第22章二次函数 第一、二课时
人教版九年级数学22章二次函数全章教案
第二十二章二次函数分析与教学建议(一).二次函数在初中数学教材中的分析二次函数是学生学习了正比例函数、一次函数和反比例函数以后,进一步学习函数知识,是函数知识螺旋发展的一个重要环节。
二次函数是描述现实世界变量之间关系的重要的数学模型。
二次函数也是某些单变量最优化问题的数学模型,如本章所提及的求最大利润、最大面积等实际问题。
二次函数曲线——抛物线,也是人们最为熟悉的曲线之一,喷泉的水流、标枪的投掷等都形成抛物线路径,同时抛物线形状在建筑上也有着广泛的应用,如抛物线型拱桥、抛物线型隧道等。
和一次函数、反比例函数一样,二次函数也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数、体会函数的思想奠定基础和积累经验。
本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。
函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。
学生在学习了正比例函数、一次函数和反比例函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。
本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。
二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。
本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。
(二)本章课时安排本章教学时间约需15课时 ,具体安排如下:22.1节 二次函数…………………………7课时22.2用函数的观点看一元二次方程…………………2课时22.3实际问题与二次函数…………………3课时教学活动 小结及测试…………………3课时(三)、本章教学目标分析(1)本章教学要求如下①经历描点法画函数图象的过程。
人教版九年级上册数学第22章 二次函数 二次函数与一元二次方程之间的关系
22.2二次函数与一元二次方程
第1课时二次函数与一元二 次方程之间的关系
1 课堂讲解 二次函数
一元二次方程 实数根的个数
2 课时流程
逐点 导讲练
课堂 小结
课后 作业
以前我们从一次函数的角度看一元一次方程, 认识了一次函数与一元一次方程的联系.本节 我们从二次函数的角度看一元二次方程,认识 二次函数与一元二次方程的联系.先来看下面 的问题.
3 A.x1<-1<2<x2B.-1<x1<2<x2 4 C.-1<x1<x2<2D.x1<-1<x2<2
知2-导
知识点 2 二次函数与其图象与x轴的交点个数之间的关系
二次函数y=x2+x-2,y=x2-6x+9,y=x2–x+1的图象如图所示.
(1)每个图象与x轴有几个交点? (2)一元二次方程x2+x-2=0,x2-6x+9=0有几个根? 验证一下一元二次方程x2–x+1=0有根吗? (3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一 元 二次方程ax2+bx+c=0的根有什么关系?
由“数” 到“形”
由“形” 到“数”
图象
与x轴交点情况
完成教材中习题
解:无实根
知2-导
二次函数
与x轴交点坐 标
相应方程的根
y=x2+x-2 (-2,0),(3,0)
x1=x2=3
y=x2-x+1 无交点 无实根
归纳
知2-讲
通过二次函数y=ax2+bx+c(a≠0)的图象可知, (1)如果抛物线y=ax2+bx+c(a≠0)与x轴有公 共点,公共点的横坐标是x0,那么当x=x0时, 函数的值为0,因此x=x0就是方程ax2+bx+ c=0的一个根.
人教版九年级上册数学课件 第二十二章 二次函数 第1课时 二次函数y=ax2+k的图象和性质 (2)
y= 3x-3, 析式为 y= 3 x-3.联立直线 DC 与抛物线的解析式可得y=13x2-3, 解得
x1=0, y1=-3,
yx22==63,3,
所以 M1(3
3 ,6);
②如图,若点 M2 在点 B 下方,设 M2C 交 x 轴于点 E,易得∠OEC=45 °-15°=30°,易得 OE=3 3 .
15.(10分)(云南中考)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称 轴是y轴,并且与x轴有两个交点.
(1)求k的值; (2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P 的坐标. 解:(1)∵抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,∴k2+k-6=0, 解得k1=-3,k2=2,又∵抛物线y=x2+(k2+k-6)x+3k与x轴有两个交点, ∴3k<0,∴k=-3 (2)∵点P在抛物线y=x2-9上,且P到y轴的距离是2,∴点P的横坐标为2或 -2,当x=2时,y=-5,当x=-2时,y=-5.∴P(2,-5)或P(-2,-5)
(1)求m的值; (2)求函数y=ax2+b(a≠0)的解析式; (3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐 标;若不存在,请说明理由.
解:(1)将(0,-3)代入y=x+m,可得m=-3
(2)将 y=0 代入 y=x-3 得 x=3,所以点 B 的坐标为(3,0).
将(0,-3),(3,0)代入
人教版
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.3 二次函数y=a(x-h)2+k的图象和性质 第1课时 二次函数y=ax2+k的图象和性质
1.(3分)抛物线y=x2+1的图象大致是( C )
人教版数学九年级上册22 二次函数(第一课时)课件
4
【典例】下列各式中,y 是 x 的二次函数的是( )
A.y=x12
B.y=2x+1
C.y=x2+x-2
D.y2=x2+3x
分析:y=x12中,x12为分式,不是二次函数,故 A 不符题意;y=2x+1 中,x 的
次数为 1,是一次函数,故 B 不符题意;y=x2+x-2 符合二次函数的定义,是二次
函数解析式是 y=3x+2 或 y=33+215
5x+5+23
5或 y=33-215
5x+5-23
5 .
(2) 若 函 数 y = (m2 - m - 2)xm2 - 5m - 4 + (m + 1)x + m 为 二 次 函 数 , 则
m2-5m-4=2, m2-m-2≠0.
解得 m=6.故当 m=6 时,函数 y=(m2-m-2)xm2-5m-4+(m
• (1)求直线AB的解析式; • (2)若设点P的横坐标为x,矩形PKDH的面积为S,求S关于x的函数解析
式.
17
解:(1)如图所示,∵OE=CD=80 m,OC=ED=100 m,AE=60 m,BC=70 m, ∴OA=20 m,OB=30 m,即 A(0,20)、B(30,0).设直线 AB 的解析式为 y=kx+b(k≠0),
►如果我们不曾相遇,你的梦里就不会有我的出现,我们都在不断地 和陌生人擦肩;如果人生不曾相遇,我的生命里就不会有你的片段,我 们都在细数着自己的日子。 ►当离别的脚步声越来越清晰,我们注定分散两地,继续彼此未完的 人生,如果我说放不下,短短一个月的光景,你是否愿意相信,我的 真诚,我的执着,只源于内心深处那一份沉沉的不舍。
►为你理想的人,否则,爱的只是你在他身上找到的你的影子。 ►有时候,我们愿意原谅一个人,并不是我们真的愿意原谅他,而是我们 不愿意失去他。不想失去他,惟有假装原谅他。不管你爱过多少人,不管 你爱得多么痛苦或快乐。最后,你不是学会了怎样恋爱,而是学会了,怎 样去爱自己。
人教版九年级上册数学作业课件 第22章 二次函数 第1课时 二次函数y=ax2+bx+c的图象和性质
解:(1)对称轴是直线 x=-1,顶点(-1,72 ),y 最大=72
(2)对称轴是直线 x=-3,顶点(-3,-18),y 最小=-18
14.(2020·仙桃)把抛物线C1:y=x2+2x+3先向右平移4个单位长度, 再向下平移5个单位长度得到抛物线C2.
(1)直接写出抛物线C2的函数关系式; (2)动点P(a,-6)能否在抛物线C2上?请说明理由; (3)若点A(m,y1),B(n,y2)都在抛物线C2上,且m<n<0,比较y1, y2的大小.
解:(1)y=x2+2x+3=(x+1)2+2,∵把抛物线C1:y=x2+2x+3先 向右平移4个单位长度,再向下平移5个单位长度得到抛物线C2,∴C2: y=(x+1-4)2+2-5,即y=(x-3)2-3,∴抛物线C2的函数关系式为y =(x-3)2-3
(2)动点P(a,-6)不在抛物线C2上,理由如下:∵抛物线C2的函数关 系式为:y=(x-3)2-3,∴函数的最小值为-3,∵-6<-3,∴动点
=-12 x2+2x,∴PD+BD=-12 x2+2x+54 x=-12 (x-143 )2+13629 ,∵54 <
x<4,-12
<0,∴当 x=143
时,PD+BD 有最大值为13629
,此时,点
13 P( 4
,
-5372 )
(3)设平移后的抛物线 L′解析式为 y=12 (x-m)2-13221 ,联立方程组可得
(1)求直线 AB 的解析式及抛物线顶点的坐标; (2)如图 1,点 P 为第四象限且在对称轴右侧抛物线上一动点,过点 P 作 PC⊥x 轴,垂足为 C,PC 交 AB 于点 D,求 PD+BD 的最大值,并求出此时点 P 的坐标;
(3)如图 2,将抛物线 L:y=12 x2-54 x-3 向右平移得到抛物线 L′,直线 AB 与 抛物线 L′交于 M,N 两点,若点 A 是线段 MN 的中点,求抛物线 L′的解析式.
2022九年级数学上册 第22章 二次函数22.1 二次函数的图象和性质 3二次函数y=a(x-h)
(2)假设(1)中的抛物线与OB交于点C,与y轴交于点D,求点D,C的坐标.
(2)令x=0,则y=(0-1)2=1,∴点D的坐标为(0,1).由
第二十二章 二次函数
22.1 二次函数的图象和性质
22.1.3 二次函数y=a(x-h)2+k的图象和性质 第2课时 二次函数y=a(x-h)2的图象和性质
知识点一 二次函数y=a(x-h)2的图象和性质 1.在平面直角坐标系中,二次函数y=1 (x-2)2的图象可能是(D )
2
A
B
C
D
2.对于函数y=-2(x-1)2的图象,以下说法不正确的选项D 是( )
15.某抛物线和函数y=2x2的图象形状相同,对称轴平行于y轴,并且顶点
坐标是(-1,0),那么此抛物线的解析式为________
______.
y=2(x+1)2或y=-2(x+1)2
考查角度一 由线段相等求抛物线的解析式
16.如图是二次函数y=1 (x-h)2的图象,其中OA=OC,试求该抛物线的解
A.开口向下
B.对称轴是直线x=1
C.最大值为0
D.顶点坐标是(0,1)
3.以下有关二次函数y=2(x+4)2的性质,描述正确的选项D是( ) A.当x>0时,y随x的增大而减小 B.当x<0时,y随x的增大而增大 C.当x>-4时,y随x的增大而减小 D.当x<-4时,y随x的增大而减小
4.抛物线y=-(x+7)2的开口向____下____,对称轴为直__线__x_=__-__7_,顶点坐标 是_(_-__7_,__0_);当__x_<_-__7__时,y随x的增大而增大;当__x_>_-__7__时,y随x的 增大而减小;当x=_-_7______时,函数y有最_大_____(填“最大〞或“最小〞)值.
人教版九年级上册数学精品教学课件 第22章二次函数 第1课时二次函数y=ax2+bx+c的图象和性质
问题1 你能说出 y 1 (x 6)2 3 的对称轴及顶点坐标吗
?答:对称轴是直线
2 x=
6,顶点坐标是
(6,3).
(1)a、b 同号;
(2)当 x = -1 和 x = 3 时,函数值相
等;
(3)4a + b = 0;
–1 O
(4)当 y = -2 时,x 的值只能取 0. –2
其中正确的是 (2) .
x 3
x=1
4. 已知抛物线 y = 2x2 - 12x + 13. (1)当 x 为何值时,y 有最小值?最小值是多少? (2)当 x 为何值时,y 随 x 的增大而减小? (3)将该抛物线向右平移 2 个单位长度,再向上平移 2 个单位长度,请直接写出新抛物线的解析式. 解:∵ y = 2x2 − 12x + 13 = 2(x − 3)2 − 5, ∴抛物线开口向上,顶点为(3,−5),对称轴为直线x =为 −5. (2)当 x<3 时,y 随 x 的增大而减小. (3)新抛物线的解析式为 y = 2(x − 5)2 − 3.
5 当 x>6 时,y 随 x 的增大而增大.
O
5 10 x
要点归纳 二次函数 y = ax2 + bx + c 的图象和性质
1.一般地,二次函数 y = ax2 + bx + c 可以通过配方化成
y = a(x - h)2 + k 的形式,即
y ax2 bx c
a
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质第1课时教案
22.1二次函数的图象和性质22.1.3二次函数y=a(x-h)²+k的图象和性质(第1课时)一、教学目标【知识与技能】1.能画出二次函数y=ax2+k的图象;2.掌握二次函数y=ax2与y=ax2+k图象之间的联系;3.掌握二次函数y=ax2+k的图象及其性质.【过程与方法】通过画二次函数y=2x2+1与y=2x2-1的图象,感受它们与y=2x2的联系,并由此得到y=ax2与y=ax2+k的图象及性质的联系和区别.【情感态度与价值观】在通过类比的方法获取二次函数y=ax2+k的图象及其性质过程中,进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】1.二次函数y=ax2与y=ax2+k的图象之间的联系;2.二次函数y=ax2+k的图象及其性质.【教学难点】二次函数y=ax2+k的性质的基本应用.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课这个函数的图象是如何画出来呢?(出示课件2)(二)探索新知探究一二次函数y=ax2+k图象的画法在同一直角坐标系中,画出二次函数y=x2,y=x2+1,y=x2-1的图象.(出示课件4)学生自主操作,画图,教师加以巡视,纠正画图过程中可能出现的失误,并引导他们进行分析,发现规律,获得感性认识.1.列表:x…-3-2-10123…y=x2…9410149…y=x2+1…105212510…y=x2-1…830-1038…2.描点,连线:(出示课件5)教师问:抛物线y=x2、y=x2+1、y=x2-1的开口方向、对称轴、顶点各是什么?(出示课件6)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=x2向上x=0(0,0)y=x2+1向上x=0(0,1)y=x2-1向上x=0(0,-1)出示课件7:例在同一直角坐标系中,画出二次函数y=2x2+1,y=2x2-1的图象.学生自主操作,画图,教师加以巡视.解:先列表:x…-2-1.5-1-0.500.51 1.52…y=2x2+1…9 5.53 1.51 1.53 5.59…y=2x2-1…7 3.51-0.5-1-0.51 3.57…然后描点画图:(出示课件8)教师问:抛物线y=2x2+1,y=2x2-1的开口方向、对称轴和顶点各是什么?(出示课件9)学生独立思考并整理.抛物线开口方向对称轴顶点坐标y=2x2+1向上x=0(0,1)y=2x2-1向上x=0(0,-1)探究二二次函数y=ax2+k的性质教师归纳:(出示课件10)二次函数y=ax2+k(a>0)的性质:开口方向:向上.对称轴:x=0.顶点坐标:(0,k).最值:当x=0时,有最小值,y=k.增减性:当x<0时,y 随x 的增大而减小;当x>0时,y 随x 的增大而增大.出示课件11:在同一坐标系中,画出二次函数212y x =-,2122y x =-+,2122y x =--的图像,并分别指出它们的开口方向,对称轴和顶点坐标.学生自主操作,画图,并整理.解:如图所示.抛物线开口方向对称轴顶点坐标y =12-x 2向下x =0(0,0)y =12-x 2+2向下x =0(0,2)y =12-x 2-2向下x =0(0,-2)出示课件12:在同一坐标系内画出下列二次函数的图象:231x y -=;23121--=x y ;23122+-=x y .学生自主操作,画图,教师巡视加以指导.出示课件13,14:根据图象回答下列问题:(1)图象的形状都是;(2)三条抛物线的开口方向_______;(3)对称轴都是__________;(4)从上而下顶点坐标分别是_____________________;(5)顶点都是最____点,函数都有最____值,从上而下最大值分别为_______、_______﹑________;(6)函数的增减性都相同:____________________________.学生独立思考并口答.⑴抛物线;⑵向下;⑶直线x=0;⑷(0,2),(0,0),(0,-2);⑸高;大;y=2,y=0,y=-2;⑹对称轴左侧y随x增大而增大,对称轴右侧y随x增大而减小师生共同归纳:二次函数y=ax2+k(a≠0)的性质(出示课件15)y=ax2+k a>0a<0开口方向向上向下对称轴y轴(x=0)y轴(x=0)顶点坐标(0,k)(0,k)出示课件16:已知二次函数y=ax2+c,当x取x1,x2(x1≠x2)时,函数值相等,则当x=x1+x2时,其函数值为________.学生独立思考后,师生共同解答.解:由二次函数y=ax2+c图象的性质可知,x1,x2关于y轴对称,即x1+x2=0.把x=0代入二次函数表达式求出纵坐标为c.教师归纳:方法总结:二次函数y=ax2+c的图象关于y轴对称,因此左右两部分折叠可以重合,函数值相等的两点的对应横坐标互为相反数.出示课件17:抛物线y=−2x2+3的顶点坐标是________,对称轴是________,在________侧,y随着x的增大而增大;在________侧,y随着x的增大而减小.学生口答:(0,3);y轴;对称轴左;对称轴右探究三二次函数y=ax2+k的图象及平移出示课件18:从数的角度探究:出示课件19:从形的角度探究:观察图象可以发现,把抛物线y=2x2向_____平移1个单位长度,就得到抛物线_____;把抛物线y=2x2向_____平移1个单位长度,就得到抛物线y=2x2-1.学生观察图象并解答:上;y=2x2+1;下师生共同归纳:二次函数y=ax2与y=ax2+k(a≠0)的图象的关系(出示课件20)二次函数y=ax2+k的图象可以由y=ax2的图象平移得到:当k>0时,向上平移k个单位长度得到.当k<0时,向下平移k个单位长度得到.教师强调:上下平移规律:平方项不变,常数项上加下减.出示课件21:二次函数y=-3x2+1的图象是将()A.抛物线y=-3x2向左平移3个单位得到B.抛物线y=-3x2向左平移1个单位得到C.抛物线y=3x2向上平移1个单位得到D.抛物线y=-3x2向上平移1个单位得到学生独立思考并口答:D出示课件22:想一想:教师问1.二次函数y=ax2+k图象的画法分几步?学生答:第一种方法:平移法,分两步,即第一步画y=ax2的图象;第二步把y=ax2的图象向上(或向下)平移︱k︱单位.第二种方法:描点法,分三步即列表、描点和连线.教师问2.抛物线y=ax2+k中的a决定什么?怎样决定的?k决定什么?它的对称轴是什么?顶点坐标怎样表示?学生答:a决定开口方向和大小;k决定顶点的纵坐标.(三)课堂练习(出示课件23-27)1.将二次函数y=x2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是.2.抛物线y=2x2向下平移4个单位,就得到抛物线.3.填表:函数开口方向顶点对称轴有最高(低)点y=3x2y=3x2+1y=-4x2-54.已知点(m,n)在y=ax2+a(a不为0)的图象上,点(-m,n)___(填“在”或“不在”)y=ax2+a(a不为0)的图象上.5.若y=x2+(k-2)的顶点是原点,则k____;若顶点位于x轴上方,则k____;若顶点位于x轴下方,则k____.6.不画函数y=-x2和y=-x2+1的图象回答下面的问题:⑴抛物线y=-x2+1经过怎样的平移才能得到抛物线y=-x2.(2)函数y=-x2+1,当x_____时,y随x的增大而减小;当x_____时,函数y有最大值,最大值y是_____,其图象与y轴的交点坐标是_____,与x轴的交点坐标是_____.(3)试说出抛物线y=x2-3的开口方向、对称轴和顶点坐标.7.对于二次函数y=(m+1)x m2-m+3,当x>0时y随x的增大而增大,则m=____.8.已知二次函数y=(a-2)x2+a2-2的最高点为(0,2),则a=____.9.抛物线y=ax2+c与x轴交于A(-2,0)﹑B两点,与y轴交于点C(0,-4),则三角形ABC的面积是_______.参考答案:1.y=x2+22.y=2x2-43.函数开口方向顶点对称轴有最高(低)点y=3x2向上(0,0)y轴有最低点y=3x2+1向上(0,1)y轴有最低点y=-4x2-5向下(0,-5)y轴有最高点4.在5.=2;>2;<26.⑴向下平移1个单位.⑵>0;=0;1;(0,1);(-1,0),(1,0)⑶开口方向向上,对称轴是y轴,顶点坐标(0,-3).7.28.-29.8(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时教学重点在于培养学生的比较能力,旨在希望学生通过对比发现函数图象的性质,从而进一步增强学生的数形结合意识,体会通过探究获得知识的乐趣.。
人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案
人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时教案一. 教材分析人教版九年级数学上册第二十二章二次函数《22.3实际问题与二次函数》第1课时主要介绍了二次函数在实际问题中的应用。
这部分内容是对前面学习的二次函数知识的巩固和拓展,通过实际问题引导学生将理论知识和实际应用相结合,提高解决问题的能力。
教材通过丰富的例题和练习题,帮助学生掌握二次函数在实际问题中的运用方法。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有了初步的了解。
但是,将二次函数应用于实际问题中,解决实际问题对学生来说还是一个挑战。
因此,在教学过程中,需要关注学生对知识的掌握程度,以及他们在解决实际问题时的思维方式和方法。
三. 教学目标1.了解二次函数在实际问题中的应用。
2.能够将实际问题转化为二次函数问题,利用二次函数解决实际问题。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.掌握二次函数在实际问题中的应用。
2.将实际问题转化为二次函数问题。
五. 教学方法采用问题驱动的教学方法,通过引导学生解决实际问题,让学生理解和掌握二次函数在实际问题中的应用。
同时,运用讨论法、案例分析法等,激发学生的学习兴趣,提高学生的参与度。
六. 教学准备1.准备相关的实际问题案例。
2.准备PPT,展示二次函数在实际问题中的应用。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题引出本节课的主题,激发学生的兴趣。
例如:一个农场计划种植两种作物,种植面积一定的条件下,如何安排两种作物的种植面积,使得总收益最大?2.呈现(10分钟)呈现实际问题,引导学生认识到实际问题可以通过二次函数来解决。
通过PPT展示实际问题的图像,让学生观察和分析图像,理解二次函数在实际问题中的应用。
3.操练(10分钟)让学生分组讨论,尝试将实际问题转化为二次函数问题。
每组选择一个实际问题,分析问题中的变量关系,列出二次函数的表达式。
人教版九年级数学上册课件 第二十二章 二次函数 第1课时 二次函数y=ax2+k的图象和性质 (2)
于点 C,则点 C(0,1),在 Rt△AOC 中,OA=OC=1,∴∠CAO=45°,在
Rt△AOM 中,OA=OM=1,∴∠MAO=45°,∴∠BAM=90°,∴△ABM
是直角三角形
15.廊桥是我国古老的文化遗产,如图所示的是一座抛物线形廊桥的
示意图.已知抛物线对应的函数关系式为 y=-410 x2+10,为保护廊桥的
16.如图,抛物线y=-x2+4交x轴于A,B两点,顶点是点C. (1)求△ABC的面积. (2)在抛物线y=-x2+4上是否存在点Q,使∠AQB=90°.若存在,请求出 点Q的坐标;若不存在,请说明理由.
解:(1)S△ABC=12 ×4×4=8 (2)存在.设 Q(m,-m2+4),连接 OQ,易知 OQ=12 AB=2,∴m2 +(4-m2)2=4,解得 m=±2,m=± 3 .但 m=±2 时,点 Q 在 x 轴上,不 合题意,∴点 Q 坐标为( 3 ,1)或(- 3 ,1)
A.a+c B.a-c
C.-c D.c
11.若抛物线 y=ax2+c 与抛物线 y=-4x2+3 关于 x 轴对称,则 a= _4___,c=_-__3_.
12.如图,两条抛物线 y1=-12 x2,y2=-12 x2-2 与分别经过点(-2, 0),(2,0)且平行于 y 轴的两条平行线围成的阴影部分的面积为__8__.
___(_0_,__k_) __;当x>0时,y随x的增大而__减__小___;当x<0=-12 x2-3 的顶点是_(_0_,__-__3_),对称轴是___y_轴____.
1.抛物线y=-x2+1的图象大致是( D )
2.对于二次函数y=2x2+3,下列说法错误的是( D ) A.最小值是3 B.图象关于y轴对称 C.图象的形状与抛物线y=2x2相同 D.当x<0时,y随x的增大而增大
磐石市五中九年级数学上册 第二十二章 二次函数22.1 二次函数的图象和性质22.1.3第1课时 二
解:(1)∵直线 y1=-x-2 交 x 轴于点 A,交 y 轴于点 B,∴点 A 的坐 标为(-2,0),点 B 的坐标为(0,-2),∵抛物线 y2=a(x-h)2 的顶点为 A, ∴抛物线为 y2=a(x+2)2,∵抛物线过点 B(0,-2),∴-2=4a,a=-21 ,
4.(3分)対于抛物线y=2(x-1)2 , 以下说法中准确的有( C ) ①开口向上 ; ②顶点坐标为(0 , -1) ; ③対称轴为直线x=1 ; ④与x轴的 交点坐标为(1 , 0). A.1个 B.2个 C.3个 D.4个 5.(3分)已知函数y=-(x-1)2图象上两点A(2 , y1) , B(a , y2) , 其中a>
即 m2=(m-12)2+(-21k)2,解得 m=14+41k2,∴PB=14+41k2, ∴P 点坐标为(-21k,14+41k2),当 x=-21k时, 代入抛物线解析式可得 y=14+41k2,∴点 P 在抛物线上
(3)连接 CC′,∵l∥y 轴,∴∠OBC=∠PCB,又 PB=PC, ∴∠PCB=∠PBC,∴∠PBC=∠OBC,又 C,C′关于 BP 对称, 且 C′在抛物线的对称轴上,即在 y 轴上,∴∠PBC=∠PBC′, ∴∠OBC=∠CBP=∠C′BP=60°,在 Rt△OBC 中,OB=12, ∴BC=1,OC= 23,即点 P 的横坐标为 23, 代入抛物线解析式可得 y=( 23)2+14=1,∴点 P 的坐标为( 23,1)
2.(3分)抛物线y=-5(x-2)2的顶点坐标是( B )
A.(-2 , 0) B.(2 , 0) C.(0 , -2) D.(0 , 2)
3.(3分)在以下二次函数中 , 其图象的対称轴为直线x=-1的是( A )
九年级数学上册第二十二章二次函数22.1二次函数的图像和性质22.1.3第1课时二次函数y=ax2k的图象和性质分层
第1课时 二次函数y =ax 2+k 的图象和性质1.[2017·宜兴市一模]关于二次函数y =2x 2+3,下列说法正确的是( ) A .它的开口方向是向下B .当x <-1时,y 随x 的增大而减小C .它的顶点坐标是(2,3)D .当x =0时,y 有最大值是32.将二次函数y =2x 2-1的图象沿y 轴向上平移2个单位长度,所得图象对应的函数解析式为_________________________________.3.(1)填表:(2)(3)它们三者的图象有什么异同?它们的开口方向、对称轴、顶点坐标分别是什么? (4)由抛物线y =-2x 2怎样平移得到抛物线y =-2x 2+1与y =-2x 2-1?4.如图2218,两条抛物线y 1=-12x 2+1,y 2=-12x 2-1与分别经过点(-2,-1),(2,-3),且平行于y 轴的两条平行线围成的阴影部分的面积为( )图2218A.8 B.6C.10 D.45.[2018·玉环市一模]小迪同学以二次函数y=2x2+8的图象为灵感设计了一款杯子,如图2219为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为________.图22196.某水渠的横截面的形状呈抛物线,水面的宽度为AB,现以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图22110的平面直角坐标系,设坐标原点为O.已知AB=8 m,设抛物线的解析式为y=ax2-4.(1)求a的值;(2)点C(-1,m)是抛物线上一点,点C关于原点O的对称点为点D,连接CD,BC,BD,求△BCD的面积.图22110参考答案22.1.3 二次函数y=a(x-h)2+k的图象和性质第1课时二次函数y=ax2+k的图象和性质【分层作业】1.B 2.y=2x2+1 3.(1)-8 -2 0 -2 -8 -7 -1 1 -1 -7 -9 -3 -1 -3 -9(2)略.(3)它们三者图象的形状相同,但位置不同,开口均向下,对称轴均为y轴,顶点不同,分别为(0,0),(0,1),(0,-1).(4)抛物线y =-2x 2+1可由抛物线y =-2x 2向上平移1个单位长度得到;抛物线y =-2x 2-1可由抛物线y =-2x 2向下平移1个单位长度得到.4.A 5.116.(1)a =14. (2)S △BCD =15 m 2.。
2024年人教版九年级数学上册教案及教学反思全册第22章 二次函数的图象和性质 (第1课时)教案
22.1 二次函数的图象和性质22.1.4 二次函数y=ax2+bx+c的图象和性质(第1课时)一、教学目标【知识与技能】1.能通过配方法把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k的形式,以便确定它的对称轴和顶点坐标;2.会利用对称性画出二次函数的图象,掌握二次函数y=ax2+bx+c(a≠0)的平移规律;3.会用公式确定二次函数y=ax2+bx+c(a≠0)的对称轴和顶点.【过程与方法】通过思考、探索、尝试与归纳等过程,让学生能主动积极地探索新知.【情感态度与价值观】经历探求二次函数y=ax2+bx+c的对称轴和顶点坐标的过程,感悟二次函数y=ax2+bx+c与y=ax2的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】用抛物线的对称轴画二次函数y=ax2+bx+c的图象,通过配方确定抛物线的对称轴和顶点坐标.通过配方法将二次函数的一般形式化为顶点式,探索二次函数y=ax2+bx+c的平移变换.【教学难点】用配方法推导抛物线的对称轴与顶点坐标.五、课前准备课件、三角尺、铅笔等六、教学过程(一)导入新课教师问:二次函数y=a(x-h)2+k的性质有哪些?(出示课件2)师生共同回忆:教师问:我们已经知道二次函数y=a(x-h)2+k的图象和性质,能否利用这些知识来讨论二次函数y=ax2+bx+c 图象和性质?(出示课件3)(二)探索新知探究一 画出二次函数y=ax 2+bx+c 的图象我们已经知道y=a(x-h)2+k 的图象和性质,能否利用这些知识来讨论216212y x x =-+的图象和性质?(出示课件5) 问题1:怎样将216212y x x =-+化成y=a(x-h)2+k 的形式?学生回忆配方的方法及步骤,并回答.(出示课件6)216212y x x =-+ 21(1242)2x x =-+ 2221(126642)2x x =-+-+ 2221[(126)642]2x x =-+-+ 21[(6)6]2x =-+ 21(6) 3.2x =-+ 学生回答后,教师总结并强调.(出示课件7) 配方的步骤:(1)“提”:提出二次项系数; (2)“配”:括号内配成完全平方; (3)“化”:化成顶点式.配方后的表达式通常称为配方式或顶点式. 问题2:你能说出21(6)32y x =-+的对称轴及顶点坐标吗?(出示课件8) 生答:对称轴是直线x=6,顶点坐标是(6,3). 问题3:二次函数21(6)32y x =-+可以看作是由212y x =怎样平移得到的? 生答:平移方法1:先向上平移3个单位,再向右平移6个单位得到的;平移方法2:先向右平移6个单位,再向上平移3个单位得到的. 问题4:如何画二次函数216212y x x =-+的图象?(出示课件:9) 学生自主操作,画图,教师加以巡视.并引导他们进行分析. 方法一:描点法. 1.列表.2.描点,连线:方法二:平移法.(出示课件10)问题5:结合二次函数216212y x x =-+的图象,说出其性质.(出示课件11) 生答:当x<6时,y 随x 的增大而减小;当x>6时,y 随x 的增大而增大. 开口方向:向上.对称轴:x=6. 顶点:(6,3). 例 画出函数21522y x x =-+-的图象,并说明这个函数具有哪些性质.(出示课件12)师生共同解答如下: 解:函数21522y x x =-+-通过配方可得21(1)22y x =---, 先列表:然后描点、连线,得到图象如下图:(出示课件13)生观察图象,并总结性质如下: 开口方向:向下. 顶点坐标:(1,-2). 对称轴:x=1.最值:x=1时,y 最大值=-2.当x <1时,函数值y 随x 的增大而增大;当x >1时,函数值y 随x 的增大而减小; 当x=1时,函数取得最大值,最大值y=-2.出示课件14:求二次函数y=2x 2-8x+7图象的对称轴和顶点坐标. 生板演解题过程: 解:y=2x 2-8x+722(4)7x x =-+ 22(44)87x x =-+-+ 22(2) 1.x =--因此,二次函数y=2x 2-8x+7图象的对称轴是直线x=2,顶点坐标为(2,-1). 探究二 二次函数y=ax 2+bx+c 的图象与性质出示课件15:根据下列关系你能发现二次函数y=ax 2+bx+c 的图象和性质吗?师生共同探究强化认知:y=ax 2+bx+c 224()24b ac b a x a a-++=出示课件16:显然,二次函数y 224()24b ac b a x a a-++=的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭,对称轴为2bx a =- 因此,抛物线y=ax 2+bx+c 的对称轴是2bx a=-,顶点坐标是24,24b ac b a a ⎛⎫ ⎪⎝-⎭- . 师生共同总结整理如下:(出示课件18)出示课件19:例二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是()A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)学生自主思考后,师生共同解答如下:解析∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x²+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4).教师加以强调:把函数的一般式化为顶点式,再由顶点式确定开口方向、对称轴、顶点及其他性质.出示课件20:填一填.生自主思考,并填表. 答案:(1,1);x=1;最大值1; (0,-1);y 轴;最大值-1;(13-,-6);x=13-;最小值-6. 出示课件21:一次函数y=kx+b 的图象如下图所示,请根据一次函数图象的性质填空:生观察图象,并填空.k 1<0;b 1>0;k 2>0;b 2<0;k 3>0;b 3>0.出示课件22,23:二次函数y=ax 2+bx+c 的图象如下图所示,请根据二次函数的性质填空:a1___0,b1___0,c1___0;a20,b2___0,c20;a3___0,b3___0,c3___0;a4___0,b4___0,c4___0.生观察图象后,独立填空,教师加以纠正.a1>0,b1>0,c1>0;a2>0,b2<0,c2=0;a3<0,b3=0,c3>0;a4<0,b4>0,c4<0.师生共同总结:二次函数y=ax2+bx+c的图象与a、b、c的关系(出示课件24)出示课件25:例已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①abc>0;②2a-b<0;③4a-2b+c<0;④(a+c)2<b2. 其中正确的个数是( )A.1 B.2 C.3 D.4生独立思考后,师生共同分析:由图象开口向下可得a<0,由对称轴在y轴左侧可得b<0,由图象与y轴交于正半轴可得c>0,则abc>0,故①正确;由对称轴x>-1可得2a-b<0,故②正确;由图象上横坐标为x=-2的点在第三象限可得4a-2b+c<0,故③正确;由图可知x=1的点在第四象限得a+b+c<0,由图象上x=-1的点在第二象限得出a-b+c>0,则(a+b+c)(a-b+c)<0,即(a+c)2-b2<0,可得(a+c)2<b2,故④正确.出示课件26:二次函数y=ax²+bx+c的图象如图所示,下列选项中正确的是()A.a>0 B.b>0 C.c<0 D.ac>0生独立思考后,自主解决.解析根据开口方向、对称轴、抛物线与y轴的交点,确定a、b、c的符号,根据对称轴和图象确定y>0或y<0时,x的范围,确定代数式的符号.①∵开口向下,∴a<0,A错误;②对称轴在y轴的右侧和a<0,可知b>0,B正确;③抛物线与y轴交于正半轴,c>0,C错误;④因为a<0,c>0,所以ac<0,D错误.(三)课堂练习(出示课件27-32)1.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x 轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤2.已知二次函数y=ax2+bx+c的x,y的部分对应值如下表:则该二次函数图象的对称轴为( )A.y 轴B.直线x=52C.直线x=2D.直线x=323.已知二次函数y=ax 2+bx+c(a ≠0)的图象如图所示,则下列结论:(1)a ,b 同号;(2)当x=–1和x=3时,函数值相等;(3)4a+b=0;(4)当y=–2时,x 的值只能取0;其中正确的是 .4.如图是二次函数y=ax 2+bx+c(a ≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a ;④若(-3,y 1),(32,y 2)是抛物线上两点,则y 1>y 2.其中正确的是( )A .①②③B .①③④C .①②④D .②③④5.根据公式确定下列二次函数图象的对称轴和顶点坐标:()()()22(1) 21213;(2) 580319;1(3) 22;2(4)12.y x x y x x y x x y x x =-+=-+-⎛⎫=-- ⎪⎝⎭=+-6.已知函数y=-2x2+x-4,当x= 时,y 有最大值 .7.已知二次函数y=x 2-2x+1,那么它的图象大致为( )参考答案:1.A2.D3.(2)4.B5.⑴直线x=3,(3,-5);⑵直线x=8,(8,1);⑶直线x=1.25,59, 48⎛⎫- ⎪⎝⎭; ⑷直线x=0.5,19, 24⎛⎫ ⎪⎝⎭. 6.14;318- 7.B(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(22.1.4第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:本课时的主要任务是理解和掌握二次函数的一般式.我们研究函数的一般基本方法是由解析式画图象,再由图象得出性质,再反过来由函数性质研究图象的其他特征.因此本课时的教学仍可采用这种思维方法来探讨二次函数一般式的性质(如顶点坐标,对称轴以及增减性等),另外还要向学生渗透转化思想,即如何将相对复杂的一般式转化为其他解析式的形式.。
初中数学教材解读人教九年级上册第二十二章二次函数2 二次函数与一元二次方程 两课时
二次函数与一元二次方程第1课时二次函数与一元二次方程教学目标1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.2.经历用图像法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验与方法.3.理解二次函数的图象和与横轴的交点的个数与一元二次方程的根的个数之间的关系,理解方程何时有两个不等实根、两个相等实根和没有实根.4.进一步发展学生的估算能力,体会数形结合思想.教学重难点理解一元二次方程与函数的关系.教学过程与方法1.自主阅读课本(10分钟)2.交流互动(10分钟)知识点一:二次函数与一元二次方程之间的关系知识点二:抛物线与x轴的交点个数同一元二次方程的根的情况之间的关系抛物线y=ax2+bx+c(a≠0)与x轴的位置关系一元二次方程ax2+bx+c=0(a≠0)根的情况b2-4ac的值有两个公共点有两个不相等的实数根b2-4ac>0只有一个公共点有两个相等的实数根b2-4ac=0无公共点无实数根b2-4ac<0知识点三:求方程的近似解3.课堂练习(11分钟)习题第2题(1)、(2).4.拓展性练习(11分钟)(1)已知二次函数y=-x2+4x+k的部分图象如图所示,则关于x的方程-x2+4x+k=0的两根为x1=-1,x2=5 .(2)抛物线y=-x2+2kx+2与x轴交点的个数为( C )D.以上都不对(3)下表是满足二次函数y=ax2+bx+c的五组数据,x1是方程ax2+bx+c=0的一个解,则下列选项正确的是( C )xyA.1.6<x1< 已知抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c-3=0的根的情况是( C )A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根5.小结升华(5分钟)学生小结,教师补充总结:(1)二次函数与一元二次方程的关系.(2)二次函数与一元二次方程根的情况的关系.(3)事物是普遍联系的.运用方程知识可以解决函数问题,同样运用函数知识又可以解决方程的根的相关问题.6.独立作业(10分钟)(1)必做题:①已知抛物线y=x2-8x+c的顶点在x轴上,则c的值是( A )②若一元二次方程x2-mx+n=0无实数根,则抛物线y=-x2+mx-n的图象位于( C )轴上方 B.第一、二、三象限轴下方 D.第二、三、四象限(2)备用题:已知二次函数y=2x2-4x-1的图象与x轴交于A、B两点,与y轴交于点C,求△ABC的面积.解:S△ABC=.第2课时二次函数与不等关系教学目标1.经历探索二次函数、一元二次方程、一元二次不等式之间的关系,体会数形结合思想,培养观察能力.2.通过学习,感受学习数学知识之间联系与转化的无穷乐趣.教学重难点重点:根据函数图象观察方程的解和不等式的解集.难点:观察抛物线与直线相交后的函数值、自变量的变化情况.教学过程与方法1.出示例题供学生合作学习,教师进行矫正与强化(15分钟)【例】如图是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,若其与x轴一交点为B(3,0),则由图象可知,不等式ax2+bx+c>0的解是x>3或x<-1.2.学习独立完成如下习题(25分钟)(1)若二次函数y=kx2-7x-7的图象与x轴有交点,则k的取值范围为( B )>-≥-且k≠0≥->-且k≠0(2)已知二次函数y=x2-2ax+(b+c)2,其中a、b、c是△ABC的边长,则此二次函数图象与x轴的交点情况是( A )A.无交点B.有一个交点C.有两个交点D.交点个数无法确定(3)若二次函数y=x2+mx+m-3的图象与x轴交于A、B两点,则A、B两点的距离的最小值是( C )D.无法确定(4)已知抛物线y=-3(x-1)(x+2),则当x ≤-2或x≥1 时,y≤0.(5)如图,请根据抛物线y=ax2+bx+c与直线y=mx+n的图象信息回答:①不等式ax2+bx+c>mx+n的解集为x<-2或x>1 .②方程ax2+bx+c=mx+n的解为 x1=1,x2=-2 .(6)若抛物线y=(m-1)x2+2mx+m+2的图象恒在x轴的上方,则m的取值范围是m>2 .(7)二次函数y=ax2+bx+c的图象如图所示,请根据图象信息回答问题:①写出方程ax2+bx+c=0的两根;②写出不等式ax2+bx+c>0的解集;③写出方程ax2+bx+c=的两根;④写出不等式ax2+bx+c<的解集;⑤若方程ax2+bx+c+1-k=0有两个不相等的实数根,求k的取值范围.解:①0,4 ②x<0或x>4 ③5,-1 ④-1<x<5 ⑤k>-13.课堂小结(5分钟)本节课有哪些收获与困惑?。
22.1.1二次函数(教案)[修改版]
第一篇:22.1.1 二次函数(教案)第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数教学目标【知识与技能】1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系. 【过程与方法】通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征. 【情感态度】在探究二次函数的学习活动中,体会通过探究发现的乐趣. 教学重点结合具体情境体会二次函数的意义,掌握二次函数的有关概念. 教学难点1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件. 教学过程一、情境导入,初步认识问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x之间的关系式可表示为,y是x的函数吗?问题2 n个球队参加比赛,每两队之间进行一场比赛.比赛的场次数m与球队n有什么关系?这就是说,每个队要与其他个球队各比赛一场,整个比赛场次数应为,这里m是n的函数吗?问题3 某种产品现在的年产量为20t,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x值而确定,y与x之间的关系应怎样表示?二、思考探究,获取新知全班同学合作交流,共同完成上面三个问题,教师全场巡视,发现问题可给1予个别指导.在同学们基本完成情形下,教师再针对问题2,解释m=n(n-1)而不2是m=n(n-1)的原因;针对问题3,可引导同学们先算出第二年产量为20(1+x)t,第三年产量为20(1+x)(1+x)t,得到y=20(1+x)2. 【教学说明】上述活动的目的在于引导同学们能通过具体问题情境建立二次函数关系式,体会二次函数是刻画实际生活中自变量与因变量的关系的重要模型之一.11思考函数y=6x2,m=n2-n,y=20x2+40x+20有哪些共同点?22【教学说明】在同学们相互交流、发言的过程中,教师应关注:(1)语言是否规范;(2)是否抓住共同点;(3)针对少数同学可能进一步探索出其不同点等问题应及时引导,让同学们在轻松快乐的环境中进入二次函数的学习. 【归纳结论】上述三个函数都是用自变量的二次式表示的,从而引出二次函数定义.一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数,叫做二次函数.其中x是自变量,a、b、c分别是二次项系数,一次项系数和常数项. 【教学说明】针对上述定义,教师应强调以下几个问题:(1)关于自变量x的二次式必须是二次整式,即可以是二次单项式、二次二项式和二次三项式;(2)二次项的系数a≠0是定义中不可缺少的条件,若a=0,则它是一次函数;(3)二次项和二次项系数不同,二次项指ax2,二次项系数则仅是指a的值;同样,一次项与一次项系数也不同. 教师在学生理解的情况下,引导学生做课本P29练习.三、运用新知,深化理解1.下列函数中,哪些是二次函数,哪些不是?若是二次函数,指出它的二次项系数、一次项系数和常数项:(1)y=(x+2)(x-2); (2)y=3x(2-x)+3x2; (3)y=1-2x+1; 2x(4)y=1-3x2. 2.若y=(m+1)xm2+1-2x+3是y关于x的二次函数,试确定m的值或取值范围.3.某商场以每件30元的价格购进一种商品,试销中发现:这种商品的销售量m(件)与每件商品的销售价x(元)满足一次函数关系m=162-2x,试写出商场销售这种商品的日销售利润y(元)与每件商品的销售价x(元)之间的函数关系式,y是x的二次函数吗?4.如图,用同样规格的正方形白瓷砖铺设矩形地面,请观察下列图形并解答有关问题:(1)在第n个图中,每一横行共有块瓷砖,每一竖列共有块瓷砖(均用含n的代数式表示);(2)设铺设地面所用瓷砖的总块数为y,请写出y与(1)中的n的函数关系式(不要求写自变量n的取值范围). 【教学说明】这个环节的教学自主性很强,可让同学们分小组完成,对优胜小组给予鼓励,培养学生团队精神,让部分学生分享成功的快乐,但对题2、3、4,教师应及时给予引导,鼓励学生大胆完成. 【答案】1.解:(1)y=(x+2)(x-2)=x2-4,该函数是二次函数,它的二次项系数为1,一次项系数是0,常数项是-4. (2)y=3x(2-x)+3x2=6x,该函数不是二次函数. (3)该函数不是二次函数. (4)该函数是二次函数,它的二次项系数为-3,一次项系数为0,常数项为1. 2.解:∵y m1xm212x3是y关于x的二次函数. ∴m+1≠0且m2+1=2, ∴m≠-1且m2=1,∴m=1. 3.解:由题意分析可知,该商品每件的利润为(x-30)元,则依题意可得:y=(162-3x)(x-30) 即y=-3x2+252x-4860 由此可知y是x的二次函数. 4.解:(1)观察图示可知第1、2、3个图形中每一横行瓷砖分别为4,5,6,每一竖列瓷砖分别为3,4,5,由此推断在第n个图中,每一横行共有(n+3)块瓷砖,每一竖行共有(n+2)块瓷砖;(2)y=(n+3)(n+2)即y=n2+5n+6.四、师生互动,课堂小结1.二次函数的定义;2.熟记二次函数y=ax2+bx+c中a≠0,a、b、c为常数的条件. 【教学说明】本环节设置的目的在于让学生进一步认识二次函数的相关定义,教师可与学生一起回顾. 课后作业1.布置作业:教材习题22.1第1、2、7题;2.完成创优作业中本课时练习的“课时作业”部分. 教学反思第二篇:22.1.1-二次函数(教案)第二十二章二次函数22.1 二次函数的图象和性质22.1.1 二次函数教案教学目标【知识与技能】1.能结合具体情境体会二次函数的意义,理解二次函数的有关概念.2.能够表示简单变量之间的二次函数关系. 【过程与方法】通过具体问题情景中的二次函数关系了解二次函数的一般表述式,在类比一次函数、反比例函数表达式时感受二次函数中二次项系数a≠0的重要特征. 【情感态度】在探究二次函数的学习活动中,体会通过探究发现的乐趣. 教学重点结合具体情境体会二次函数的意义,掌握二次函数的有关概念. 教学难点1.能通过生活中的实际问题情境,构建二次函数关系;2.重视二次函数y=ax2+bx+c中a≠0这一隐含条件. 教学过程一、情境导入,初步认识展示执实心球图片,体验体育中的数学二、温故知新1. 什么叫做函数?(学生回顾)2. 我们学过哪些函数?(PPT展示)三、探究新知问题1 如图所示是一个棱长为xcm的正方体,它的表面积为ycm2,则y与x之间的关系式可表示为,y是x的函数吗?问题2 多边形的对角线总数d与边数n有什么关系?可以想出,如果多边形有n条边,那么它有个顶点,从一个顶点出发,连接与这点不相邻的各顶点,可以作条对角线,用n的式子表d为:。
第22章 二次函数知识点总结 2023—2024学年人教版数学九年级上册
第二十二章二次函数22.1二次函数的图像和性质22.1.1 二次函数知识点一 二次函数的定义1.二次函数的定义:一般地,形如)0a ,,(2≠++=是常数,c b a c bx ax y 的函数,叫做二次函数.2.任何一个二次函数的解析式都可化成)0a ,,(2≠++=是常数,c b a c bx ax y 的形式,因此,把)0a ,,(2≠++=是常数,c b a c bx ax y 叫做二次函数的一般式3.二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 中y x ,是变量,c b a ,,是常量.自变量x 的取值范围是全体实数,b 和c 可以是任意实数,a 必须是不等于 0的实数.知识点二 实际问题中的二次函数22.1.2二次函数2ax y =的图像和性质理解 题意 分析问题中的变量和常量及它们之间的关系列函数 关系式22.1.3二次函数()k h x a y +-=2的图像和性质第一课时 二次函数k ax y +=2的图像和性质第二课时 二次函数()2h x a y -=的图像和性质第三课时 二次函数()k h x a y +-=2的图像和性质22.1.4 二次函数)0a ,,(2≠++=是常数,c b a c bx ax y 的图象和性质第一课时 二次函数c bx ax y ++=2的图象和性质知识点一 二次函数c bx ax y ++=2与()k h x a y +-=2之间的关系 利用二次函数图象平移的规律求平移后的函数的解析式,首先要把函数解析式化为顶点式:()k h x a y +-=2知识点二 二次函数c bx ax y ++=2的图象和性质 1. 二次函数c bx ax y ++=2的图象是一条抛物线,与抛物线2ax y =的形状相同,位置不同,利用配方法可以将c bx ax y ++=2转化成顶点式,即a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++= 2. 二次函数c bx ax y ++=2的性质(1)当0>a 时,抛物线开口向上,对称轴为直线a bx 2-=,顶点坐标为⎪⎪⎭⎫ ⎝⎛--a b ac ab 44,22c bx ax y ++=20>a0<a开口方向 向上 向下对称轴 直线ab x 2-= 直线ab x 2-= 顶点坐标⎪⎪⎭⎫ ⎝⎛--a b ac a b 44,22 ⎪⎪⎭⎫⎝⎛--a b ac a b 44,22 增减性当a b x 2->时,y 随x 的增大而增大;当a b x 2-<时,y 随x 的增大而减小当abx 2->时,y 随x 的增大而减小;当abx 2-<时,y 随x 的增大而增大最值当ab x 2-=时,ab ac y 442-=最小值当ab x 2-=时,ab ac y 442-=最大值知识点三 二次函数c bx ax y ++=2的图象与系数c b a ,,之间的关系 系数 图像的特征 系数的符号a开口向上 0>a 开口向下0<a b对称轴为y 轴 0=b对称轴在y 轴左侧同号b a ,对称轴在y 轴右侧 异号b a ,c经过原点0=c 与y 轴正半轴相交 0>c 与y 轴负半轴相交0<c第二课时 用待定系数法求二次函数的解析式知识点一 用待定系数法求二次函数的解析式根据已知条件确定二次函数解析式,通常利用待定系数法,用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题便捷。
宣城市实验中学九年级数学上册第二十二章二次函数22.122.2第2课时二次函数y=ax2+bx+c的
1.方程5x2-x-3=x2-3+x的二次项系数是 4
是 -2 , 常数项是 0
.
, 一次项系数
考点二 一元二次方程的根的应用
例2 假设关于x的一元二次方程〔m-1)x2+x+m2-1=0有一个根为
0,那么m=-1
.
解析 根据一元二次方程根的定义可知将x=0代入原方程一定 会使方程左右两边相等 , 故只要把x=0代入就可以得到以m为 未知数的方程m2-1=0 , 解得m=±1的值.这里应填-1.这种题 的解题方式我们称之为〞有根必代”.
12.如图,二次函数 y=ax2+bx+c(a>0)的图象的顶点为点 D,其图象与 x 轴的 交点 A,B 的横坐标分别为-1,3,与 y 轴负半轴交于点 C.在下面四个结论中:①2a -b=0;②a+b+c>0;③c=-3a;④只有当 a=12时,△ABD 是等腰直角三角形.其 中正确的结论是__③__④___.(填序号)
A.1 个 B.2 个 C.3 个 D.4 个
10.(2018·随州)如图所示,已知二次函数 y=ax2+bx+c 的图象与 x 轴交于 A, B 两点,与 y 轴交于点 C,对称轴为直线 x=1.直线 y=-x+c 与抛物线 y=ax2+bx+ c 交于 C,D 两点,点 D 在 x 轴下方且横坐标小于 3,则下列结论:①2a+b+c>0;②
A.3 个 B.2 个 C.1 个 D.0 个
6.二次函数 y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题: (1)写出方程 ax2+bx+c=0 的两个根; (2)写出不等式 ax2+bx+c>0 的解集; (3)求 y 的取值范围.
解 : (1)x=-5或x=1 (2)-5<x<1 (3)y≤9
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.在上图坐标系内,画出下列函数的图象: (1)y=2x ; (2)y=0.5x 。 群学:组长 引导,在组 内交流解决 大家共同的 疑问,选好 发言人准备 展示你们的 学习成果。 2.在同一坐标系内,画出下列函数的图像: (1)y=-x ; (2)y=-2x ; (3)y=-0.5x y=ax
九年级数学二次函数导学案(2) 班级: 课题 主备 学习目标 小组: 22.1.2 二次函数 y=ax 的图像和性质 黄雪瑞 审核
2
学生姓名:
2
课型 使用
x 的图象,理解抛物线的有关概念; 2、掌握二次函数 y=ax 的性质,并会灵活应用. 理解抛物线的有关概念, 会用描点法画出二次 函数 y=ax 的图象是教学的重点 问 题 导
2 2
重点 过 程 学法 指导
难点
用描点法画出二次函数 y=ax 的 图象以及探索二次函数性质 学
2
画二次函数 y=x 的图象. ①列表 ②描点③连线(用平滑曲线)
2
y 8 7 6 5 4 3 2 1 2
x y=x
2
独 立 自 学 请大家做导 学案上的问 题;
① 由图象可知二次函数 y=x 的图象是一条曲线, 形状类似于投篮球时球在空中所经过的路线,即抛 出物体所经过的路线,所以这条曲线叫做 ②抛物线 y=x 是轴对称图形,对称轴是 ③y=x 的图象开口_______; ④ 的最 与
2 2 2
2
线; ;
x
的交点叫做抛物线的顶点。 ;它是抛物线
O 1 2 3 4 4 3 2 11
值等于 0. 。
抛物线 y=x 的顶点坐标是
点(填“高”或“低” ) ,即当 x=0 时,y 有最 趋势;即 x <0 时, y 随 x 的增大而
⑤在对称轴的左侧,图象从左往右呈
趋势,在对称轴的右侧,图象从左往右呈 , x >0 时, y 随 x 的增大而
.
精讲导学
对同学们的疑问和难点,老师将重点指导、穿插讲解,规范板书过程。请同学们认真 领悟! 与大家一起分享你的收获。
小结评学
1.二次函数的一般形式为: 2.怎样确定二次函数的各项系数?
.
检 测 固 学 比一比哪个组 学习效果好。
1. 2.
完成书本 29 页的练习。 完成《长江学案》25 页的自主学习。
2
对称轴
开口、最值 开口向 , 当 x= 时, y 有最 值= ,a 越 大,抛物线开口越 。
顶点坐标
函数增减性 在对称轴的左侧, 即 x 0 时, y 随 x 的增大而 ; 在对称轴的右侧, 即x y 随 x 的增大而 0 时, 。
合 作 互 学
a>0
a<0
1.二次函数 y=-3x ,当 x1>x2>0 时,求 y1 与 y2 的大小关系。 展 示 竞 学 2.二次函数 3.已知函数
九年级数学二次函数导学案(1) 班级: 课题 主备 学习目标 重点 过 程 小组: 22.1.1 二次函数 审核 1. 掌握二次函数的有关概念. 学生姓名: 课型 使用 2. 我会确定二次函数关系式中各项的系数。 确定实际问题中二次函数的 关系式。 学 新授
3. 我能确定实际问题中二次函数的关系式。 掌握二次函数的有关概念; 确定二次函数关系 式中各项的系数。 问
2 2
难点 导
学法指导
题
2
1.观察:①y=6x ;②m=0.5n -n;③y=20x +40x+20.这三个式子中,虽然函数有一项 独 立 自 学 请大家做导学 案上的问题; 自 学教材 P28-29 页内容,完成 “思考” 。 的 , 两 项 的 或 三 项 的 , 但 自 变 量 的 最 高 次 项 的 次 数 都 是 ____ 次 . 一 般 地 , 形 如 (a.b.c 是常数,a≠0),那么 y 叫做 x 的二次函数.其中 x 是________, a 是__________, b 是___________,c 是_____________. 2.下列函数表达式中,哪些是二次函数?若是二次函数,请指出各项对应项的系数. (1)y=1-3x +1 1.二次函数 y=ax +bx+c(1)二次项系数 a 为什么不等于 0?
2
r 之间的函数关系式是
1.若物体运动的路段 s(米)与时间 t(秒)之间的关系为 s 展 示 竞 学 分组展示合作 互学中学习成 果, 看哪个组积 极性最高, 展示 最精彩! 秒时,该物体所经过的路程为 2.二次函数 为 。
5t 2 2t ,则当
t=4
y x2 bx 3 .当 x=2 时,y=3,则这个二次函数解析式
2
2
(2)y=3x +2x
2
(3)y =x (x -5) +2
(4)y=3x +2x
3
2
(5)y =x
合 作 互 学
群学:组长引 导, 在组内交流 解决大家共同 的疑问, 选好发 言人准备展示 你们的学习成 果。
(2)一次项系数 b 和常数项 c 可以为 0 吗? 2. 函数 y=(m-2)x +mx-3(m 为常数).1)当 m_____时,该函数为二次函数; 2)当 m_______时,该函数为一次函数. 3.用 16m 长的篱笆围成长方形圈养小兔,圈的面积 y(㎡)与长方形的长 x(m)之间的 函数关系式为 。 。 4. 用一根长为 40 cm 的铁丝围成一个半径为 r 的扇形,求扇形的面积 S 与它的半径
2
分组展示合 作互学中学 习成果!
y mxm
2
1
在其图象对称轴的右则,y 随 x 的增大而增大,求 m 的值。
2
(1)满足条件的 m 的值; y m 2x m m4 是关于 x 的二次函数,求:
(2)m 为何值时,抛物线有最底点?这时 x 为何值时,y 随 x 的增大而增大; (3) m 为何值时, 抛物线有最大值?最大值是多少?当 x 为何值时, y 随 x 的增大而减小?