112AH BH D M C M ====.从而EN FG λ===,MN MF EH GH =====由于,EN FG HM FG λ==<=∥MH ∥NE ,故四边形ENMH 和GFMH 都是等腰梯形,从而,OE ON OF OG ==.这表明线段EF 和GN 互相平分且长度相等,所以四边形是EGFN 矩形,故EG GF ⊥,至此我们得到选项A 正确.由于四边形ENMH 和GFMH λ,下底均为,.所以它们的面积都等于(11122λλ⋅+=+故截面EHGFMN 的面积(1S λ=+.当34λ=时,(7321411644S λ⋅=+=>,至此我们得到选项C 错误.由于1122DO DB ==,且O 在平面EFG 内,故点D 到平面EFG的距离不超过2.而当12λ=时,,,,,,E H G F M N分别是各自所在棱的中点,从而DE DF DG ===而2OE OF OG ===,这表明点D 和点O 到,,E F G 三点的距离两两相等.故点D 和点O 在平面EFG 的投影同样满足到,,E F G 三点的距离两两相等,从而点D 和点O 在平面EFG 的投影都是EFG 的外心,所以由点D 和点的投影是同一点,知DO 垂直于平面EFG .从而由O 在平面EFG 内,知点D 到平面EFG 的距离就是DO 的长,即32.所以,点D 到平面EFG 的距离的最大值是32,至此我们得到选项D 正确.故选:ABD.12.【答案】2【解析】因为O 为ABD 的重心,且()π,0A -,可得2π3OA AC ==,解得3π2AC =,所以π,02C ⎛⎫ ⎪⎝⎭,所以()1π3ππ222T =--=,所以3πT =,所以2π3πω=,解得23ω=,可得()22sin 3f x x ϕ⎛⎫=+ ⎪⎝⎭,由()π0f -=,即()2sin π03ϕ⎡⎤⋅-+=⎢⎥⎣⎦,可得()2π2π3k ϕ⨯-+=,解得2π2π,3k k ϕ=+∈Z ,又由0πϕ<<,所以2π3ϕ=,所以()22π2sin 33f x x ⎛⎫=+ ⎪⎝⎭,于是()22π02sin 033OB f ⎛⎫==⨯+= ⎪⎝⎭,故ABD的面积为13π2222S =⨯⨯.故答案为:2.13.【答案】160【解析】假设在样本中,学生、教师的人数分别为,(1200,,)m n n m m n ≤<<∈N ,记样本中所有学生的评分为(),1,2,3,,i x i m =⋯,所有教师的评分为(),1,2,3,,j y j n =⋯,由x y =得mx ny z x y m n +===+,所以()()222111200m n i j i j s x z y z ==⎡⎤=-+-⎢⎥⎣⎦∑∑()()()222211114,2002005m n i j x y x y i j x x y y ms ns s s ==⎡⎤=-+-=+=⎢⎥⎣⎦∑∑,所以22160x y x y ms ns s s +=,即160y x y xs s m n s s +=,令x ys t s =,则()21600,Δ2560042560042000mt t n mn m m -+==-=--≥,即220064000m m -+≥,解得40m ≤或160m ≥,因为1200n m ≤<<且200m n +=,得100m >,所以160m ≥.所以总样本中学生样本的个数至少为160.故答案为:160.14.1+【解析】设正四棱锥P ABCD -底面边长为a ,高为h ,底面ABCD 的中心为M ,连接,PM BM,则,2BM a PM h ==,所以PB ==,设外接球球心为1O ,内切球球心为2O ,则12,O O 在PM 上,因为11PO BO R ==,所以11O M PM PO h R =-=-,在1Rt O MB中,222()2h R a R ⎛⎫-+= ⎪ ⎪⎝⎭,化简得2224h a R h +=,因为22111143332P ABCDV a h a r -==+⨯⨯所以r =,所以()22222222244h a h a a a R h a a h ahr h ah ++++===2222224ha h +⋅=,令h k a =,则222221h R a r ⎛⎫+ ⎪=,令1)t t =>,则()2121R t r t +=-,令1(0)m tm =->,则222111122R m m m r m m ++==++≥+=+,当且仅当12m m =,即m =时取等号,所以R r1+.1+.15.【解析】(1)取PD 的中点N ,连接,MN CN ,则MN ∥AD 且12MN AD =,又BC ∥AD 且12BC AD =,所以MN ∥BC 且MN BC =,故四边形BCNM 为平行四边形,所以BM ∥CN ,又BM ⊄平面,PCD CN ⊂平面PCD ,所以BM ∥平面PCD(2)由2,2AB PA PB ===222AB PA PB +=,所以PA AB ⊥,又平面PAB ⊥平面ABCD ,平面PAB ⋂平面,ABCD AB PA =⊂平面PAB ,所以PA ⊥平面ABCD ,又AC ⊂平面ABCD ,所以PA AC ⊥.由2,1,AB BC AB BC ==⊥,得225AC AB BC =+=,所以223PC AC PA =+=,22226,5CM AM AC BM AM AB =+==+=,得222CM BM BC =+,则BC BM ⊥,所以1522MBC S BM BC =⋅= .又()()111121213323P MBC P ABC M ABC ABC V V V S PA MA ---=-=-=⋅⋅⋅⋅-= ,设P 到平面MBC 的距离为h ,直线PC 与平面MBC 的所成角为θ,则1536P MBC MBC V hS -== ,所以1536h =,解得55h =,所以5255sin 315h PC θ===,即直线PC 与平面MBC 的所成角的正弦值为515.16.【解析】(1)因为3cos sin 3a b C C =-,由正弦定理可得3sin sin cos sin 3A B C B C =-,又()()sin sin πsin sin cos cos sin A B C B C B C B C ⎡⎤=-+=+=+⎣⎦,所以sin cos cos sin sin cos sin sin 3B C B C B C B C +=-,所以cos sin sin 3B C B C =-,又()0,πC ∈,所以sin 0C >,所以cos sin 3B B =-,即tan B =,又()0,πB ∈,所以2π3B =;(2)因为ABC 的面积为,即1sin 2ac B =,即12πsin 23ac =11222ac ac ⨯==,因为3BC BD = ,所以13BD BC = ,在ABD 中2222cos AD BA BD BA BD B =+-⋅,即2221121123333AD c a ac ca ac ac ⎛⎫=++≥+== ⎪⎝⎭,当且仅当13c a =,即6,2a c ==时取等号,所以AD ≥AD 的最小值为6,2a c ==,则2222212cos 62262522b a c ac B ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以b =,即AC =17.【解析】(1)设事件A 为“取球2次即终止”.即甲第一次取到的是黑球而乙取到的是白球,借助树状图求出相应事件的样本点数:因此,()432767P A ⨯==⨯.(2)设事件B 为“甲取到白球”,“第i 次取到白球”为事件1,2,3,4,5i =,因为甲先取,所以甲只可能在第1次,第3次和第5次取到白球.借助树状图求出相应事件的样本点数:所以()()()()135135()P B P A A A P A P A P A =⋃⋃=++343343213361227765765437353535⨯⨯⨯⨯⨯⨯=++=++=⨯⨯⨯⨯⨯⨯18.【解析】(1)设AC BD O ⋂=,连接,DF OF ,四边形ABCD 为菱形,则,,AB AD AC BD BO OD =⊥=,又60BAF DAF ∠∠== ,易得BAF DAF ≅ ,所以BF DF =,则BD OF ⊥,又,,AC OF O AC OF ⋂=⊂平面ACEF ,所以直线BD ⊥平面ACEF(2)过F 点作FH AC ⊥于H 点,过H 点作HM l ⊥于M 点,连接FM ,过H 点作HN AD ⊥于N 点,连接FN ,由(1)易证,,FM l FN AD ⊥⊥,则FMH ∠为二面角E l D --的平面角,在直角FHM 中,6tan 3FH HM θ==,又3HM BO ==,可得6FH =,设2AF a =,则,33AN a NH FN a ===,直角FHN 中,222(26)3)3a +=,可得6AF =,G 为线段AF 的中点,则G 到平面ABCD 的距离6d =,又33DG =,设直线DG 与平面ABCD所成角为,sin 3d DG αα==,直线DG 与平面ABCD所成角的正弦值为3.19.【解析】(1)如图1,因为22AB BM ==,所以113,AM A B A M ===.由正方体的定义可知1AA AB ⊥,则190A AB ∠= ,故11sin 22AA B AA B ∠∠==,11sin 1313AA M AA M ∠∠==.因为111BA M AA M AA B ∠∠∠=-,所以11111sin sin cos cos sin 26BA M AA M AA B AA M AA B ∠∠∠∠∠=-=,则()11112sin 13,;3sin A A AA M A B M A B MA B ∠∠⨯=-=--.(2)如图2,设()02AM a a =≤≤,则1122sin ,cos 44AA M AA M a a ∠∠==++.因为111BA M AA B AA M ∠∠∠=-,所以()()()()()()22111sin sin 224/24BA M AA B AA M a a a ∠∠∠=-=-++,则()211112sin 14,;sin 22A A AA M a a A B M A B MA B a ∠∠⨯===-,解得23a =,故122AM a MB a ==-.(3)证明:如图3,因为1231,,,,n M M M M - 是BC 的n 等分点,所以k n k BM CM -=,n k k k n k BC BM CM BC n n --===.在k ABM 中,由正弦定理可得sin sin k k k BM AB BAM AM B ∠∠=,则sin sin k k k AB BAM BM AM B ∠∠=.在k ACM 中,同理可得sin sin k k k AC CAM CM AM C ∠∠=.因为πk k AM B AM C ∠∠+=,所以sin sin k k AM B AM C ∠∠=,则()sin sin ,;sin sin k k k k k k k k k AB BAM BM AM B BM k B C M AC CAM CM AM C CM n k∠∠∠∠====-.同理可得(),;n k n k n k BM n k B C M CM k ----==.。
高一数学下学期期末考试试题7 试题
卜人入州八九几市潮王学校赣榆县智贤二零二零—二零二壹高一数学下学期期末考试试题7苏一.填空题〔此题一共14小题,每一小题5分,一共70分,把答案填写上在题后横线上〕1.向量:a =(2,3),b =(4,y),假设:a ∥b,那么y=__. 2.半径为2cm ,圆心角为23π的扇形面积为.3.α为第三象限的角,3sin 5α=-,那么tan 2α=. 4.假设1sin cos 5θθ+=,那么sin 2θ=. 5.)15(sin ,2cos )(cos 0f x x f 则若==__.6.在边长为2的正三角形ABC 中,AB BC •=__. 7.||2,||3,||7,==-=a b a b 那么,a b <>为.8.为了调查学生在课外读物方面的支出情况,抽取了一个容量为100的样本,其频率 分布直方图如下列图,那么据此估计支出在〔4〕()y f x =在[0,2]π内的增区间为5[0,]12π和11[,2]12ππ __________________.二、解答题〔此题一共6小题,一共90分,解容许写出文字说明、证明过程或者演算步骤〕15.〔本小题总分值是14分〕函数()cos23sin 2f x x x =+〔1〕求函数()f x 的单调增区间;〔2〕当[0,]4x π∈时,求函数()f x 的值域; 〔3〕假设将该函数图像向左平移4π个单位长度,得到函数()y g x =的图像,求函数()y g x =的对称中心16.a =1,b =2.(Ⅰ)假设a 与b 的夹角为060,求ba +; (Ⅱ)假设b a -与a 垂直,求a 与b的夹角.17.21)4tan(=+απ〔1〕求αtan 的值;〔2〕求αα2cos 1cos 2sin 2+-a 的值 18.〔本小题总分值是16分〕盒中装有仅颜色不同的玻璃球6个,其中红球2个、黑球3个、白球1个.〔1〕从中任取1个球,求获得红球或者黑球的概率;〔2〕列出一次任取2个球的所有根本领件;〔3〕从中取2个球,求至少有一个红球的概率..19〔本小题总分值是16分〕宏达电器厂人力资源部对本厂的一批专业技术人员的年龄状况和承受教育程度(学历)进展了调查,其结果如下表:,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;〔Ⅱ〕在该厂的专业技术人员中,按年龄用分层抽样的方法抽取N 个人,其中35岁以下抽取48人,50岁以上抽取10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x 、y 的值. 20〔本小题总分值是16分〕如图是函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的一段图象.〔I 〕求ϕ的值及函数()f x 的解析式; 〔II 〕求函数()()4g x f x π=-的最值及零点.。
高一数学下学期期末考试7月试题
卜人入州八九几市潮王学校景胜二零二零—二零二壹高一数学下学期期末考试〔7月〕试题时间是120分钟总分值是150分一、选择题〔每一小题4分〕1.在等差数列}{n a 中,32513=+a a ,那么=9a 〔〕A .14B .15C .16D .202.在ABC ∆中,,,a b c 分别为角,,A B C 的对边,且4,5,60a b c A =+==,那么ABC ∆的面积为〔〕A B ..343.在等比数列}{n a 中,2,31==q a ,那么=4S 〔〕A .45B .46C .47D .484.不等式111x ≥--的解集为〔〕 A .(][),01,-∞+∞B .[)0,+∞C .(](),01,-∞+∞D .[)()0,11,+∞5.在锐角ABC ∆中,1,2,BCB A AC =∠=∠的取值范围为〔〕A .(B .(C .(]0,2D .6.如下列图,在△DEF 中,M 在线段DF 上,DE =3,DM =EM =2,sin F =35,那么边EF 的长为〔〕A.4916B.16C.154D.47.设,x y 满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,且231x y z x ++=+,那么z 的取值范围是〔〕 A .[]1,5B .[]2,6C .[]2,10D .[]3,118.在等差数列{}n a 中,()()35710133224,a a a a a ++++=那么该数列前13项的和是〔〕 A .13B .26C .52D .1569.设x 、y 满足约束条件⎪⎩⎪⎨⎧≥≥≤--≥+-0,00623022y x y x y x ,假设目的函数)0,0(>>+=b a by ax z 的最大值为12,那么22b a +的最小值为〔〕A .425B .949C .25144D .49225 ②等差数列{a n }中,a 1=2,a 1,a 3,a 4成等比数列,那么公差为﹣;③a>0,b >0,a+b=1,那么+的最小值为5+2;④在△ABC 中,假设sin 2A <sin 2B+sin 2C ,那么△ABC 为锐角三角形. 二、填空题〔每一小题4分〕11.在等比数列{}n a 中,36a =,318S =,那么公比q =.12.ABC 中,02,45AC B =∠=,假设ABC 有2解,那么边长BC 的范围是_________.13.设a >0,b >0,且a+b=1,那么+的最小值为.14.等差数列{}n a 满足:0d ≠,105a =,315k k S S +-=,那么k =.15.三角形一边长为14,它对的角为︒60,另两边之比为5:8,那么此三角形面积为____.三、解答题〔每一小题8分〕16.在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c ,假设cos2A -3cos(B +C)=1. 〔1〕求角A 的大小;〔2〕假设△ABC 的面积S =35,b =5,求sinBsinC 的值.17.设b a 、为正实数,且2211=+ba . 〔1〕求22b a +的最小值;〔2〕假设32)(4)(ab b a ≥-,求ab 的值.18.n S 为公差不为0的等差数列{}n a 的前n 项和,且11241,,,a S S S =成等比数列. 〔1〕求数列{}n a 的通项公式;〔2〕设11n n n b a a +=,求{}n b 的前n 项和. 19.如图,在ABC ∆中,点D 在BC边上,7,,cos 4210CAD AC ADB π∠==∠=-. 〔1〕求sin C ∠的值;〔2〕假设5BD =,求ABD ∆的面积.20.设等比数列{n a }的前n 项和为n S ,813=a ,且1612+S ,3S ,4S 成等差数列,数列{n b }满足n b n 8=. 〔1〕求数列{n a }的通项公式;〔2〕求数列{n n b a ⋅}的前n 项和T n .景胜2021--2021第二学期模考〔7月〕高一数学试题答案1.C2.C3.A4.C5.D6.D7.D8.B9.C10.①③11.1或者1 212.(2, 13.4 14.815.16.〔1〕3π=A ;〔2〕75. 17.〔1〕1;〔2〕1.18.〔1〕21,n a n =-n N *∈;〔2〕,21n n T n N n *=∈+. 19.〔1〕45;〔2〕7. 20.〔1〕n n a )21(=;〔2〕n n n T 281616+-=.。
高一数学下学期期末考试试题含解析 7
第三高级中学2021-2021学年高一数学下学期期末考试试题〔含解析〕一、选择题〔一共12小题;一共60分〕6π-终边一样的角是〔 〕 A.56π B.3π C.116πD.23π 【答案】C 【解析】试题分析:与−6π终边一样的角为 2kπ−6π,k∈z,当 k=-1时,此角等于116π, 应选:C .考点:终边一样的角的定义和表示方法. 2.为第三象限角,那么2α所在的象限是( ). A. 第一或者第二象限 B. 第二或者第三象限 C. 第一或者第三象限 D. 第二或者第四象限【答案】D 【解析】试题分析:α为第三象限角3322224k k k k πππαπππαππ∴+<<+∴+<<+,当0k =时324παπ<<,当1k =时3724παπ<<,2α∴在第二或者第四象限 考点:角的概念的推广点评:角的范围推广到任意角后与角α终边一样的角为()2k k Z απ+∈()cos f x x =的一个单调递增区间是〔 〕A. (0,)2πB. (,)22ππ-C. (0)π-,D. (0,)π【答案】C 【解析】试题分析:由题()cos f x x =的单调递增区间为:[](21),2,k k k Z ππ-∈。
那么当0,(,0)k π=-考点:余弦函数的单调性和周期性.4. sin 0θ>且cos 0θ<,那么角的终边所在的象限是〔 〕 A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】B 【解析】【分析】利用三角函数的定义,可确定0y >且0x <,进而可知θ所在的象限,得到结果. 【详解】根据题设及三角函数的定义可知角θ终边上的点的横坐标小于零,纵坐标大于零, 所以终边在第二象限, 应选B.【点睛】该题考察的是有关根据三角函数值的符号断定角所属的象限,涉及到的知识点有三角函数的定义,三角函数值在各个象限内的符号,属于简单题目.(2,1),(4,)a b x =-=-,假设a ∥b ,那么x 的值是〔 〕A. 8-B. 2-C. 2D. 8【答案】C 【解析】由题意,得240x -=,解得2x =;应选C.6.以下函数中,最小正周期为π,且图象关于直线3x π=对称的是:A. sin(2)6y x π=+B. sin(2)6y x π=-C. sin()23x y π=-D.sin()26x y π=+【答案】B 【解析】略7.执行如下图的程序框图,输出的值是S 〔 〕A. 42B. 19C. 8D. 3【答案】B 【解析】试题分析:第一次循环,得2113,2S i =⨯+==;第二次循环,得2328,3S i =⨯+==;第三次循环,得28319,4S i =⨯+==,此时不满足循环条件,退出循环,输出,应选B .考点:程序框图.f (x )=cos 2x 的图象向右平移π4个单位后得到函数g (x ),那么g (x )具有性质( ) A. 最大值为1,图象关于直线x =π2对称B. 在π(0,)4上单调递增,为奇函数C. 在3ππ(,)88-上单调递增,为偶函数 D. 周期为π,图象关于点3π(,0)8对称【答案】B 【解析】依题意,得g (x )=cos=cos=sin 2x ,故函数g (x )图象的对称轴为x =+ (k ∈Z ),故A 错误;因为g (-x )=-sin 2x =-g (x ),故函数g (x )为奇函数,函数g (x )在上单调递减,在上单调递增,故B 正确,C 错误;因为g=sin π=≠0,故D 错误.综上所述,应选B.()6532235678f x x x x x x =+++++在2x =时的值时,2v 的值是〔 〕A. 2B. 19C. 14D. 33【答案】C 【解析】 【分析】 将()f x 改为()()()1210nn n a x ax a x a x a --+++++的形式,由此得到0v ,进而依次求得12,v v 的值.【详解】依题意()()()()()()2305678f x x x x x x x =++++++,所以062v a==,所以1052237v v x a =+=⨯+=,21472014v v x a =+=⨯+=.应选C.【点睛】本小题主要考察秦九韶算法,正确理解秦九韶算法的原理是解题的关键,属于根底题.sin1a =,sin 2b =,sin3c =,那么〔 〕A. c b a <<B. c a b <<C. a c b <<D.a b c <<【答案】B 【解析】 【分析】画出()sin f x x =的图像,结合图像判断,,a b c 的大小.【详解】画出()sin f x x =的图像,如以下图所示,其中()()()1,sin1,2,sin 2,3,sin3A B C ,由图可知sin3sin1sin 2<<,即c a b <<.应选B.【点睛】本小题主要考察三角函数图像与性质,考察弧度制的概念,属于根底题.11.如下图,D是ΔABC的边AB的中点,那么向量DC=〔〕A.12BC BA-+ B.12BC BA-- C.12BC BA- D. 12BC BA+【答案】C【解析】【分析】利用向量加法的三角形法那么可得DC DB BC=+,化简后可得正确选项.【详解】1122DC DB BC AB BC BA BC=+=+=-+,应选C.【点睛】此题考察向量的线性运算,属于根底题.()0,απ∈,且1cos sin 3αα+=-,那么cos2=α〔 〕B. C. 【答案】D 【解析】试题分析: 由1cos sin 3αα+=-,两边平方得:1412sin cos sin cos 99αααα+=⇒=-,由cos ,sin αα是一元二次方程:214039x x +-=的两个实根,解得:1,2x =()0,απ∈,且由上可知:4sin cos 09αα=-<,sin 0,cos 0αα∴><sin αα∴==22cos 2cos sin ααα∴=-,22=-=应选A .考点:1.同角三函数间的关系;2.余弦的倍角公式.二、填空题〔一共4小题;一共20分〕89化为二进制数为______________;【答案】(2)1011001 【解析】65432108912021212020212=⨯+⨯+⨯+⨯+⨯+⨯+⨯,所以二进制为()21011001点睛:此题考察十进制与二进制的转化。
高一下学期理数期末考试试卷第7套真题
高一下学期理数期末考试试卷一、单选题1. 设集合则()A .B .C .D .2. 设集合,则()A .B .C .D .3. 下列命题中真命题的个数()①② 若是假命题,则都是假命题③ 命题“ ”的否定为“ ”A . 0B . 1C . 2D . 34. 的一个必要不充分条件是()A .B .C .D .5. 把一枚硬币任意掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则P(B|A)=()A .B .C .D .6. 方程根的个数为A . 0B . 1C . 2D . 37. 在的展开式中的常数项是()A .B .C .D .8. 设,,,则()A .B .C .D .9. 函数与在同一直角坐标系下的图象大致是A .B .C .D .10. 从如图所示的长方形区域内任取一个点,则点取自阴影部分的概率为()A .B .C .D .11. 若函数图像与图像关于直线对称,则函数必过定点()A . (1,2)B . (2,2)C . (2,3)D . (2,1)12. 定义在R上的偶函数满足,且当时,,则等于()A . 3B .C . -2D . 2二、填空题13. 将3个不同的小球放入4个盒子中,有________种不同的放法14. 已知随机变量X服从正态分布N,且=0.6826,则p (X>4)=________15. 已知在上最大值与最小值之差为4,则=________16. 为方便游客出行,某旅游点有50辆自行车供租赁使用。
根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,每超1元,租不出的自行车就增加3辆。
若每天管理自行车的总花费是115元,则当日租金为________元时,一日的净收入最大.三、解答题17. 给定命题:对任意实数都有成立;:关于的方程有实数根.如果为真命题,为假命题,求实数的取值范围.18. 某种产品的广告费用支出与销售额之间有如下的对应数据:(1)求回归直线方程;(2)据此估计广告费用为10时,销售收入的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2009—2010学年度下学期期末考试五校联考高一年级
数学试卷 2010.7.
命题人:增城中学 lx 审题人:增城中学 nhl
本试卷共4页,20小题,满分150分.考试用时120分钟.
注意事项:1.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点
涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.
2.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知角α的终边经过点P(-3,4),则下列计算结论中正确的是 ( )
A .4tan 3α=-
B . 4sin 5α=-
C .3cos 5α=
D .3sin 5
α= 2.已知数列{}n a 是等比数列,且118
a =,41a =-,则{}n a 的公比q 为 ( ) A.2 B.-12 C.-2 D. 12
3.已知直线012=--y x 与直线30x my ++=平行,则m 的值为( )
A .21
B .2
1- C .2- D .2 4.已知a =(1,sin ),α b =(cos ,1)α-,且a ⊥b ,则锐角α的大小为( ) A .6π B .3
π C .4π D .2π 5.已知实数x y 、满足约束条件110x y x y x +≤⎧⎪-≤⎨⎪≥⎩
,则其围成的平面区域的面积为 ( )
A .8
B .4
C .2
D . 1
6. 已知实数a 、b 、c 满足a b c <<,且0<ac ,那么下列不等式一定成立的是( )
A.0)(>-c a ac
B.0)(<-a b c
C.22ab cb <
D.ac ab >
7.已知5()sin(),(0)6
f x x πωω=+>的图像与1y =的图像的两相邻交点间的距离为π,要得到()y f x = 的图像,只须把sin y x ω=的图像 ( )
A . 向左平移
712π个单位 B . 向右平移512
π个单位 C . 向左平移512π个单位 D . 向右平移712π个单位 8. 如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸
边选定一点C,测出AC 的距离为50m ,∠ ACB =45°,∠CAB =105°后,
就可以计算出A 、B 两点的距离为 ( )
A.m
B.m
C.m m 9.已知0>a ,0>b ,12=+b a ,则b
a 11+的取值范围是( ) A .)6 , (-∞ B .) , 4[∞+ C .) , 6[∞+ D . ) , 223[∞++
10. 定义在R 上的偶函数()f x 满足()()2f x f x =+,当[]3,4x ∈时,()2f x x =-,则 ( )
A .11sin
cos 22f f ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝
⎭ B .()()sin1cos1f f < C .sin cos 33f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭ D .33sin cos 22f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭
二、填空题:本大题共4小题,每小题5分,满分20分. (请把答案写在答卷上)
11.在等差数列{}n a 中,若41,a a 是方程260x x --=的两根,则32a a +的值为______.
12. 在△ABC 中,若222,b c a bc +-=则A = .
13. 已知向量(2,3)a = ,(1,2)b =- ,若4ma b + 与b a 2-共线,则m 的值为______.
14.已知点(,)(0,4)(2,0)P x y A B -到和的距离相等,则24x y +的最小值为 .
三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.
15.(本小题满分12分)已知函数()4cos sin()6f x x x a π=⋅+
+的最大值为2.
(Ⅰ)求a 的值及()f x 的最小正周期;
(Ⅱ)求()f x 的单调递增区间.
16.(本小题满分14分)
如图所示的长方体1111ABCD A BC D -中,底面ABCD 是边长为2的正方形,O 为AC 与
BD 的交点,1BB , M 是线段11B D 的中点.
(Ⅰ)求证://BM 平面1D AC ;
第16题图
(Ⅱ)求三棱锥11D AB C -的体积.
17.(本小题满分12分)
某公司租赁甲、乙两种设备生产A,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,那么甲、乙种设备分别需要生产多少天,才能使所需的租赁费最少?
18.(本小题满分14分)
已知数列{a n }中,a 1 =1 ,a 2=3,且点(n ,a n )满足函数y = kx + b .
(Ⅰ)求k ,b 的值,并写出数列{a n }的通项公式;
(Ⅱ)记2n
a n
b =,证明数列{b n }是等比数列,并求数列{b n }的前n 和n S .
19.(本小题满分14分)
已知圆C 的圆心在坐标原点,且过点M (.
(Ⅰ)求圆C 的方程;
(Ⅱ)已知点P 是圆C 上的动点,试求点P 到直线40x y +-=的距离的最小值;
(Ⅲ)若直线l 与圆C 相切,且l 与x ,y 轴的正半轴分别相交于A ,B 两点,求△ABC 的面积最小时直线l 的方程.
20.(本小题满分14分)
定义在R 上的函数()∈++=b a ax b x x f ,(1
2R ,)0≠a 是奇函数, 当且仅当1=x 时, ()x f 取得最大值.
(Ⅰ)求,a b 的值;
(Ⅱ)若函数()()x
mx x f x g ++=1在区间()-1,1上有且仅有两个不同的零点,求实数 m 的取值范围.。