数学综合练习一

合集下载

九年级上数学期末综合练习(1-4)

九年级上数学期末综合练习(1-4)

九年级数学期末综合练习1班级 学号 姓名 成绩一、填空题:1、如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= 。

2、一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:111u v f+=。

若f =6cm ,v =8cm ,则物距u = 厘米。

3、正方形ABCD 内接于⊙O ,E 为DC 的中点,如果⊙O 2,则O 点到直线BE 的距离为______。

4、关于x 的方程2210x k x +-=有两个不相等的实数根,则k 的取值范围是 。

5、顶点为(-2,-5)且过点(1,-14)的抛物线的解析式为 。

6、将抛物线22(3)5y x =---向左平移2个单位,再向上平移3个单位,则其顶点为 。

二、选择题:7、如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是( ) A 、0.4 B 、0.3 C 、0.2 D 、0.158、抛物线24y x x c =-++的顶点在x 轴上,则c 的值为( ) A 、16 B 、-16 C 、4 D 、-49、已知21,x x 是方程22310x x --=的两个根,那么2111x x +等于( ) A 、3 B 、3- C 、31 D 、 31- 10、一个圆锥的侧面展开图是一个半径为6cm 的半圆,则此圆锥的底面半径是( ) A 、23cm B 、2cm C 、3cm D 、6cm. 11、在ΔABC 中,∠A=30º,∠B=60º,AC=6,则ΔABC 的外接圆的半径为( ) A 、23 B 、33 C 、3 D 、 312、如果两圆半径为R 、r ,圆心距为d ,且R 、r 、d 满足关系式2222R d Rd r +=+,则两123453489123圆位置关系是( ) A 、外切 B 、内切 C 、相切 D 、相交 三、解答题: 13、先化简后求值:)252(23--+÷--x x x x ,其中22x = 14、如图,在□ABCD 中,点E 、F 在BD 上,且BF =DE 。

九年级数学上册第一章综合练习1新版新人教版

九年级数学上册第一章综合练习1新版新人教版

第一章特殊平行四边形总分120分120分钟一.选择题(共8小题,每题3分)1.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB于H,则DH的长是()A.7.5 B.7 C.6.5 D.5.52.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个3.不能判断四边形ABCD是矩形的是(0为对角线的交点)()A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.ABCD,AC=BD D.ABCD,OA=OC,OB=OD4.如图,在四边形ABCD中,AB=CD,AC⊥BD,添加适当的条件使四边形ABCD成为菱形.下列添加的条件不正确的是()A.AB∥CD B.AD=BC C.BD=AC D.BO=DO5.能判定四边形ABCD是菱形的条件是()A.对角线AC平分对角线BD,且AC⊥BDB.对角线AC平分对角线BD,且∠A=∠CC.对角线AC平分对角线BD,且平分∠A和∠CD.对角线AC平分∠A和∠C,且∠A=∠C6.已知如图,在矩形ABCD中有两个一条边长为1的平行四边形.则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于17.矩形各内角的平分线能围成一个()A.矩形 B.菱形 C.等腰梯形 D.正方形8.如果一个平行四边形要成为正方形,需增加的条件是()A.对角线互相垂直且相等 B.对角线互相垂直C.对角线相等D.对角线互相平分二.填空题(共6小题,每题3分)9.如图,凸五边形ABCDE中,∠A=∠B=120°,EA=AB=BC=2,CD=DE=4,则它的面积为_________ .10.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是_________A、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④11._________ 的矩形是正方形,_________ 的菱形是正方形.12.若四边形ABCD是矩形,请补充条件_________ (写一个即可),使矩形ABCD是正方形.13.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:_________ ;②如果要得到菱形AEDF,那么△ABC应具备条件:_________ .14.在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件_________ 时,四边形PEMF为矩形.三.解答题(共11小题)15.(6分)如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.求证:四边形EFGH是正方形.16.(6分)已知:如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.①试说明四边形AEDF的形状,并说明理由.②连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?③在②的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.17.(6分)已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE 于点E,求证:四边形ADCE是矩形.18.(6分)已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.19.(6分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.20.(8分)如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?21.(8分)如图,E是等边△ABC的BC边上一点,以AE为边作等边△AEF,连接CF,在CF延长线取一点D,使∠DAF=∠EFC.试判断四边形ABCD的形状,并证明你的结论.22.(8分)如图,矩形ABCD的对角线AC、BD相交于点0,BE∥AC,EC∥BD,BE、EC相交于点E.试说明:四边形OBEC是菱形.23.(8分)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,判断四边形CODE 的形状,并计算其周长.24.(8分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.(1)求证:四边形BMDN是菱形;(2)若AB=6,BC=8,求MD的长.25.(8分)如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.第十九章矩形,菱形与正方形章末测试(一)参考答案与试题解析一.选择题(共8小题)1.在四边形ABCD中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D作DH⊥AB于H,则DH的长是()A.7.5 B.7 C.6.5 D.5.5考点:矩形的判定与性质;含30度角的直角三角形.专题:几何综合题.分析:过C作DH的垂线CE交DH于E,证明四边形BCEH是矩形.所以求出HE的长;再求出∠DCE=30°,又因为CD=11,所以求出DE,进而求出DH的长.解答:解:过C作DH的垂线CE交DH于E,∵DH⊥AB,CB⊥AB,∴CB∥DH又CE⊥DH,∴四边形BCEH是矩形.∵HE=BC=2,在Rt△AHD中,∠A=60°,∴∠ADH=30°,又∵∠ADC=90°∴∠CDE=60°,∴∠DCE=30°,∴在Rt△CED中,DE=CD=5.5,∴DH=2+5.5=7.5.故选A.点评:本题考查了矩形的判定和性质,直角三角形的一个重要性质:30°的锐角所对的直角边是斜边的一半;以及勾股定理的运用.2.下列说法:①矩形是轴对称图形,两条对角线所在的直线是它的对称轴;②两条对角线相等的四边形是矩形;③有两个角相等的平行四边形是矩形;④两条对角线相等且互相平分的四边形是矩形;⑤两条对角线互相垂直平分的四边形是矩形.其中,正确的有()A.1个B.2个C.3个D.4个考点:矩形的判定与性质.分析:直接利用矩形的性质与判定定理求解即可求得答案.解答:解:①矩形是轴对称图形,两组对边的中点的连线所在的直线是它的对称轴,故错误;②两条对角线相等的平行四边形是矩形,故错误;③有两个邻角相等的平行四边形是矩形,故错误;④两条对角线相等且互相平分的四边形是矩形;正确;⑤两条对角线互相垂直平分的四边形是菱形;故错误.故选A.点评:此题考查了矩形的性质与判定定理.此题难度不大,注意熟记定理是解此题的关键.3.不能判断四边形ABCD是矩形的是(0为对角线的交点)()A.AB=CD,AD=BC,∠A=90° B. OA=OB=OC=ODC.ABCD,AC=BD D.ABCD,OA=OC,OB=OD考点:矩形的判定.分析:矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.(3)对角线互相平分且相等的四边形是矩形.据此判断.解答:解:A、由“AB=CD,AD=BC”可以判定四边形ABCD是平行四边形,又∠BAD=90°,则根据“有一个角是直角的平行四边形是矩形”可以判定平行四边形ABCD是矩形,故本选项不符合题意;B、根据“对角线互相平分且相等的四边形是矩形”可以判定平行四边形ABCD是矩形,故本选项不符合题意;C、根据ABCD得到四边形是平行四边形,根据AC=BD,利用对角线相等的平行四边形是矩形,故本选项不符合题意;D、只能得到四边形是平行四边形,故本选项符合题意;故选:D.点评:本题考查的是矩形的判定定理,但考生应注意的是由矩形的判定引申出来的各图形的判定.难度一般.4.如图,在四边形ABCD中,AB=CD,AC⊥BD,添加适当的条件使四边形ABCD成为菱形.下列添加的条件不正确的是()A.AB∥CD B.AD=BC C.BD=AC D.B O=DO考点:菱形的判定.分析:通过菱形的判定定理进行分析解答.解答:解:A项根据对角线互相垂直的平行四边形是菱形这一定理可以推出四边形ABCD为菱形,故本选项错误,B项根据对角线互相垂直的平行四边形是菱形这一定理可以推出四边形ABCD为菱形,故本选项错误,C项根据题意还可以推出四边形ABCD为等腰梯形,故本选项正确,D项根据题意可以推出Rt△AOD≌Rt△COB,即可推出OA=OC,再根据对角线互相垂直且平分的四边形是菱形这一定理推出四边形ABCD为菱形,故本选项错误,故选择C.点评:本题主要考查菱形的判定,关键在于熟练掌握菱形的判定定理.5.能判定四边形ABCD是菱形的条件是()A.对角线AC平分对角线BD,且AC⊥BDB.对角线AC平分对角线BD,且∠A=∠CC.对角线AC平分对角线BD,且平分∠A和∠CD.对角线AC平分∠A和∠C,且∠A=∠C考点:菱形的判定.专题:推理填空题.分析:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.据此判断即可.解答:解:A、C的反例如图,AC垂直平分BD,但AO≠OC;B只能确定为平行四边形.故选D.点评:主要考查了菱形的判定.菱形的特性:菱形的四条边都相等;菱形的对角线互相垂直平分,且每一条对角线平分一组对角.6.已知如图,在矩形ABCD中有两个一条边长为1的平行四边形.则它们的公共部分(即阴影部分)的面积是()A.大于1 B.等于1 C.小于1 D.小于或等于1考点:菱形的判定与性质.分析:利用割补法得出阴影部分面积为四边形EFMN的面积,进而利用直角三角形的性质得出EG <1,即可得出答案.解答:解:如图所示:作EN∥AB,FM∥CD,过点E作EG⊥MN于点G,可得阴影部分面等于四边形EFMN的面积,则四边形EFMN是平行四边形,且EN=FM=1,∵EN=1,∴EG<1,∴它们的公共部分(即阴影部分)的面积小于1.故选:C.点评:此题主要考查了平行四边形的性质以及平行四边形面积求法,得出阴影部分面等于四边形EFMN的面积是解题关键.7.矩形各内角的平分线能围成一个()A.矩形B.菱形C.等腰梯形D.正方形考点:正方形的判定;矩形的性质.分析:根据矩形的性质及角平分线的性质进行分析即可.解答:解:矩形的四个角平分线将矩形的四个角分成8个45°的角,因此形成的四边形每个角是90°又知两条角平分线与矩形的一边构成等腰直角三角形,所以这个四边形邻边相等,根据有一组邻边相等的矩形是正方形,得到该四边形是正方形.故选:D.点评:此题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角8.如果一个平行四边形要成为正方形,需增加的条件是()A.对角线互相垂直且相等B.对角线互相垂直 C.对角线相等D.对角线互相平分考点:正方形的判定;平行四边形的性质.分析:根据正方形的判定:对角线相等且互相垂直平分的四边形是正方形对各个选项进行分析.解答:解:A、对角线相等的平行四边形是矩形,而对角线互相垂直的平行四边形是菱形,同时具有矩形和菱形的性质的平行四边形是正方形,故本选项正确;B、对角线互相垂直的平行四边形是菱形,而非正方形,故本选项错误;C、对角线相等的平行四边形是矩形,故本选项错误;D、平行四边形的对角线都互相平分,这是平行四边形的性质.故本选项错误;故选A.点评:此题主要考查正方形的判定:对角线相等的菱形是正方形.二.填空题(共6小题)9.如图,凸五边形ABCDE中,∠A=∠B=120°,EA=AB=BC=2,CD=DE=4,则它的面积为7 .考点:菱形的判定与性质;等边三角形的判定与性质.专题:计算题.分析:作辅助线延长EA,BC相交于点F,CG⊥EF于G,BH⊥EF于H,因为∠EAB=∠CBA=120°,可得∠FAB=∠FBA=60°,可得△FAB为等边三角形,容易证明四边形EFCD是菱形,所以S ABCDE=S CDEF﹣S△ABF由此即可求解.解答:解:如图,延长EA,BC相交于点F,CG⊥EF于G,BH⊥EF于H,因为∠EAB=∠CBA=120°,所以∠FAB=∠FBA=60°,所以△FAB为等边三角形,AF=FB=AB=2,所以CD=DE=EF=FC=4,所以四边形EFCD是菱形,所以S ABCDE=S CDEF﹣S△ABF点评:本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.10.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是 CA、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④考点:正方形的判定与性质;全等三角形的判定与性质;菱形的判定与性质;矩形的判定与性质.专题:证明题.分析:根据矩形、菱形、正方形的判定定理,对角线互相平分的四边形为平行四边形,再由邻边相等,得出是菱形,和一个角为直角得出是正方形,根据已知对各个选项进行分析从而得到最后的答案.解答:解:A、由①④得,一组邻边相等的矩形是正方形,故正确;B、由③得,四边形是平行四边形,再由①,一组邻边相等的平行四边形是菱形,故正确;C、由①②不能判断四边形是正方形;D、由③得,四边形是平行四边形,再由②,一个角是直角的平行四边形是矩形,故正确.故选C.点评:此题用到的知识点是:矩形、菱形、正方形的判定定理,如:一组邻边相等的矩形是正方形;对角线互相平分且一组邻边相等的四边形是菱形;对角线互相平分且一个角是直角的四边形是矩形.灵活掌握这些判定定理是解本题的关键.11.有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形.考点:正方形的判定.分析:根据正方形的判定定理(有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形)求解即可求得答案.解答:解:有一组邻边相等的矩形是正方形,有一个角为直角的菱形是正方形.故答案为:有一组邻边相等,有一个角为直角.点评:此题考查了正方形的判定.此题比较简单,注意熟记定理是解此题的关键.12.若四边形ABCD是矩形,请补充条件此题答案不唯一,如AC⊥BD或AB=AD等(写一个即可),使矩形ABCD是正方形.考点:正方形的判定.专题:开放型.分析:由四边形ABCD是矩形,根据邻边相等的矩形是正方形或对角线互相垂直的矩形是正方形,即可求得答案.解答:解:∵四边形ABCD是矩形,∴当AC⊥BD或AB=AD时,矩形ABCD是正方形.故答案为:此题答案不唯一,如AC⊥BD或AB=AD等.点评:此题考查了正方形的判定.此题比较简单,注意熟记定理是解此题的关键.13.如图,在△ABC中,点D在BC上过点D分别作AB、AC的平行线,分别交AC、AB于点E、F①如果要得到矩形AEDF,那么△ABC应具备条件:∠BAC=90°;②如果要得到菱形AEDF,那么△ABC应具备条件:AD平分∠BAC.考点:菱形的判定;矩形的判定.分析:已知DE∥AB,DF∥AC,则有四边形AEDF是平行四边形.①因为有一直角的平行四边形是矩形,可添加条件:∠BAC=90°;②邻边相等的平行四边形是菱形,可添加条件:AD平分∠BAC.解答:解:∵DE∥AB,DF∥AC,AF、AE分别在AB、AC上∴DE∥AF,DF∥AE∴四边形AEDF是平行四边形①∵∠BAC=90°∴四边形AEDF是矩形;②∵AD是△ABC的角平分线,∴∠DAE=∠DAF∴∠ADE=∠DAE∴AE=DE∴▱AEDF是菱形.故答案为∠BAC=90°,AD平分∠BAC.点评:本题考查菱形和矩形的判定.本题是开放题,可以针对各种特殊的平行四边形的判定方法,给出条件,再证明结论.答案可以有多种,主要条件明确,说法有理即可.14.在矩形ABCD中,M为AD边的中点,P为BC上一点,PE⊥MC,PF⊥MB,当AB、BC满足条件AB=BC 时,四边形PEMF为矩形.考点:矩形的判定与性质.分析:根据已知条件、矩形的性质和判定,欲证明四边形PEMF为矩形,只需证明∠BMC=90°,易得AB=BC时能满足∠BMC=90°的条件.解答:解:AB=BC时,四边形PEMF是矩形.∵在矩形ABCD中,M为AD边的中点,AB=BC,∴AB=DC=AM=MD,∠A=∠D=90°,∴∠ABM=∠MCD=45°,∴∠BMC=90°,又∵PE⊥MC,PF⊥MB,∴∠PFM=∠PEM=90°,∴四边形PEMF是矩形.点评:此题考查了矩形的判定和性质的综合应用,是一开放型试题,是中考命题的热点.三.解答题(共11小题)15.如图所示,顺次延长正方形ABCD的各边AB,BC,CD,DA至E,F,G,H,且使BE=CF=DG=AH.求证:四边形EFGH是正方形.考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:此题先根据正方形ABCD的性质,可证△AEH≌△CGF≌△DHG(SAS),得四边形EFGH为菱形,再求一个角是直角从而证明它是正方形.解答:证明:∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠EBF=∠HAE=∠GDH=∠FC G,又∵BE=CF=DG=AH,∴CG=DH=AE=BF∴△AEH≌△CGF≌△DHG,∴EF=FG=GH=HE,∠EFB=∠HEA,∴四边形EFGH为菱形,∵∠EFB+∠FEB=90°,∠EFB=∠HEA,∴∠FEB+∠HEA=90°,∴四边形EFGH是正方形.点评:本题主要考查了正方形的判定方法:一角是直角的菱形是正方形.16.已知:如图,△ABC中,D是BC上任意一点,DE∥AC,DF∥AB.①试说明四边形AEDF的形状,并说明理由.②连接AD,当AD满足什么条件时,四边形AEDF为菱形,为什么?③在②的条件下,当△ABC满足什么条件时,四边形AEDF为正方形,不说明理由.考点:正方形的判定;平行四边形的判定;菱形的判定.分析:①根据DE∥AC,DF∥AB可判断四边形AEDF为平行四边形;②由四边形AEDF为菱形,能得出AD为∠BAC的平分线即可;③由四边形AEDF为正方形,得∠BAC=90°,即当△ABC是以BC为斜边的直角三角形即可.解答:解:①∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形;②∵四边形AEDF为菱形,∴AD平分∠B AC,则AD平分∠BAC时,四边形AEDF为菱形;③由四边形AEDF为正方形,∴∠BAC=90°,∴△ABC是以BC为斜边的直角三角形即可.点评:本题考查了正方形的性质、菱形的性质、平行四边形的性质以及矩形的性质.17.已知:如图,△ABC中,AB=AC,AD是BC边上的高,AE是△BAC的外角平分线,DE∥AB交AE于点E,求证:四边形ADCE是矩形.考点:矩形的判定.分析:首先利用外角性质得出∠B=∠ACB=∠FAE=∠EAC,进而得到AE∥CD,即可求出四边形AEDB 是平行四边形,再利用平行四边形的性质求出四边形ADCE是平行四边形,即可求出四边形ADCE是矩形.解答:证明:∵AB=AC,∴∠B=∠ACB,∵AE是∠BAC的外角平分线,∴∠FAE=∠EAC,∵∠B+∠ACB=∠FAE+∠EAC,∴∠B=∠ACB=∠FAE=∠EAC,∴AE∥CD,又∵DE∥AB,∴四边形AEDB是平行四边形,∴AE平行且等于BD,又∵BD=DC,∴AE平行且等于DC,故四边形ADCE是平行四边形,又∵∠ADC=90°,∴平行四边形ADCE是矩形.即四边形ADCE是矩形.点评:此题主要考查了平行四边形的判定与性质以及矩形的判定,灵活利用平行四边形的判定得出四边形AEDB是平行四边形是解题关键.18.已知:如图,M为▱ABCD的AD边上的中点,且MB=MC,求证:▱ABCD是矩形.考点:矩形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:根据平行四边形的两组对边分别相等可知△ABM≌△DCM,可知∠A+∠D=180°,所以是矩形.解答:证明:∵四边形ABCD是平行四边形,∵AM=DM,MB=MC,∴△ABM≌△DCM.∴∠A=∠D.∵AB∥CD,∴∠A+∠D=180°.∴∠A=90°.∴▱ABCD是矩形.点评:此题主要考查了矩形的判定,即有一个角是90度的平行四边形是矩形.19.如图,在四边形ABCD中,∠ABC=∠ADC=90°,∠C=45°,BC=4,AD=2.求四边形ABCD的面积.考点:矩形的判定与性质;等腰直角三角形.分析:如上图所示,延长AB,延长DC,相交于E点.△ADE是等腰直角三角形,AD=DE=2,则可以求出△ADE的面积;∠C=∠AED=45度,所以△CBE是等腰直角三角形,BE=CB=4厘米,则可以求出△CBE 的面积;那么四边形ABCD的面积是两个三角形的面积之差.解答:解:延长AB,延长DC,相交于E点,得到两个等腰直角三角形△ADE和△CBE,由等腰直角三角形的性质得:DE=AD=2,BE=CB=4,那么四边形ABCD的面积是:4×4÷2﹣2×2÷2=8﹣2=6.答:四边形ABCD的面积是6.点评:此题考查了等腰直角三角形的性质以及三角形的面积公式的运用,解题的关键是作延长线,找到交点,组成新图形,是解决此题的关键.20.如图,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.过点C作CG⊥AD,垂足为G,AF是BC边上的中线,连接FG.(1)求证:AC=FG.(2)当AC⊥FG时,△ABC应是怎样的三角形?为什么?考点:矩形的判定与性质;等腰三角形的判定与性质;等腰直角三角形.专题:证明题.分析:先根据题意推理出四边形AFCG是矩形,然后根据矩形的性质得到对角线相等;由第一问的结论和AC⊥FG得到四边形AFCG是正方形,然后即可得到△ABC是等腰直角三角形.解答:(1)证明:∵AD平分∠EAC,且AD∥BC,∴∠ABC=∠EAD=∠CAD=∠ACB,∴AB=AC;AF是BC边上的中线,∴AF⊥BC,∵CG⊥AD,AD∥BC,∴AF∥CG,∴四边形AFCG是平行四边形,∵∠AFC=90°,∴四边形AFCG是矩形;∴AC=FG.(2)解:当AC⊥FG时,△ABC是等腰直角三角形.理由如下:∵四边形AFCG是矩形,∴四边形AFCG是正方形,∠ACB=45°,∵AB=AC,∴△ABC是等腰直角三角形.点评:该题目考查了矩形的判定和性质、正方形的判定和性质、等腰三角形的性质,知识点比较多,注意解答的思路要清晰.21.如图,E是等边△ABC的BC边上一点,以AE为边作等边△AEF,连接CF,在CF延长线取一点D,使∠DAF=∠EFC.试判断四边形ABCD的形状,并证明你的结论.考点:菱形的判定;全等三角形的判定与性质;等边三角形的性质.专题:证明题.分析:在已知条件中求证全等三角形,即△BAE≌△CAF,△AEC≌△AFD,从而得到△ACD和△ABC 都是等边三角形,故可根据四条边都相等的四边形是菱形判定.解答:解:四边形ABCD是菱形.证明:在△ABE、△ACF中∵AB=AC,AE=AF∠BAE=60°﹣∠EAC,∠CAF=60°﹣∠EAC∴∠BAE=∠CAF∴△BAE≌△CAF∵∠CFA=∠CFE+∠EFA=∠CFE+60°∠BEA=∠ECA+∠EAC=∠EAC+60°∴∠EAC=∠CFE∵∠DAF=∠CFE∴∠EAC=∠DAF∵AE=AF,∠AEC=∠AFD∴△AEC≌△AFD∴AC=AD,且∠D=∠ACE=60°∴△ACD和△ABC都是等边三角形∴四边形ABCD是菱形.点评:本题考查了菱形的判定、等边三角形的性质和全等三角形的判定,学会在已知条件中多次证明三角形全等,寻求角边的转化,从而求证结论.22.如图,矩形ABCD的对角线AC、BD相交于点0,BE∥AC,EC∥BD,BE、EC相交于点E.试说明:四边形OBEC是菱形.考点:菱形的判定;矩形的性质.专题:证明题.分析:在矩形ABCD中,可得OB=OC,由BE∥AC,EC∥BD,所以四边形OBEC是平行四边形,两个条件合在一起,可得出其为菱形.解答:证明:在矩形ABCD中,AC=BD,∴OB=OC,∵BE∥AC,EC∥BD,∴四边形OBEC是平行四边形,∴四边形OBEC是菱形.点评:熟练掌握菱形的性质及判定定理.23.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,判断四边形CODE的形状,并计算其周长.考点:菱形的判定与性质;矩形的性质.分析:首先由CE∥BD,DE∥AC,可证得四边形CODE是平行四边形,又由四边形ABCD是矩形,根据矩形的性质,易得OC=OD=2,即可判定四边形CODE是菱形,继而求得答案.解答:解:∵CE∥BD,DE∥A C,∴四边形CODE是平行四边形,∵四边形ABCD是矩形,∴AC=BD=4,OA=OC,OB=OD,∴OD=OC=AC=2,∴四边形CODE是菱形,∴四边形CODE的周长为:4OC=4×2=8.故答案为:8.点评:此题考查了菱形的判定与性质以及矩形的性质.此题难度不大,注意证得四边形CODE是菱形是解此题的关键.24.如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于N,连接MN,DN.(1)求证:四边形BMDN是菱形;(2)若AB=6,BC=8,求MD的长.考点:菱形的判定与性质;线段垂直平分线的性质;矩形的性质.分析:(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=(8﹣x)2+62,求出即可.解答:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,在△DMO和△BNO中,,∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+62,解得:x=.答:MD长为.点评:本题考查了矩形性质,平行四边形的判定,菱形的判定和性质,勾股定理等知识点的应用.注意对角线互相平分的四边形是平行四边形,对角线互相垂直的平行四边形是菱形.25.如图所示,有四个动点P,Q,E,F分别从正方形ABCD的四个顶点出发,沿着AB,BC,CD,DA以同样速度向B,C,D,A各点移动.(1)试判断四边形PQEF是否是正方形,并证明;(2)PE是否总过某一定点,并说明理由.考点:正方形的判定与性质;全等三角形的判定与性质.专题:动点型.分析:(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形,故可根据正方形的定义证明四边形PQEF是否使正方形.(2)证PE是否过定点时,可连接AC,证明四边形APCE为平行四边形,即可证明PE过定点.解答:解:(1)在正方形ABCD中,AP=BQ=CE=DF,AB=BC=CD=DA,∴BP=QC=ED=FA.又∵∠BAD=∠B=∠BCD=∠D=90°,∴△AFP≌△BPQ≌△CQE≌△DEF.∴FP=PQ=QE=EF,∠APF=∠PQB.∴四边形PQEF是菱形,∵∠FPQ=90°,∴四边形PQEF为正方形.(2)连接AC交PE于O,∵AP平行且等于EC,∴四边形APCE为平行四边形.∵O为对角线AC的中点,∴对角线PE总过AC的中点.点评:在证明过程中,应了解正方形和平行四边形的判定定理,为使问题简单化,在证明过程中,可适当加入辅助线.。

数学综合经典练习题(含详细答案)

数学综合经典练习题(含详细答案)

数学综合经典练习题(含详细答案)
本文档提供了一系列数学综合经典练题,每道题都附有详细的答案。

这些练题旨在帮助您巩固和提高数学综合能力。

以下是一些示例题目和答案:
1. 简单等式求解
题目:求解方程 $2x + 5 = 15$。

求解方程 $2x + 5 = 15$。

答案:
首先,我们将方程改写为 $2x = 15 - 5$。

然后,化简得到 $2x = 10$。

最后,解出 $x$ 的值,得到 $x = \frac{10}{2} = 5$。

2. 平方根的计算
题目:求解方程 $x^2 = 16$。

求解方程 $x^2 = 16$。

答案:
我们知道,$16$ 的平方根有两个解,分别是 $x = 4$ 和 $x = -
4$。

3. 百分数计算
题目:将 $60\%$ 转化为小数。

将 $60\%$ 转化为小数。

答案:
我们知道,百分数可以通过将百分数除以$100$ 来转化为小数。

所以,$60\%$ 转化为小数的结果是 $0.6$。

以上是部分题目和答案,更多练题和详细答案请参考完整文档。

数学综合经典练题(含详细答案)
1. 简单等式求解
题目:求解方程 2x + 5 = 15。

答案:x = 5。

2. 平方根的计算
题目:求解方程 x^2 = 16。

答案:x = 4 和 x = -4。

3. 百分数计算
题目:将 60% 转化为小数。

答案:0.6。

以上是部分题目和答案,更多练习题和详细答案请参考完整文档。

华东师大版数学七年级上册2.1《有理数》综合练习1

华东师大版数学七年级上册2.1《有理数》综合练习1

2.1 有理数一、基础训练1.如果气温上升3度记作+3度,下降5度记作-5度,那么下列各量分别表示什么?(1)+5度;(2)-6度;(3)0度.2.向东走-8米的意义是()A.向东走8米B.向西走8米C.向西走-8米D.以上都不对3.下列语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数就是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个4.下列说法中,正确的是()A.正整数、负整数统称整数B.正分数、负分数统称有理数C.零既可是正整数,也可以是负分数D.所有的分数都是有理数5.下列各数是负数的有哪些?-13,-0,-(-2),+2,3,-0.01,-0.21,5%,-(+2)6.下列各数中,哪些属于正数集、负数集、非负数集、整数集、分数集,有理数集?-1,-3.14156,-13,-5%,-6.3,2006,-0.1,30000,200%,0,-0.010017.已知A、B、C三个数集,每个数集中所包含的数都写在各自的大括号内,•请把这些数填在如图所示圆内相应的位置,A={-2,-3,-8,6,7};B={-3,-5,1,2,6};C={-1,-3,-8,2,5).ABC8.某水库的平均水位为80米,在此基础上,若水位变化时,把水位上升记为正数;水库管理员记录了3月~8月水位变化的情况(单位:米):-5,-4,0,+3,+6,+8.试问这几个月的实际水位是多少米?二、递进演练1.(宜昌市中考·课改卷)如果收入15•元记作+•15•元,•那么支出20•元记作________元.2.(吉林省中考·课改卷)某食品包装袋上标有“净含量385±5”,•这包食品的合格净含量范围是______克~300克.3.下列说法正确的是()A.正数和负数统称有理数B.0是整数但不是正数C.0是最小的数D.0是最小的正数4.下列不是具有相反意义的量是()A.前进5米和后退5米B.节约3吨和消费10吨C.身高增加2厘米和体重减少2千克D.超过5克和不足2克5.下列说法正确的是()。

六年级上册数学应用题综合练习(一)

六年级上册数学应用题综合练习(一)

六年级上册数学应用题综合练习(一)1、小明5投3中,小强6投4中。

他们两人的命中率分别是多少?2、六年级有学生160人,已达到国家体育标准的有120人。

达标率是多少?3、六一班有45人,上学期跳远测验有80%的人及格。

及格的同学有多少人?4、2000kg 花生仁能榨出花生油760kg ,花生的出油率是多少?5、油菜的出油率是42%。

2100kg 油菜籽可榨油多少千克?6、某校有480人,只有5%的学生没有参加保险。

没有参加保险的学生有多少人?7、油菜的出油率是42%。

一个榨油厂榨出2100kg 菜籽油,用了多少千克油菜籽?8、小飞家原来每月用水10吨,更换了节水龙头后每月用水9吨,每月用水比原来节约了百分之几?9、学校图书室原有图书1400册,今年图书册数增加了12%。

现在图书室有多少册图书?10、王伯家菜地共800平方米,准备用52种西红柿,剩下的按2:1的面积比种黄瓜和茄子。

三种蔬菜的面积分别是多少平方米?11、要搅拌20吨混凝土,水泥、沙子和石子的比是2:3:5。

需要水泥、沙子和石子各多少吨?12、用120cm 的铁丝做一个长方体框架,长、宽、高的比是3:2:1。

这个长方体的长、宽、高分别是多少?13、小明的体重是35kg ,他的体重比爸爸的体重轻158,小明爸爸的体重是多少千克?14、有一组互相咬合的齿轮 ⑴大齿轮有140个齿,小齿轮的齿数是大齿轮的51。

小齿轮有多少个齿?⑵小齿轮有28个齿,是大齿轮的51。

大齿轮有多少个齿?⑶小齿轮每分钟转400周,大齿轮每分钟转的周数比小齿轮少54。

大齿轮每分钟转多少周?⑷大齿轮每钟转80周,比小齿轮每分钟转的周数少54。

小齿轮每分钟转多少周?15、某电视机厂去年全年生产电视机108万台,其中上半年产量是下半年的54。

这个电视机厂上半年和下半年的产量分别是多少万台?16、一套运动服裤子价钱比上衣少60元,裤子价钱是上衣的32。

上衣和裤子分别是多少钱?17、冰融化成水后,水的体积是冰的体积的1110。

2022-2023学年北京市东城区高三下学期综合练习(一)数学试卷(PDF版)

2022-2023学年北京市东城区高三下学期综合练习(一)数学试卷(PDF版)

北京市东城区2022-2023学年度第二学期高三综合练习(一)数 学 2023.3本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合22{|}0A x x -=<,且a A ∈,则a 可以为(A )2- (B )1-(C )32(D (2)在复平面内,复数iz对应的点的坐标是(3,1)-,则z = (A )13i + (B )3i + (C )3i -+ (D )13i -- (3)抛物线24x y =的准线方程为(A )1x = (B )1x =- (C )1y = (D )1y =- (4)已知0x >,则44x x-+的最小值为 (A )2- (B )0(C )1 (D )(5)在△ABC 中,a =2b c =,1cos 4A =-,则ABC S =△(A )(B )4(C ) (D )(6)设,m n 是两条不同的直线,αβ,是两个不同的平面,且m α⊂,αβ ,则“m n ⊥”是“n β⊥”的(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件 (7)过坐标原点作曲线2e1x y -=+的切线,则切线方程为(A )y x = (B )2y x = (C )21e y x = (D )e y x =(8)已知正方形ABCD 的边长为 2,P 为正方形ABCD 内部(不含边界)的动点,且满足0PA PB ⋅=,则CP D P ⋅的取值范围是(A )(0,8] (B )[0,8) (C )(0,4] (D )[0,4)(9)已知1a ,2a ,3a ,4a ,5a 成等比数列,且1和4为其中的两项,则5a 的最小值为(A )64- (B )8- (C )164 (D )18(10)恩格斯曾经把对数的发明、解析几何的创始和微积分的建立称为十七世纪数学的三大成就.其中对数的发明,曾被十八世纪法国大数学家拉普拉斯评价为“用缩短计算时间延长了天文学家的寿命”.已知正整数N 的70次方是一个83位数,由下面表格中部分对数的近似值(精确到0.001),可得N 的值为(A )13 (B )14 (C )15 (D )16第二部分(非选择题 共110分)二、填空题 共5小题,每小题5分,共25分。

小学数学六年级综合练习(一)、(二)

小学数学六年级综合练习(一)、(二)

综合练习(一)1.计算:20062006…2006÷59= 。

分析与解:2006÷59=34,原式=34003400…340034.2.计算:(1- )×(1- )×…×(1- ) 分析与解:积有9个因数,数值分别为 、 、 、 、 、 、 、 、 . 原式= × × × × × × × × =3.有一串数:5、55、555、…、555…5。

这一串数的和的末三位数字是几? 分析与解:先从个位加起,个位上有15个5连加,和为75,所以和的个位是5;十位上是14个5连加,再加上进位的7,5×14+7=77,所以十位数字是7;百位是5×13+7=72,所以百位数字是2。

综上,这一串数的和的末三位数字是2、7、5。

4.列车提速后,某次列车21:00从A 市出发,次日7:00正点到B 市,运行时间较提速前缩短 2小时,而车速比提速前平均快了20千米/小时,则提速前的速度平均为多少千米/小时?两市相距多少千米?分析与解:设提速前车速为v 千米/小时,两市相距s 千米,由题可知: = v + 20 解得:v=100,s=1200 = v 答:提速前的速度平均为100千米/小时,两市相距1200千米。

5.用一个杯子盛满水向一个空罐里倒水,如果倒进2杯水,连罐共重0.6千克;如果倒进5杯水,连罐共重0.975千克,这个空罐重是多少千克? 分析与解:设这个空罐重是x 千克,由题可知:=59个2006 221⨯331⨯10101⨯15个5 58个34003489151624253536484963648081991003489151624253536484963648081991001120s 10s 120.6-x 20.975-x 5(0.6-x )×5=(0.975-x )×23-5x=1.95-2xx=0.35答:这个空罐重是0.35千克。

北京市丰台区2021-2022学年高三下学期综合练习(一) 数学试题

北京市丰台区2021-2022学年高三下学期综合练习(一) 数学试题

北京市丰台区2021—2022学年度第二学期综合练习(一)高三数学2022.03第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|12}A x x =-<≤,{|21}B x x =-<≤,则A B ⋃=()A.{|11}x x -<<B.{|11}x x -<≤ C.{|22}x x -<< D.{|22}x x -<≤【1题答案】【答案】D 【解析】【分析】利用并集的定义计算即可.【详解】∵集合{|12}A x x =-<≤,{|21}B x x =-<≤,∴{|22}A B x x ⋃=-<≤.故选:D.2.已知命题p :1x ∃>,210x ->,那么p ⌝是()A.1x ∀>,210x ->B.1x ∀>,210x -≤C.1x ∃>,210x -≤D.1x ∃≤,210x -≤【2题答案】【答案】B 【解析】【分析】由特称命题的否定,直接判断得出答案.【详解】解:已知命题p :1x ∃>,210x ->,则p ⌝为:1x ∀>,210x -≤.故选:B.3.若复数i z a b =+(a ,b 为实数)则“0a =”是“复数z 为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件【3题答案】【答案】B 【解析】【分析】根据当0a =且0b ≠时,复数i z a b =+z 为纯虚数判断即可.【详解】解:根据复数的概念,当0a =且0b ≠时,复数i z a b =+z 为纯虚数,反之,当复数i z a b =+z 为纯虚数时,0a =且0b ≠所以“0a =”是“复数z 为纯虚数”的必要不充分条件故选:B4.已知圆22:20C x x y -+=,则圆心C 到直线3x =的距离等于()A.4B.3C.2D.1【4题答案】【答案】C 【解析】【分析】求出圆心的坐标,即可求得圆心C 到直线3x =的距离.【详解】圆C 的标准方程为()2211x y -+=,圆心为()1,0C ,故圆心C 到直线3x =的距离为132-=.故选:C.5.若数列{}n a 满足12n n a a +=,且41a =,则数列{}n a 的前4项和等于()A.15 B.14C.158 D.78【5题答案】【答案】C 【解析】【分析】由等比数列定义和通项公式可得1a ,然后由前n 项和公式可得.【详解】因为12n n a a +=,且41a =,所以数列{}n a 是以2为公比的等比数列,又3411a a q ==,得118a =,所以44141(12)(1)1581128a q S q --===--.故选:C6.在△ABC中,cos 23B a b ===,,,则A ∠=()A.6π B.3π C.56π D.6π或56π【6题答案】【答案】A 【解析】【分析】先求出sin B ,再借助正弦定理求解即可.【详解】由7cos 4B =得3sin 4B ==,由正弦定理得sin sin a b A B =,233sin 4A =,解得1sin 2A =,又a c <,故A C ∠<∠,6A π∠=.故选:A.7.在抗击新冠疫情期间,有3男3女共6位志愿者报名参加某社区“人员流调”、“社区值守”这两种岗位的志愿服务,其中3位志愿者参加“人员流调”,另外3位志愿者参加“社区值守”.若该社区“社区值守”岗位至少需要1位男性志愿者.则这6位志愿者不同的分配方式共有()A.19种 B.20种 C.30种D.60种【7题答案】【答案】A 【解析】【分析】利用对立事件,用总的分配方式减去“社区值守”岗位全是女性的情况可得.【详解】6位志愿者3位志愿者参加“人员流调”,另外3位志愿者参加“社区值守”的分配方式共有3620C =种,“社区值守”岗位全是女性的分配方式共1种,故“社区值守”岗位至少需要1位男性志愿者的分配方式共有20119-=种.故选:A8.已知F 是双曲线22:148x y C -=的一个焦点,点M 在双曲线C 的一条渐近线上,O 为坐标原点.若||||OM MF =,则△OMF 的面积为()A.32B.322C. D.6【8题答案】【答案】C 【解析】【分析】由等腰三角形的性质结合渐近线方程得出点00(,)M x y 的坐标,再求面积.【详解】不妨设F 为双曲线C 的左焦点,点00(,)M x y 在渐近线y =上,因为2,a b c ===,||||OM MF =,所以0x =,0y =,即△OMF 的面积12⨯=.故选:C9.已知函数()32,,3,x x a f x x x x a-<⎧=⎨-≥⎩无最小值,则a 的取值范围是()A.(,1]-∞-B.(,1)-∞- C.[1,)+∞ D.(1,)+∞【9题答案】【答案】D 【解析】【分析】利用导数研究函数的性质,作出函数函数33y x x =-与直线2y x =-的图象,利用数形结合即得.【详解】对于函数33y x x =-,可得()()233311y x x x '=-=+-,由0y '>,得1x <-或1x >,由0y '<,得11x -<<,∴函数33y x x =-在(),1-∞-上单调递增,在()1,1-上单调递减,在()1,+∞上单调递增,∴函数33y x x =-在1x =-时有极大值2,在1x =时有极小值2-,作出函数33y x x =-与直线2y x =-的图象,由图可知,当1a ≤时,函数()f x 有最小值()12f =-,当1a >时,函数()f x 没有最小值.故选:D.10.对任意*m ∈N ,若递增数列{}n a 中不大于2m 的项的个数恰为m ,且12100n a a a +++= ,则n 的最小值为()A.8B.9C.10D.11【10题答案】【答案】C 【解析】【分析】先由条件得出2n a n ≤,进而结合等差数列前n 项和列出不等式,解不等式即可.【详解】由递增数列{}n a 中不大于2m 的项的个数恰为m 可知2n a n ≤,又12100n a a a +++= ,故2462100n ++++≥ ,即()221002n n +≥,解得14012n -≤或14012n -≥,又*n ∈N ,故n 的最小值为10.故选:C.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.函数()f x 2lg x x -+的定义域是_________.【11题答案】【答案】{|02}x x <≤【解析】【详解】∵函数()f x lg x∴要使函数有意义,则20{x x -≥>∴02x <≤∴函数()f x lg x 的定义域为{}02x x <≤故答案为{}02x x <≤12.已知向量(2,3)a =- ,(,6)b x =-.若a b∥,则=x ______.【12题答案】【答案】4【解析】【分析】利用两向量共线的条件即求.【详解】∵向量(2,3)a =-,(,6)b x =-,a b∥,∴()()2630x -⨯--=,解得4x =.故答案为:4.13.设函数()f x 的定义域为[]0,1,能说明“若函数()f x 在[]0,1上的最大值为()1f ,则函数()f x 在[]0,1上单调递增“为假命题的一个函数是__________.【13题答案】【答案】213()24f x x ⎛⎫=-+ ⎪⎝⎭,[]0,1x ∈,(答案不唯一)【解析】【分析】根据题意,可以构造在定义域为[]0,1上,先减后增的函数,满足最大值为1,即可得答案.【详解】根据题意,要求函数()f x 的定义域为[]0,1,在[]0,1上的最大值为()1f ,但()f x 在[]0,1上不是增函数,可以考虑定义域为[]0,1上,先减后增的函数的二次函数,函数213()24f x x ⎛⎫=-+ ⎪⎝⎭,[]0,1x ∈符合,故答案为:213()24f x x ⎛⎫=-+ ⎪⎝⎭,[]0,1x ∈,(答案不唯一).14.已知抛物线2:4C y x =的焦点为F ,则F 的坐标为______;设点M 在抛物线C 上,若以线段FM 为直径的圆过点(0,2),则||FM =______.【14题答案】【答案】①.(1,0)②.5【解析】【分析】由题可得()1,0F ,设(),M x y ,结合条件可得240x y -+=,24y x =,进而可得4x =,即得.【详解】∵抛物线2:4C y x =,∴()1,0F ,设(),M x y ,则24y x =,又以线段FM 为直径的圆过点(0,2),∴2201001y x --⋅=---,即240x y -+=,又24y x =,∴22404y y -+=,解得4y =,4x =,∴||415FM =+=.故答案为:(10),;5.15.如图,在棱长为2的正方体1111ABCD A B C D -中,M N ,分别是棱1111A B A D ,的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形;②直线11B D 到平面CMN 的距离是22;③存在点P ,使得11=90B PD ∠︒;④△1PDD 面积的最小值是6.其中所有正确结论的序号是______.【15题答案】【答案】①③【解析】【分析】作出截面图形判断①,利用等积法可判断②,利用坐标法可判断③④.【详解】对于①,如图直线MN 与11C B 、11C D 的延长线分别交于11,M N ,连接11,CM CN 分别交11,BB DD 于22,M N ,连接22,MM NN ,则五边形22MM CN N 即为所得的截面图形,故①正确;对于②,由题可知11//MN B D ,MN ⊂平面CMN ,11B D ⊄平面CMN ,∴11//B D 平面CMN ,故点1B 到平面CMN 的距离即为直线11B D 到平面CMN 的距离,设点1B 到平面CMN 的距离为h ,由正方体1111ABCD A B C D -的棱长为2可得,3,CM CN MN ===,11722CMNS = ,∴11117173326B CMN CMN V S h h -=⋅=⨯= ,111111123323C B MN B MN V S CC -=⋅=⨯⨯= ,∴由1B CMN V -=1C B MN V -,可得h =所以直线11B D 到平面CMN 的距离是17,故②错误;对于③,如图建立空间直角坐标系,则()()()()112,0,2,0,2,2,2,2,0,1,0,2B D C M ,设,01PC MC λλ=≤≤,∴()1,2,2PC MC λλ==-,又()2,2,0C ,()()112,0,2,0,2,2,B D ∴()2,22,2P λλλ--,()()11,22,22,2,2,22PB PD λλλλλλ=--=--,假设存在点P ,使得11=90B PD ∠︒,∴()()()2112222220PB PD λλλλλ⋅=-+-+-= ,整理得291440λλ-+=,∴71319λ+=>(舍去)或7139λ=,故存在点P ,使得11=90B PD ∠︒,故③正确;对于④,由上知()2,22,2P λλλ--,所以点()2,22,2P λλλ--在1DD 的射影为()0,2,2λ,∴点()2,22,2P λλλ--到1DD 的距离为:d =,∴当25λ=时,min 455d =,∴故△1PDD 面积的最小值是145452255⨯⨯=,故④错误.故答案为:①③.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.已知函数()sin ()(0||)2f x x ωϕωϕπ=+><,,再从条件①、条件②、条件③这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定.(1)求()f x 的解析式;(2)设函数()()(6g x f x f x π=++,求()g x 在区间4[0]π,上的最大值.条件①:()f x 的最小正周期为π;条件②:()f x 为奇函数;条件③:()f x 图象的一条对称轴为4x π=.注:如果选择多组条件分别解答,按第一个解答计分.【16~17题答案】【答案】(1)()sin 2f x x =(2【解析】【分析】(1)可以选择条件①②或条件①③,先由周期计算ω,再计算ϕ即可;(2)先求出26x π+整体的范围,再结合单调性求最大值即可.【小问1详解】选择条件①②:由条件①及已知得2T ππω==,所以2=ω.由条件②得()()f x f x -=-,所以(0)0f =,即sin 0ϕ=.解得π()k k ϕ=∈Z .因为||2ϕπ<,所以0ϕ=,所以()f x sin2x =.经检验0ϕ=符合题意.选择条件①③:由条件①及已知得2T ππω==,所以2=ω.由条件③得()ππ2π42k k ϕ⨯+=+∈Z ,解得π()k k ϕ=∈Z .因为||2ϕπ<,所以0ϕ=.所以()f x sin2x =.【小问2详解】由题意得()sin2sin 23g x x x π⎛⎫=++ ⎪⎝⎭,化简得3()sin 22)226g x x x x =+=+π.因为04x π≤≤,所以22663x πππ≤+≤,所以当262x ππ+=,即6x π=时,()g x 17.如图,在直角梯形ABCD 中,AB CD ,90DAB ∠=︒,12AD DC AB ==.以直线AB 为轴,将直角梯形ABCD 旋转得到直角梯形ABEF ,且AF AD ⊥.(1)求证:DF 平面BCE ;(2)在线段DF 上是否存在点P ,使得直线AE 和平面BCP 所成角的正弦值为56?若存在,求出DPDF 的值;若不存在,说明理由.【17~18题答案】【答案】(1)证明见解析(2)存在;13DP DF =【解析】【分析】(1)证明出四边形DCEF 为平行四边形,进而证明出线面平行;(2)建立空间直角坐标系,利用空间向量求解.【小问1详解】证明:由题意得EF CD ‖,EF CD =,所以四边形DCEF 为平行四边形.所以DF CE ‖.因为DF ⊄平面BCE ,CE ⊂平面BCE ,所以DF ‖平面BCE .【小问2详解】线段DF 上存在点P ,使得直线AE 和平面BCP 所成角的正弦值为56,理由如下:由题意得AD ,AB ,AF 两两垂直.如图,建立空间直角坐标系A xyz -.设2AB =,则(0,0,0)A ,(0,2,0)B ,(1,1,0)C ,(1,0,0)D ,(0,1,1)E ,(0,0,1)F .所以()0,1,1AE = ,()1,1,0BC =-,()1,2,0BD =- ,()1,0,1DF =- .设()01DP DF λλ=≤≤ ,则()1,2,BP BD DP BD DF λλλ=+=+=--设平面BCP 的一个法向量为(,,)n x y z =,所以00n BC n BP ⎧⋅=⎨⋅=⎩ ,即()0,120.x y x y z λλ-=⎧⎨--+=⎩令x λ=,则y λ=,1z λ=+.于是(),,1n λλλ=+设直线AE 和平面BCP 所成角为θ,由题意得:sin cos ,n AE n AE n AEθ⋅==⋅56=,整理得:232270λλ-+=,解得13λ=或7λ=.因为01λ≤≤,所以13λ=,即13DP DF =.所以线段DF 上存在点P ,当13DP DF =时,直线AE 和平面BCP 所成角的正弦值为56.18.为研究某地区2021届大学毕业生毕业三个月后的毕业去向,某调查公司从该地区2021届大学毕业生中随机选取了1000人作为样本进行调查,结果如下:毕业去向继续学习深造单位就业自主创业自由职业慢就业人数2005601412898假设该地区2021届大学毕业生选择的毕业去向相互独立.(1)若该地区一所高校2021届大学毕业生的人数为2500,试根据样本估计该校2021届大学毕业生选择“单位就业”的人数;(2)从该地区2021届大学毕业生中随机选取3人,记随机变量X 为这3人中选择“继续学习深造”的人数.以样本的频率估计概率,求X 的分布列和数学期望()E X ;(3)该公司在半年后对样本中的毕业生进行再调查,发现仅有选择“慢就业”的毕业生中的a (098)a <<人选择了上表中其他的毕业去向,记此时表中五种毕业去向对应人数的方差为2s .当a 为何值时,2s 最小.(结论不要求证明)【18~20题答案】【答案】(1)1400(2)分布列见解析;期望为35(3)42a=【解析】【分析】(1)用样本中“单位就业”的频率乘以毕业生人数可得;(2)先由样本数据得选择“继续学习深造”的频率,然后由二项分布可得;(3)由方差的意义可得.【小问1详解】由题意得,该校2021届大学毕业生选择“单位就业”的人数为5602500=14001000⨯.【小问2详解】由题意得,样本中1000名毕业生选择“继续学习深造”的频率为200110005=.用频率估计概率,从该地区2021届大学毕业生中随机选取1名学生,估计该生选择“继续学习深造”的概率为15.随机变量X 的所有可能取值为0,1,2,3.所以()030311640155125P X C ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭,()21311481155125P X C ⎛⎫⎛⎫==-=⎪⎪⎝⎭⎝⎭,()22311122155125P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭,()3331113155125P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭.所以X 的分布列为X0123P641254812512125112564481213()01231251251251255E x =⨯+⨯+⨯+⨯=.【小问3详解】易知五种毕业去向的人数的平均数为200,要使方差最小,则数据波动性越小,故当自主创业和慢就业人数相等时方差最小,所以42a=.19.已知椭圆2222:1x y C a b +=(0a b >>)的左、右顶点分别为A ,B ,且||4AB =,离心率为2.(1)求椭圆C 的方程;(2)设P 是椭圆C 上不同于A ,B 的一点,直线PA ,PB 与直线4x =分别交于点M N ,.若||4MN ≤,求点P 横坐标的取值范围.【19~20题答案】【答案】(1)2214x y +=(2)8[05,【解析】【分析】(1)直接由条件计算,a b 即可;(2)设出点P 坐标,分别写出直线PA ,PB 的方程,表示出M N ,坐标,由||4MN ≤得到不等式,解不等式即可.【小问1详解】由题意得222243,2,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩,解得24a =,21b =.所以椭圆C 的方程是2214x y +=.【小问2详解】设(,)P m n (22m -<<),由已知得(2,0)A -,(2,0)B ,所以直线AP ,BP 的方程分别为(2)2n y x m =++,(2)2ny x m =--.令4x =,得点M 的纵坐标为62M n y m =+,点N 的纵坐标为22N ny m =-,所以62||22n nMN m m =-+-()2444n m m -=-.因为点P 在椭圆C 上,所以2214m n +=,所以2244m n -=-,即4||m MN n-=.因为4MN ||≤,所以44m n-≤,即22(4)16m n -≤.所以22(4)4(4)m m ---≤.整理得2580m m -≤,解得805m ≤≤.所以点P 横坐标的取值范围是8[0]5,.20.已知函数()f x =(1)当1a =时,求曲线()y f x =的斜率为1的切线方程;(2)若函数2()()3ag x f x =-恰有两个不同的零点,求a 的取值范围.【20~21题答案】【答案】(1)y x=(2)(3)+∞,【解析】【分析】(1)直接求导,由()1f x '=求出切点,写出切线方程即可;(2)求导后分类讨论确定函数的单调性,结合零点存在定理确定零点个数即可求出a 的取值范围.【小问1详解】当1a =时,()1)f x x =≤,所以()f x '=令()1f x '=,解得0x =.因为(0)0f =,所以切点坐标为(00),.故切线方程为y x =.【小问2详解】因为2()3ag x =-()x a ≤,所以()g x '=令()0g x '=,解得23a x =.当0a ≤时,由x a ≤,得230a x a --≥≥,所以()0g x '≥,则()g x 在定义域(,]a -∞上是增函数.故()g x 至多有一个零点,不合题意,舍去.当0a >时,随x 变化()g x '和()g x 的变化情况如下表:故()g x 在区间2()3a -∞,上单调递增,在区间2()3aa ,上单调递减,当23a x =时,()g x 取得最大值2(3a g =.若03a <≤时,2()03a g =,此时()g x 至多有一个零点;若3a >时,2(03a g >,又2(0)()03ag g a ==-<,由零点存在性定理可得()g x 在区间2(0)3a ,和区间2()3aa ,上各有一个零点,所以函数()g x 恰有两个不同的零点,符合题意.综上所述,a 的取值范围是(3)+∞,.21.已知集合{12}S n = ,,,(3n ≥且*n N ∈),12{}m A a a a = ,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1k m ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由;①1{124}A =,,;②2{245}A =,,.(2)若123{}A a a a =,,是{127}S = ,,,的3元完美子集,求123a a a ++的最小值;(3)若12{}m A a a a = ,,,是{12}S n = ,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++ ≥,并指出等号成立的条件.【21~23题答案】【答案】(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析(2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n ia i m m +=+≤≤【解析】【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值;(3)不妨设12m a a a <<< ,有121i i i i m i a a a a a a a n +-<+<+<<+ ≤.121i i i m i a a a a a a +-+++ ,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,L ,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证.【小问1详解】解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集.②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>,所以2A 是S 的3元完美子集.【小问2详解】解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾;若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=.若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥.综上,123a a a ++的最小值是12.【小问3详解】证明:不妨设12m a a a <<< .对任意1i m ≤≤,都有11i m i a a n +-++≥,否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤.由12m a a a <<< ,得121i i i i m i a a a a a a a n +-<+<+<<+ ≤.所以121i i i m i a a a a a a +-+++ ,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,L ,该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥.于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥L L .即12(1)2m m n a a a ++++≥L .等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n ia i m m +=+≤≤.。

山西省晋中市榆社中学2024年高三第二学期综合练习(一)数学试题试卷

山西省晋中市榆社中学2024年高三第二学期综合练习(一)数学试题试卷

山西省晋中市榆社中学2024年高三第二学期综合练习(一)数学试题试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.复数12ii--的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知函数()ln f x x =,若2()()3F x f x kx =-有2个零点,则实数k 的取值范围为( )A .21,06e ⎛⎫-⎪⎝⎭B .1,06e ⎛⎫-⎪⎝⎭C .10,6e ⎛⎫ ⎪⎝⎭D .210,6e ⎛⎫ ⎪⎝⎭3.下列说法正确的是( )A .“若1a >,则21a >”的否命题是“若1a >,则21a ≤”B .“若22am bm <,则a b <”的逆命题为真命题C .0(0,)x ∃∈+∞,使0034x x >成立D .“若1sin 2α≠,则6πα≠”是真命题 4.已知函数2,0()4,0xx f x x -⎧⎪=+>,若()02f x <,则0x 的取值范围是( )A .(,1)-∞-B .(1,0]-C .(1,)-+∞D .(,0)-∞5.已知函数2ln(2),1,()1,1,x x f x x x -⎧=⎨-+>⎩若()0f x ax a -+恒成立,则实数a 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .[0,1]C .[1,)+∞D .[0,2]6.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠=== 若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A .2116B .32C .2516D .37.函数()sin()f x A x ωϕ=+的部分图象如图中实线所示,图中圆C 与()f x 的图象交于,M N 两点,且M 在y 轴上,则下列说法中正确的是A .函数()f x 的最小正周期是2πB .函数()f x 的图象关于点,034⎛⎫π ⎪⎝⎭成中心对称 C .函数()f x 在2(,)36ππ--单调递增 D .函数()f x 的图象向右平移512π后关于原点成中心对称8.当输入的实数[]230x ∈,时,执行如图所示的程序框图,则输出的x 不小于103的概率是( )A .914B .514C .37D .9289.已知集合{}2,1,0,1A =--,{}22*|,B x x a a N=≤∈,若A B ⊆,则a 的最小值为( )A .1B .2C .3D .410.3481(3)(2)x x x+-展开式中x 2的系数为( ) A .-1280B .4864C .-4864D .128011.在复平面内,复数(2)i i +对应的点的坐标为( ) A .(1,2)B .(2,1)C .(1,2)-D .(2,1)-12.已知集合A ={﹣2,﹣1,0,1,2},B ={x |x 2﹣4x ﹣5<0},则A ∩B =( ) A .{﹣2,﹣1,0}B .{﹣1,0,1,2}C .{﹣1,0,1}D .{0,1,2}二、填空题:本题共4小题,每小题5分,共20分。

五年级数学思维《综合练习(一)》专题训练

五年级数学思维《综合练习(一)》专题训练

五年级数学思维《综合练习(一)》专题训练一、填空题(每小题6分,共60分)1 两个数被13除分别余7和10,这两个数的和被13除余.2 如图所示,平行四边形BCEF中,BC长8厘米,直角三角形ABC中,AC长10厘米,图中阴影部分面积比三角形ADH的面积大8平方厘米,那么AH长厘米.3 甲、乙、丙、丁四人分扑克牌(共54张),从甲开始,按甲3张、乙2张、丙1张、丁2张的顺序发牌,那么最后一张牌发给了.4 如果按一定规律排出的加法算式是:3+4,5+9,7+14,9+19,11+24,…,那么,第10个算式中前后两个加数分别是和;第80个算式是.5 5箱苹果比3箱梨重27千克,而2箱梨比1箱苹果重17千克,每箱苹果重千克.6 已知a、b、c是三个不同的质数,并且2a+3b+6c=42,则a+b+c= .7 甲、乙两人分别从A、B 两地同时出发相向而行,甲的速度是每分钟60米,乙的速度是每分钟100米,两人有途中的C地相遇,相遇后继续分别走到B地和A地后又扭头往回走,结果在距离C地1000米处两人第2次相遇,那么AB两地相距米.8 如果两个自然数相除,商是4,余数是3,被除数、除数、商、余数的和为100,那被除数是.9 甲、乙、丙三人的铅笔一样多,后来甲给了乙、丙几支铅笔后,乙比甲多7支铅笔.丙比乙少2支铅笔,则甲给了乙支铅笔,甲给了丙支铅笔.10 用八个数字2、2、3、3、4、5、6、7组成两个四位数,使得它们的和是6116,那么其中较大的四位数的最大可能值是.二、解答题(每小题20分,共60分)11 体育场入场券30元一张,若降价后观众人数增加一半,收入增加1,问:每张入场券降价多少元?412 有三块草地,面积分别为5公顷、15公顷和24公顷,草地上的草一样厚,而且长得一样快,第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问:第三块草地可供多少头牛吃80天?13 饲养员给三群猴子分花生,如果只分给第一群,则每只猴子可分得12粒;如果只分给第二群,则每只猴子可分得15粒;如果只分给第三群,则每只猴子可分得20粒.若平均分给三群猴子,则每只猴子可分得多少粒花生?。

五年级数学竞赛综合练习1-8

五年级数学竞赛综合练习1-8

五年级数学竞赛综合练习(一)姓名姓名得分1、找规律:0、1、3、8、21、()、144。

2、如果△+△+△-□-□=12,□+□+□-△-△=2。

那么△=(),□=()。

3、王叔叔买了3千克荔枝和4千克桂圆,共付156元。

已知5千克荔枝的价钱等于2千克桂圆的价钱。

每千克荔枝()元,每千克桂圆()元。

4、将0、1、3、5、6、8、9这七个数字填在圆圈和方框里,每个数字恰好出现一次,组成一个整数算式。

○×○=□=○÷○5、用长18厘米的铁丝围成各种长方形,要求长和宽的长度都是整厘米数,围成的长方形的面积最大是()平方厘米。

6、1+2-3+4+5-6+7+8-9+……+58+59-60=()。

7、被减数、减数、差相加得2076,差是减数的一半。

如果被减数不变,差增加42,减数应变为()。

8、两数相除,商是4,余数是10。

如果被除数和除数同时扩大50倍,商是(),余数是()。

9、小明在计算除法时,把被除数1350写成1305,结果得到商是52,余数是5,正确的商应该是()。

10、从1——8这八个数中,每次取两个数,要使它们的和大于8,有()种取法。

11、城东小学有篮球、足球和排球共95只,其中足球比排球少5只,排球的只数是篮球只数的2倍。

篮球有()只,足球有()只,排球有()只。

12、有一幢10层的大楼,由于停电电梯停开,某人从1层走到3层需要30秒,照这样计算,他从3层走到10层需要()秒。

13、一个长方形的木板,如果长减少5分米,宽减少2分米,那么它的面积就减少66平方分米,这时剩下的部分恰好是一个正方形,原来长方形的面积是()平方分米。

14、假期里有一些同学相约每两人互通一次电话,他们一共打了78次电话,问有()位同学相约互通电话。

15、数一数下图中共有()个三角形。

16、A、B两城相距300千米,摩托车行完全程要5小时,自行车要25小时,王亮从A 城出发,先骑自行车5小时,后改骑摩托车。

北京市东城区2024届高三下学期综合练习(一)(一模)数学试题(含答案与解析)_4942

北京市东城区2024届高三下学期综合练习(一)(一模)数学试题(含答案与解析)_4942

北京市东城区2023~2024学年度第二学期高三综合练习(一)数学本试卷共6页,150分.考试时长120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是( )A. A B ⋂B. A B ⋃C. ()U A B ⋂ðD. ()U A B ⋃ð2. 已知,R,0a b ab ∈≠,且a b <,则( ) A.11a b> B. 2ab b < C. 33a b <D. lg lg a b <3. 已知双曲线221x my -=的离心率为2,则m =( ) A 3B.13C. 3-D. 13-4. 设函数()11ln f x x=+,则( ) A. ()12f x f x ⎛⎫+=⎪⎝⎭ B. ()12f x f x ⎛⎫-=⎪⎝⎭C. ()12f x f x ⎛⎫= ⎪⎝⎭D. ()12f x f x ⎛⎫= ⎪⎝⎭.5. 已知函数()sin cos (0,0)f x t x x t ωωω=+>>的最小正周期为π,则函数()f x 的图象( )A. 关于直线π4x =-对称B. 关于点π,04⎛⎫-⎪⎝⎭对称 C. 关于直线π8x =对称 D. 关于点π,08⎛⎫⎪⎝⎭对称 6. 已知443243210()x m a x a x a x a x a +=++++,若0123481++++=a a a a a ,则m 的取值可以为( ) A. 2B. 1C. 1-D. 2-7. 《天工开物》是我国明代科学家宋应星所著的一部综合性科学技术著作,书中记载了一种制造瓦片的方法.某校高一年级计划实践这种方法,为同学们准备了制瓦用的粘土和圆柱形的木质圆桶,圆桶底面外圆的直径为20cm ,高为20cm .首先,在圆桶的外侧面均匀包上一层厚度为2cm 的粘土,然后,沿圆桶母线方向将粘土层分割成四等份(如图),等粘土干后,即可得到大小相同的四片瓦.每位同学制作四片瓦,全年级共500人,需要准备的粘土量(不计损耗)与下列哪个数字最接近.(参考数据:π 3.14≈)( )A 30.8mB. 31.4mC. 31.8mD. 32.2m8. 设等差数列{}n a 公差为d ,则“10a d <<”是“{}na n为递增数列”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件D. 既不充分也不必要条件9. 如图1,正三角形ABD 与以BD 为直径的半圆拼在一起,C 是弧BD的中点,O 为ABD △的中心.现将ABD △沿BD 翻折为1A BD ,记1A BD 的中心为1O ,如图2.设直线1CO 与平面BCD所成的角为.的θ,则sin θ的最大值为( )A.13B.12C.D.10. 已知()f x 是定义在R 上的函数,其图象是一条连续不断的曲线,设函数()()()()a f x f a g x a x a-=∈-R ,下列说法正确的是()A. 若()f x 在R 上单调递增,则存在实数a ,使得()a g x 在(),a ∞+上单调递增B. 对于任意实数a ,若()a g x 在(),a ∞+上单调递增,则()f x 在R 上单调递增C. 对于任意实数a ,若存在实数10M >,使得()1f x M <,则存在实数20M >,使得()2a g x M <D. 若函数()a g x 满足:当(),x a ∞∈+时,()0a g x ≥,当(),x a ∞∈-时,()0a g x ≤,则()f a 为()f x 的最小值第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11. 若复数1i iz +=,则z =_________.12. 设向量()()1,,3,4a m b ==- ,且a b a b ⋅=,则m =______. 13. 已知角,αβ的终边关于直线y x =对称,且()1sin 2αβ-=,则,αβ的一组取值可以是α=______,β=______.14. 已知抛物线21:4C y x =的焦点为1F ,则1F 的坐标为______;抛物线22:8C y x =的焦点为2F ,若直线()0y m m =≠分别与12,C C 交于,P Q 两点;且121PF QF -=,则PQ =______.15. 已知数列{}n a 的各项均为正数,满足21n n n a ca a +=+,其中常数c ∈R .给出下列四个判断:①若11,0a c =<,则()121n a n n <≥+; ②若1c =-,则()121n a n n <≥+; ③若()1,2n c a n n =>≥,则11a >; ④11a =,存实数c ,使得()2n a n n >≥. 其中所有正确判断的序号是______.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在ABC中,cos cos cos a C c A B +=. (1)求B ∠;(2)若12,a D =为BC 边的中点,且3AD =,求b 的值.17. 某中学为了解本校高二年级学生阅读水平现状,从该年级学生中随机抽取100人进行一般现代文阅读速度的测试,以每位学生平均每分钟阅读的字数作为该学生的阅读速度,将测试结果整理得到如下频率分布直方图:(1)若该校高二年级有1500人,试估计阅读速度达到620字/分钟及以上的人数;(2)用频率估计概率,从该校高二学生中随机抽取3人,设这3人中阅读速度达到540字/分钟及以上的人数为X ,求X 的分布列与数学期望()E X ;(3)若某班有10名学生参加测试,他们的阅读速度如下:506,516,553,592,617,632,667,693,723,776,从这10名学生中随机抽取3人,设这3人中阅读速度达到540字/分钟及以上的人数为Y ,试在判断数学期望()E Y 与(2)中的()E X 的大小.(结论不要求证明) 18. 如图,在五面体ABCDEF 中,底面ABCD 为正方形,4,1AB EF ==.(1)求证://AB EF ;(2)若H 为CD 的中点,M 为BH的中点,,EM BH EM ⊥=,再从条件①、条件②这两个条件中选择一个作为已知,求直线CF 与平面ADE 所成角的正弦值. 条件①:ED EA =; 条件②:5AE =.注:如果选择条件①和条件②分别解答,按第一个解答计分 19. 已知函数()()ln 1f x x x =-.(1)求曲线()y f x =在2x =处的切线方程; (2)设()()g x f x '=,求函数()g x 的最小值;(3)若()2f x x a>-,求实数a 的值. 20. 已知椭圆2222:1(0)x y C a b a b +=>>短轴长为e =(1)求椭圆C 的方程;(2)设O 为坐标原点,直线l 是圆221x y +=的一条切线,且直线l 与椭圆C 交于,M N 两点,若平行四边形OMPN 的顶点P 恰好在椭圆C 上,求平行四边形OMPN 的面积.21. 有穷数列12,,,(2)n a a a n > 中,令()()*1,1,,p p q S p q a a a p q n p q +=+++≤≤≤∈N ,(1)已知数列3213,,,--,写出所有的有序数对(),p q ,且p q <,使得(),0S p q >;(2)已知整数列12,,,,n a a a n 为偶数,若(),11,2,,2n S i n i i ⎛⎫-+= ⎪⎝⎭,满足:当i 为奇数时,的(),10S i n i -+>;当i 为偶数时,(),10S i n i -+<.求12n a a a +++ 的最小值;(3)已知数列12,,,n a a a 满足()1,0S n >,定义集合(){}1,0,1,2,,1A i S i n i n =+>=- .若{}()*12,,,k A i i i k =∈N 且为非空集合,求证:()121,k i i i S n a a a >+++ .参考答案一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 如图所示,U 是全集,,A B 是U 的子集,则阴影部分所表示的集合是( )A. A B ⋂B. A B ⋃C. ()U A B ⋂ðD. ()U A B ⋃ð【答案】D 【解析】【分析】由给定的韦恩图分析出阴影部分所表示的集合中元素满足的条件,再根据集合运算的定义即可得解.【详解】由韦恩图可知阴影部分所表示的集合是()U A B ð. 故选:D.2. 已知,R,0a b ab ∈≠,且a b <,则( ) A.11a b> B. 2ab b < C. 33a b <D. lg lg a b <【答案】C 【解析】【分析】举出反例即可判断ABD ,利用作差法即可判断C. 【详解】当2,1a b =-=时,11,lg >lg a b a b<,故AD 错误; 当2,1a b =-=-时,221ab b =>=,故B 错误;对于C ,因a b <,所以0a b -<,因为0ab ≠,所以0a ≠且0b ≠,为则()()()3322213024a b a b a ab ba b a b b ⎡⎤⎛⎫-=-++=-++< ⎪⎢⎥⎝⎭⎣⎦, 所以33a b <,故C 正确. 故选:C.3. 已知双曲线221x my -=的离心率为2,则m =( ) A. 3 B.13C. 3-D. 13-【答案】B 【解析】【详解】由双曲线221x my -=可得:2211,a b m==,2c e a ====,所以13m =,故选:B . 4. 设函数()11ln f x x=+,则( ) A. ()12f x f x ⎛⎫+=⎪⎝⎭ B. ()12f x f x ⎛⎫-=⎪⎝⎭ C. ()12f x f x ⎛⎫= ⎪⎝⎭D. ()12f x f x ⎛⎫=⎪⎝⎭【答案】A 【解析】【分析】根据函数解析式,分别计算即可得解.【详解】函数()11ln f x x=+的定义域为()()0,11,+∞ , 对于A ,()1111111221ln ln ln lnf x f x x x x x⎛⎫+=+++=++= ⎪-⎝⎭,故A 正确; 对于B ,()111112111ln ln ln ln lnf x f x x x x x x⎛⎫-=+--=--=⎪-⎝⎭,故B 错误; 对于CD ,当e x =时,()11112,1011f x f x ⎛⎫=+==+= ⎪-⎝⎭,故CD 错误. 故选:A.5. 已知函数()sin cos (0,0)f x t x x t ωωω=+>>的最小正周期为π,则函数()f x 的图象( )A. 关于直线π4x =-对称B. 关于点π,04⎛⎫-⎪⎝⎭对称 C. 关于直线π8x =对称 D. 关于点π,08⎛⎫⎪⎝⎭对称 【答案】C 【解析】【分析】先利用辅助角公式化一,再根据周期性求出ω,根据最值求出t ,再根据正弦函数的对称性逐一判断即可.【详解】()()sin cos f x t x x x ωωωϕ=+=+,其中1tan tϕ=,因为函数的最小正周期为π, 所以2ππω=,解得2ω=,,=1t =(1t =-舍去),所以()πsin 2cos 224x x x f x ⎛⎫=+=+ ⎪⎝⎭,因为ππ144f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 所以函数图象不关于直线π4x =-对称,也不关于点π,04⎛⎫- ⎪⎝⎭对称,故AB 错误;因为ππ82f ⎛⎫== ⎪⎝⎭,所以函数图象关于直线π8x =对称,不关于点π,08⎛⎫⎪⎝⎭对称,故C 正确,D 错误.故选:C .6. 已知443243210()x m a x a x a x a x a +=++++,若0123481++++=a a a a a ,则m 取值可以为( ) A. 2 B. 1 C. 1- D. 2-【答案】A 【解析】【分析】借助赋值法计算即可得.【详解】令1x =,有()443210118m a a a a a ++++==+, 即2m =或4m =-. 故选:A.7. 《天工开物》是我国明代科学家宋应星所著的一部综合性科学技术著作,书中记载了一种制造瓦片的方法.某校高一年级计划实践这种方法,为同学们准备了制瓦用的粘土和圆柱形的木质圆桶,圆桶底面外圆的直径为20cm ,高为20cm .首先,在圆桶的外侧面均匀包上一层厚度为2cm 的粘土,然后,沿圆桶母线方向将粘土层分割成四等份(如图),等粘土干后,即可得到大小相同的四片瓦.每位同学制作四片瓦,全年级共500人,需要准备的粘土量(不计损耗)与下列哪个数字最接近.(参考数据:π 3.14≈)( )A. 30.8mB. 31.4mC. 31.8mD. 32.2m【答案】B 【解析】【分析】结合圆柱体积公式求出四片瓦体积,再求需准备的粘土量.【详解】由条件可得四片瓦的体积22π1220π1020880πV =⨯⨯-⨯⨯=(3cm ) 所以500名学生,每人制作4片瓦共需粘土的体积为500880π440000π⨯=(3cm ), 又π 3.14≈,的的所以共需粘土的体积为约为31.3816m , 故选:B.8. 设等差数列{}n a 的公差为d ,则“10a d <<”是“{}na n为递增数列”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】【分析】利用等差数列通项公式求出na n,再利用单调数列的定义,结合充分条件、必要条件的意义判断即得.【详解】由等差数列{}n a 的公差为d ,得1n a a d nd =-+,则1n a a d d n n-=+, 当10a d <<时,10a d -<,而111n n >+,则111a d a d n n --<+,因此11n n a a n n +<+,{}n a n为递增数列;当{}n a n为递增数列时,则11n n a a n n +<+,即有111a d a dn n --<+,整理得1a d <,不能推出10a d <<,所以“10a d <<”是“{}n an为递增数列”的充分不必要条件.故选:A9. 如图1,正三角形ABD 与以BD 为直径的半圆拼在一起,C 是弧BD的中点,O 为ABD △的中心.现将ABD △沿BD 翻折为1A BD ,记1A BD 的中心为1O ,如图2.设直线1CO 与平面BCD 所成的角为θ,则sin θ的最大值为( )A.13B.12C.D.【答案】C 【解析】【分析】结合题意,可得1EO EC =1CO 在平面BCD 的投影为直线CE,借助正弦定理计算可得tan θ=tan θ的最大值即可得sin θ的最大值.【详解】取BD 中点E ,连接CE ,1A E ,由三角形ABD 为正三角形,故1O 在线段1A E 上,且1113EO A E BD ===,即1EO EC =, 由题意可得BD EC ⊥,1BD A E ⊥,1A E 、EC ⊂平面1ECO ,1A E EC E = , 故BD ⊥平面1ECO ,又1CO ⊂平面1ECO ,故直线1CO 在平面BCD 的投影为直线CE , 即1ECO θ=∠,则有()111sin sin sin sin πEO EC CO E O EC θθθ===∠--∠,整理可得tan θ=()10,πO EC ∠∈,令()()0,πf x x =∈,()f x ==',故当cos x ⎛∈- ⎝时,()0fx '<,当cos x ⎫∈⎪⎪⎭时,()0f x '>,令()00,πx ∈,且0cos x =,则0sin x ==, 则()f x 在()00,x 上单调递增,在()0,πx 上单调递减,即()f x 有最大值()0f x ===即tan θ,则sin θ=故选:C.【点睛】关键点点睛:本题关键点在于借助正弦定理表示出θ与1O EC ∠的关系,通过导数计算出tan θ的最大值从而得到sin θ的最大值.10. 已知()f x 是定义在R 上的函数,其图象是一条连续不断的曲线,设函数()()()()a f x f a g x a x a-=∈-R ,下列说法正确的是()A. 若()f x 在R 上单调递增,则存在实数a ,使得()a g x 在(),a ∞+上单调递增B. 对于任意实数a ,若()a g x 在(),a ∞+上单调递增,则()f x 在R 上单调递增C. 对于任意实数a ,若存在实数10M >,使得()1f x M <,则存在实数20M >,使得()2a g x M <D. 若函数()a g x 满足:当(),x a ∞∈+时,()0a g x ≥,当(),x a ∞∈-时,()0a g x ≤,则()f a 为()f x 的最小值【答案】D 【解析】【分析】首先理解函数()a g x 表达的是函数()f x 图像上两点割线的斜率,当x a →时,表示的为切线斜率,然后举反例设()f x x =可判断A 错误;设()2f x x =可得B 错误;设()sin f x x =可得C 错误;由函数单调性的定义可以判断D 正确. 【详解】函数()()()()a f x f a g x a x a-=∈-R 表达的是函数()f x 图象上两点割线的斜率,当x a →时,表示的为切线斜率;所以对于A :因为()f x 是定义在R 上的函数,其图象是一条连续不断的曲线,且()f x 在R 上单调递增, 所以设()f x x =,则()f a a =,此时()()()()1a f x f a x ag x a x ax a--===∈--R 为常数,即任意两点的割线的斜率为常数,故A 错误; 对于B :设()2f x x =,由图象可知,当x ∈R 时,随x 增大,点()(),x f x 与点()(),a f a 连线的割线斜率越来越大,即单调递增,但()f x 在R 不是单调函数,故B 错误;对于C :因为对于任意实数a 存在实数10M >,使得()1f x M <,说明()f x 为有界函数,所以设()sin f x x =,但割线的斜率不一定有界,如图当0x +→时,割线的斜率趋于正无穷,故C 错误;对于D :因为函数()a g x 满足:当(),x a ∞∈+时,()0a g x ≥, 即()()()()()()()00,a f x f a g x f x f a x a x a x a-⎡⎤=≥⇒--≥≠⎣⎦-,因为x a >,0x a ->,所以()()f x f a ≥; 同理,当(),x a ∞∈-时,()0a g x ≤, 即()()()()()()()00,a f x f a g x f x f a x a x a x a-⎡⎤=≤⇒--≤≠⎣⎦-,因为x a <,0x a -<,所以()()f x f a ≥; 所以()f a 为()f x 的最小值,故D 正确;故选:D.【点睛】关键点点睛:本题关键在于理解函数()a g x 表达的是函数()f x 图像上两点割线的斜率,当x a →时,表示的为切线斜率,然后通过熟悉的函数可逐项判断.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11. 若复数1i iz +=,则z =_________.【解析】 【分析】利用复数的除法法则将复数表示为一般形式,然后利用复数的模长公式可计算出z 的值.【详解】()()21111i i i z i i i i i++===-+=- ,因此,z ==..【点睛】本题考查复数模的计算,同时也考查了复数的除法运算,考查计算能力,属于基础题.12. 设向量()()1,,3,4a m b ==- ,且a b a b ⋅=,则m =______.【答案】43-##113- 【解析】【分析】根据数量积的定义,向量共线的坐标表示,结合已知条件,求解即可. 【详解】设,a b的夹角为θ,cos a b a b a b θ⋅== ,故cos 1θ=,又[]0,πθ∈,故0θ=,,a b方向相同, 又()()1,,3,4a m b ==- ,则43m -=,解得43m =-,满足题意.故答案为:43-.13. 已知角,αβ的终边关于直线y x =对称,且()1sin 2αβ-=,则,αβ的一组取值可以是α=______,β=______.【答案】 ①.π3(答案不唯一,符合题意即可) ②. π6(答案不唯一,符合题意即可) 【解析】【分析】由角,αβ的终边关于直线y x =对称,可得π2π2k αβ+=+,再由()1sin 2αβ-=可得ππ6k β=+或ππ6k β=-+,即可求出答案. 【详解】因为角,αβ的终边关于直线y x =对称, 则π2π2k αβ+=+,Z k ∈,则π2π2k αβ=-+, 因为()1sin 2αβ-=,所以ππ1sin 2πsin 22πcos 2222k k ββββ⎛⎫⎛⎫-+-=-+== ⎪ ⎪⎝⎭⎝⎭,所有π22π3k β=+或π22π3k β=-+,Z k ∈, 解得:ππ6k β=+或ππ6k β=-+,Z k ∈,取0k =,β的一个值可以为π6,α的一个值可以为π3.故答案为:π3(答案不唯一,符合题意即可);π6(答案不唯一,符合题意即可).14. 已知抛物线21:4C y x =的焦点为1F ,则1F 的坐标为______;抛物线22:8C y x =的焦点为2F ,若直线()0y m m =≠分别与12,C C 交于,P Q 两点;且121PF QF -=,则PQ =______.【答案】 ①. ()1,0 ②. 2【解析】【分析】根据抛物线的方程即可得出焦点坐标,根据抛物线的定义求出12,PF QF ,进而可得出PQ . 【详解】由抛物线21:4C y x =,可得()11,0F ,设()()1122,,,P x y Q x y , 则11221,2PF x QF x =+=+,故121211PF QF x x -=--=,所以122x x -=, 所以122PQ x x =-=.故答案为:()1,0;2.15. 已知数列{}n a 的各项均为正数,满足21n n n a ca a +=+,其中常数c ∈R .给出下列四个判断:①若11,0a c =<,则()121n a n n <≥+; ②若1c =-,则()121n a n n <≥+; ③若()1,2n c a n n =>≥,则11a >; ④11a =,存在实数c ,使得()2n a n n >≥. 其中所有正确判断的序号是______. 【答案】②③④ 【解析】【分析】①直接取13c =-找矛盾;②通过21111111n n nn n n a a a a a a ++⇒=--=>-+,利用累加法求n a 的范围;③假设11a ≤找矛盾;④取2c =,根据函数单调性来确定其成立.【详解】对于①:若11,0a c =<,则21211ca c a a =+=+,当13c =-时,223a =,与213a <矛盾,①错误;对于②:若1c =-,则210n n n a a a +=-+>,所以01n a <<,又2112a a a =-+,若12113a a <-+,该不等式恒成立,即2013a <<, 由()2111111*********n n n n n n n nn n n n a a a a a a a a a a a a ++++⇒=⇒=+⇒-=--=--+由于01n a <<,所以111na >-, 所以1111n n a a +->,所以3n ≥时,11232111111111nn n n a a a a a a ---⎧->⎪⎪⎪->⎪⎨⎪⎪⎪->⎪⎩ ,累加得2112n n a a ->-, 所以2112231n n n n a a >-+>-+=+,所以()131n a n n <≥+, 综合得()121n a n n <≥+,②正确; 对于③:若()1,2n c a n n =>≥,21n n n a a a +=+,假设11a ≤,则21122a a a =+≤,与22a >矛盾,故11a >,③正确;对于④:当11a =时,若2c =,则212n n n a a a +=+,此时2121232a a a =+=>,根据二次函数22y x x =+可得其在()0,∞+上单调递增,并增加得越来越快,但是函数y x =在()0,∞+上单调递增,但增加速度恒定,故在22a >的情况下,n a n >必成立,即存在实数c ,使得()2n a n n >≥,④正确,故答案为:②③④.【点睛】方法点睛:对于数列判断题,我们可以通过赋值,举例的方法对选项进行确认和排除.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16. 在ABC中,cos cos cos a C c A B +=. (1)求B ∠;(2)若12,a D =为BC 边的中点,且3AD =,求b 的值. 【答案】(1)π6; (2)【解析】【分析】(1)由正弦定理可得sin()cos A C B B +=,结合三角和为π及诱导公式可得cos B =,即可得答案;(2)在ABD △中,由正弦定理可求得π2BAD ∠=,从而可得AB =ABC 中,利用余弦定理求解即可. 【小问1详解】解:因为cos cos cos a C c A B +=,由正弦定理可得sin cos sin cos cos A C C A B B +=,即sin()cos A C B B +=,sin(π)sin cos B B B B -==, 又因为sin 0B ≠,所以1B =,解得cos B =,又因为(0,π)B ∈, 所以π6B =; 【小问2详解】解:因为D 为BC 边的中点,12a =, 所以6BD CD ==, 设BAD θ∠=,在ABD △中,由正弦定理可得sin sin BD ADBθ=, 即6361sin 2θ==,解得sin 1θ=, 又因为(0,π)θ∈,所以π2θ=,在Rt △ABD 中,AB ===在ABC 中,π12,6AB BC B ===,由余弦定理可得:2222cos 1442721263AC AB BC AB AC B =+-⋅⋅=+-⨯⨯=,所以AC =即b =17. 某中学为了解本校高二年级学生阅读水平现状,从该年级学生中随机抽取100人进行一般现代文阅读速度的测试,以每位学生平均每分钟阅读的字数作为该学生的阅读速度,将测试结果整理得到如下频率分布直方图:(1)若该校高二年级有1500人,试估计阅读速度达到620字/分钟及以上的人数;(2)用频率估计概率,从该校高二学生中随机抽取3人,设这3人中阅读速度达到540字/分钟及以上的人数为X ,求X 的分布列与数学期望()E X ;(3)若某班有10名学生参加测试,他们的阅读速度如下:506,516,553,592,617,632,667,693,723,776,从这10名学生中随机抽取3人,设这3人中阅读速度达到540字/分钟及以上的人数为Y ,试判断数学期望()E Y 与(2)中的()E X 的大小.(结论不要求证明) 【答案】(1)600(2)分布列见解析,() 2.4E X =(3)()()E X E Y =【解析】【分析】(1)借助频率分布直方图计算即可得;(2)借助频率分布直方图可得阅读速度达到540字/分钟及以上的概率,得到X 的可能取值及其对应概率即可得,再计算期望即可; (3)借助期望计算公式计算即可得. 【小问1详解】()15000.003750.0010.0002580600⨯++⨯=,故可估计阅读速度达到620字/分钟及以上的人数为600人; 【小问2详解】从中任取一人,其阅读速度达到540字/分钟及以上的概率为:()0.0050.003750.0010.00025800.8+++⨯=,X 的可能取值为0、1、2、3,()0330C 0.20.008P X ==⨯=, ()1231C 0.80.20.096P X ==⨯⨯=, ()2232C 0.80.20.384P X ==⨯⨯=, ()0333C 0.80.512P X ==⨯=,则其分布列为:X12 3P0.008 0.0960.384 0.512其期望为:()30.8 2.4E X =⨯=; 【小问3详解】()()E X E Y =,理由如下:这10名学生中,阅读速度达到540字/分钟及以上的人数为8人,Y 的可能取值为1、2、3,()1282310C C 811C 12015P Y ====,()2182310C C 5672C 12015P X ====,()3082310C C 5673C 12015P X ====,则()177123 2.4151515E Y =⨯+⨯+⨯=, 故()()E X E Y =.18. 如图,在五面体ABCDEF 中,底面ABCD 为正方形,4,1AB EF ==.(1)求证://AB EF ;(2)若H 为CD 的中点,M 为BH的中点,,EM BH EM ⊥=,再从条件①、条件②这两个条件中选择一个作为已知,求直线CF 与平面ADE 所成角的正弦值. 条件①:ED EA =; 条件②:5AE =.注:如果选择条件①和条件②分别解答,按第一个解答计分 【答案】(1)证明见解析(2【解析】【分析】(1)先证明//AB 平面EFCD ,再利用线面平行的性质证明//AB EF ;(2)选①②:证明 EM ⊥平面ABCD ,建立以M 为原点的空间坐标系,求出平面ADE 的法向量,利用线面角公式求解 【小问1详解】证明:底面ABCD 为正方形,则//AB CD ,又AB ⊄平面EFCD ,CD ⊂平面EFCD , 则//AB 平面EFCD ,又平面EFCD 平面EFBA EF =,AB ⊂平面EFBA ,故//AB EF . 【小问2详解】选①,取AD 中点G ,连接,EG MG ,因为ED EA =,所以EG AD ⊥, 易知GM 为梯形ABHD 的中位线,则MG AD ⊥,又,,MG EG G MG EG ⋂=⊂平面EGM ,故AD ⊥平面EGM ,EM ⊂平面EGM ,则,,AD EM EM BH ⊥⊥,AD BH ⊂平面ABCD ,且,AD BH 必相交,故EM ⊥平面ABCD , 延长GM 交BC 于P ,则P 为中点,易得//,EF MP EF MP =,故EFPM 为矩形.以M 为原点,EM 所在直线为z 轴,MG 所在直线为x 轴,过M 作CB 平行线为y 轴,建立空间直角坐标系如图:则()()()((3,2,0,3,2,0,1,2,0,0,0,0,1,A D C E F ----,,则()0,4,0AD =-,(3,2,AE =--,(1,1,CF = ,设平面ADE 的法向量为(),,m x y z =,则00m AD m AE ⎧⋅=⎪⎨⋅=⎪⎩,即40320y x y -=⎧⎪⎨--+=⎪⎩,令x =()m = , 设直线CF 与平面ADE所成角为,sin cos ,m CF θθ===选②:取AD 中点G , 连接GM ,易知GM 为梯形ABHD 的中位线,3GM =,则AM =5AE =,EM =,则222AE EM AM =+,故,EM AM ⊥ 又,,,EM BH AM BH M AM BH ⊥⋂=⊂平面ABCD ,故EM ⊥平面ABCD , 延长GM 交BC 于P ,则P 为中点,易得//,EF MP EF MP =,故EFPM 为矩形.以M 为原点,EM 所在直线为z 轴,MG 所在直线为x 轴,过M 作CB 平行线为y 轴,建立空间直角坐标系如图:则()()()((3,2,0,3,2,0,1,2,0,0,0,0,1,A D C E F ----,,则()0,4,0AD =-,(3,2,AE =--,(1,1,CF = ,设平面ADE 的法向量为(),,m x y z =,则00m AD m AE ⎧⋅=⎪⎨⋅=⎪⎩,即40320y x y -=⎧⎪⎨--+=⎪⎩,令x =()m = , 设直线CF 与平面ADE所成角为,sin cos ,m CF θθ===19. 已知函数()()ln 1f x x x =-.(1)求曲线()y f x =在2x =处的切线方程; (2)设()()g x f x '=,求函数()g x 的最小值;(3)若()2f x x a>-,求实数a 的值. 【答案】(1)24y x =-(2)2(3)2a = 【解析】【分析】(1)求导,再根据导数的几何意义即可得解;(2)利用导数求出函数()g x 的单调区间,进而可求出最小值;(3)分1a ≤和1a >两种情况讨论,在1a >时,再分x a >和1x a <<两种情况讨论,分离参数,构造函数并求出其最值,即可得解. 【小问1详解】()()()ln 111xf x x x x '=-+>-, 则()()22,20f f '==,所以曲线()y f x =在2x =处的切线方程为()22y x =-,即24y x =-; 【小问2详解】()()()()ln 111xg x f x x x x '==-+>-, ()()()22112111x x x g x x x x ---'=+=---, 当12x <<时,()0g x '<,当2x >时,()0g x '>,所以函数()g x ()1,2上单调递减,在()2,+∞上单调递增, 所以()()min 22g x g ==; 【小问3详解】函数()f x 的定义域为()1,+∞, 当1a ≤时,0x a ->, 则()2f x x a>-,即()()2f x x a >-, 即()22a f x x -<-, 由(2)得()2f x '≥,令()()2h x f x x =-,则()()()201h x f x x ''=-≥>, 所以()h x 在()1,+∞上单调递增, 又当1x →时,()h x →-∞, 因为1a ≤,所以22a -≥-,此时()22a f x x -<-不恒成立,故1a ≤不符题意; 当1a >时,若x a >,则0x a ->, 则()2f x x a>-,即()()2f x x a >-,即()22a f x x -<-, 由上可知函数()()2h x f x x =-在(),a +∞上单调递增, 所以()()()()ln 12h x h a a a a x a >=-->,在所以()2ln 12a a a a -≤--,解得2a ≥①,若1x a <<,则()2f x x a>-,即()()2f x x a <-,即()22a f x x ->-, 由上可知函数()()2h x f x x =-在()1,a 上单调递增, 所以()()()()ln 1211h x h a a a a a <=--<<, 所以()2ln 12a a a a -≥--,解得2a ≤②, 由①②可得2a =, 综上所述,2a =.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:(1)通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; (2)利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.(3)根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.20. 已知椭圆2222:1(0)x y C a b a b +=>>的短轴长为e =(1)求椭圆C 的方程;(2)设O 为坐标原点,直线l 是圆221x y +=的一条切线,且直线l 与椭圆C 交于,M N 两点,若平行四边形OMPN 的顶点P 恰好在椭圆C 上,求平行四边形OMPN 的面积.【答案】(1)22163x y +=(2 【解析】【分析】(1)根据题意求出,a b ,即可得解;(2)分切线斜率是否存在两种情况讨论,当切线的斜率存在时,设切线方程为y kx m =+,先求出,k m 的关系,设()()1122,,,M x y N x y ,联立直线与椭圆的方程,利用韦达定理求出1212,x x x x +,进而可求得线段MN 的中点坐标,从而可求得点P 的坐标,再根据点P 在椭圆上,即可求得,k m ,再利用弦长公式求出MN ,即可得解.【小问1详解】由题意可得2222b ca ab c⎧=⎪⎪=⎨⎪=+⎪⎩,解得222633a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的方程为22163x y +=; 【小问2详解】当圆的切线斜率不存在时,切线方程为1x =±, 当切线方程为1x =时,由椭圆的对称性可得()2,0P , 因为4021633+=<,所以点()2,0P 不在椭圆上,不符题意, 当切线方程为=1x -时,由椭圆的对称性可得()2,0P -, 因为4021633+=<,所以点()2,0P -不在椭圆上,不符题意, 所以切线的斜率存在,设切线方程为y kx m =+,1=,所以221m k =+①,联立22163y kx m x y =+⎧⎪⎨+=⎪⎩,整理得()222214260k x kmx m +++-=,则()()()()()22222222Δ16421261614212160k m k m k kk k ⎡⎤=-+-=+-++->⎣⎦,解得R k ∈,设()()1122,,,M x y N x y ,则2121222426,2121km m x x x x k k -+=-=++, 故()()221212222221422212121m k k m m y y k x x m k k k ++=++=-+=+++,所以线段MN 的中点坐标为222,2121km m k k ⎛⎫-⎪++⎝⎭, 因为四边形OMPN 为平行四边形,所以2242,2121km m P k k ⎛⎫- ⎪++⎝⎭, 又因为点P 在椭圆C 上, 所以()()22222221641621321k m m k k +=++②,将①代入②得()()()()222222281411321321k k kk k+++=++,解得k =,所以m =所以MN =====,所以12212OMPN OMN S S ==⨯=. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.21. 有穷数列12,,,(2)n a a a n > 中,令()()*1,1,,p p q S p q a a a p q n p q +=+++≤≤≤∈N ,(1)已知数列3213,,,--,写出所有的有序数对(),p q ,且p q <,使得(),0S p q >; (2)已知整数列12,,,,n a a a n 为偶数,若(),11,2,,2n S i n i i ⎛⎫-+= ⎪⎝⎭,满足:当i 为奇数时,(),10S i n i -+>;当i 为偶数时,(),10S i n i -+<.求12n a a a +++ 的最小值;(3)已知数列12,,,n a a a 满足()1,0S n >,定义集合(){}1,0,1,2,,1A i S i n i n =+>=- .若{}()*12,,,k A i i i k =∈N 且为非空集合,求证:()121,k i i i S n a a a >+++ .【答案】(1)()1,4、()2,3、()2,4、()3,4(2)n 1-(3)证明见解析 【解析】【分析】(1)结合题意,逐个计算即可得;(2)由题意可得()1,0S n >,()2,10S n -<,可得当2n i ≠时,有12i n i a a -++≥,当2ni =时,1221n na a ++≥,结合11i n i i n i a a a a -+-++≥+,即可得解;(3)将()()121,k i i i S n a a a -+++ 展开,从而得到证明m i a 与1m i a +之间的项之和,1121i a a a -+++ ,112k k i i n a a a -+++++ 都为正数,即可得证.【小问1详解】(),p q ()1,4时,()(),321310S p q =-++-+=>, (),p q 为()2,3时,()(),2110S p q =+-=>, (),p q 为()2,4时,()(),21340S p q =+-+=>, (),p q 为()3,4时,()(),1320S p q =-+=>,故p q <,且使得(),0S p q >的有序数对有()1,4、()2,3、()2,4、()3,4; 【小问2详解】由题意可得()1,0S n >,()2,10S n -<,为又n a 为整数,故()1,1S n ≥,()2,11S n -≤-, 则()()11,2,12n S n S n a a --=+≥,同理可得()()212,13,22n S n S n a a ----=+≤-, 即有212n a a -+≥, 同理可得,当2ni ≠时,有12i n i a a -++≥, 即当2ni ≠时,有112i n i i n i a a a a -+-++≥+≥, 当2n i =时,122,1122n n n n S a a +⎛⎫+=+≥ ⎪⎝⎭,故()()12121122n n n n na a a a a a a a a -+⎛⎫+++=++++++ ⎪ ⎪⎝⎭()()121122n n n na a a a a a -+⎛⎫++++++ ⎪ ⎪⎝⎭≥ 22112n n -⎛⎫=+=- ⎪⎝⎭;【小问3详解】{}()*12,,,k A i i i k =∈N 时,当11i ≠时,()()()()2112111211211,k i i i i i i i S n a a a a a a a a a -++--+++=+++++++()()()22111312112112k k k k k i i i i i i i i n a a a a a a a a a ---++-++-+++++++++++++++ ,令m i A ∈且1m i A -∉,则有()1,0m S i n +>,(),0m S i n ≤, 又()1,0S n >,故()()1211,,0m m i S n S i n a a a --=+++> , 即有11210i a a a -+++> ,1120k k i i n a a a -+++++> ,令1m i A +∈且11m i A +-∉,则有()11,0m S i n ++>,()1,0m S i n +≤, 则()()111211,,0m m m i m m i i S i n S i n a a a ++++-+-=+++> ,即有()()()112212311211211210k k k i i i i i i i i i a a a a a a a a a --++-++-++-++++++++++++> ,故()()121,0k i i i S n a a a -+++> ,即()121,k i i i S n a a a >+++ , 当11i =时,()()()121211211,k i i i i i i S n a a a a a a ++--+++=+++()()()322111*********k k k k k i i i i i i i i n a a a a a a a a a ---++-++-+++++++++++++++> ,即()121,k i i i S n a a a >+++ 亦成立,即得证.【点睛】关键点点睛:本题最后一小问关键点在于将()()121,k i i i S n a a a -+++ 展开,从而得到证明m i a 与1m i a +之间的项之和,1121i a a a -+++ ,112k k i i n a a a -+++++ 都为正数,即可得证.。

六年级数学综合练习题及答案(一)

六年级数学综合练习题及答案(一)

广东省六年级数学综合练习题及答案(一)班级_______姓名_______分数_______一、直接写出得数(9分) 44÷1011= 0.8×0.875= 52÷(43+52)= 4×(0.6+1.9)= 87×865= 31÷94+31+41=7÷43×43÷7= 35×52×52×52= 145÷2110=二、用简便方法计算:(要写出简便过程) 43×54+53÷34 105×(31+51-71) 83×45+125%+0.625×1.25 127×118×143三、脱式计算:(16分) 116÷[52+(1-1110)] 32-(65-43)÷83[10 (5+125×2.4) ]÷201 32×(169-41)+31×165四、解方程。

(4分)X ×75%-21=4 52:X =54:60五、文字题:(6分) ① 一个数的125比87少32,这个数是多少?(用方程解)② 43除89的商,减去43的72,差是多少?六、判断题。

(4分,对的打“√”,错的打“×”)1.把实际长度扩大4000倍后画在图纸上,比例尺是1:4000。

( )2.一个铁圆柱体熔化后可以铸成三个和它等底等高的圆锥体。

( )3.把10克的糖溶解在100克水中,糖占糖水的10%。

( )4.食堂有大米53吨,吃去51后,还剩下52吨。

( )七、选择题。

(5分,把正确答案的序号填在括号里)1.一份稿件,小丽需12分钟打完,小华需16分钟。

小丽与小华工作效率的最简比是( )。

① 12 :16 ② 16 :12 ③ 4 :3 ④ 121 :1612.某工厂原来产品有601是废品,用新的机器后能减少损失51,现在废品占产品的( )。

小学数学数综合练习题

小学数学数综合练习题

小学数学数综合练习题第一节综合题1. 小明参加一个集体活动,他自己出了3张票,他的妈妈又帮他购买了5张票,他的爸爸又帮他购买了2张票。

请问小明一共有多少张票?2. 小红和小明一起做作业,小红花了3个小时做完作业,小明花了4个小时做完作业。

请问他们一共花了多长时间完成作业?3. 一块长方形的土地长50米,宽20米。

小明想用木板围起来,每块木板的长度为2米,宽度为0.5米。

请问他需要准备多少块木板才能完成围栏?4. 小明的体重是42千克,体重小于30千克的球类比赛不允许参与。

请问小明满足参与这个球类比赛的条件吗?5. 一辆小汽车每小时行驶60公里,小明骑自行车的速度是每小时25公里。

请问如果小明从A地骑车向北行驶2小时,从B地坐小汽车向北行驶2小时,他们会在哪里碰面?6. 小明和小红一起做数学题,小明解了3道题,小红解了4道题,他们的正确率分别是80%和90%,请问他们一共解了几道题,正确的题数分别是几道?第二节计算题1. (1) 计算 25 × 16(2) 计算 128 ÷ 82. (1) 计算 15 + 35 + 25 + 10(2) 计算 65 - 15 - 5 - 103. (1) 小明有40颗糖果,他把其中1/4的糖果分给朋友。

请问他分给朋友多少颗糖果?(2) 小红有100元钱,她把其中3/4的钱存入银行。

请问她存入银行多少钱?4. (1) 小明每天早上跑步,他每次跑5圈的操场。

请问他跑了6天,一共跑了多少圈?(2) 小红每天晚上读书,她每天读4页。

请问她读了8天,一共读了多少页?5. 有4个苹果和5个橙子,小明用其中2个苹果和3个橙子制作了果汁。

请问还剩下多少个苹果和橙子?第三节应用题1. 小明家有3个苹果树和5个橙子树,每棵苹果树每年结果10个苹果,每棵橙子树每年结果5个橙子。

请问每年小明家一共能收获多少个水果?2. 一桶水有3升,小明的水杯容量是200毫升。

请问小明至少需要喝几杯水才能喝满一桶水?3. 小明和小红一起做蛋糕,他们用2杯牛奶、3勺糖、4个鸡蛋和5杯面粉制作蛋糕。

2024年春学期九年级数学第一次综合练习

2024年春学期九年级数学第一次综合练习

2024年春学期第一次综合练习九年级数学试卷分值:150分 时间:120分钟一、选择题(本大题共8小题,每小题3分,共24分.) 1.实数-5的相反数是 ( ) A .-5B .51C .51-D .52.北京2022年冬奥会会徽如图所示,组成会徽的四个图案中是轴对称图形的是( )A .B .C .D .3.下列式子中,运算正确的是( )A .a+a=a 2B .a 6+a 2=a 3C .(a 3)2=a 6D .(a+2)2=a 2+44.下面不是正方体展开图的是( )A B C D5.今年的政府工作报告中指出:去年脱贫攻坚取得决定性成就,农村贫困人口减少 1109万.数字1109 万用科学记数法可表示为( )A .1.109×106B .1.109×107C .0.1109×108D .11.09×1066.正八边形的内角和为( )A .360°B .540°C .1080°D .720°7.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A. {4x +6y =383x +5y =48B. {4y +6x =483y +5x =38C. {4x +6y =485x +3y =38D. {4x +6y =483x +5y =388.如图,点A 、B 分别是反比例函数x k y 1=,xk y 2=图象上的点,当∠AOB =90°时tanA =2,则21k k 的值为( )A .41B .41-C .4D .-4二、填空题(本大题共有8小题,每小题3分,共24分。

) 9.因式分解:a 2-2a=______.10.一组数据2,0,2,1,5,1,8 的中位数为__________.11.中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机抽取了400个家长进行调查,结果有360个家长持反对态度.则这次调查的样本容量是____ 12.如图,圆锥的底面半径OC=1,高AO=3,则该圆锥的侧面积等于 .13.巳知某快递公司的收费标准为:寄一件物品不超过2千克,收费10元;超过2千克的部分每千克加收2元.小丽在该快递公司寄一件5千克的物品,需要付费________元.14.若点(m,y 1)(m+1,y 2)都在函数y=kx+b(k ≠0)的图像上,若y 1-y 2=3,则k=______. 15.有一张矩形纸片ABCD ,已知AB=2,AD=4,上面有一个以AD 为直径的半园(如图1),E 为边AB上一点,将纸片沿DE 折,A 点恰好落在BC 上,此时半圆还露在外面的部分(如图2,阴影部分)的面积是 ______.16.如图,已知点A (3,0)、B (-1,0)点Q 是y 轴上一点,当∠AQB =135°时点Q 的坐标是__________第12题图 第15题图 第16题图三、解答题 (本大题共有11小题,共102分) 17.(本题满分6分)计算: 30tan 3)21()2021(93+-+---π18.(本题满分6分)解不等式组⎪⎩⎪⎨⎧->++<-x x x x 38432519.(本题满分8分)20.(本题满分8分)如图,△ABC 的顶点都在网格点上,点M 的 坐标为(0,1).(1)以点M 为位似中心,把△ABC 按2:1放大,在y 轴的左 侧,画出放大后的△DEF ;(2)点A 的对应点D 的坐标是 ; (3)S △ABM :S 四边形ABED = .yC BAO21.(本题满分8分)放假期间,小明和小华准备到大众湖度假区(记为A)、东台森林公园(记为B)、欧风花街(记为C)的其中一个景点去游览,他们各自在这三个景点中任选一个,每个景点都被选中的可能性相同.(1)小明选择去大众湖度假区的概率是_______;(2)用树状图或列表的方法求小明和小华分别去不同景点游览的概率22.(本题满分10分)如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC (1)求证:△AEF≌△DCE.(2)若DE=5cm,矩形ABCD的周长为38cm,求AE的长.23.(本题满分10分)如图是我们日常生活中经常使用的订书器,AB是订书机的托板,压柄BC绕着点B4cm. 旋转,连接杆DE的一端点D固定,点E从A向B处滑动、在滑动过程中,DE的长保持不变、已知BD=2(1)如图1,当∠ABC=45°,BE=12cm时,求连接杆DE的长度;(结果保留根号)(2)现将压柄BC从图1的位置旋转到与底座AB垂直,如图2所示,求出此过程中,点E滑动的距离.(结果保根号)24.(本题满分10分)超市销售某种儿童玩具,如果每件利润为40 元(市场管理部门规定,该种玩具每件利润不能超过60 元),每天可售出50 件.根据市场调查发现,销售单价每增加 2 元,每天销售量会减少1 件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?25.(本题满分10分)如图,AB是⊙O 的直径,点D 、E 在⊙O 上,连接AE、ED、DA,使得∠DAC=∠AED.(1)求证:AC 是⊙O的切线;(2)若点E 是的中点,AE与BC交于点F,①求证:CA=CF;②若⊙O的半径为3,BF=2,求AC的长.26.(本题满分12分)【性质探究】如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE 平分∠BAC ,交BC 于点E .作DF ⊥AE 于点H ,分别交AB ,AC 于点F ,G .(1)判断△AFG 的形状并说明理由. (2)直接写出BF 与OG 的数量关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合练习一班级姓名一、单项选择题1.下列关于细胞中元素和化合物的叙述正确的是()A.构成有机物的最基本元素是氧B.DNA完全水解后可得到磷酸、核糖和碱基C.生物体生命活动的主要能源物质是糖类和蛋白质D.水和无机盐也承担着构建细胞、参与细胞生命活动的作用2.下列有关生物体内水和无机盐的叙述错误的是()A.细胞代谢过程中,叶绿体、核糖体和中心体中都有水生成B.水既是细胞内良好的溶剂,又是生物体内物质运输的主要介质C.无机盐离子对维持血浆的正常浓度和酸碱平衡等有重要作用D.镁是构成叶绿素的必需成分,植物缺乏镁时会导致叶片发黄3.下列有机物的鉴定实验中,导致实验失败的操作是()①脂肪鉴定时,花生子叶染色后,没有用酒精洗去浮色②蛋白质鉴定时,把A、B液混合后再加入蛋白质样液中③还原糖鉴定时,用60℃水浴加热④淀粉鉴定时,直接把碘液滴加到淀粉样液中⑤鉴定酵母菌是否产生酒精的实验中,直接把重铬酸钾加入到酵母菌培养液的滤液中A.①②⑤B.②④⑤C.③④⑤D.①②④4.一种植物和一种哺乳动物体内细胞的某些化学元素含量(占细胞干重的质量分数%)如下表数据,下列有关叙述正确的是()AB.这两种生物体内所含的化学元素的种类差异很大C.N、S含量说明动物组织含蛋白质较多,若该动物血钙高则会发生肌肉抽搐D.经测定该植物某有机物含C、H、O、N、S,此化合物可携带氨基酸进入核糖体5.2008年9月11日“三鹿假奶粉”被曝光,该奶粉中含有一种叫三聚氰胺的“假蛋白”化学物质,添加后能够造成蛋白质含量增高的假象。

正常蛋白质平均含N 16%,这些N 主要存在于蛋白质的()A.—CO—NH—B.游离的氨基C.游离的羧基D.R基6.有关下图中蛋白质的叙述,正确的是()A.含有两条肽链B.共有126个肽键C.R基中共含17个氨基D.形成该蛋白质时共脱掉125个水分子7.下图为核苷酸链的结构示意图,下列叙述不.正确的是()A.能构成一个完整核苷酸的是图中的aB.图中与每个五碳糖直接相连的磷酸有1个C.在一条核苷酸链中各核苷酸之间是通过化学键③连接起来的D.若该链为脱氧核苷酸链,从碱基组成上看,缺少的碱基是T8.由1分子磷酸、1分子碱基和1分子a构成了化合物b,如图所示,则下列叙述不.正确的是()A.组成化合物b的元素有C、H、O、N、P五种B.a属于不能水解的糖,是构成生物体的重要成分C.若a为核糖,则由b组成的核酸主要分布在细胞质中D.幽门螺杆菌体内含的化合物m共四种9.下列关于化合物的叙述,正确的是()A.纤维素是植物细胞壁的主要成分,它的基本组成单位是葡萄糖B.动物细胞间质的物质中主要成分是蛋白质,可用胃蛋白酶处理动物组织C.DNA是生物的主要遗传物质,它的组成元素有C、H、O、N,部分含S、PD.磷脂是细胞膜的主要成分,也是线粒体、中心体、叶绿体等生物膜的主要成分10.2011年4月的“阴性艾滋病”事件引发社会各界关注,由此加重了人们的“恐艾”心理。

关于艾滋病病毒(HIV),下列叙述正确的是()A.HIV是一种单细胞生物,在分类上属于原核生物B.由于HIV体内只有一种细胞器,所以其营寄生生活C.获取大量HIV的方法是将其接种在营养物质齐全的培养基上培养D.HIV的生命活动离不开最基本的生命系统11.细胞学说的建立过程是一个科学家探究、开拓、继承、修正和发展的过程,充满了耐人寻味的曲折。

下列说法正确的是()A.英国科学家虎克最终建立了细胞学说B.德国科学家施莱登和施旺是细胞的发现者和命名者C.德国科学家魏尔肖的名言是“所有的细胞都来源于先前存在的细胞”D.细胞学说揭示了生物的统一性和多样性12.观察细胞结构时,下列说法正确的是()A.低倍镜下物像清晰,换高倍镜后视野变暗,应首先调节细准焦螺旋B.用光学显微镜观察神经细胞,可以观察到核糖体,以及突触小体等结构C.视野中有异物,转动物镜发现异物不动,移动装片也不动,则异物在目镜上D.制作口腔上皮细胞装片时为防止产生气泡,首先在载玻片上滴加1~2滴清水,然后再盖载玻片13.组成生物体的细胞既具有多样性,又具有统一性。

下列关于细胞共性的描述中正确的是()A.组成细胞的生物大分子是相同的B.细胞都能进行分裂和分化C.原核细胞和真核细胞都具有的细胞器是核糖体D.进行光合作用的细胞都具有叶绿体14.在一普通锥形瓶中,加入含有酵母菌的葡萄糖溶液,如右图。

下图的相关坐标曲线图中,正确的表示是()A.①②③ B.②③④C.①③④D.①②④15.下列关于果醋制作的说法正确的是()A.醋酸菌是好氧菌,在制作过程中要一直打开发酵瓶B.在制作葡萄醋时,温度应严格控制在18~25℃C.当糖源不足时,醋酸菌先将酒精转变成乙醛,再将乙醛转变为醋酸16.下列关于微生物培养和利用的叙述不.正确的是()A.利用稀释涂布平板法只能分离微生物不能对微生物进行计数B.接种时连续划线的目的是将聚集的菌种逐步稀释获得单菌落C.以尿素为唯一氮源且含酚红的培养基可选择和鉴别尿素分解菌D.用大白菜腌制泡菜的过程中亚硝酸盐含量变化是先增加后减少17.用平板划线法或稀释涂布平板法纯化大肠杆菌时()①可以用相同的培养基②都需要使用接种针进行接种③都需要在酒精灯火焰旁进行接种④都可以用来计数活菌A.①②B.③④C.①③D.②④18.用来判断选择培养基是否起到了选择作用,需要设置的对照是()A.未接种的选择培养基B.未接种的牛肉膏蛋白胨培养基C.接种了的牛肉膏蛋白胨培养基D.接种了的选择培养基19.在“探究不同温度条件下加酶洗衣粉的洗涤效果”的实验中,变量控制方法正确的是()A.实验材料的污染程度属于本研究的无关变量,实验过程中不必考虑B.若采用手洗法进行去污操作,需尽可能保证各组洗涤用力程度、时间等基本相同C.水温属于本研究的变量,实验过程中必须保证各组实验温度相同且恒定D.水的用量和布料的大小是成正比的,实验用的布料越大、水量越多实验效果越好20.某同学进行“加酶洗衣粉和普通洗衣粉的洗涤效果比较”课题研究。

下列叙述错误的是() A.设计对照实验,分别使用蛋白酶洗衣粉和复合酶洗衣粉B.洗衣粉用量、污渍种类和洗涤温度等无关变量全部相同且适宜C.可根据污渍完全洗净所需时间的差异得出实验结论D.应设计一个既不用加酶洗衣粉洗涤也不用普通洗衣粉洗涤的对照21.在蒸馏过程中,将水蒸气蒸馏法划分为水中蒸馏、水上蒸馏和水气蒸馏的标准是() A.原料的种类B.原料的特性C.原料放置的位置D.原料的成分22.下列有关植物组织培养的叙述,正确的是()A.愈伤组织是一团有特定结构和功能的薄壁细胞B.二倍体植株的花粉经脱分化与再分化后得到稳定遗传的植株C.用人工薄膜将胚状体、愈伤组织等分别包装可制成人工种子D.植物耐盐突变体可通过添加适量NaCl的培养基培养筛选而获得23.菊花的组织培养需要严格的无菌操作,下列说法不.正确的是()A.培养基连同其他器械都要进行高压蒸汽灭菌B.幼苗要先移植到消过毒的蛭石或者珍珠岩等环境下生活一段时间C.用于植物组织培养的培养基同样适合于某些微生物的生长,一旦感染杂菌则前功尽弃D.将菊花茎段插入时应注意方向,不应倒插,是为了防止杂菌污染24.影响植物组织培养的因素包括()①培养基的配制②外植体的选取③激素的运用④消毒⑤温度、pH、光照A.①②③④⑤B.①②③C.①②③④D.①②③⑤25.用高度分化的植物细胞、组织和器官进行组织培养可以形成愈伤组织,下列说法错误的是()A.该愈伤组织是细胞经过脱分化和分裂形成的B.该愈伤组织的细胞没有全能性C.该愈伤组织是由排列疏松的薄壁细胞组成的D.该愈伤组织可以形成具有生根发芽能力的胚状结构二、填空题26.下面是四类细胞的结构模式图,请据图回答:(1)从结构上看,________与其他三者的差别最大,主要表现在______________。

(2)Ⅳ属于________细胞。

判断依据是____________________________________________________________________________________________________________。

(3)将Ⅱ细胞置于一定浓度的KNO3溶液中,细胞将会发生__________________现象,与该过程有关的细胞器有________(填序号)。

(4)四类细胞中共有的细胞器是________,四类细胞与周围环境进行信息交流均依赖于________。

(5)在离体条件下,若将图Ⅰ细胞进行培养,则会周期性消失和重现的细胞结构是________。

27.细菌具有细胞壁,为探究其化学成分,某课题小组设计了如下实验:(已知糖类加硫酸水解后用碱中和,再加斐林试剂,加热有砖红色沉淀生成;蛋白质与双缩脲试剂作用,生成紫色物质。

二者单独检验时互不干扰。

)(1)将细菌细胞粉碎后,用高速离心机分离得到细菌细胞壁。

(2)将细菌细胞壁分成两等份,编号为A、B。

(3)取A加硫酸水解后用碱中和,再加斐林试剂并加热;取B加双缩脲试剂,摇匀。

(4)观察并记录实验现象。

现象及结果分析:现象①:A出现砖红色沉淀,B出现紫色;结论:_______________________________________________________________。

现象②:A____________________,B____________________________________;结论:细菌细胞壁中含有糖类而不含蛋白质。

现象③:A不出现砖红色沉淀,B________________;结论:__________________________________________________________________________________________________________________________________。

现象④:A不出现砖红色沉淀,B________________;结论:______________________________________________________________。

28.过氧化氢酶(CAT)是生物氧化过程中重要的抗氧化酶,能有效地清除各种活性氧基团,从而防止这些基团对细胞膜系统的损坏。

CAT活性的变化可以灵敏地反映外界环境条件是否对植物细胞产生了压力。

某研究小组为探究N、P对小麦幼苗CAT活性的影响,设计了以下实验:将长势相同的小麦幼苗均分为三组,分别放入缺N、P的完全培养液中连续培养10 d、20 d、30 d,以正常完全营养液水培小麦为对照。

实验结果如下图所示。

(1)为了保持营养液的渗透平衡,缺失的离子都用其他等当量的盐分来替换。

相关文档
最新文档