解斜三角形应用举例(第一课时) 教案

合集下载

高三数学一轮复习---解斜三角形(复习)公开课教案

高三数学一轮复习---解斜三角形(复习)公开课教案

解斜三角形(复习)公开课教案[教学目标]一:巩固对正弦、余弦、面积公式的掌握,并能熟练地运用公式解决问题。

二:培养学生分析、演绎和归纳的能力。

[教学重点]正弦、余弦、面积公式的应用。

[教学难点]选择适当的方法解斜三角形。

[教学过程]一:基本知识回顾:1.1、正弦定理及其变形;正弦定理:2sin sin sin a b cR A B C===(R 是三角形外接圆的半径) 变式一:sin 2a A R =、sin 2b B R =、sin 2cC R=变式二:sin :sin :sin A B C ::a b c =1.2、余弦定理及其变形;余弦定理:2222cos a b c bc A =+-,变式:222cos 2b c a A bc+-=2222cos b a c ac B =+-, 222cos 2a c b B ac+-=2222cos c a b ab C =+-。

222cos 2a b c C ab+-=1.3、面积公式二:例题分析:1、正弦定理(1)在△ABC 中,已知,则 sin B= ( ) (2)在△ABC 中,若a = 2 ,b =030A = , 则B 等于60︒或120︒111sin sin sin 222S ab C bc A ac B===4,303a b A ===︒2、余弦定理(1)在△ABC 中,满足 ,则A = 60°(2)已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为A .41-B .41C .32-D .32 3、三角形解的个数(1)在△ABC 中,已知 ,这个三角形解的情况是:( C )A.一解B.两解C.无解D.不能确定(2)△ABC 中,∠A ,∠B 的对边分别为a ,b ,且∠A=60°,4,6==b a ,那么满 足条件的△ABC( )A .有一个解B .有两个解C .无解D .不能确定4、判断三角形形状 (1)若cCb B a A cos cos sin ==则△ABC 为( ) A .等边三角形 B .等腰三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形(2)关于x 的方程02cos cos cos 22=-⋅⋅-CB A x x 有一个根为1,则△ABC 一定是 A .等腰三角形 B .直角三角形 C .锐角三角形D .钝角三角形5、正余弦定理的实际应用(1)有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要 伸长( ) A .1公里 B .sin10°公里 C .cos10°公里 D .cos20°公里 (2)10105/4/o C v v B AB o 某渔船在航行中遇险发出呼救信号,我海军舰艇在A处获悉后立即测出该渔船在方向角为北偏东45,距离海里的处,渔船沿着方位角为的方向以海里小时的速度向小岛靠拢,我海军艇舰立即以海里小时的速度前去营救。

高中数学教案】人教A版必修5第一章1.2《解三角形应用举例》教案

高中数学教案】人教A版必修5第一章1.2《解三角形应用举例》教案

《解三角形应用举例》教案一、教学目标1.知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.2.过程与方法(1)通过解决“底部不可到达的物体高度测量”的问题,初步掌握将实际问题转化为解斜三角形的问题的方法.(2)进一步提高利用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力.3.情感、态度与价值观进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力二、教学重点和难点教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学关键:将实际问题中的高度问题转化为数学问题.教学突破方法:通过分析实践、自主探究、合作交流等一系列的寻求问题解决方法的活动,讨论解决方法,步步改进方法,探求最佳方法.三、教法与学法导航教学方法:本节课是解三角形应用举例的延伸.采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架.通过3道例题的安排和练习的训练来巩固深化解三角形实际问题的一般方法.教学形式要坚持“引导——讨论——归纳”,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯.作业设计思考题,提供学生更广阔的思考空间.学习方法:学生通过数学建模,自主探究、合作交流,在实践中体验过程,在过程中感受应用,在交流中升华.四、教学过程1.创设情境,导入新课提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题.2.主题探究,合作交流例1 如图1,AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.图1分析:求AB 长的关键是先求AE ,在△ACE 中,如能求出点C 到建筑物顶部A 的距离CA ,再测出由点C 观察A 的仰角,就可以计算出AE 的长.解:选择一条水平基线HG ,使H 、G 、B 三点在同一条直线上.在H 、G 两点用测角仪器测得A 的仰角分别是α、β,CD =a ,测角仪器的高是h ,那么,在△ACD 中,根据正弦定理可得: )sin(sin βαβ-=a AC , h a h AC h AE AB +-=+=+=)sin(sin sin sin βαβαα. 例 2 如图2,在山顶铁塔上B 处测得地面上一点A 的俯角0454'︒=α,在塔底C 处测得A 处的俯角150'︒=β.已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1m ).图2教师:根据已知条件,大家能设计出解题方案吗(给时间给学生讨论思考)?若在△ABD 中求CD ,则关键需要求出哪条边呢?学生:需求出BD 边.教师:那如何求BD 边呢?学生:可首先求出AB 边,再根据∠BAD=α求得.解:在△ABC 中,∠BCA =90°+β,∠ABC =90°-α,∠BAC =αβ-,∠BAD =α.根据正弦定理, )sin(βα-BC =)90sin(β+︒AB.所以 AB =)sin()90sin(βαβ-+︒BC =)sin(cos βαβ-BC .在Rt △ABD 中,得:BD =AB sin ∠BAD =)sin(sin cos βααβ-BC .将测量数据代入上式,得:BD =)1500454sin(0454sin 150cos 3.27'-'''︒︒︒︒ =934sin 0454sin 150cos 3.27'''︒︒︒≈177.4(m ).CD =BD -BC ≈177-27.3=150(m ).学生:山的高度约为150 m.教师:有没有别的解法呢?学生:若在.△ACD 中求CD ,可先求出AC .教师:分析得很好,请大家接着思考如何求出AC ?学生:同理,在△ABC 中,根据正弦定理求得.(解题过程略)例3 如图3,一辆汽车在一条水平的公路上向正东行驶,到A 处时测得公路南侧远处一山顶D 在东偏南15°的方向上,行驶5km 后到达B 处,测得此山顶在东偏南25°的方向上,仰角为8°,求此山的高度CD (精确到1m ).图3教师:欲求出CD ,大家思考在哪个三角形中研究比较适合呢?学生:在△BCD 中教师:在△BCD 中,已知BD 或BC 都可求出CD ,根据条件,易计算出哪条边的长? 学生:BC 边解:在△ABC 中, ∠A =15°,∠C = 25°-15°=10°,根据正弦定理,A BC sin =CAB sin , BC =C A AB sin sin =︒︒10sin 15sin 5≈7.452 4(km ). tan tan81047(m)CD BC DBC BC =⨯∠≈⨯︒≈答:山的高度约为1047m.教材第15页练习第1、2、3题.3.小结利用正弦定理和余弦定理来解题时,要学会审题及根据题意画方位图,要懂得从所给的背景资料中进行加工、抽取主要因素,进行适当的简化.4.课外作业(1)教材第19、20页习题1.2 A 组第6,7,8题(2)为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45°,则塔AB 的高度为多少m ?答案:20+3320m。

5.7解斜三角形应用举例

5.7解斜三角形应用举例

高一平面向量7(解斜三角形应用举例)
1、为测量建造中的上海东方明珠电视塔已到达的高度,李明在学校操场的某一直线上选择A 、B 、C 三点,60==BC AB 米,且在A 、B 、C 三点观察塔的最高点,测得仰角分别为45°,54.2°,60°.已知李明身高1.5米,试问建造中的电视塔已到达的高度(结果保留一位小数).
2.在一个很大的湖岸边(可视湖岸为直线)停放着一只小船,由于缆绳突然断开,小
船被风刮跑,其方向与河岸成15°,速度为 2.5km/h .同时岸
上有一人,从同一地点开始追赶小船,已知他在岸上跑的速度
为 4km/h ,在水中游的速度为 2km/h .问此人能否追上小船?
若小船速度改变,则小船能被人追上的最大速度是多少?
3.如图所示,在斜度一定的山坡上的一点A 测得山顶上一建筑物顶端C 对于山坡的斜度为15°,向山顶前进100米后,又从B 点测得斜度为45°,设建筑物的高为50米.求此山对于地平面的斜度的倾斜角θ.
4、某部队行军中遇到一条河,河的两岸平行.现有米尺和︒60、︒45测角仪.如何才能测量计算出河宽?
5.如图,某城市有一条公路从正西方OA 能过市中心O 后转向东北方OB L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段现要求市中心O 与AB 的距离为10公里,问把B A 、分别设在公路上距中心O 多远处才能使AB 最短,并求其最短距离(不要求作近似计
算) B
O A 45︒15︒A
B
D E C。

解斜三角形方法

解斜三角形方法

解斜三角形(导学案)§1.1.1正弦定理课堂学习目标:1. 通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2. 会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

知识梳理:1. 内角和定理:在ABC ∆中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C -cos 2A B +=sin 2C 2. 面积公式: (1)1()2a a S a h h a = 表示边上的高; (2)111sin sin sin ()2224abc S ab C ac B bc A R R====为外接圆半径; (3)1()()2S r a b c r =++为内切圆半径。

3.正弦定理:在一个三角形中,各边和它的所对角的正弦的比相等. 形式一:R C c B b A a 2sin sin sin === 形式二:a=2RsinA,b=2RsinB,c=2RsinC; sinA=2a R ,sinB=2b R ,sinC=2c R; 形式三:a:b:c=sinA: sinB: sinC; 和 sin sin sin sin a b c a A B C A ++=++ 二、基础检测:1. 在ABC ∆中,A 、B 的对边分别是 a b 、,且A=30 4,a b ==,那么满足条件的ABC ∆ ( B )A 、 有一个解B 、有两个解C 、无解D 、不能确定2、在C ∆AB 中,已知8a =,60B = ,75C = ,则b 等于( )A .B .C .D .323 3、在C ∆AB 中,5a =,3b =,120C = ,则sin sin A B的值是( ) A .53 B .35 C .37 D .574、在C ∆AB 中,若2sin b a =B ,则A 等于( )A .30 或60B .45 或60C .60 或120D .30 或1505、在C ∆A B 中,若()()()cos cos cos 1C C A-B ⋅B-⋅-A =,则C ∆A B 的形状是( )A .直角三角形B .等边三角形C .等腰直角三角形D .顶角为120 的等腰三角形6、一个三角形的两个内角分别为30 和45 ,如果45 角所对的边长为8,那么30 角所对的边长是( )A .4B .C .D .7、在C ∆AB 中,1a =,b =30A = ,则B 等于( )A .60B .60 或120C .30 或150D .1208、在C ∆AB 中,45B = ,60C = ,1c =,则最短边的长等于( )A .B .C .12D 9、在C ∆AB 中,若sin cosa b A B=,则B 的值为( )A . 30B . 45C . 60D . 9010、在C ∆AB 中,6=a ,30B = , 120=C ,则C ∆AB 的面积是( )A .9B .18C .39D .31811、在C ∆AB 中,若60A = ,16=b ,此三角形面积3220=S ,则a 的值是()A .620B .75C .51D .4912、在C ∆AB 中,若12+=+c b ,45C = ,30B = ,则( )A .2,1==c bB .1,2==c bC .221,22+==c b D .22,221=+=c b13、在C ∆AB 中,60A = ,a =4b =,那么满足条件的C ∆AB ( )A .不存在B .唯一存在C .有2个D .不确定14、在C ∆AB 中,若60A = ,a =sin sin sin a b cC ++A +B +等于( )A .2B .12C D15、在C ∆AB 中,60A = ,1b =,C S ∆AB ,则sin sin sin a b c C++=A+B+( )A .3B .3C .3D .16、在C ∆AB 中,若cos cos cos a b c C ==A B ,则C ∆AB 是( ) A .直角三角形 B .等边三角形 C .钝角三角形 D .等腰直角三角形17、在C ∆AB 中,若::1:2:3C A B =,则::a b c =________________.18、在C ∆AB 中,2a =,b =4πA =,则B =______________.19、在C ∆AB 中,已知12a b +=,60A = ,45B = ,则a =_________,b =________.20、在C ∆AB 中,已知a =2b =,60A = ,则这样的三角形有_______个.21、在C ∆AB 中,已知12C B =,60A = ,45B = ,则C A = _.22、在C ∆AB 中,已知8a =,6b =,且C S ∆AB =C =________.23、在C ∆AB 中,已知a =4b =,30A = ,则sin B =________. 24、在C ∆AB 中,周长为7.5cm ,且sin :sin :sin 4:5:6C A B =,下列结论:①::4:5:6a b c =;②::a b c =;③2a cm =, 2.5b cm =,3c cm =;④::4:5:6C A B =.其中成立的序号依次是___________.25、在C ∆AB 中,已知10c =,45A = ,30C =,求a ,b 和B .26、C ∆AB 中,c =45A = ,a =b 和B 、C .三、典例分析:1. 在ΔABC 中,(1)若o ,求a 及C 的值;(2)若A=600,a=7,b=5,求边C 。

解斜三角形 教案

解斜三角形 教案

授课主要内容或板书设计
例题变式解:在∆ABC中,∠ABC=180︒- 75︒+ 32︒=137︒,
根据余弦定理,
AC=ABC
BC
AB
BC
AB∠


-
+cos
2
2
2
=




-
+137
cos
0.
54
5.
67
2
0.
54
5.
672
2
≈113.15
根据正弦定理,
CAB
BC

sin
=
ABC
AC

sin
sin∠CAB =
AC
ABC
BC∠
sin
=
15
.
113
137
sin
0.
54︒
≈0.3255,
所以∠CAB =19.0︒
75︒- ∠CAB =56.0︒
答:此船应该沿北偏东56.1︒的方向航行,需
要航行113.15n mile
练习:(对例3的变式)
在某点B处测得建筑物AE的顶端A的仰角为θ,
沿BE方向前进30m,至点C处测得顶端A的仰角
为2θ,再继续前进103m至D点,测得顶端A
的仰角为4θ,求θ的大小和建筑物AE的高。

解法一:(用正弦定理求解)由已知可得在∆ACD
中,
实际问题中需要
掌握
近似估计、运算
通过变式,让学生
体会该数学模型
的在不同问题中
的应用。

2、学案:应用举例

2、学案:应用举例

正、余弦定理及解斜三角形的方法。

二:新课讲解: 1、基本概念①坡角: 。

②仰角: 。

③俯角: 。

④方向角: 。

⑤视角: 。

2:例题选讲例1、设A 、B 在河的两岸,测量者在与A 同侧的河岸边选取测点C ,测得AC 的距离是50m ,007551=∠=∠ACB ,BAC ,求A 、B 两点间的距离。

练习:为了测定对岸两点A 、B 的距离,在岸边选定1km 长的基线CD ,并测得00030756090=∠=∠=∠=∠ADC ,BDC ,BCD ,ACD 求A 、B 两点间的距离。

例2、设A 、B 是两个不能到达的海岛,如何测量它们之间的距离。

练习:如图,在河对岸可以看到两个目标M 、N ,但不能到达,在河岸边选取相距40m 的P 、Q 两点,并测得000045304575=∠=∠=∠=∠MQN ,MQP ,NPQ ,MPN ,试求两个目标M 、N 之间的距离。

总结;解决距离问题的一般思路:例3:测量一个底部不能到达的建筑物的高度。

练习:课本114A P 三、1. 2《应用举例》当堂检测姓名: 分数:1、两灯塔A 、B 与海洋观察站C 的距离都等于akm ,灯塔A 在观察站C 的北偏东030,灯塔B 在观察站C 的南偏东060,求A 、B 、两灯塔的距离。

2、在某次军事演习中,红方为了准确分析战场形势,在两个相距为a 23的军事基地C 和D 测得蓝方两支精锐部队分别在A 处和B 处,且000045603030=∠=∠=∠=∠ACB ,DCA ,BDC ,ADB ,求蓝方这两支精锐部队的距离。

1、解斜三角形实际应用举例常见几种题型2、解斜三角形实际应用题的基本思路。

二:例题选讲例1、 (见课本例1)练习:课本19p 巩固与提高12T例2、在海岸A 处,发现北偏东045方向,距A 处n )13( mile 的B 处有一艘走私船,在A 处北偏西075的方向,距离A 处2n mile 的C 处的缉私船奉命以310n mile/h 的速度追截走私船。

必修5教案三维目标重难点

必修5教案三维目标重难点

1.1.1正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。

过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。

情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。

●教学重点正弦定理的探索和证明及其基本应用。

●教学难点已知两边和其中一边的对角解三角形时判断解的个数。

●教学过程1.2解三角形应用举例第一课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语2、激发学生学习数学的兴趣,并体会数学的应用价值;同时培养学生运用图形、数学符号表达题意和应用转化思想解决数学问题的能力二、教学重点、难点教学重点:由实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解教学难点:根据题意建立数学模型,画出示意图1.2 解三角形应用举例第二课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题2、巩固深化解三角形实际问题的一般方法,养成良好的研究、探索习惯。

3、进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力二、教学重点、难点重点:结合实际测量工具,解决生活中的测量高度问题难点:能观察较复杂的图形,从中找到解决问题的关键条件1.2解三角形应用举例第三课时一、教学目标1、能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题2、通过综合训练强化学生的相应能力,让学生有效、积极、主动地参与到探究问题的过程中来,逐步让学生自主发现规律,举一反三。

解三角形应用举例 教学设计

解三角形应用举例 教学设计

解三角形应用举例一、教学目标1、知识与技能目标初步运用正弦定理、余弦定理解决某些与测量和几何计算有关的实际问题.2、过程与方法目标(1)通过解决“测量一个底部不能到达的建筑物的高度”或“测量平面上两个不能到达的地方之间的距离”的问题,初步掌握将实际问题转化为解斜三角形问题的方法;(2)进一步提高应用正弦定理、余弦定理解斜三角形的能力,提高运用数学知识解决实际问题的能力.3、情感、态度与价值观目标(1)通过学生亲自实施对“测量” 问题的解决,体会如何将具体的实际问题转化为抽象的数学问题,体验问题解决的全过程;(2)发展学生搜集和处理信息的能力、获取新知识的能力、分析解决问题的能力,以及交流与合作的能力,着重学生多元智能的发展。

二、教学重点、难点1、重点是如何将实际问题转化为数学问题,并利用解斜三角形的方法予以解决.2、分析、探究并确定将实际问题转化为数学问题的思路是难点和关键.三、教学方法与手段1、教学方法:运用认知建构教学理论和多元智能发展观,在教学中采用自主探究与尝试指导相结合,引导学生通过分析实践、自主探究、合作讨论得出转化(解决)问题的方法.2、学习方法:在实践中体验过程,在过程中感受应用,在交流中升华知识。

3、教学手段:实际模拟、合作学习、多媒体(投影仪)四、教学过程:(一)检查预习效果:问题1:怎样测量一个底部不能到达的建筑物的高度?问题2:怎样测量地面上两个不能到底的地方之间的距离?问题3:物理问题;问题4: 台风问题。

(二)一些术语:仰角和俯角:与目标视线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方时叫仰角,目标视线在水平视线下方时叫俯角,如图所示:坡角和坡度坡面与地平面所成的角度,叫做坡角;坡面的铅直高度和水平宽度的比叫做坡度或者坡比,常用字母i表示。

坡比是坡角的正切值。

方位角与方向角:方位角:一般指正北方向线顺时针到目标方向线的水平角。

方位角的取值范围为0°~360°。

新课标人教A版数学必修5全部课件:解三角形的应用举例

新课标人教A版数学必修5全部课件:解三角形的应用举例
位置时,曲柄和连杆成一条直线,连杆的端点A在A处,设连 杆AB长为340mm,由柄CB长为85mm,曲柄自CB按顺时针方
向旋转80°,求活塞移动的距离(即连杆的端点A移动的距
离 A 0 A )(精确到1mm)
单击图象动画演示
5.10 解斜三角形应用举例
例题讲解 已知△ABC中, BC=85mm,AB=34mm,∠C=80°, 求AC. 解:(如图)在△ABC中, 由正弦定理可得:
0 . 9848
5.10 解斜三角形应用举例
例题讲解
A 0 A A 0 C AC ( AB BC ) AC ( 340 85 ) 344 . 3 80 . 7 81 ( mm )
答:活塞移动的距离为81mm.
5.10 解斜三角形应用举例
练习:
我舰在敌岛A南偏西50°相距12海里的B处,发现敌舰正 由岛沿北偏西10°的方向以10海里/小时的速度航行.问我舰需 以多大速度、沿什么方向航行才能用2小时追上敌舰? C 解:如图,在△ABC中由余弦定理得:
sin A BC sin C AB 85 sin 80 340

0 . 2462
因为BC<AB,所以A为税角 , A=14°15′ ∴ B=180°-(A+C)=85°45′ 又由正弦定理:
AC AB sin B sin C 340 sin 85 4 5

344 . 3 ( mm )
5.10 解斜三角形应用举例
5.10 解斜三角形应用举例
例题讲解 例1.如图,自动卸货汽车采用液压机构,设计时需要计算 油泵顶杆BC的长度(如图).已知车厢的最大仰角为60°,油
泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的

最新高中数学必修5《应用举例》教案

最新高中数学必修5《应用举例》教案

最新高中数学必修5《应用举例》教案高中数学必修5《应用举例》教案【一】教学准备教学目标解三角形及应用举例教学重难点解三角形及应用举例教学过程一. 基础知识精讲掌握三角形有关的定理利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);利用余弦定理,可以解决以下两类问题:(1)已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

掌握正弦定理、余弦定理及其变形形式,利用三角公式解一些有关三角形中的三角函数问题.二.问题讨论思维点拨:已知两边和其中一边的对角解三角形问题,用正弦定理解,但需注意解的情况的讨论.思维点拨::三角形中的三角变换,应灵活运用正、余弦定理.在求值时,要利用三角函数的有关性质.例6:在某海滨城市附近海面有一台风,据检测,当前台风中心位于城市O(如图)的东偏南方向300 km的海面P处,并以20 km / h的速度向西偏北的方向移动,台风侵袭的范围为圆形区域,当前半径为60 km ,并以10 km / h的速度不断增加,问几小时后该城市开始受到台风的侵袭。

一. 小结:1.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角(从而进一步求出其他的边和角);2。

利用余弦定理,可以解决以下两类问题:(1) 已知三边,求三角;(2)已知两边和它们的夹角,求第三边和其他两角。

3.边角互化是解三角形问题常用的手段.三.作业:P80 闯关训练高中数学必修5《应用举例》教案【二】教学准备教学目标1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:.com测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学重难点1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;教学过程一、知识归纳1、应用正弦余弦定理解斜三角形应用题的一般步骤及基本思路(1)分析,(2)建模,(3)求解,(4)检验;2、实际问题中的有关术语、名称:(1)仰角与俯角:均是指视线与水平线所成的角;(2)方位角:是指从正北方向顺时针转到目标方向线的夹角;(3)方向角:常见的如:正东方向、东南方向、北偏东、南偏西等;3、用正弦余弦定理解实际问题的常见题型有:测量距离、测量高度、测量角度、计算面积、航海问题、物理问题等;二、例题讨论一)利用方向角构造三角形四)测量角度问题例4、在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东。

高中数学专题复习10解斜三角形应用举例

高中数学专题复习10解斜三角形应用举例

第五章平面向量课题:解斜三角形应用举例(一)教学目标:1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题;2.了解常用的测量相关术语教学重点:实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解。

教学难点:根据题意建立数学模型,画出示意图。

教学过程:Ⅰ.课题导入1、[复习旧知]复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、[设置情境]请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。

如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。

于是上面介绍的问题是用以前的方法所不能解决的。

今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。

Ⅱ.讲授新课(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解[例题讲解](2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=︒75。

求A、B两点的51,∠ACB=︒距离(精确到0.1m)启发提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。

分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB边。

解斜三角形的应用 北师大版精品课件

解斜三角形的应用 北师大版精品课件
时光就是这么不经用,很快自己做了母亲,我才深深的知道,这样的爱,不带任何附加条件,不因万物毁灭而更改。只想守护血浓于水的旧时光,即便峥嵘岁月将容颜划伤,相信一切都是最好的安排。那时的时光无限温柔,当清水载着陈旧的往事,站在时光这头,看时光那头,一切变得分明。执笔书写,旧时光的春去秋来,欢喜也好,忧伤也好,时间窖藏,流光曼卷里所有的宠爱,疼惜,活色生香的脑海存在。
解三角形的应用.
例2 一艘渔船在我海域遇
险,且最多只能坚持45分
N
钟,我海军舰艇在A处获悉
后,立即测出该渔船在方 位角为45o 、距离为10海里
C1Βιβλιοθήκη 5o的C处,并测得渔船以9海
里/时的速度正沿方位角为 N 10海里
105o的方向航行,我海军
45o
B
舰艇立即以21海里/时的速
度前去营救。求出舰艇的
航向和赶上遇险渔船所需
A
的最短时间,能否营救成
功?
解三角形的应用.
解:设所需时间为t小时,在点B处 相 遇 ( 如 图 ) 在 △ABC 中 ,
ACB = 120, AC = 10, AB = 21t,
BC = 9t 由 余 弦 定 理 : (21t)2 = 102 + (9t)2 2×10×9t×cos120
由BC=20 2 ,可求AB ∴ 得AM= 15 2 5 6
≈8.97>8
∴无触礁危险 北
75 B
20 2
A

30
CM
解: 在Rt△ABM中,AM/BM=tan15° 在Rt △ACM中 ,AM/CM=tan60° ∴ BM= AM/ tan15°, CM= AM/ tan60 °
由BC=BM-CM=20 2 ∴可解出AM= 15 2 5 6

{高中试卷}解斜三角形应用举例[仅供参考]

{高中试卷}解斜三角形应用举例[仅供参考]

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:学科 数学 版本 人教版大开本、3+X 期数 2340 年级 高一编稿老师 梁文莉审稿教师【同步教育信息】一. 本周教学内容: §5.10 解斜三角形应用举例 §5.11 实习作业 目标:使学生掌握利用正弦定理和余弦定理解任意三角形的方法,懂得解任意三角形的知识在实际中有着广泛的应用,从而培养学生分析问题、解决问题的能力;进一步巩固学生所学知识,提高分析和解决简单的实际问题的能力、动手操作的能力以及用数学语言表达实习过程和实习结果的能力,增强用数学的意识。

二. 重点、难点:重点:利用正弦定理、余弦定理等知识解决实际问题。

难点:将实际问题转化成数学问题,利用正弦定理、余弦定理或有关数学方法解斜三角形。

三. 学法指导:在生产和实际生活中,有时会遇到测量、航海、物理等方面的问题,处理这一类问题一般要用到解三角形的知识,解题时首先要认真分析题意,画出示意图,将该实际问题转化成数学问题,然后利用正弦定理、余弦定理及相关知识和方法解决问题。

在计算过程中,要注意实际问题的计算精度要求,利用近似计算的规则,要做到算法简练,算式工整,计算准确。

【典型例题】例1. 如图(),隔海看两目标、,但不能到达,在岸边选取相距千米的、两1A B 3C D 点,并测得,,,(、、、在同一∠=︒∠=︒∠=︒∠=︒ACB BCD ADB ADC A B C D 75454530平面内)。

求两目标、之间的距离。

A BD图(1)分析:要求出、之间的距离,可以在(或)中去找关系式。

但不管在哪A B ACB DB ∆∆A 个三角形中,除AB 的另外两边也都是未知的,需要在其他三角形中找出合适的关系式,求出它们的值。

解:在中,,,∆A C D A D C A C D A C B B C D ∠=︒∠=∠+∠=︒+︒=︒307545120 ∴∠=︒=∠C A D A D C 30 ∴==A C C D 3()在中,∆B D C C B D ∠=︒-︒-︒+︒=︒180******** 由正弦定理可得B C C D =⋅︒︒=⋅+=+s i n s i n 7560362432622 在∆A B C中,由余弦定理得 A B A C B C A C B C B C A2222=+-⋅⋅∠c o s ()=++⎛⎝ ⎫⎭⎪-⋅⋅+⋅︒3622236227522c o s ()=++-⋅+⋅-38434362624=++-=32335 ∴=A B 5(千米)故、之间的距离为千米。

12解斜三角形应用举例1

12解斜三角形应用举例1
1
夏至时,用一长为h的 竿子,在城南测得太阳的影
(太阳) A
子长为a,在相距d的城北
x
测得太阳的影子长为 D d C B
b(b > a),就可计
b
h
算出太阳的高度。 F E
aO
如图,设AB为x,则太阳高度为x + h,
且△ACD ∽ △DEF.则
x d . h ba
由上式可求得x,从而可测得太阳高度.
中至少有一条边;解三角形的依据是正、
余弦定理.
11
B
80
A0
A
B0
C
由条件可知,不能直接求AC,应先求A:
sin A BC sin C 0.246 2, AB
又BC AB,C 90 , A 1415, B 8545.
怎样求AC?用正弦定理还是余弦定理? 都行
= 340 + 85 = 425 = A0C. 而A0A = A0C-AC = 425-AC.
——问题转化为求AC的长.
10
B
A0
A
80
B0
C
而AC又在△ABC中,要求BC,只须

问题.
——完成了建模!
如何解△ABC呢?我们知道,解一个
三角形必须且只须三个条件,且三个条件
但正弦定理计算较方便,用正弦定理:
AC AB sin B 344 3(mm), sin C
A0 A A0C AC 425 344.3 81(mm). 12
注意:
例2也可用余弦定理,通过解二次方 程求得AC.
解后回顾:
通过以上两题,大家要掌握: 1、解实际应用问题的一般方法;
7
解后回顾:

全国第八届青年数学教师优质课教学设计:解三角形应用举例 含答案

全国第八届青年数学教师优质课教学设计:解三角形应用举例 含答案

1.2 解三角形应用举例(高度测量问题)(人教A版高中课标教材数学必修5)教学设计授课教师:管亚楠天津市第十四中学指导教师:申铁天津市中小学教育教学研究室刘金英天津市中小学教育教学研究室郑建天津市河北区教师进修学校朱宝坤天津市第十四中学2016年10月一、教学内容解析:本节课的内容是《普通高中课程标准实验教科书数学》人教A 版必修5第一章《解三角形》1。

2《应用举例》的第二课时,测量底部不可到达的建筑物高度问题。

在第一课时学生学习了应用正弦定理和余弦定理解决有关测量距离的问题,初步了解从实际背景中抽象数学模型,将“不可测”问题转化为“可以算”的问题,从而解决实际问题的研究方法。

本节课是解三角形应用举例的延伸,继续探究底部不可到达的建筑物等的高度测量问题.解三角形知识本身是从人类长期的生产和生活实践中产生和发展起来的,在实际问题中有着广泛的应用,如测量、航海等都要用到这方面的知识,本节内容具有显著的实践性,通过从实际背景中提出问题、分析问题、建构数学模型、应用数学知识计算,进而解决问题,使学生进一步巩固所学的知识,提高学生分析和解决实际问题的能力、动手操作的能力以及用数学语言表达和交流的能力,增强学生应用数学的意识,培养学生的数学建模能力。

本节课的教学重点:1.通过对实地测量任务的交流展示,体会数学建模过程;2。

通过对设计方案的分析,理解建构三角形模型的一般方法;3。

结合用测量工具收集的数据,巩固应用正弦定理和余弦定理解三角形问题。

二、教学目标解析:(一)教学目标:1.体会从实际情境中发现问题——设计方案建构数学模型——运用正弦定理、余弦定理等知识进行计算求解——检验的数学建模过程,培养学生的数学建模素养;2.归纳建构三角形模型的一般方法,解决有关底部不可到达的建筑物高度测量的问题;3。

操作简单的测量工具测量仰角、距离等,收集数据,进行解三角形运算,使学生掌握正弦定理和余弦定理的应用;4。

通过小组交流汇报的形式展示数学建模过程,让学生体会数学建模思想,培养学生的数学表达能力;5。

高中数学《解斜三角形应用举例》教案

高中数学《解斜三角形应用举例》教案

课 题:解斜三角形应用举例(2)教学目的: 进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中有着广泛的应用;2 3通过解斜三角形的应用的教学,继续提高运用所学知识解决实际问题的能力教学重点:12解斜三角形的方法教学难点:实际问题向数学问题转化思路的确定授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪 教学方法:自学辅导法 在上一节学习的基础上,引导学生根据上节所总结的转化方法及解三角形的类型,自己尝试求解应用题在解题的关键环节,教师应给予及时的启发或点拨,以真正使学生解题能力得到锻炼教学过程: 一、复习引入: 上一节,我们一起学习了解三角形问题在实际中的应用,了解了一些把实际问题转化为解三角形问题的方法,掌握了一定的解三角形的方法与技巧节,继续给出几个例题,要求大家尝试用上一节所学的方法加以解决二、讲解范例:例1如图,是曲柄连杆机的示意图当曲柄CB 0绕C 点旋转时,通过连杆AB 的传递,活塞作直线往复运动当曲柄在CB 0位置时,曲柄和连杆成一条直线,连杆的端点A 在A O 处设连杆AB 长为340 mm,曲柄CB 长为85 mm,曲柄自CB 0按顺时针方向旋转80°,求活塞移动的距离(即连杆的端点A 移动的距离A0A )(精确到1 mm)分析:如图所示,因为A 0A =A O C -AC ,又知A O C =AB +BC =340+85=425,所以只要求出AC 的长,问题就解决了ABC 中,已知两边和其中一边的对角,可由正弦定理求出AC解:在△ABC 中,由正弦定理可得 sin A =.2462.034080sin 85sin =︒⨯=AB C BC因为BC <AB ,所以A 为锐角,得A =14°15′∴B =18O °-(A +C )=18O °-(14°15′+8O °)=85°45′由正弦定理,可得AC =.3.3449848.05485sin 340sin sin mm C B AB ='︒⨯= 因此,A O A =A O C -AC =(AB +BC )-AC =(34O +85)-3443=8O 7≈81(mm) 答:活塞移动的距离约为81mm 评述:注意在运用正弦定理求角时应根据三角形的有关性质具体确定角的范围要求学生注意解题步骤的总结:用正弦定理求A −−−→−内角和定理求B −−−→−正弦定理求AC →求A O A例2 如图,为了测量河对岸A 、B 两点间的距离,在这一岸定一基线CD ,现已测出CD =a 和∠ACD =α,∠BCD =β,∠BDC =γ,∠ADC =s,试求AB 的长分析:如图所示:对于AB 求解,可以在△ABC 中或者是△ABD 中求解,若在△ABC 中,由∠ACB =α-β,故需求出AC 、BC ,再利用余弦定理求解而AC 可在△ACD 内利用正弦定理求解,BC 可在△BCD 内由正弦定理求解解:在△ACD 中,已知CD =a ,∠ACD =α,∠ADC =δ,由正弦定理得AC =[])sin(sin )(180sin sin δαδδαδ+=+-︒a a在△BCD 中,由正弦定理得 BC =[])sin(sin )(180sin sin γββγββ+=+-︒a a在△ABC 中,已经求得AC 和BC ,又因为∠ACB =α-β,所以用余弦定理,就可以求得AB =)cos(222βα-⋅⋅-+BC AC BC AC评述:(1)要求学生熟练掌握正、余弦定理的应用(2)注意体会例2求解过程在实际当中的应用例3 据气象台预报,距S 岛300 km的A 处有一台风中心形成,并以每小时30 km的速度向北偏西30°的方向移动,在距台风中心270 km以内的地区将受到台风的影响 问:S 岛是否受其影响?若受到影响,从现在起经过多少小时S 岛开始受到台风的影响?持续时间多久?说明理由分析:设B 为台风中心,则B 为AB 边上动点,SB 也随之变化S 岛是否受台风影响可转化为SB ≤27O 这一不等式是否有解的判断,则需表示SB ,可设台风中心经过t小时到达B 点,则在△ABS 中,由余弦定理可求SB解:设台风中心经过t小时到达B 点,由题意,∠SAB =9O °-3O °=6O °在△SAB 中,SA =3OO ,AB =3O t,∠SAB =6O °,由余弦定理得:SB 2=SA 2+AB 2-2SA ·AB ·cos SAB=3OO 2+(3O t)2-2·3OO ·3O t cos6O °若S 岛受到台风影响,则应满足条件|SB |≤27O 即SB 2≤27O 2化简整理得 t2-1O t+19≤O解之得 5-6≤t≤5+6所以从现在起,经过5-6小时S 岛开始受到影响,(5+6)小时后影响结束持续时间:(5+6)-(5-6)=26小时答:S 岛受到台风影响,从现在起,经过(5-6)小时,台风开始影响S 岛,且持续时间为26小时例 4 假定自动卸货汽车装有一车货物,货物与车箱的底部的滑动摩擦系数为0,油泵顶点B 与车箱支点A 之间的距离为195米,AB 与水平线之间的夹角为6︒20’,AC 长为1米,求货物开始下滑时BC 的长解:设车箱倾斜角为θ,货物重量为mgθμμcos mg N f ==当θθμsin cos mg mg ≤即θμtan ≤时货物下滑当θμtan = 时, θtan 3.0=, '42163.0arctan==θ∠BAC='0223'206'4216 =+在△ABC 中: BAC AC AB AC AB BC ∠⋅-+=cos 2222787.10'0223cos 40.195.1240.195.122=⨯⨯⨯-+= ,28.3=BC三、课堂练习:1B ,周围3.8海里有暗礁,军舰由西向东航行到A ,望见岛在北75°东,航行8海里到C ,望见岛B 在北6O °东,若此舰不改变航向继续前进,有无触礁危险?答案:不会触礁2AB 外有一点C ,∠ABC =6O °,AB =2OO km,汽车以8O km/h速度由A 向B 行驶,同时摩托车以5O 公里的时速由B 向C 行驶,问运动开始几小时后,两车的距离最小答案:约13小时四、小结 通过本节学习,要求大家进一步掌握利用正、余弦定理解斜三角形的方法,明确解斜三角形知识在实际中的广泛应用,熟练掌握由实际问题向解斜三角形类型问题的转化,逐步提高数学知识的应用能力五、课后作业:1.已知在△ABC 中,sin A ∶sin B ∶sin C =3∶2∶4,那么cos C 的值为( ) A .-41 B .41 C .- 32 D .32 分析:先用正弦定理:C c B b A a sin sin sin ==可求出a ∶b ∶c =3∶2∶4, 所以可设a =3k ,b =2k ,c =4k ,再用余弦定理:kk k k k C ab c b a C 2321649cos 2cos 222222⋅⋅-+=-+=可得即.41cos -=C 答案:A2.一货轮航行到M 处,测得灯塔S 在货轮的北偏东15°相距20里处,随后货轮按北偏西30°的方向航行,半小时后,又测得灯塔在货轮的北偏东45°,求货轮的速度解:如图所示,∠SMN =15°+30°=45°,∠SNM =180°-45°-30°=105° ∴∠NSM=180°-45°-105°=30°)26(2021)26(10)26(10105sin 2030sin -=÷--=∴︒=︒MN MN 由正弦定理 答:货轮的速度为)26(20-里/小时3.△ABC 中,a+b =10,而cos C 是方程2x 2-3x -2=0的一个根,求△ABC 周长的最小值分析:由余弦定理可得C ab b a c cos 2222-+=,然后运用函数思想加以处理解:02322=--x x 21,221-==∴x x 又∵cos C 是方程2x 2-3x -2=0的一个根 21c o s-=∴C 由余弦定理可得ab b a ab b a c -+=-⋅-+=2222)()21(2则75)5()10(10022+-=--=a a a c当a=5时,c 最小且c =3575= 35103555+=++=++c b a 此时∴△ABC 周长的最小值为10+4.在湖面上高h 米处,测得云的仰角为α,而湖中云之影(即云在湖中的像)的俯角为β,试证:云高为)sin()sin(αββα-+⋅h 米 分析:因湖而相当于一平面镜,故云C 与它在湖中之影D 关于湖面对称,设云高为x =CM ,则从△ADE ,可建立含x 的方程,解出x 即可解:如图所示,设湖面上高h 米处为A ,测得云的仰角为α,而C 在湖中的像D 的俯角为β,CD 与湖面交于M ,过A 的水平线交CD 于E ,设云高CM =x 则CE =x -h ,DE =x+hh x h x h x h x AE h x AE ⋅-+=+=-∴+=-=αβαββαβαtan tan tan tan cot )(cot )(cot )(cot )(解得且 h ⋅-+=αβαβαβαβαβαβc o sc o s s i n c o s c o s s i n c o s c o s s i n c o s c o s s i n )()s i n ()s i n (米αββα-+⋅=h 5.在某定点A 测得一船初始位置B 在A 的北偏西α1处,十分钟后船在A 正北,又过十分钟后船到达A 的北偏东α2处若船的航向与程度都不变,船向为北偏东θ,求θ的大小(α1>α2)分析:根据题意画示意图,将求航向问题转化为解三角形求角问题解:如图所示,在△ABC 中,由正弦定理可得:)sin(sin ,)](sin[sin 1111αθααθπα+=+-=AC BC AC BC 即 ① 在△ACD 中,由正弦定理可得:)sin(sin ,)sin(sin 2222αθααθα-=-=AC CD AC CD 即 ② 根据题意,有BC=CD ∴由①、②得:)sin(sin )sin(sin 2211αθααθα-=+ 即 )sin(sin )sin(sin 1221αθααθα+⋅=-⋅)sin(sin sin 2tan sin sin cos 2)sin(sin )sin cos cos (sin sin )sin cos cos (sin sin 21212121112221ααααθααθααθαθαθααθαθα-==-+=-∴则即)sin(sin sin 2arctan 2121ααααθ-=所以(α1>α2) 6.在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,设a+c =2b ,A -C =3π,求sin B 的值解:∵a+c =2b ,∴sin A +sin C =2sin B 由和差化积公式得2cos 2sin 42cos 2sin 2B B C A C A =-+ 3,02cos 2sin π=->=+C A B C A 432s i n 2s i n 223==∴B B 即 20π<<B 4132sin 12cos 2=-=∴B B 8394134322cos 2sin 2sin =⨯⨯==B B B 于是 六、板书设计(略)七、课后记:。

必修5教案三维目标重难点

必修5教案三维目标重难点

必修5教案三维⽬标重难点1.1.1正弦定理●教学⽬标知识与技能:通过对任意三⾓形边长和⾓度关系的探索,掌握正弦定理的内容及其证明⽅法;会运⽤正弦定理与三⾓形内⾓和定理解斜三⾓形的两类基本问题。

过程与⽅法:让学⽣从已有的⼏何知识出发,共同探究在任意三⾓形中,边与其对⾓的关系,引导学⽣通过观察,推导,⽐较,由特殊到⼀般归纳出正弦定理,并进⾏定理基本应⽤的实践操作。

情感态度与价值观:培养学⽣在⽅程思想指导下处理解三⾓形问题的运算能⼒;培养学⽣合情推理探索数学规律的数学思思想能⼒,通过三⾓形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统⼀。

●教学重点正弦定理的探索和证明及其基本应⽤。

●教学难点已知两边和其中⼀边的对⾓解三⾓形时判断解的个数。

●教学过程1.2解三⾓形应⽤举例第⼀课时⼀、教学⽬标1、能够运⽤正弦定理、余弦定理等知识和⽅法解决⼀些有关测量距离的实际问题,了解常⽤的测量相关术语2、激发学⽣学习数学的兴趣,并体会数学的应⽤价值;同时培养学⽣运⽤图形、数学符号表达题意和应⽤转化思想解决数学问题的能⼒⼆、教学重点、难点教学重点:由实际问题中抽象出⼀个或⼏个三⾓形,然后逐个解决三⾓形,得到实际问题的解教学难点:根据题意建⽴数学模型,画出⽰意图1.2 解三⾓形应⽤举例第⼆课时⼀、教学⽬标1、能够运⽤正弦定理、余弦定理等知识和⽅法解决⼀些有关底部不可到达的物体⾼度测量的问题2、巩固深化解三⾓形实际问题的⼀般⽅法,养成良好的研究、探索习惯。

3、进⼀步培养学⽣学习数学、应⽤数学的意识及观察、归纳、类⽐、概括的能⼒⼆、教学重点、难点重点:结合实际测量⼯具,解决⽣活中的测量⾼度问题难点:能观察较复杂的图形,从中找到解决问题的关键条件1.2解三⾓形应⽤举例第三课时⼀、教学⽬标1、能够运⽤正弦定理、余弦定理等知识和⽅法解决⼀些有关计算⾓度的实际问题2、通过综合训练强化学⽣的相应能⼒,让学⽣有效、积极、主动地参与到探究问题的过程中来,逐步让学⽣⾃主发现规律,举⼀反三。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解斜三角形应用举例(一)
●教学目标
(一)知识目标
1.实际应用问题中的专用名词;
2.解斜三角形问题的类型.
(二)能力目标
1.会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;
2.搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系;
3.理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等;
4.通过解三角形的应用的学习,提高解决实际问题的能力.
(三)德育目标
通过解斜三角形在实际中的应用,要求学生体会具体问题可以转化为抽象的数学问题,以及数学知识在生产、生活实际中所发挥的重要作用.
●教学重点
1.实际问题向数学问题的转化;
2.解斜三角形的方法.
●教学难点
实际问题向数学问题转化思路的确定.
●教学方法
启发式
在教学中引导学生分析题意,分清已知与所求,根据题意画出示意图,并启发学生在解三角形时正确选用正、余弦定理.
●教具准备
投影仪、三角板、幻灯片
第一张:例1、例2(记作§5.10.1 A)
[例1]自动卸货汽车的车箱采用液压结构,设计时需要计算油泵顶杆BC的长度.已知车箱的最大仰角为60°,油泵顶点B与车箱支点A之间的距离为1.95 m,AB与水平线之间的夹角为6°20′,AC长为1.40 m,计算BC的长(保留三个有效数字).
[例2]某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A为10 n mile的C处,并测得渔船正沿方位角为105°的方向,以9 n mile/h的速度向某小岛B靠拢,我海军舰艇立即以21 n mile/h的速度前去营救,试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间.
第二张:例3、例4(记作§5.10.1 B)
[例3]用同样高度的两个测角仪AB和CD同时望见气球E在它们的正西方向的上空,分别测得气球的仰角是α和β,已知B、D间的距离为a,测角仪的高度是b,求气球的高度.
[例4]如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC 面积的最大值.
●教学过程
Ⅰ.课题导入
[师]解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力.
下面,我们将举例来说明解斜三角形在实际中的一些应用.
Ⅱ.讲授新课
[师]大家通过屏幕来看例1.
(给出幻灯片§5.10.1 A )
[例1]分析:求油泵顶杆BC 的长度也就是在△ABC 内,求边长BC 的问题,而根据已知条件,AC =1.40 m ,AB =1.95 m ,∠BAC =60°+6°20′=66°20′.相当于已知△ABC 的两边和它们的夹角,所以求解BC 可根据余弦定理.
解:由余弦定理,得
BC 2=AB 2+AC 2-2AB ·AC cos A
=1.952+1.402-2×1.95×1.40×cos66°20′=3.571
∴BC ≈1.89 (m )
答:油泵顶杆BC 约长1.89 m.
评述:此题虽为解三角形问题的简单应用,但关键是把未知边所处的三角形找到,在转换过程中应注意“仰角”这一概念的意义,并排除题目中非数学因素的干扰,将数量关系从题目准确地提炼出来.
[师]下面我们继续分析例2.
[例2]分析:设舰艇从A 处靠近渔船所用的时间为x h ,则利用余弦定理建立方程来解决较好,因为如图中的∠1,∠2可以求出,而AC 已知,BC 、AB 均可用x 表示,故可看成是一个已知两边夹角求第三边问题.
解:设舰艇从A 处靠近渔船所用的时间为x h ,则AB =21x n mile ,BC =9x n mile ,AC =10 n mile ,∠ACB =∠1+∠2=45°+(180°-105°)=120°,
根据余弦定理,可得
AB 2=AC 2+BC 2-2AC ·BC ·cos120°得(21x )2=102+(9x )2-2×10×9x cos120°,
即36x 2-9x 2×10=0
解得x 1=32,x 2=-12
5(舍去) ∴AB =21x =14,BC =9x =6
再由余弦定理可得
cos BAC =101426101422
22222⨯⨯-+=⋅⋅-+AC AB BC AC AB =0.9286, ∴∠BAC =21°47′,45°+21°47′=66°47′.
而舰艇方位角为66°47′
3
2小时即40分钟. 答:舰艇应以66°47′的方位角方向航行,靠近渔船则需要40分钟.
评述:解好本题需明确“方位角”这一概念,方位角是指由正北方向顺时针旋转到目标方向线的水平角,其范围是(0°,360°).
在利用余弦定理建立方程求出x 后,所求舰艇方位角就转化为一个已知三边求角的问题,故仍然利用余弦定理.
[师]从上述两个例题,大家可以看出,实际问题的解决关键在于转化为具体的解三角形问题,从而与我们已知的知识方法产生联系.在下面的例题分析中,我们继续加以体会.
(给出幻灯片§5.10.1 B ).
[例3]分析:在Rt △EGA 中求解EG ,只有角α一个条件,需要再有一边长被确定,而△EAC 中有较多已知条件,故可在△EAC 中考虑EA 边长的求解,而在△EAC 中有角β,∠EAC =180°-α两角与BD =a 一边,故可以利用正弦定理求解EA .
解:在△ACE 中,AC =BD =a ,∠ACE =β,∠AEC =α-β,
根据正弦定理,得
AE =)
sin(sin βαβ-a 在Rt △AEG 中,EG =AE sin α=)
sin(sin sin βαβα-a ∴EF =EG +b =)
sin(sin sin βαβα-a +b , 答:气球的高度是
)sin(sin sin βαβα-a +b . 评述:此题也可以通过解两个直角三角形来解决,思路如下:设EG =x ,在Rt △EGA 中,利用cot α表示AG ;在Rt △EGC 中,利用cot β表示CG ,而CG -AG =CA =BD =a ,故可以求出EG ,又GF =CD =b ,故EF 高度可求.
[例4]分析:要求四边形OPDC 面积的最大值,这首先需要建立一个面积函数,问题是选谁作为自变量,注意到动点P 在半圆上运动与∠POB 大小变化之间的联系,自然引入∠POB =θ作为自变量建立函数关系.四边形OPDC 可以分成△OPC 与等边△PDC ,S △OPC 可用
21·OP ·OC ·sin θ表示,而等边△PDC 的面积关键在于边长求解,而边长PC 可以在△POC 中利用余弦定理表示,至于面积最值的获得,则通过三角函数知识解决.
解:设∠POB =θ,四边形面积为y ,则在△POC 中,由余弦定理得
PC 2=OP 2+OC 2-2OP ·OC cos θ=5-4cos θ
∴y =S △OPC +S △PCD =2
1×1×2sin θ+43(5-4cos θ) =2sin (θ-3
π)+435 ∴当θ-23π
π
=即θ=6
π5时,y max =2+435. 评述:本题中余弦定理为表示△PCD 的面积,从而为表示四边形OPDC 面积提供了可能,可见正、余弦定理不仅是解三角形的依据,一般地也是分析几何量之间关系的重要公式,要认识到这两个定理的重要性.
另外,在求三角函数最值时,涉及到两角和正弦公式sin(α+β)=sin αcos β+cos αsin β的构造及逆用,应要求学生予以重视.
Ⅲ.课堂练习
课本P 134 练习1,2.
Ⅳ.课时小结
[师]通过本节学习,要求大家在了解解斜三角形知识在实际中的应用的同时,掌握由实际问题向数学问题的转化,并提高解三角形问题及实际应用题的能力.
Ⅴ.课后作业
(一)课本P 135习题5.10 1,2.
(二)1.预习内容
课本P 133~P 134.
2.预习提纲
(1)总结解斜三角形在实际中的应用;
(2)解斜三角形的主要依据有哪些?
●板书设计
§5.10.1 解斜三角形应用举例(一)
1.应用题基本模式:
2.理解专业术语。

相关文档
最新文档