三角函数恒等变换练习题与答案详解
三角恒等变换大题(含详细解答)
三角恒等变换1.已知0<α<π4,0<β<π4且3sin β=sin(2α+β),4tan α2=1-tan 2α2,求α+β的值. 2.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 3.已知sin(2α-β)=35,sinβ=-1213,且α∈⎝⎛⎭⎫π2,π,β∈⎝⎛⎭⎫-π2,0,求sinα 4.若cos(α+β)cos(α-β)=13,求cos2α-sin2β 5.函数y =12sin2x +sin2x ,x ∈R ,求y 的值域 6.已知0<α<π4,0<β<π4且3sinβ=sin(2α+β),4tan α2=1-tan2α2,求α+β的值. 7.化简:(1-sinα)(1-sinβ)-⎝⎛⎭⎫sin α+β2-cos α-β2 2. 8.已知函数()sin()cos()f x x x θθ=+++的定义域为R ,(1)当0θ=时,求()f x 的单调区间;(2)若(0,)θπ∈,且sin 0x ≠,当θ为何值时,()f x 为偶函数. 9 已知sin sin sin 0,cos cos cos 0,αβγαβγ++=++=求cos()βγ-的值 10 若,22sin sin =+βα求βαcos cos +的取值范围 11 求值:0010001cos 20sin10(tan 5tan 5)2sin 20-+-- 12 已知函数.,2cos 32sinR x x x y ∈+=(1)求y 取最大值时相应的x 的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到)(sin R x x y ∈=的图象参考答案1. 解:由4tan α2=1-tan 2α2得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α,∴2sin(α+β)cos α=4cos(α+β)sin α.∴tan(α+β)=2tan α.∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2,∴α+β=π4评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.2. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛ sin 2α+β2-⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β-⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.3. 解:∵π2<α<π,∴π<2α<2π.又-π2<β<0,∴0<-β<π2.∴π<2α-β<5π2.而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos (2α-β)=45.又-π2<β<0且sin β=-1213,∴cos β=513, ∴cos2α=cos[(2α-β)+β]=cos(2α-β)cos β-sin(2α-β)sin β=45×513-35×⎝⎛⎭⎫-1213=5665. 又cos2α=1-2sin 2α,∴sin 2α=9130,又α∈⎝⎛⎭⎫π2,π,∴sin α=3130130. 评析:由sin(2α-β)求cos(2α-β)、由sin β求cos β,忽视2α-β、β的范围,结果会出现错误.另外,角度变换在三角函数化简求值中经常用到,如:α=(α+β)-β,2α=(α-β)+(α+β),⎝⎛⎭⎫π4+α+⎝⎛⎭⎫π4-α=π2等. 4. 解析:∵cos(α+β)cos(α-β)=13, ∴12(cos2α+cos2β)=13, ∴12(2cos 2α-1+1-2sin 2β)=13, ∴cos 2α-sin 2β=13. 5. 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝⎛⎭⎫2x -π4+12 评析:本题是求有关三角函数的值域的一种通法,即将函数化为y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b 的模式.一般地,a cos x +b sin x =a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2cos x +b a 2+b 2sin x =a 2+b 2(sin φcos x +cos φsin x )=a 2+b 2sin(x +φ),其中tan φ=a b,也可以变换如下:a cos x +b sin x =a 2+b 2(cos φcos x +sin φsin x )=a 2+b 2cos(x -φ),其中tan φ=b a. 6. 解:由4tan α2=1-tan 2α2 得tan α=2tan α21-tan 2α2=12. 由3sin[(α+β)-α]=sin[(α+β)+α],得3sin(α+β)cos α-3cos(α+β)sin α=sin(α+β)cos α+cos(α+β)sin α, ∴2sin(α+β)cos α=4cos(α+β)sin α. ∴tan(α+β)=2tan α. ∴tan(α+β)=1.又∵0<α<π4,0<β<π4,∴0<α+β<π2, ∴α+β=π4. 评析:首先由4tan α2=1-tan 2α2的形式联想倍角公式求得tan α,再利用角的变换求tan(α+β),据α、β的范围确定角α+β.求角的问题的关键是恰当地选择一个三角函数值,再依据范围求角,两步必不可少.7. 分析:本题由于α+β2+α-β2=α,α+β2-α-β2=β,因此可以从统一角入手,考虑应用和差化积公式. 解:原式=1-(sin α+sin β)+sin αsin β-⎝⎛sin 2α+β2- ⎭⎫2sin α+β2cos α-β2+cos 2α-β2 =1-2sin α+β2cos α-β2+sin αsin β- ⎣⎡⎦⎤1-cos(α+β)2+1+cos(α-β)2-2sin α+β2cos α-β2 =sin αsin β+12[cos(α+β)-cos(α-β)]=sin αsin β+12·(-2)sin αsin β=0. 评析:(1)必须是同名三角函数才能和差化积;(2)若是高次函数必须用降幂公式降为一次.8. 解:(1)当0θ=时,()sin cos )4f x x x x π=+=+ 322,22,24244k x k k x k πππππππππ-≤+≤+-≤≤+()f x 为递增; 3522,22,24244k x k k x k πππππππππ+≤+≤++≤≤+()f x 为递减 ()f x ∴为递增区间为 3[2,2],44k k k Z ππππ-+∈; ()f x 为递减区间为5[2,2],44k k k Z ππππ++∈。
三角函数与恒等变换课后题答案
三角函数与恒等变换(课后习题答案)【N 】基础篇题型一、任意角的概念、弧度制1.解:337148514851018044ππππ−︒=−⨯=−=−+︒. 所以D 选项是正确的2.A解:与60︒终边相同的角一定可以写成36060k ⨯︒+︒的形式,k z ∈, 令1k =−可得,300−︒与60︒终边相同 所以A 选项是正确的.3.C本题主要考查扇形的弧长和面积公式。
扇形的面积为222ar =,扇形的周长为26r ar +=, 可解得2r =时1a =,1r =时4a =。
4.扇形面积公式.【专题】综合题;方程思想;综合法;三角函数的求值.【分析】把扇形的圆心角换算为弧度制,利用弧度制下扇形面积公式求解即可.【解答】解:扇形的中心角为51506πα=︒=,所以扇形的弧长5I R 66πα===,根据扇形的面积公式,得所求面积15264S π=⨯=. 故选: A.题型二、三角函数1.解:若sin 0α<则角终边在三四象限, 又tan 0α<,则角的终边在二四象限 取交得α是第四象限 故答案为:D2.本题主要考查同角三角函数的基本关系。
由sin tan cos ααα=得1sin cos 2αα=−,再由22cos sin 1αα+=得22sin (2sin )1αα+−=,即 25sin 1α=,因为2παπ<<,所以sin 0α>,故sin α=。
故本题正确答案为D 。
3.4.设出P 与地面高度与时间t 的关系,()sin()f t A t B ωϕ=++,由题意求出三角函数中的参数A ,B ,及周期T ,利用三角函数的周期公式求出ω,通过初始位置求出ϕ,求出()35f 的值即可.详解:设P 与地面高度与时间t 的关系,()sin(f t A t ωϕ=+)(A 0,0,[0,2))B ωϕπ+>>∈,由题意可知:50A =,1105060B =−=,2T 21πω==,221πω∴=, 即2()50sin()6021f t t πϕ=++, 又因为(0)11010010f =−=,即sin 1ϕ=−,故32πϕ=, 2213()50sin 602f t t ππ+⎛⎫∴=+ ⎪⎝⎭, 23(35)50sin(35)6085212f ππ∴=⨯++=. 故选:B.5.6.7.由三角函数定义得3tan 2sin αα=,即sin 3cos 2sin ααα= ,得()223cos 2sin 21cos ααα==−解得1cos 2α=或cos 2α=−(舍去) 故本题答案为A 。
高中数学-三角恒等变换综合练习(苏教版必修第二册)(解析版)
10.4 三角恒等变换综合练习(基础)一.选择题(共8小题)1.已知α是第二象限角,sin α=45,则sin2α=( ) A .−2425B .2425C .−1225D .1225【分析】由已知利用同角三角函数基本关系式可求cos α的值,进而根据二倍角的正弦公式即可求解. 【解答】解:因为α是第二象限角,sin α=45, 所以cos α=−√1−sin 2α=−35,则sin2α=2sin αcos α=2×45×(−35)=−2425. 故选:A .【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.2.已知cos (θ−π2)=45,−π2<θ<π2,则sin2θ的值等于( ) A .−2425B .2425C .−1225D .1225【分析】由已知利用同角三角函数基本关系式可求cos θ的值,进而根据二倍角的正弦公式即可求解sin2θ的值.【解答】解:因为cos (θ−π2)=sin θ=45,−π2<θ<π2, 所以cos θ=√1−sin 2θ=35,则sin2θ=2sin θcos θ=2×45×35=2425. 故选:B .【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦公式在三角函数化简求值中的应用,考查了转化思想,属于基础题. 3.已知tan α=2,则sinα+2cosα3sinα−cosα的值为( )A .−25B .45C .23D .25【分析】由已知利用同角三角函数基本关系式化简所求即可得解. 【解答】解:因为tan α=2,则sinα+2cosα3sinα−cosα=tanα+23tanα−1=2+23×2−1=45.故选:B .【点评】本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.4.cos350°sin70°﹣sin170°sin20°=( ) A .√32B .−√32C .12D .−12【分析】结合诱导公式及两角和的余弦公式进行化简即可求值.【解答】解:cos350°sin70°﹣sin170°sin20°=cos10°cos20°﹣sin10°sin20°=cos30°=√32.故选:A .【点评】本题主要考查了两角和的余弦公式及诱导公式在三角函数化简求值中的应用,属于基础试题. 5.已知sin(π6+α)=−45,则cos(π3−α)=( ) A .45B .35C .−45D .−35【分析】由已知直接利用三角函数的诱导公式化简求值. 【解答】解:∵sin(π6+α)=−45,∴cos(π3−α)=cos[π2−(π6+α)]=sin(π6+α)=−45,故选:C .【点评】本题考查三角函数的化简求值,考查诱导公式的应用,是基础题. 6.计算1−cos 270°1+cos40°=( )A .45B .34C .23D .12【分析】利用二倍角公式,诱导公式即可化简求解.【解答】解:1−cos 270°1+cos40°=1−1+cos140°21+cos40°=1−cos140°2(1+cos40°)=1+cos40°2(1+cos40°)=12.故选:D .【点评】本题主要考查了二倍角公式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.7.若12sin2α﹣sin 2α=0,则cos (2α+π4)=( )A .1B .√22C .−√22D .±√22【分析】由已知结合二倍角公式可求sin α=0或tan α=1,然后分类讨论,结合同角基本关系即可求解. 【解答】解:因为12sin2α﹣sin 2α=0,所以sin αcos α﹣sin 2α=0, 所以sin α=0或sin α=cos α, 当sin α=0时, cos (2α+π4)=√22(cos2α﹣sin2α)=√22(1−2sin 2α−2sinαcosα)=√22,当sin α=cos α即tan α=1时,cos (2α+π4)=√22(cos2α﹣sin2α),=√22×(cos 2α﹣sin 2α﹣2sin αcos α), =√22(1−tan 2α1+tan 2α−2tanα1+tan 2α)=−√22.故选:D .【点评】本题以三角函数为背景,主要考查了三角恒等变换,考查了运算求解能力,考查了数学运算的核心素养.8.已知α∈(0,π2),sin2α1+cos2α=12,则cos α=( )A .√55B .2√55C .√1010D .3√1010【分析】利用二倍角公式化简已知等式可得cos α=2sin α,进而根据同角三角函数基本关系式即可求解. 【解答】解:由于sin2α1+cos2α=12,可得4sin αcos α=2cos 2α,因为α∈(0,π2),cos α≠0,所以cos α=2sin α,联立{cosα=2sinαsin 2α+cos 2α=1,解得cos α=2√55. 故选:B .【点评】本题主要考查了二倍角公式,同角三角函数基本关系式,考查推理论证能力,运算求解能力,考查了数学运算核心素养,属于基础题. 二.多选题(共4小题) 9.下列各式中值为12的是( )A .2sin75°cos75°B .1﹣2sin 2π12C .sin45°cos15°﹣cos45°sin15°D .tan20°+tan25°+tan20°tan25° 【分析】根据对应的公式求出判断即可.【解答】解:对于A :2sin75°cos75°=sin150°=12, 对于B :1﹣2sin 2π12=cosπ6=√32, 对于C :sin45°cos15°﹣cos45°sin15°=sin30°=12,对于D :tan20°+tan25°+tan20°tan25°=tan (20°+25°)(1﹣tan20°tan25°)+tan20°tan25°=1, 故选:AC .【点评】本题考查了三角的恒等变换,属于基础题. 10.下列化简正确的是( ) A .tan (π+1)=tan 1 B .sin(−α)tan(360°−α)=cos αC .sin(π−α)cos(π+α)=tan αD .cos(π−α)tan(−π−α)sin(2π−α)=1【分析】由题意利用诱导公式化简所给的式子,可的结果. 【解答】解:∵由诱导公式可得 tan (π+1)=tan1,故A 正确;sin(−α)tan(360°−α)=−sinα−tanα=cos α,故B 正确;sin(π−α)cos(π+α)=sinα−cosα=−tan α,故C 不正确; cos(π−α)tan(−π−α)sin(2π−α)=−cosα⋅(−tanα)−sinα=−1,故D 不正确,故选:AB .【点评】本题主要考查诱导公式的应用,属于基础题. 11.若α∈[0,2π],sin α3sin4α3+cos α3cos4α3=0,则α的值是( )A .π6B .π4C .π2D .3π2【分析】由已知结合两角差的余弦公式进行化简求解即可.【解答】解:因为α∈[0,2π],sin α3sin4α3+cos α3cos4α3=cos α=0,则α=12π或α=3π2, 故选:CD .【点评】本题主要考查了两角差的余弦公式的简单应用,属于基础试题. 12.若tan2x ﹣tan (x +π4)=5,则tan x 的值可能为( ) A .−√63B .−√62C .√63D .√62【分析】利用三角函数恒等变换的应用即可化简求值得解.【解答】解:设tan x =t ,因为tan2x −tan(x +π4)=2t 1−t 2−t+11−t =2t−(t+1)21−t 2=t 2+1t 2−1=5,所以t 2=32,故tanx =t =±√62. 故选:BD .【点评】本题考查三角恒等变换,考查运算求解能力,属于基础题. 三.填空题(共4小题)13.已知α、β均为锐角,且cos α=17,cos (α+β)=−1114,则β=π3.【分析】先利用同角三角函数的基本关系求得sin α和sin (α+β)的值,然后利用cos β=cos p [(α+β)﹣α],根据两角和公式求得答案. 【解答】解:α,β均为锐角,∴sin α=√1−149=4√37,sin (α+β)=√1−(−1114)2=5√314,∴cos β=cos p [(α+β)﹣α]=cos (α+β)cos α+sin (α+β)sin α=−1114×17+4√37×5√314=12. ∴β=π3. 故答案为π3.【点评】本题主要考查了两角和公式的化简求值和同角三角函数的基本关系的应用.熟练记忆三角函数的基本公式是解题的基础.14.若cos (α﹣β)=12,cos (α+β)=−35,则tan αtan β= ﹣11 .【分析】由已知利用两角和与差的余弦公式可求cos αcos β,sin αsin β的值,进而根据同角三角函数基本关系式即可求解.【解答】解:因为cos (α﹣β)=12, 所以cos αcos β+sin αsin β=12, 因为cos (α+β)=−35,所以cos αcos β﹣sin αsin β=−35,所以cos αcos β=12(12−35)=−120,sin αsin β=12(12+35)=1120,则tan αtan β=1120−120=−11.故答案为:﹣11.【点评】本题主要考查了两角和与差的余弦公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想,属于基础题.15.若0<α<π2,﹣π<β<−π2,cos (π4+α)=13,cos (π4−β2)=−√33,则cos (α+β2)= √33.【分析】由已知先求出,的范围,再根据正弦和余弦的平方关系和为1求出对应的正弦值,然后再利用凑角的方法即可求解.【解答】解:因为0<α<π2,−π<β<−π2, 所以π4<α+π4<3π4,π2<π4−β2<3π4,所以sin (π4+α)=√1−(13)2=2√23, sin (π4−β2)=1−(−√33)2=√63,所以cos (α+β2)=cos[(π4+α)﹣(π4−β2)]=cos (π4+α)cos (π4−β2)+sin (π4+α)sin (π4−β2)=13×(−√33)+2√23×√63 =√33, 故答案为:√33. 【点评】本题考查了两角和与差的的三角函数求值问题,考查了学生的运算能力,属于基础题. 16.已知α∈R ,3sin α+cos α=3,则sin2α﹣cos 2α=35或0. .【分析】由已知可得,(3sin α+cos α)2=9sin 2α+6sinαcosα+cos 2αsin 2α+cos 2α,然后利用同角基本关系弦化切可求tan α,进而可求.【解答】解:因为3sin α+cos α=3, 当cos α≠0时,所以(3sin α+cos α)2=9sin 2α+6sinαcosα+cos 2αsin 2α+cos 2α=9tan 2α+6tanα+11+tan 2α=9,解得,tan α=43,所以sin2α﹣cos 2α=2sinαcosα−cos 2αsin 2α+cos 2α=2tanα−1tan 2α+1=2×43−1(43)2+1=35.当cos α=0时,sin2α﹣cos 2α=0 故答案为:35或0.【点评】本题主要考查了三角恒等变换,考查了运算求解能力,数据处理的能力. 四.解答题(共8小题)17.已知0<α<π2,0<β<π2,sin α=45,cos (α+β)=513. (1)求cos β的值; (2)求sin 2α+sin2αcos2α−1的值.【分析】(1)由已知利用同角三角函数基本关系式可求cos α,sin (α+β)的值,进而根据β=(α+β)﹣α,利用两角差的余弦函数公式即可求解.(2)利用二倍角公式可求sin2α,cos2α的值,进而即可代入求解. 【解答】解:(1)因为0<α<π2,sin α=45, 所以cos α=35,又因为0<β<π2,cos (α+β)=513, 所以sin (α+β)=1213, 所以cos β=cos[(α+β)﹣α]=cos (α+β)cos α+sin (α+β)sin α=513×35+1213×45=6365. (2)因为cos α=35,sin α=45,所以sin2α=2sin αcos α=2×45×35=2425,cos2α=2cos 2α﹣1=2×(35)2﹣1=−725,所以sin 2α+sin2αcos2α−1=(45)2+2425−725−1=−54.【点评】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 18.已知cosα=−45,α为第三象限角. (1)求sin α,tan α的值; (2)求cos(π4−2α)的值.【分析】(1)先根据α所在的象限,判断出sin α的正负,进而根据同角三角函数的基本关系,利用cos α的值求得sin α,进而求得tan α的值.(2)由(1)利用二倍角公式可求sin2α,cos2α的值,进而根据两角差的余弦函数公式即可求解. 【解答】解:(1)∵cosα=−45,α为第三象限角, ∴sin α<0,∴sin α=−√1−cos 2α=−√1−1625=−35,tan α=sinαcosα=34. (2)∵由(1)可得sin2α=2sin αcos α=2425,cos2α=2cos 2α﹣1=725, ∴cos(π4−2α)=cos π4cos2α+sin π4sin2α=√22×725+√22×2425=31√250.【点评】本题主要考查了同角三角函数基本关系,二倍角公式,两角差的余弦函数公式在三角函数化简求值中的应用.注意根据角的范围确定三角函数的正负号,属于基础题. 19.已知cosα=35,,. (Ⅰ)求tan α,sin2α的值; (Ⅱ)求sin(π3−α)的值.【分析】(Ⅰ)由已知利用同角三角函数基本关系式可求sin α,tan α的值,利用二倍角的正弦函数公式可求sin2α的值.(Ⅱ)利用两角差的正弦函数公式即可计算得解. 【解答】解:(Ⅰ)∵cosα=35,,, ∴sinα=−√1−cos 2α=−45, ∴tanα=sinαcosα=−43,sin2α=2sinαcosα=−2425. (Ⅱ)∴sin(π3−α)=sin π3cosα−cos π3sinα=√32×35−12×(−45)=3√3+410. 【点评】本题主要考查了同角三角函数基本关系式,二倍角的正弦函数公式,两角差的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 20.(1)已知sinα=−13,且α为第四象限角,求sin(α−π2)与tan α值; (2)已知tan α=2,求cos αsin α的值.【分析】(1)由已知利用同角三角函数基本关系式,诱导公式,即可求解. (2)利用同角三角函数基本关系式即可计算得解. 【解答】解:(1)因为sinα=−13,且α为第四象限角, 所以cosα=√1−sin 2α=2√23, 可得sin(α−π2)=−cos α=−2√23,tanα=−√24. (2)因为tan α=2, 可得sinαcosα=sinαcosαsin 2α+cos 2α=tanαtan 2α+1=25. 【点评】本题主要考查了同角三角函数基本关系式,诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题. 21.已知α,β∈(0,π2),cos α=√55,sin β=45.(1)求sin2β; (2)求tan (α+2β).【分析】(1)利用同角三角函数关系以及倍角公式进行转化求解即可. (2)先求出对应的正切值,利用两角和差的正切公式进行转化求解即可. 【解答】解:(1)∵α,β∈(0,π2),cos α=√55,sin β=45.∴sin α=2√55,cos β=35.则sin2β=2sin βcos β=2×45×35=2425. (2)∵cos2β=1﹣2sin 2β=−725, ∴tan2β=sin2βcos2β=−247,tan α=sinαcosα=2,∴tan (α+2β)=tanα+tan2β1−tanαtan2β=2−2471+2×247=−211.【点评】本题主要考查三角函数值的计算,同角三角函数关系以及两角和差的三角公式是解决本题的关键,比较基础.22.已知sin (π3−x )=13,且0<x <π2,求sin (π6+x )﹣cos (2π3+x )的值.【分析】由题意利用同角三角函数的基本关系,求得cos (π3−x )的值,再利用诱导公式、两角和差的三角公式,求得要求式子的值.【解答】解:∵0<x <π2,∴−π6<π3−x <π3,∵已知sin (π3−x )=13,∴cos (π3−x )=√1−sin 2(π3−x)=2√23. 且 0<x <π2,求sin (π6+x )﹣cos (2π3+x )的∴sin (π6+x )﹣cos (2π3+x )=cos (π3−x )+cos (π3−x )=2cos (π3−x )=4√23. 【点评】本题主要考查同角三角函数的基本关系,诱导公式、两角和差的三角公式的应用,属于基础题. 23.已知tan α,,β是第三象,角. (1)求,的值;(2)求cos (α﹣β)的值.【分析】(1)利用同角三角函数的基本关系求得 sin α和cos α的值,进而即可代入求解.(2)利用同角三角函数的基本关系求得sin β的值,再利用两角差的余弦公式求得cos (α﹣β)的值. 【解答】解:(1)∵tan α=sinαcosα=−43,α∈(π2,π),sin 2α+cos 2α=1, ∴sin α=45,cos α=−35,可得3sinα+cosαsinα−cosα=3×45+(−35)45−(−35)=97.(2)∵cos β=−513,β是第三象限角, ∴sin β=−√1−cos 2β=−1213,∴cos (α﹣β)=cos αcos β+sin αsin β=−35•(−513)+45•(−1213)=−3365.【点评】本题主要考查同角三角函数的基本关系,两角差的余弦公式的应用,属于基础题.24.已知tanα,tanβ为方程式x2+6x+2=0的两根,求下列各式之值:(1)1cos2(α+β);(2)sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β).【分析】(1)由题意得,tanα+tanβ=﹣6,tanαtanβ=2,然后结合两角和的正切公式及同角基本关系可求.(2)由sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β)=cos2(α+β)[tan2(α+β)+4tan(α+β)+2],代入可求.【解答】解:(1)由题意得,tanα+tanβ=﹣6,tanαtanβ=2,∴tan(α+β)=tanα+tanβ1−tanαtanβ=−61−2=6,∴1cos2(α+β)=cos2(α+β)+sin2(α+β)cos2(α+β)=1+sin2(α+β)cos2(α+β),=1+tan2(α+β)=1+36=37,(2)sin2(α+β)+4sin(α+β)cos(α+β)+2cos2(α+β),=cos2(α+β)[tan2(α+β)+4tan(α+β)+2],=137(36+4×6+2)=6237.【点评】本题主要考查了同角基本关系的应用,解题的关键是公式的灵活应用.。
高三数学三角函数三角恒等变换解三角形试题答案及解析
高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。
三角恒等变换含答案
三角恒等变换一、单选题1.已知α是第二象限角,tan()74πα-=-,则sin()3πα+=( )A B C D 2.已知锐角θ满足2sin 263θπ⎛⎫+= ⎪⎝⎭,则5cos 6πθ⎛⎫+⎪⎝⎭的值为( )A .19-B C .19D . 3.2002年在北京召开的国际数学家大会,会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形。
如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为θ,那么cos2θ的值等于( )A .45B .725C .725-D .354.已知锐角α满足3cos()65πα+=,则sin(2)3πα+=( ) A .1225B .1225±C .2425D .2425±5.sin 3πα⎛⎫-= ⎪⎝⎭,0,2πα⎛⎫∈ ⎪⎝⎭,则cos α=( )A B C D6.已知22ππαβ--<<,sin 2cos 1αβ-=,2cos sin αβ+=则3s i n πβ⎛⎫-= ⎪⎝⎭ ( )A .3B .3C .3±D .3±7.若,αβ都是锐角,且cos 5α=,3sin()5αβ+=,则cos β= ( )A B C D 8.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tanα,tanβ,且22ππαβ⎛⎫∈- ⎪⎝⎭,,,则α+β=( ). A .34π或34π-B .4π-或4πC .4π D .34π-9.已知角,αβ均为锐角,且cos αβ==αβ-的值为( ) A .3πB .4π C .4π-D .4π或4π-10.已知 πsin()4α+=,则 3πsin()4α-的值为 ( ).A .B .2C .-12D .1211.已知函数()212cos 2f x x x =+-,若其图象是由sin 2y x =图象向左平移ϕ(0ϕ>)个单位得到,则ϕ的最小值为( ) A .6πB .56π C .12πD .512π 12.已知函数()sin sin 3f x x x =-,[0,2]x πÎ,则()f x 的所有零点之和等于( ) A .5πB .6πC .7πD .8π13.若函数()sin cos f x a x b x =+在3x π=处取得最大值4,则ab=( )A .1B C .2D .314.已知函数()sin f x a x x =-图象的一条对称轴为6x π=-,若()()124f x f x ⋅=-,则12x x +的最小值为( )A .3π B .πC .23π D .43π二、填空题15.计算:tan 20tan 40tan120tan 20tan 40++=_______________.16.cos102cos20cos10-⋅=____________. 17.已知()2sin 3αβ+=,()2sin 5αβ-=,则tan tan αβ的值为__________;18.已知αβ,均为锐角,1sin())663ππαβ-=+=,cos()αβ+=________. 19.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________. 20.若奇函数()f x 在其定义域R 上是单调减函数,且对任意的R x ∈,不等式()()cos2sin sin 0f x x f x a ++-≤恒成立,则a 的最大值是_____.21.已知等腰三角形顶角的余弦值为725-,则这个三角形底角的正切值...为______ 22.o o oosin58+cos60sin2cos2=____________.23.已知π1sin cos 63αα⎛⎫--=⎪⎝⎭,则πcos 23α⎛⎫+= ⎪⎝⎭__________.24.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则sin 2θ=______.25.若函数2()4sin sin cos 2(0)42x f x x x πωωωω⎛⎫=⋅++>⎪⎝⎭在2,23ππ⎡⎤-⎢⎥⎣⎦上是增函数,则ω的取值范围是____________.26.如图,某园林单位准备绿化一块直径为BC 的半圆形空地,ABC ∆外的地方种草,ABC ∆的内接正方形PQRS 为一水池,其余的地方种花,若BC a =,ABC θ∠=,设ABC ∆的面积为1S ,正方形PQRS 的面积为2S ,当a 固定,θ变化时,则12S S 的最小值是__________.27.已知函数()()()cos sin sin cos f x a x b x =-没有零点,则22a b +的取值范围是_______三、解答题 28.(1cos103sin10-;(2)求值tan 70tan 503tan 70tan 50+-= 29.已知()222x x x f x sincos sin a ⎛⎫=⋅++ ⎪⎝⎭ (1)求实数a 的值;(2)若443f f ππαα⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,求2141tan παα⎛⎫-+ ⎪⎝⎭+的值. 30.(1)已知51sin π123α⎛⎫+=⎪⎝⎭,求πsin 12α⎛⎫- ⎪⎝⎭的值. (2)已知角α的终边过点()43P ,-,β为第三象限角,且4tan 3β=,求()c o s αβ-的值.31.(1)求值: sin 7cos15sin8cos7sin15sin8︒+︒︒︒-︒︒;(2)已知10sin cos ,25x x x π-<<+=,,求sin cos x x -的值. 32.已知1tan()2αβ-=,1tan 7β=-,且,(0,)αβπ∈,求2αβ-的值 33.已知32ππα<<,32ππβ<<,sin α=,cos β=αβ-的值. 34.已知α,β为锐角,且17cos α=,()1114cos αβ+=-.求sinβ的值. 35.计算(1)已知2sin cos 0αα-=,求sin cos sin cos sin cos sin cos αααααααα-+++-的值; (2)求()214cos 102sin10︒+︒-︒的值. 36.已知2sin cos 3αα+=,且2παπ<<,求下列各式的值(1)sin cos αα-(2)cos()24sin()4πααπα+++37.已知sin(2)7αβ-=11cos(2)14αβ-=-, 042ππβα<<<<,(1)求tan(2)αβ-的值; (2)求cos()αβ+以及αβ+的值38.计算(1)23sin12(4cos 122)--; (240sin 50(13tan10).701cos 40+++39.已知函数2()2cos cos cos .22x xf x x x =+ (1)求函数f (x )的最小正周期; (2)求函数f (x )在区间,64ππ⎡⎤-⎢⎥⎣⎦上的值域.40.已知函数2()sinsin 1(02f x x x x πωωωω⎫⎛⎫=+⋅+-> ⎪⎪⎝⎭⎭的相邻两条对称轴之间的距离为2π. (1)求ω的值;(2)当,122x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域. 41.如图,OPQ 是半径为2,圆心角为3π的扇形,C 是扇形弧上的一动点,记COP θ∠=,四边形OPCQ 的面积为S .(1)找出S 与θ的函数关系;(2)试探求当θ取何值时,S 最大,并求出这个最大值.42.已知函数2()sin cos (0)f x x x x =>ωωωω的最小正周期为2π, (1)求函数()f x 的单调递减区间;(2)若函数()()g x =f x +m 在区间0,4⎡⎤⎢⎥⎣⎦π上有两个零点,求实数m 的取值范围. 43.为迎接2020年奥运会,某商家计划设计一圆形图标,内部有一“杠铃形图案”(如图阴影部分),圆的半径为1米,AC ,BD 是圆的直径,E ,F 在弦AB 上,H ,G 在弦CD 上,圆心O 是矩形EFGH 的中心,若23EF =米,2AOB θ∠=,5412ππθ≤≤.(1)当3πθ=时,求“杠铃形图案”的面积;(2)求“杠铃形图案”的面积的最小值.参考答案1.C 【解析】 由tan 74πα⎛⎫-=- ⎪⎝⎭,得171tan tan αα-=-+,解得34tan α=-. 又α是第二象限角,可得34sin ,cos 55αα==-.则314sin 333525sin cos cos sin πππααα⎛⎫+=+=⨯-= ⎪⎝⎭. 故选C. 2.D 【解析】分析:由二倍角公式得cos 3πθ⎛⎫+⎪⎝⎭,再由5cos ?cos sin 6323ππππθθθ⎛⎫⎛⎫⎛⎫+=++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,结合同角三角函数关系可得解.详解:由2sin 263θπ⎛⎫+=⎪⎝⎭,得28112sin 12699θπ⎛⎫-+=-= ⎪⎝⎭,即1cos 39πθ⎛⎫+= ⎪⎝⎭,由θ为锐角,且1cos 039πθ⎛⎫+=> ⎪⎝⎭,所以3πθ+因为锐角,所以sin 03πθ⎛⎫+> ⎪⎝⎭.5cos cos sin 6323ππππθθθ⎛⎫⎛⎫⎛⎫+=++=-+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选D.点睛:解决三角变换中的给值求值问题时,一定要注意先化简再求值,同时要注意所给条件在解题中的整体作用. 3.B 【解析】 【分析】根据两个正方形的面积求出两个正方形的边长,进而用三角函数表示边长求出三角函数值,再利用二倍角公式求解即可. 【详解】由大正方形面积为25,小正方形面积为1.易得大正方形边长为5,小正方形边长为1.由图有15cos 5sin 1cos sin 5θθθθ-=⇒-=,故221cos sin 5cos sin 1θθθθ⎧-=⎪⎨⎪+=⎩ ,因为较小的锐角为θ,故4cos 53sin 5θθ⎧=⎪⎪⎨⎪=⎪⎩.故2247cos 22cos 121525θθ⎛⎫=-=⨯-= ⎪⎝⎭ 故选:B 【点睛】本题主要考查了由图像求解三角函数值的问题,需要根据图像到三角函数的关系式再求解,属于中等题型. 4.C 【解析】 【分析】利用诱导公式,求得sin()6πα+的值,再利用倍角公式,即可求解.【详解】因为锐角α满足3cos()65πα+=,所以6πα+也是锐角,由三角函数的基本关系式可得4sin()65πα+==, 则24sin(2)2sin()cos()36625πππααα+=++=,故选C. 【点睛】本题主要考查了三角函数的化简求值问题,其中解答中熟记三角函数的诱导公式和三角函数的倍角公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题. 5.B 【解析】 【分析】根据sin 3πα⎛⎫-= ⎪⎝⎭和0,2πα⎛⎫∈ ⎪⎝⎭,得到sin 3πα⎛⎫- ⎪⎝⎭和cos 3πα⎛⎫- ⎪⎝⎭的值,将所求的cos α转化为cos 33ππα⎡⎤⎛⎫-+ ⎪⎢⎥⎝⎭⎣⎦,利用两角和的余弦公式,得到答案.【详解】因为sin 33πα⎛⎫-=⎪⎝⎭,所以sin 33πα⎛⎫-=- ⎪⎝⎭,因为0,2πα⎛⎫∈ ⎪⎝⎭,所以cos 33πα⎛⎫-==⎪⎝⎭, 所以cos cos 33ππαα⎡⎤⎛⎫=-+⎪⎢⎥⎝⎭⎣⎦cos cos sin sin 3333ππππαα⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭12⎛=- ⎝⎭36+=. 故选:B. 【点睛】本题考查同角三角函数关系,两角和的余弦公式,属于简单题. 6.B 【解析】 【分析】两式平方相加利用两角和与差的公式可化为()54sin 3αβ--=,再根据22ππαβ-<-<得出6παβ=+,代入2cos sin αβ+=.【详解】将两个等式两边平方可得2222sin 4sin cos 4cos 1cos 4cos sin 4sin 2ααββααββ⎧-⋅+=⎨+⋅+=⎩, 两式相加可得()54sin 3αβ--=,所以()1sin 2αβ-=, 22ππαβ-<-<,6παβ∴-=,即6παβ=+,代入2cos sin αβ+=3sin 2ββ+=,所以sin 63πβ⎛⎫+= ⎪⎝⎭, 故选:B 【点睛】本题主要考查三角函数的化简求值,需熟记两角和与差的公式以及常见的三角函数值,属于中档题. 7.A 【解析】 【分析】先计算出()cos αβ+,再利用余弦的和与差公式,即可. 【详解】因为,αβ都是锐角,且1cos 2α=<,所以,32ππα<<又()31sin 52αβ+=>,所以2παβπ<+<,所以()4cos 5αβ+==-sin α==,cos β=()()()cos cos cos sin sin αβααβααβα+-=+++ 25=,故选A.【点睛】本道题考查了同名三角函数关系和余弦的和与差公式,难度较大。
新高考数学计算题型精练 三角恒等变换(解析版)
新高考数学计算题型精练三角恒等变换1.cos70cos20sin70sin160︒︒-︒︒=()A.0B.12C D.1【答案】A【详解】cos20cos70sin160sin70︒︒-︒︒()cos20cos70sin18020sin70=︒︒-︒-︒︒cos20cos70sin20sin70=︒︒-︒︒()cos2070cos900=︒+︒=︒=.故选:A.2.sin40°cos10°+cos140°sin10°=()A B C.﹣12D.12【答案】D【详解】sin40°cos10°+cos140°sin10°,=sin40°cos10°-cos40°sin10°,=sin(40°-10°),=sin30°=12.故选:D3.sin20cos40cos20sin140︒︒︒︒+=A.B.2C.12-D.12【答案】B【详解】sin20cos40cos20sin140sin20cos40cos20sin40sin(2040)sin60︒︒+︒︒=︒︒+︒︒=︒+︒=︒故选B4.已知π1cos63α⎛⎫-=⎪⎝⎭,则πsin26α⎛⎫+=⎪⎝⎭()A.79-B.79C.3-D.3【答案】A【详解】因为π1 cos63α⎛⎫-=⎪⎝⎭,故2πππππ27sin 2sin 2()cos 2()2cos ()116626699αααα⎛⎫⎡⎤+=-+=-=--=-=- ⎪⎢⎥⎝⎭⎣⎦,故选:A 5.若cos tan 3sin ααα=-,则sin 22πα⎛⎫+= ⎪⎝⎭()A .23B .13C .89D .79【答案】D【详解】因为cos tan 3sin ααα=-,所以sin cos cos 3sin αααα=-,即223sin sin cos ααα-=,所以223sin sin cos 1ααα=+=,即1sin 3α=,所以27sin 2cos212sin 2π9ααα⎛⎫+==-= ⎪⎝⎭,故选:D .6.sin 20cos 40sin 70sin 40︒︒+︒︒=()AB .12C.2D .1【答案】A【详解】已知可化为:()sin 20cos 40cos 20sin 40sin 20402︒︒︒+︒=︒+︒=.故选:A7.若πtan 28α⎛⎫-= ⎪⎝⎭,则πtan 24α⎛⎫-= ⎪⎝⎭()A .34B .34-C .43D .43-【答案】D【详解】由2π2tan()π448tan 2π41431tan ()8ααα-⎛⎫-===- ⎪-⎝⎭--.故选:D8.已知π0,2α⎛⎫∈ ⎪⎝⎭π2sin 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α=()A .34-B .34C .1-D .1【答案】B【详解】π2sin(4αα=+Q,)22(sin cos )2cos sin αααα=+-Q,1(cos sin )(cos sin )02αααα∴+--=,又π0,2α⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0αα>>,即cos sin 0αα+>所以1cos sin 2αα-=,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以2(0,π)α∈,sin 20α>.由1cos sin 2αα-=平方可得11sin 24α-=,即3sin 24α=,符合题意.综上,3sin 24α=.故选:B.9.已知5π4sin 125θ⎛⎫+= ⎪⎝⎭,则πsin 23θ⎛⎫+= ⎪⎝⎭()A .2425-B .725-C .725D .2425【答案】C【详解】5ππππ4sin sin cos 12212125θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=--=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,所以22πππ47cos 2cos 22cos 1216612525θθθ⎛⎫⎛⎫⎛⎫⎛⎫-=-=--=⨯-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,得ππππ7sin 2sin 2cos 2326625θθθ⎡⎤⎛⎫⎛⎫⎛⎫+=+-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故选:C.10.已知tan 2α=,则213cos sin2αα-=()A .12B .14C .2D .4【答案】A【详解】因为tan 2α=,所以222213cos sin 2cos tan 221sin22sin cos 2tan 42αααααααα---====,故选:A.11.化简:()22sin πsin 22cos 2ααα-+=()A .sin αB .sin 2αC .2sin αD .sin2α【答案】C【详解】根据题意可知,利用诱导公式可得()222sin πsin 22sin sin 22cos 2cos 22αααααα-++=再由二倍角的正弦和余弦公式可得()()222sin 1cos 2sin 1cos 2sin sin 22sin 1cos 2cos2cos22αααααααααα+++===+,即()22sin πsin 22sin 2cos2αααα-+=.故选:C12.cos78cos18sin 78sin18︒︒+︒︒的值为()A .12B .13CD【答案】A【详解】依题意由两角差的余弦公式可知,()1cos78cos18sin 78sin18cos 7818cos602︒︒+︒︒=︒-︒==.故选:A13.若tan 2θ=-,则()()()πsin 1sin22sin πcos πθθθθ⎛⎫+- ⎪⎝⎭=-++____________【答案】35-/-0.6【详解】()()()()22πsin 1sin2cos sin cos 2cos sin cos sin πcos πsin cos θθθθθθθθθθθθ⎛⎫+- ⎪-⎝⎭==--++-22222tan 1213cos sin 1tan 1(2)5cossin cos θθθθθθ-=---===-+++-,故答案为:35-14.已知ππ2θ<<,且4cos 5θ=-,则tan 2θ=______.【答案】247-【详解】4cos 5θ=-,3sin 5θ==±,ππ2θ<< ,3sin 5θ∴=.sin 3tan cos 4θθθ∴==-,232tan 242tan 291tan 7116θθθ-===---.故答案为:247-.15.已知cos 24π7sin 4αα=⎛⎫+ ⎪⎝⎭,则sin 2α的值是______.【答案】4149【详解】22cos 2442cos sin π777sin 422αααα=⇒⇒-=⎛⎫+ ⎪⎝⎭228841cos 2sin cos sin 1sin 2sin 2494949αααααα⇒-+=⇒-=⇒=,故答案为:414916.已知()0,απ∈,若sin 6πα⎛⎫-= ⎪⎝⎭cos 26πα⎛⎫+= ⎪⎝⎭_________.【答案】3±【详解】因为sin 63πα⎛⎫-= ⎪⎝⎭,()0,απ∈,所以cos 6πα⎛⎫-== ⎪⎝⎭所以sin 2=2sin cos =6663πππααα⎛⎫⎛⎫⎛⎫---±⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以cos 2cos 2cos 2sin 2=6326263ππππππαααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=-+=-+=--± ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦.故答案为:17.若3,0,sin 25⎛⎫∈-=- ⎪⎝⎭x x π,则tan 2x =________.【答案】247-【详解】343,0,sin cos ,tan 2554x x x x π⎛⎫∈-=-∴==-⎪⎝⎭Q 232tan 242tan 291tan 7116x x x -∴===---故答案为:247-18.已知(),2αππ∈,cos 3sin 1αα-=,则cos 2α=_______________________.【答案】【详解】因为(),2αππ∈,所以,22αππ⎛⎫∈ ⎪⎝⎭,由cos 3sin 1αα-=可得212sin 6sin cos 1222ααα--=,整理可得sin 3cos 22αα=-,22sin 3cos 22sin cos 12222ααααπαπ⎧=-⎪⎪⎪+=⇒⎨⎪⎪<<⎪⎩cos 2α=故答案为:19.若πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,则α=__________.【答案】6π/16π【详解】依题意,πcos 0,,tan 22sin αααα⎛⎫∈= ⎪⎝⎭,所以2222tan 1,2tan 1tan 1tan tan ααααα==--,21tan 3α=,而α为锐角,所以πtan 6αα=.故答案为:π620.已知tan 3α=,则sin 2α=______.【答案】35【详解】22222sin cos 2tan 233sin 2sin cos tan 1315ααααααα⨯====+++.故答案为:3521.已知α是第二象限的角,1cos24α=,则tan α=________.【答案】5/【详解】因为21cos 212sin 4αα=-=,又α是第二象限的角,所以6sin 4α=,cos 4α=,所以5tan α=-.故答案为:5-22.已知22cos 5sin 10αα-+=,则cos 2=α______.【答案】12/0.5【详解】解:已知()2222cos 5sin 121sin 5sin 12sin 5sin 30αααααα-+=--+=--+=,即()()22sin 5sin 32sin 1sin 30αααα+-=-+=,解得1sin 2α=或sin 3α=-(舍),211cos 212sin 1242αα∴=-=-⨯=,故答案为:12.23.若tan 2θ=,则sin cos 2cos sin θθθθ=-_________.【答案】65/1.2/115【详解】()()22sin cos sin sin cos 2sin cos sin cos sin cos sin θθθθθθθθθθθθ-==+--222222sin cos sin tan tan 246sin cos sin sin cos tan 155θθθθθθθθθθθ+++=+====++.故答案为:65.24.函数()sin 2sin 1cos x xf x x=+的值域__________.【答案】14,2⎛⎤- ⎥⎝⎦【详解】因为()()222221cos cos sin 2sin 2sin cos 11=2cos 2cos 2cos 1cos 1cos 1cos 22x x x x x x f x x x x x x x -⎛⎫===-+=--+ ⎪+++⎝⎭,因为1cos 1x -≤≤,当1cos 2x =时,()f x 取得最大值12,当cos 1x =-时,()f x 取得最小值4-,又因为1cos 0x +≠,所以()f x 的值域为14,2⎛⎤- ⎝⎦.故答案为:14,2⎛⎤- ⎥⎝⎦.25.已知sin 2cos αα=,π0,2α⎛⎫∈ ⎪⎝⎭,tan α=________.【详解】sin 2cos 2sin cos αααα==,π0,2α⎛⎫∈ ⎪⎝⎭,则cos 0α≠,1sin 2α=,π6α=,故tan α=26.(1)计算:cos157sin 97sin 60cos 97︒+︒︒︒;(2)已知tan 1α=-,求2cos 2sin cos 1ααα--的值.【答案】(1)12;(2)12【详解】(1)cos157sin 97sin 60cos97︒+︒︒︒()cos 9760sin 97sin 60cos 97︒+︒+︒︒=︒cos 97cos 60sin 97sin 60sin 97sin 60cos 97︒︒-︒︒+︒︒=︒cos 60=︒12=.(2)2cos 2sin cos 1ααα--222cos 2sin cos 1cos sin ααααα-=-+212tan 11tan αα-=-+()()2121111-⨯-=-+-12=.。
三角函数、三角恒等变换、解三角形(含答案)
三角函数、三角恒等变换、解三角形学校:___________姓名:___________班级:___________考号:___________1.已知1sin 2α=,则cos()2πα-=( )A. 2-B. 12-C. 12D. 2 2.200︒是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3.已知()1cos 03ϕϕπ=-<<,则sin 2ϕ=( )A.9B.9-C.9D.9-4.函数 )321sin(π+=x y 的图像可由函数x y 21sin =的图像( ) A .向左平移32π个单位得到 B .向右平移3π个单位得到C .向左平移6π个单位得到 D .向左平移3π个单位得到5.函数5sin(2)2y x π=+图像的一条对称轴方程是( ) A .2π-=x B . 4π-=x C . 8π=x D .45π=x6.函数())24x f x π=-,x R ∈的最小正周期为( )A .2πB .πC .2πD .4π7.给出以下命题:①若α、β均为第一象限角,且βα>,且βαsin sin >;②若函数⎪⎭⎫⎝⎛-=3cos 2πax y 的最小正周期是π4,则21=a ; ③函数1sin sin sin 2--=x xx y 是奇函数;④函数1|sin |2y x =-的周期是π; ⑤函数||sin sin x x y +=的值域是]2,0[. 其中正确命题的个数为( )A . 3B . 2C . 1D . 0 8.函数()sin()(0,0,||)2f x A x A πωϕωϕ=+>><的部分图像如图示,则将()y f x =的图像向右平移6π个单位后,得到的图像解析式为( )A .x y 2sin = B.x y 2cos = C.)322sin(π+=x y D.)62sin(π-=x y 9.函数()sin 2f x x =的最小正周期是 .10.300tan 480sin +的值为________.11.在ABC ∆中,已知内角3A π=,边BC =,则ABC ∆的面积S 的最大值为 .12.比较大小:sin1 cos1(用“>”,“<”或“=”连接).13.已知角α的顶点在坐标原点,始边在x 轴的正半轴,终边经过点(1,,则cos ____.α=14.已知3cos()(,)41024x x πππ-=∈. (Ⅰ)求sin x 的值; (Ⅱ)求sin(2)3x π+的值.15.已知x x x x x f 424cos 3)cos (sin sin 3)(-++=.(1)求()f x 的最小值及取最小值时x 的集合; (2)求()f x 在[0,]2x π∈时的值域;(3)在给出的直角坐标系中,请画出()f x 在区间[,]22ππ-上的图像(要求列表,描点).16.已知3cos()(,)424x x πππ-=∈. (1)求sin x 的值; (2)求sin(2)3x π+的值.17.(1)化简:︒--︒︒︒-20sin 1160sin 20cos 20sin 212;(2)已知α为第二象限角,化简ααααααcos 1cos 1sin sin 1sin 1cos +-++-.18.函数(其中)的图象如图所示,把函数)(x f 的图像向右平移4π个单位,再向下平移1个单位,得到函数)(x g y =的图像.(1)若直线m y =与函数)(x g 图像在]2,0[π∈x 时有两个公共点,其横坐标分别为21,x x ,求)(21x x g +的值;(2)已知ABC ∆内角AB C 、、的对边分别为a b c 、、,且0)(,3==C g c .若向量(1,sin )m A = 与(2,sin )n B =共线,求a b 、的值.19.已知函数()4cos sin()16f x x x π=+-.(1)求()f x 的最小正周期; (2)求()f x 在区间[,]64ππ-上的最大值与最小值.参考答案1.C 【解析】 试题分析:由1cos()sin 22παα-==,故选C. 考点:诱导公式. 2.C 【解析】试题分析:因为第一象限角α的范围为36036090,k k k z α⋅<<⋅+∈ ; 第二象限角α的范围为36090360180,k k k z α⋅+<<⋅+∈ ; 第三象限角α的范围为360180360270,k k k z α⋅+<<⋅+∈ ; 第四象限角α的范围为360270360360,k k k z α⋅+<<⋅+∈ ;200∴︒是第三象限角,故选C.考点:象限角的概念. 3.D 【解析】试题分析:0ϕπ<< ,sin 0ϕ∴>,故sin ϕ===,因此sin 2ϕ=12sin cos 2339ϕϕ⎛⎫=⨯-=- ⎪⎝⎭,故选D. 考点:1.同角三角函数的基本关系;2.二倍角公式4.A 【解析】试题分析:因为1sin()23y x π=+可化为12sin ()23y x π=+.所以将x y 21sin =向左平移32π.可得到12sin ()23y x π=+.故选 A.本小题关键是考查1ω≠的三角函数的平移,将0x ωϕ+=时的x 的值,与0x =是对比.即可知道是向左还是向右,同时也可以知道移了多少单位.考点:1.三角函数的平移.2.类比的思想. 5.A 【解析】试题分析:5sin(2)sin(22)sin(2)cos 2222y x x x x ππππ=+=++=+= ,由c o s y x =的对称轴()x k k Z π=∈可知,所求函数图像的对称轴满足2()x k k Z π=∈即()2k x k Z π=∈,当1k =-时,2x π=-,故选A. 考点:1.三角函数图像与性质中的余弦函数的对称性;2.诱导公式. 6.C 【解析】 试题分析:这是三角函数图像与性质中的最小正周期问题,只要熟悉三角函数的最小正周期的计算公式即可求出,如sin(),cos()y A x k y A x k ωϕωϕ=++=++的最小正周期为2||T πω=,而t a n ()y A x k ωϕ=++的最小正周期为||T πω=,故函数()tan()24x f x π=-的最小正周期为212T ππ==,故选C.考点:三角函数的图像与性质. 7.D 【解析】试题分析:对于①来说,取390,60αβ=︒=︒,均为第一象限,而1sin 60390sin 3022=︒=︒=,故s i n s i n αβ<;对于②,由三角函数的最小正周期公式214||2T a a ππ==⇒=±;对于③,该函数的定义域为{}|s i n 10|2,2x x x x k k Zππ⎧⎫-≠=≠+∈⎨⎬⎩⎭,定义域不关于原点对称,没有奇偶性;对于④,记1()|sin |2f x x =-,若T π=,则有()()22f f ππ-=,而1()|1| 1.522f π-=--=,1()|1|0.522f π=-=,显然不相等;对于⑤,0sin sin ||2sin y x x x ⎧=+=⎨⎩(0)(0)x x <≥,而当()2sin (0)f x x x =≥时,22sin 2x -≤≤,故函数sin sin ||y x x =+的值域为[2,2]-;综上可知①②③④⑤均错误,故选D.考点:1.命题真假的判断;2.三角函数的单调性与最小正周期;3.函数的奇偶性;4.函数的值域. 8.D 【解析】试题分析:通过观察图像可得1A =,311341264T πππ=-=,所以T π=,所以222T ππωπ===,又因为函数()f x 过点(,1)6π,所以s i n ()12()332k k Z πππϕϕπ+=⇒+=+∈,而||2πϕ<,所以当0k =时,6πϕ=满足要求,所以函数()sin(2)6f x x π=+,将函数向右平移6π个单位,可得()s i n [2()]s i n (2)666f x x x πππ=-+=-,故选D.考点:1.正弦函数图像的性质.2.正弦函数图像的平移.3.待定系数确定函数的解析式. 9.π 【解析】试题分析:直接利用求周期公式2T πω=求得.考点:周期公式.10. 【解析】 试题分析:sin 480tan 300sin(120360)tan(36060)sin120tan 60sin 60tan 60+=︒+︒+︒-︒=︒-︒=︒-︒,故sin 480tan 300+==考点:1.诱导公式;2.三角恒等变换.11.【解析】试题分析:∵2222cos a b c bc A =+-,∴2212b c bc =+-,∵222b c bc +≥,∴122b c b c +≥,∴12bc ≤,∴1sin 2S bc A ∆==≤ 考点:1.余弦定理;2.基本不等式;3.三角形面积.12.>. 【解析】试题分析:在单位圆中,做出锐角1的正切线、正弦线、余弦线,观察他们的长度,发现正切线最长,余弦线最短,故有 tan1>sin1>cos1>0. 考点:三角函数线.13.-12. 【解析】试题分析:由题意可得 x=-1,r 2=x 2+y 2=4,r=2,故cos =x r =-12. 考点:任意角的三角函数的定义.14.(1)45;(2)2450+-.【解析】试题分析:(1)先判断4x π-的取值范围,然后应用同角三角函数的基本关系式求出sin()4x π-,将所求进行变形sin sin[()]44x x ππ=-+,最后由两角和的正弦公式进行计算即可;(2)结合(1)的结果与x 的取值范围,确定cos x 的取值,再由正、余弦的二倍角公式计算出sin 2x 、cos2x ,最后应用两角和的正弦公式进行展开计算即可.试题解析:(1)因为3(,)24x ππ∈,所以(,)442x πππ-∈,于是sin()410x π-==sin sin[()]sin()cos cos()sin444444x x x x ππππππ=-+=-+-41021025=⨯+=(2)因为3(,)24x ππ∈,故3cos 5x ===-2247sin 22sin cos ,cos 22cos 12525x x x x ==-=⨯-=-所以中24sin(2)sin 2coscos 2sin33350x x x πππ++=+=-. 考点:1.同角三角函数的基本关系式;2.两角和与差公式;3.倍角公式;4.三角函数的恒等变换.15.(1)当1-,},12|{Z k k x x ∈-=ππ;(2)[1,3];(3)详见解析. 【解析】试题分析:先根据平方差公式、同角三角函数的基本关系式、二倍角公式化简所给的函数()2sin(2)13f x x π=-+.(1)将23x π-看成整体,然后由正弦函数sin y x =的最值可确定函数()f x 的最小值,并明确此时x 的值的集合;(2)先求出23x π-的范围为2[,]33ππ-,从而sin(2)13x π≤-≤,然后可求出]2,0[π∈x 时,函数()f x 的值域;(3)根据正弦函数的五点作图法进行列表、描点、连线完成作图.试题解析:化简424()(sin cos )f x x x x x =++222222cos )(sin cos )sin 2sin cos cos x x x x x x x =-++++22cos )2sin cos 1x x x x =-++sin 221x x =+2sin(2)13x π=-+ 4分(1)当sin(2)13x π-=-时,()f x 取得最小值211-+=-,此时22,32x k k Z πππ-=-+∈即,12x k k Zππ=-∈,故此时x 的集合为},12|{Z k k x x ∈-=ππ 6分(2)当]2,0[π∈x 时,所以]32,3[32πππ-∈-x ,所以sin(2)13x π≤-≤,从而12sin(2)133x π+≤-+≤即]3,13[)(+-∈x f 9分(3)由()2sin(2)1f x x π=-+知故()f x 在区间[,]22ππ-上的图象如图所示:13分.考点:1.三角恒等变换;2.三角函数的图像与性质.16.(1)45;(2).【解析】试题分析:(1)先判断4x π-的取值范围,然后应用同角三角函数的基本关系式求出sin()4x π-,将所求进行变形sin sin[()]44x x ππ=-+,最后由两角和的正弦公式进行计算即可;(2)结合(1)的结果与x 的取值范围,确定cos x 的取值,再由正、余弦的二倍角公式计算出sin 2x 、cos2x ,最后应用两角和的正弦公式进行展开计算即可.试题解析:(1)因为3(,)24x ππ∈,所以(,)442x πππ-∈,于是sin()410x π-==sin sin[()]sin()cos cos()sin444444x x x x ππππππ=-+=-+-41021025=⨯+=(2)因为3(,)24x ππ∈,故3cos 5x ===-2247sin 22sin cos ,cos 22cos 12525x x x x ==-=⨯-=-所以中24sin(2)sin 2coscos 2sin33350x x x πππ++=+=-. 考点:1.同角三角函数的基本关系式;2.两角和与差公式;3.倍角公式;4.三角函数的恒等变换. 17.(1)1-;(2)0. 【解析】试题分析:本题主要考查同角三角函数基本关系式与诱导公式的应用.(1)将分子中的1变形为22sin 20cos 20︒+︒,从而分子进一步化简为cos20sin 20︒-︒,分母s i n 16n 20︒︒利用诱导公式与同角三角函数的基本关系式转化为s i n 20c o s 2︒-︒,最后不难得到答案;(2)1sin |cos |αα-=,1cos |sin |αα-=,然后根据三角函数在第二象限的符号去绝对值进行运算即可.试题解析:(1)原式=cos 20sin 201sin 20cos 20sin 20cos 20︒-︒==-︒-︒︒-︒6分(2)解:原式cos sin 1sin 1cos cos |sin |cos |sin |αααααα--=⨯+⨯ 1cos 1cos cos sin 0cos sin αααααα--=⨯+⨯=- 6分. 考点:1.同角三角函数的基本关系式;2.三角恒等变换;3.诱导公式.18.(1)123()2g x x +=-;(2)a b ⎧=⎨=⎩【解析】试题分析:本题主要考查三角函数的图像和性质,向量共线的充要条件以及解三角形中正弦定理余弦定理的应用,考查分析问题解决问题的能力和计算能力,考查数形结合思想和化归与转化思想.第一问,先由函数图像确定函数解析式,再通过函数图像的平移变换得到()g x 的解析式,由于y m =与()g x 在[0,]2π上有2个公共点,根据函数图像的对称性得到2个交点的横坐标的中点为3π,所以122()()3g x x g π+=得出函数值;第二问,先用()0g c =在ABC ∆中解出角C 的值,再利用两向量共线的充要条件得到sin 2sin B A =,从而利用正弦定理得出2b a =,最后利用余弦定理列出方程解出边,a b 的长.试题解析:(1)由函数)(x f 的图象,ωπππ2)3127(4=-=T ,得2=ω, 又3,32πϕπϕπ=∴=+⨯,所以)32sin()(π+=x x f 2分 由图像变换,得1)62sin(1)4()(--=--=ππx x f x g 4分由函数图像的对称性,有23)32()(21-==+πg x x g 6分 (Ⅱ)∵ ()sin(2)106f C C π=--=, 即sin(2)16C π-= ∵ 0C π<<,112666C πππ-<-<, ∴ 262C ππ-=,∴ 3C π=. 7分 ∵ m n 与共线,∴ sin 2sin 0B A -=.由正弦定理 sin sin a b A B=, 得2,b a = ① 9分 ∵ 3c =,由余弦定理,得2292cos 3a b ab π=+-, ② 11分解方程组①②,得a b ⎧=⎨=⎩ 12分 考点:1.函数图像的平移变换;2.函数图像的对称性;3.正弦定理和余弦定理;4.函数的周期性;5.两向量共线的充要条件.19.(1)T =π;(2)最大值2;最小值-1.【解析】试题分析:(1)本小题首先需要对函数的解析式进行化简()⎪⎭⎫ ⎝⎛+=62sin 2πx x f ,然后根据周期公式可求得函数的周期T =π;(2)本小题首先根据.32626,46πππππ≤+≤-≤≤-x x 所以,然后结合正弦曲线的图像分别求得函数的最大值和最小值.试题解析:(1)因为1)6sin(cos 4)(-+=πx x x f1)cos 21sin 23(cos 4-+=x x x 1cos 22sin 32-+=x xx x 2cos 2sin 3+=)62sin(2π+=x所以)(x f 的最小正周期为π(2)因为.32626,46πππππ≤+≤-≤≤-x x 所以于是,当6,262πππ==+x x 即时,)(x f 取得最大值2; 当)(,6,662x f x x 时即πππ-=-=+取得最小值—1. 考点:三角函数的图像与性质.。
高中数学三角函数及三角恒等变换精选题目(附解析)
高中数学三角函数及三角恒等变换精选题目(附解析) 一、三角函数的定义若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=y r ,cos α=x r ,tan α=y x (x ≠0).1.已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝ ⎛⎭⎪⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cosθ,故sin α=y r =-45,tan α=y x =-43.[答案] -45 -43 注:利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.2.已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13 B .±13 C .-3D .±3解析:选C 因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3,故选C.3.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35 C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.4.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:∵θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三二、同角三角函数的基本关系及诱导公式①牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.②诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.5.已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)(cos θ-sin θ)的值.[解] 法一:由已知得2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ=4tan θ-tan2θ-3tan2θ+1=8-4-34+1=15.法二:由已知得2+tan θ1-tan θ=-4,解得tan θ=2.即sin θcos θ=2,∴sin θ=2cos θ.∴(sin θ-3cos θ)(cos θ-sin θ)=(2cos θ-3cos θ)(cos θ-2cos θ)=cos2θ=cos2θsin2θ+cos2θ=1tan2θ+1=15.注:三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形.(2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.6.若sin(π+α)=35,且α是第三象限角,则sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=()A.1B.7 C.-7 D.-1解析:选B由sin(π+α)=35,得sin α=-35.又α是第三象限角,所以cos α=-4 5,所以sin⎝⎛⎭⎪⎫π2+α-cos⎝⎛⎭⎪⎫π2+αsin⎝⎛⎭⎪⎫π2-α-cos⎝⎛⎭⎪⎫π2-α=cos α+sin αcos α-sin α=-45+⎝ ⎛⎭⎪⎫-35-45-⎝ ⎛⎭⎪⎫-35=7.7.已知sin θ+cos θ=43,且0<θ<π4,则sin θ-cos θ的值为( )A.23 B .-23 C.13D .-13解析:选B ∵sin θ+cos θ=43,∴1+2sin θcos θ=169,则2sin θcos θ=79.又0<θ<π4,所以sin θ-cos θ<0,故sin θ-cos θ=-(sin θ-cos θ)2=-1-2sin θcos θ=-23,故选B.8.已知α为第三象限角,且sin α+cos α=2m,2sin αcos α=m 2,则m 的值为________.解析:由(sin α+cos α)2=1+2sin αcos α,得4m 2=1+m 2,即m 2=13.又α为第三象限角,所以sin α<0,cos α<0,则m <0,所以m =-33.答案:-339.已知sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,① 3cos α=2cos β,②由①2+②2,得sin 2α+3cos 2α=2, 即sin 2α+3(1-sin 2α)=2,所以sin 2α=12. 又0<α<π,则sin α=22. 将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±32.三、简单的三角恒等变换两角和与差的正弦、余弦、正切公式 ①sin(α±β)=sin αcos β±cos αsin β; ②cos(α±β)=cos αcos β∓sin αsin β; ③tan(α±β)=tan α±tan β1∓tan αtan β.二倍角的正弦、余弦、正切公式 ①sin 2α=2sin αcos α;②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③tan 2α=2tan α1-tan 2α.10.已知tan α=2. (1)求tan ⎝ ⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝ ⎛⎭⎪⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.注:条件求值的解题策略(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.(3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.11.若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin 2θ=378,则sin θ=( )A.35 B.45 C.74D.34解析:选D 因为θ∈⎣⎢⎡⎦⎥⎤π4,π2,所以2θ∈⎣⎢⎡⎦⎥⎤π2,π,所以cos 2θ<0,所以cos 2θ=-1-sin 22θ=-18.又cos 2θ=1-2sin 2θ=-18,所以sin 2θ=916,所以sin θ=34.12.已知sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α+8π3等于( )A .-45 B .-35 C.35D.45解析:选D 因为sin ⎝ ⎛⎭⎪⎫α+π3+sin α=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3-π3=-435,所以sin ⎝ ⎛⎭⎪⎫α+π3+sin ⎝ ⎛⎭⎪⎫α+π3cos π3-cos ⎝ ⎛⎭⎪⎫α+π3sin π3=-435,所以32sin ⎝ ⎛⎭⎪⎫α+π3-32cos ⎝ ⎛⎭⎪⎫α+π3=-435,所以-3⎣⎢⎡⎦⎥⎤12cos ⎝ ⎛⎭⎪⎫α+π3-32sin ⎝ ⎛⎭⎪⎫α+π3=-435,即-3cos ⎝ ⎛⎭⎪⎫α+π3+π3=-435,cos ⎝ ⎛⎭⎪⎫α+2π3=45,所以cos ⎝ ⎛⎭⎪⎫α+8π3=cos ⎝ ⎛⎭⎪⎫α+2π3=45,故选D.13.(2017·全国卷Ⅲ)已知sin α-cos α=43,则sin 2α=( )A .-79B .-29 C.29D.79解析:选A 将sin α-cos α=43的两边进行平方,得sin 2 α-2sin αcos α+cos 2α=169,即sin 2α=-79.14.已知向量a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,函数f (x )=a ·b .(1)若f (θ)=0,求2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4的值;(2)当x ∈[0,π]时,求函数f (x )的值域.解:(1)∵a =(1,-3),b =⎝ ⎛⎭⎪⎫sin x ,2cos 2x 2-1,∴f (x )=a ·b =sin x -3⎝ ⎛⎭⎪⎫2cos 2x 2-1=sin x -3cos x .∵f (θ)=0,即sin θ-3cos θ=0,∴tan θ=3,∴2cos 2θ2-sin θ-12sin ⎝ ⎛⎭⎪⎫θ+π4=cos θ-sin θsin θ+cos θ=1-tan θtan θ+1=1-33+1=-2+ 3.(2)由(1)知f (x )=sin x -3cos x =2sin ⎝ ⎛⎭⎪⎫x -π3,∵x ∈[0,π],∴x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π3=-π3,即x =0时,f (x )min =-3; 当x -π3=π2,即x =5π6时,f (x )max =2,∴当x ∈[0,π]时,函数f (x )的值域为[-3,2].。
高三数学三角函数三角恒等变换解三角形试题答案及解析
高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知中,那么角=【答案】π/4【解析】略2.已知f(α)=(1)化简f(α);(2)若α是第三象限角,且cos(α-)=,求f(α)的值.【答案】(1)f(α)==-cosα.(2)∵α是第三象限角,且cos(α-)=-sinα=,∴sinα=-,∴cosα=-=-,∴f(α)=-cosα=.【解析】略3.已知函数为奇函数,且,其中(1)求的值;(2)若,求的值.【答案】(1) , ;(2)【解析】(1)由为奇函数,可得,函数化为,又根据可求;(2)由(1)可得,由得又因为,所以,再根据两角和的正弦可求试题解析:因为为奇函数,所以,,则(2),因为,即又因为,所以,【考点】函数的奇偶性,三角函数的性质4.设命题函数是奇函数;命题函数的图象关于直线对称.则下列判断正确的是()A.为真B.为假C.为假D.为真【答案】C【解析】因为是偶函数,所以命题是假命题,由余弦函数的性质可知命题是假命题,选项C正确.【考点】1.三角函数性质;2.逻辑联结词与命题.5.(本小题满分12分)某同学用五点法画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:5-5(1)请将上表数据补充完整,并直接写出函数的解析式;(2)若函数的图像向左平移个单位后对应的函数为,求的图像离原点最近的对称中心.【答案】(1);(2).【解析】第一问结合三角函数的性质,确定出对应的值,完善表格,从而确定出函数解析式,第二问利用图形的平移变换,将函数的解析式求出来,利用函数的性质,找出函数图像的对称中心,给赋值,比较从而确定出离原点最近的对称中心.试题解析:(1)根据表中已知数据,解得数据补全如下表:050-50函数表达式为(2)函数图像向左平移个单位后对应的函数是,其对称中心的横坐标满足,所以离原点最近的对称中心是.【考点】三角函数的性质,图像的变换.6.(本小题满分10分)已知函数.(1)求的最小正周期;(2)设,求的值域和单调递减区间.【答案】(1);(2)【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据x的范围求得,再结合正弦函数的性质可得到函数f(x)的值域,求得单调递减区间.试题解析:(1)(2)∵,,的值域为.的递减区间为.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的单调性7.(本小题满分12分)在中,角的对边分别为,已知,向量,且∥.(1)求角的大小;(2)若成等差数列,求边的大小.【答案】(1);(2)【解析】(1)利用数量积运算、正弦定理即可得出;(2)由成等差数列,可得,或,即2a=b.再利用直角三角形的边角关系、余弦定理即可得出.试题解析:(1)∥,得,由正弦定理可得,(2)成等差,所以化简整理得:即或得或若若【考点】正弦定理;平面向量数量积运算8.在中,角所对的边为.已知,且.(1)求的值;(2)当时,求的面积.【答案】(1);(2).【解析】(1)根据已知条件中的式子,结合正弦定理,将其化为的方程,即可求解;(2)利用已知条件,结合余弦定理,可求得,的值,再利用三角形面积计算公式即可求得的值.试题解析:(1)∵,∴①,又∵,∴②,联立①②,即可求得,;(2)由(1)结合余弦定理可知,或,由已知易得,∴,∴,.【考点】1.正余弦定理解三角形;2.三角恒等变形.9.(本题满分12分)已知,,函数.(1)求的最小正周期,并求其图像对称中心的坐标;(2)当时,求函数的值域.【答案】(1)的最小正周期为,其对称中心的坐标为()();(2)的值域为.【解析】(1)先用降幂公式和辅助角公式,将进行化简整理得到,然后根据正弦函数的周期公式可得函数的最小正周期,进而求出函数的零点,即为函数的图像对称中心的坐标;(2)根据可得到,最后结合正弦函数的图像与性质可得函数的值域.试题解析:(1)因为=,所以的最小正周期为,令,得,∴故所求对称中心的坐标为()().(2)∵,∴,∴,即的值域为.【考点】1、三角函数中的恒等变换;2、三角函数的周期性及其求法;3、正弦函数的图像及其性质.【方法点晴】本题考查了三角函数中的恒等变换、三角函数的周期性及其求法和正弦函数的图像及其性质,重点考查学生对三角函数的基本概念、基本性质和基本原理,属中档题.解决这类问题最关键的一步是运用降幂公式、倍角公式及三角函数的和差公式等将函数的表达式化简为同角的正弦或余弦形式.因此需要大家应熟练掌握相关公式并结合三角函数的图像及其性质进行求解.10.若函数在上单调递减,且在上的最大值为,则的值为()A.B.C.D.【答案】A【解析】由题意得:,解得,选A.【考点】正切函数性质11.(本小题满分12分)已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求当时,的取值范围.【答案】(1);(2).【解析】(1)平方关系和商数关系式中的角都是同一个角,且商数关系式中,利用,得出,把转化为的式子,从而求解;(2)熟悉三角公式的整体结构,灵活变换,要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形,把形如化为,研究函数的性质由的取值范围确定的取值范围,再确定的取值范围.试题解析:(1),,,(2)由正弦定理得,得或,,因此,,即.【考点】1、同角三角函数的基本关系;2、三角函数的化简;3、求三角函数的值域.12.(2012秋•泰安期中)已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)若f(α)=,求sin(π﹣4α)的值.【答案】(Ⅰ)1;(Ⅱ)见解析;(Ⅲ)﹣.【解析】(I)利用二倍角公式即辅助角公式,化简函数,利用直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,可得函数的最小正周期为π,根据周期公式,可求ω的值;(II)利用正弦函数的单调性,可得函数f(x)的单调增区间;(III)由f(a)=,可得sin(2a+)=,根据sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1,即可求得结论.解:(I)∵f(x)=2sinωxcosωx﹣2sin2ωx+=sin2ωx+cos2ωx=2sin(2ωx+)∵直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,∴函数的最小正周期为π∴=π∴ω=1;(II)由(I)知,f(x)=2sin(2x+)∴﹣+2kπ≤2x+≤+2kπ,k∈Z∴﹣+kπ≤x≤+kπ,k∈Z∴函数f(x)的单调增区间为[﹣+kπ,+kπ],k∈Z;(III)∵f(a)=,∴sin(2a+)=∴sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1=﹣.【考点】三角函数中的恒等变换应用;由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.13.已知向量,且函数在时取得最小值.(Ⅰ)求的值;(Ⅱ)在中,分别是内角的对边,若,,,求的值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)利用向量的数量积公式,结合辅助角公式,求的值;(Ⅱ)先求出,再利用正弦定理,即可求的值.试题解析:(Ⅰ)由于(Ⅱ)由上知,于是由正弦定理得:【考点】正弦定理,余弦定理,两角和与差的三角函数,向量的数量积14.已知,函数在单调递减,则的取值范围是.【答案】【解析】,,由题意,所以,由于,所以只有,.【考点】三角函数的单调性.【名师】求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx+φ(ω>0)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与y=sin x(x∈R),y=cos x(x∈R)的单调区间对应的不等式方向相同(反).15.(2015秋•南京校级期中)将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),若所得的图象关于直线x=对称,则m的最小值为.【答案】【解析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得m的最小值.解:将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),可得y=2sin[2(x+m)﹣]=2sin(2x+2m﹣)的图象.∵所得的图象关于直线x=对称,∴2•+2m﹣=kπ+,k∈Z,即 m=+,k∈Z,则m的最小值为,故答案为:.【考点】函数y=Asin(ωx+φ)的图象变换.16.(2015秋•昌平区期末)已知函数.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)的单调递减区间.【答案】(Ⅰ);(Ⅱ)函数f(x)的单调递减区间是.)【解析】(Ⅰ)利用三角函数的倍角公式以及辅助角公式进行化简,即可求函数f(x)的最小正周期;(Ⅱ)利用三角函数的单调性即可求函数f(x)的单调递减区间.解:(Ⅰ)==所以最小正周期.(Ⅱ)由,得.所以函数f(x)的单调递减区间是.)【考点】三角函数中的恒等变换应用;正弦函数的图象.17.已知函数.(1)求的最小正周期和在上的单调递减区间;(2)若为第四象限角,且,求的值.【答案】(1);(2).【解析】(1)对的表达式进行三角恒等变形,利用三角函数的性质即可求解;(2)利用同角三角函数的基本关系求得的值后即可求解.试题解析:(1)由已知,所以最小正周期,由,得,故函数在上的单调递减区间;(2)因为为第四象限角,且,所以,所以.【考点】三角函数综合.18.已知是第二象限角,且,则()A.B.C.D.【答案】C【解析】由,得,又∵是第二象限角,∴,∴原式=;故选C.【考点】1.诱导公式;2.同角三角函数基本关系式.19.在中,角所对的边分别为,且,则的最大值为_____.【答案】【解析】由及正弦定理得,又因为,于是可得,所以,所以,则的最大值为,故答案填.【考点】1、正弦定理;2、两角和与差的三角函数;3、基本不等式.20.将函数图象上各点的横坐标伸长到原来的倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.B.C.D.【答案】D【解析】将函数图象上各点的横坐标伸长到原来的倍,得,再向左平移个单位,得,令,解得,令,得,即所得函数图象的一条对称轴的方程是,故选D.【考点】三角函数的图象变换与三角函数的性质.21.设平面向量.(1)若,求的值;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)先利用向量数量积的坐标表示求出,利用商数关系求出得值,再利用二倍角公式求出的值,最后代入到的展开式即可求得;(2)欲求,先求出,再根据求的范围,从而可得的取值范围.试题解析:(1)因为,所以,∴,∴.(2),,.【考点】1、向量数量积的坐标表示;2、二倍角公式;3、三角函数;4、商数关系;5、向量的模.22.设中的内角所对的边长分别为,且.(1)当时,求角的度数;(2)求面积的最大值.【答案】(1);(2).【解析】(1)求出,再由正弦定理求出,求出角;(2)求三角形面积的最大值,即求的最大值,由,,求出,就可以求出面积的最大值.试题解析:解:(1)因为,所以.因为,由正弦定理可得.因为,所以是锐角,所以.(2)因为的面积,所以当最大时,的面积最大.因为,所以.因为,所以,所以(当时等号成立).所以面积的最大值为.【考点】1.正弦定理;2.余弦定理;3.重要不等式.23.在中,内角的对边为,已知.(1)求角的值;(2)若,且的面积为,求.【答案】(1);(2).【解析】根据正弦定理可得,根据内角和定理和两角和的正弦公式整理可得,即得角的值;(2)由的面积为,求得的值,根据余弦定理表示构造的另一个方程,解方程组即可求得.试题解析:(1)∵,∴,∴,即,∴,∴,又∵是三角形的内角,∴(2)∵,∴,∴,又∵,∴,∴,∴【考点】正余弦定理解三角形.24.的三个内角满足:,则()A.B.C.D.或【答案】B【解析】由已知条件以及正弦定理可得:,即,再由余弦定理可得,所以,故选B.【考点】正弦定理、余弦定理.25.在中,角,,的对边分别是,,,已知,.(I)求的值;(II)若角为锐角,求的值及的面积.【答案】(I);(II)【解析】(I)根据题意和正弦定理求出a的值;(II)由二倍角的余弦公式变形求出sin2A,由A 的范围和平方关系求出cosA,由余弦定理列出方程求出b的值,代入三角形的面积公式求出△ABC的面积.试题解析:(I)因为,且,所以.因为,由正弦定理,得.(II)由得.由余弦定理,得.解得或(舍负).所以.【考点】正弦定理;余弦定理26.如图所示的是函数和函数的部分图象,则函数的解析式是()A.B.C.D.【答案】C.【解析】由题意得,,故排除B,D;又∵,故排除A,故选C.【考点】三角函数的图象和性质.27.已知,则=()A.B.C.D.【答案】A【解析】,故选A.【考点】和差倍半的三角函数.28.在中,角所对的边分别为,.(Ⅰ)求的值;(Ⅱ)若,,求的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)先根据正弦定理将边统一成角:,再利用三角形内角关系、诱导公式、两角和正弦公式将三角统一成两角:,最后根据同角三角函数关系将弦化切:(Ⅱ)由(Ⅰ)易得,已知两角一对边,根据正弦定理求另一边:,利用三角形内角关系求第三角的正弦值:,最后根据面积公式求面积:试题解析:解:(Ⅰ)由及正弦定理得.所以,所以.(Ⅱ),所以, ,,所以的面积为.【考点】正弦定理,弦化切【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.29.同时具有性质“①最小正周期是,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C.D.【答案】C【解析】由题意得,函数的最小周期为,则,又函数图象关于直线对称,则函数为函数的最小值,则只有B、C满足,由当时,,则函数是单调递增函数,故选C.【考点】三角函数的性质.30.若函数的最大值为5,则常数______.【答案】【解析】,其中,故函数的最大值为,由已知得,,解得.【考点】三角函数的图象和性质.【名师】解决三角函数性质问题的基本思路是通过化简得到,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.31.定义在区间[0,]上的函数的图象与的图象的交点个数是 .【答案】7【解析】由,因为,所以故两函数图象的交点个数是7.【考点】三角函数图象【名师】求函数图象的交点个数,有两种方法:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解;二是数形结合,分别画出函数图象,数出交点个数,此法直观,但对画图要求较高,必须准确,尤其是要明确函数的增长幅度.32.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=(A)(B)(C)2 (D)3【答案】D【解析】由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!33.将函数y=2sin(2x+)的图像向右平移个周期后,所得图像对应的函数为A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x–)D.y=2sin(2x–)【答案】D【解析】函数的周期为,将函数的图像向右平移个周期即个单位,所得图像对应的函数为,故选D.【考点】三角函数图像的平移【名师】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减”;二是平移多少个单位是对x而言的,不要忘记乘以系数.34.如图,在Rt△ABC中,AC⊥BC,D在边AC上,已知BC=2,CD=1,∠ABD=45°,则AD=.【答案】5【解析】,,所以,.【考点】解三角形.【名师】在解直角三角形时,直角三角形中的三角函数定义是解题的桥梁,利用它可以很方便地建立边与角之间的关系.35.设函数的部分图象如图所示,直线是它的一条对称轴,则函数的解析式为()A.B.C.D.【答案】C【解析】因为直线是它的一条对称轴,排除B,D,因为图象过点,排除选项A,选C.【考点】三角函数图象与性质.36.在中,角,,的对边分别为,,,且满足,则角等于()A.B.C.D.【答案】A【解析】由正弦定理可得,即,由余弦定理可得,所以,故应选A。
三角函数恒等变换练习题及答案详解
两角和与差的正弦、余弦、正切1.利用两角和与差的正弦、余弦、正切公式进行三角变换;2.利用三角变换讨论三角函数的图象和性质 2.1.牢记和差公式、倍角公式,把握公式特征;2.灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键.知识点回顾1. 两角和与差的余弦、正弦、正切公式cos(α-β)=cos αcos β+sin αsin β (C α-β) cos(α+β)=cos_αcos_β-sin_αsin_β (C α+β) sin(α-β)=sin_αcos_β-cos_αsin_β (S α-β) sin(α+β)=sin_αcos_β+cos_αsin_β (S α+β) tan(α-β)=tan α-tan β1+tan αtan β (T α-β)tan(α+β)=tan α+tan β1-tan αtan β(T α+β)2. 二倍角公式sin 2α=ααcos sin 2;cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; tan 2α=2tan α1-tan 2α.3. 在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如T α±β可变形为tan α±tan β=tan(α±β)(1∓tan_αtan_β), tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1.4. 函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2cos(α-φ),其中φ可由a ,b 的值唯一确定. [难点正本 疑点清源] 三角变换中的“三变”(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等. (3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.热身训练1. 已知sin(α+β)=23,sin(α-β)=-15,则tan αtan β的值为_______.2. 函数f (x )=2sin x (sin x +cos x )的单调增区间为______________________.3. (2012·江苏)设α为锐角,若cos ⎪⎭⎫ ⎝⎛+6πα=45,则 4. (2012·江西)若sin α+cos αsin α-cos α=12,则tan 2α等于( )A .-34B.34C .-43D.43 5. (2011·辽宁)设sin(π4+θ)=13,则sin 2θ等于( )A .-79B .-19C.19D.79典例分析题型一 三角函数式的化简、求值问题 例1 (1)化简:⎝ ⎛⎭⎪⎫1tan α2-tan α2·⎝⎛⎭⎫1+tan α·tan α2; (2)求值:[2sin 50°+sin 10°(1+3tan 10°)]·2sin 280°.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.题型二 三角函数的给角求值与给值求角问题例2 (1)已知0<β<π2<α<π,且cos ⎪⎭⎫ ⎝⎛-2πα=-19,sin ⎪⎭⎫ ⎝⎛-βα2=23,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值.已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β.题型三 三角变换的简单应用 例3 已知f (x )=⎪⎭⎫ ⎝⎛+x tan 11sin 2x -2sin ⎪⎭⎫ ⎝⎛+4πx ·sin ⎪⎭⎫ ⎝⎛-4πx (1)若tan α=2,求f (α)的值;(2)若x ∈⎣⎡⎦⎤π12,π2,求f (x )的取值范围.已知函数f (x )=3sin ⎪⎭⎫ ⎝⎛-62πx +2sin 2⎪⎭⎫ ⎝⎛-12πx (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值时x 的集合.利用三角变换研究三角函数的性质典例:(12分)(2011·北京)已知函数f (x )=4cos x ·sin ⎪⎭⎫⎝⎛+6πx -1. (1)求f (x )的最小正周期; (2)求f (x )在区间⎥⎦⎤⎢⎣⎡-4,6ππ上的最大值和最小值.总结方法与技巧 1. 巧用公式变形:和差角公式变形:tan x ±tan y =tan(x ±y )·(1∓tan x tan y );倍角公式变形:降幂公式cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;配方变形:1±sin α=⎝⎛⎭⎫sin α2±cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2. 2. 利用辅助角公式求最值、单调区间、周期.由y =a sin α+b cos α=a 2+b 2sin(α+φ)(其中tan φ=ba)有a 2+b 2≥|y |.3. 重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4. 已知和角函数值,求单角或和角的三角函数值的技巧:把已知条件的和角进行加减或二倍角后再加减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值,可使所求的复杂问题简单化.5. 熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形. 失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通. 2.在(0,π)范围内,sin(α+β)=22所对应的角α+β不是唯一的. 3.在三角求值时,往往要估计角的范围后再求值.过手训练(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分) 1. (2012·山东)若θ∈⎥⎦⎤⎢⎣⎡2,4ππ,sin 2θ=378,则sin θ等于( )A.35B.45C.74D.342. 已知tan(α+β)=25,tan ⎪⎭⎫ ⎝⎛-4πβ=14,那么tan ⎪⎭⎫ ⎝⎛+4πα等于( )A.1318B.1322C.322D.163. 当-π2≤x ≤π2时,函数f (x )=sin x +3cos x 的( )A .最大值是1,最小值是-1B .最大值是1,最小值是-12C .最大值是2,最小值是-2D .最大值是2,最小值是-1二、填空题(每小题5分,共15分) 4. 已知锐角α满足cos 2α=cos ⎪⎭⎫⎝⎛-απ4,则sin 2α=________. 5. 已知cos ⎪⎭⎫⎝⎛-απ4=1213,α∈⎪⎭⎫⎝⎛4,0π,则cos 2αsin ⎝⎛⎭⎫π4+α=________. 6. 设x ∈⎪⎭⎫⎝⎛2,0π,则函数y =2sin 2x +1sin 2x的最小值为________.三、解答题7. (13分)(2012·广东)已知函数f (x )=2cos ⎪⎭⎫⎝⎛+6πωx (其中ω>0,x ∈R )的最小正周期为10π. (1)求ω的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫5α+53π=-65,f ⎝⎛⎭⎫5β-56π=1617,求cos(α+β)的值. 课后习题(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·江西)若tan θ+1tan θ=4,则sin 2θ等于( )A.15B.14C.13D.122. (2012·大纲全国)已知α为第二象限角,sin α+cos α=33,则cos 2α等于 ( )A .-53B .-59C.59D.533. 已知α,β都是锐角,若sin α=55,sin β=1010, 则α+β等于( )A.π4B.3π4C.π4和3π4D .-π4和-3π44. (2011·福建)若α∈⎪⎭⎫ ⎝⎛2,0π,且sin 2α+cos 2α=14,则tan α的值等于 ( )A.22B.33C. 2D. 3二、填空题(每小题5分,共15分)5. cos 275°+cos 215°+cos 75°cos 15°的值为________. 6.3tan 12°-3(4cos 212°-2)sin 12°=________.7. sin α=35,cos β=35,其中α,β∈⎪⎭⎫⎝⎛2,0π,则α+β=____________.三、解答题(共22分) 8. (10分)已知1+sin α1-sin α-1-sin α1+sin α=-2tan α,试确定使等式成立的α的取值集合.9. (12分)已知α∈⎪⎭⎫⎝⎛ππ,2,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈⎪⎭⎫⎝⎛ππ,2,求cos β的值.。
高一数学三角恒等变换试题答案及解析
高一数学三角恒等变换试题答案及解析1.已知,化简+=A.-2cos B.2cos C.-2sin D.2sin【答案】C【解析】因为,所以,,从而===--()=-2sin,故选C。
【考点】本题主要考查二倍角的正弦公式。
点评:此类问题是高考考查的重点内容之一。
本题中注意“1”的代换,讨论角的范围,确定得到是化简的关键。
2.已知sin=,cos=-,则角是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】因为sin=,cos=-<0,所以是第二象限角,且,所以,角是第四象限角,选D。
【考点】本题主要考查任意角的三角函数、象限角。
点评:的终边所在位置与的终边所在位置,存在一定结论,根据函数值进一步缩小角的范围,是解题的关键。
3.若是方程的两个根,则之间的关系是( )A.B.C.D.【答案】B【解析】由题意可知:所以选B。
【考点】本题主要考查两角和的正切公式。
点评:首先利用韦达定理将表示出来,再由两角差的正切公式对其进行化简,从而得出结论。
4.求【答案】【解析】。
【考点】本题主要考查两角和与差的正切公式。
点评:要注意公式的变形使用和逆向使用,注意“1”的代换,配凑公式。
5.求【答案】【解析】由两角和的正切公式可得,,所以=。
【考点】本题主要考查两角和与差的正切公式。
点评:要注意公式的变形使用和逆向使用,注意公式的灵活运用。
6.已知,求证:【答案】【解析】1.解:,在区间内正切值为的角只有1个即,所以【考点】本题主要考查两角和的正切公式。
点评:应用两角和的正切公式先求,结合角的范围及正切函数单调性进一步求角。
此类问题,要特别注意角的范围。
7.若,则_________;=___________.【答案】3,【解析】因为,所以,,所以3【考点】本题主要考查“倍半公式”的应用点评:解题过程中,注意观察已知与所求的差异,灵活选用公式,通过变名、变角、变式,达到解题目的。
8.已知为第四象限角,求的值.【答案】(1)当为第二象限角时,,,(2)当为第四象限角时,,,.【解析】由为第四象限角,得为第二或第四象限角.(1)当为第二象限角时,(2)当为第四象限角时,,,.【考点】本题主要考查“倍半公式”的应用点评:牢记公式是灵活地将进行三角恒等变形的基础。
三角恒等变换问题(典型题型)
三角恒等变换问题三角恒等变换是三角函数部分常考的知识点,是求三角函数极值与最值的一个过渡步骤,有时求函数周期求函数对称轴等需要将一个三角函数式化成一个角的一个三角函数形式,其中化简的过程就用到三角恒等变换,有关三角恒等变换常考的题型及解析总结如下,供大家参考。
例1 (式的变换---两式相加减,平方相加减) 已知11cos sin ,sin cos 23αβαβ+=-=求sin()αβ-的值. 解:两式平方得,221cos 2cos sin sin 4ααββ++= 两式相加得,1322(cos sin sin cos )36αβαβ+-= 化简得,59sin()72βα-=- 即59sin()72αβ-=方法评析:式的变换包括:1、tan(α±β)公式的变用2、齐次式3、 “1”的运用(1±sin α, 1±cos α凑完全平方)4、两式相加减,平方相加减5、一串特殊的连锁反应(角成等差,连乘)例2 (角的变换---已知角与未知角的转化)已知7sin()241025παα-==,求sin α及tan()3πα+. 解:由题设条件,应用两角差的正弦公式得)cos (sin 22)4sin(1027ααπα-=-=,即57cos sin =-αα ①由题设条件,应用二倍角余弦公式得 故51sin cos -=+αα ② 由①和②式得53sin =α,54cos -=α, 于是3tan 4α=-故3tan()3πα-+=== 方法评析:1.本题以三角函数的求值问题考查三角变换能力和运算能力,可从已知角和所求角的内在联系(均含α)进行转换得到.2.在求三角函数值时,必须灵活应用公式,注意隐含条件的使用,以防出现多解或漏解的情形.例3(合一变换---辅助角公式)设关于x的方程sin 0x x a +=在(0,2)π内有相异二解βσ和.求a 的取值范围. 解:∵1sin 2(sin )2sin()23x x x x x π=+=+, ∴方程化为sin()32a x π+=-.∵方程sin 0x x a +=在(0,2)π内有相异二解,∴sin()sin 33x ππ+≠=. 又sin()13x π+≠± (1±时仅有一解),∴122a a <≠且-,即2a a <≠且∴ a的取值范围是(2,(3,2)--.方法评析:要注意三角函数实根个数与普通方程的区别,这里不能忘记(0,2)π这一条件. 例4( ,一题多解型)若cos 2sin αα+=求tan α的值.解: 方法一:(“1”的运用)将已知式两端平方得方法二:(合一变换)()αϕ+=1tan 2ϕ=, 再由()sin 1αϕ+=-知,()22k k παϕπ+=-∈Z ,所以22k παπϕ=--, 所以sin cos 2tan tan 2tan 222sin cos 2k πϕππϕαπϕϕπϕϕ⎛⎫-- ⎪⎛⎫⎛⎫⎝⎭=--=--=== ⎪ ⎪⎛⎫⎝⎭⎝⎭-- ⎪⎝⎭方法三:(式的变换)令sin 2cos t αα-=,和已知式平方相加得255t =+,故0t =,即sin 2cos 0αα-=,故tan 2α=.方法四:(与单位圆结合)我们可以认为点()cos ,sin M αα在直线2x y +=而点M 又在单位圆221x y +=上,解方程组可得x y ⎧=⎪⎪⎨⎪=⎪⎩, 从而tan 2y x α==.这个解法和用方程组22cos 2sin sin cos 1αααα⎧+=⎪⎨+=⎪⎩的.方法评析:本题考查利用三角恒等变换求值的能力,试题的根源是考生所常见的“已知()1sin cos ,0,5βββπ+=∈,求tan β的值(人教A 版必修4第三章复习题B 组最后一题第一问)”之类的题目,背景是熟悉的,但要解决这个问题还需要学生具有相当的知识迁移能力.有关三角恒等变换的一般解题思路为“五遇六想”,即:遇正切,想化弦;遇多元, 想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.。
三角恒等变换习题及答案
a2 b2
a2 b2
。
2.在三角函数化简时注意:
①能求出的值应求出值; ③尽量使项数最少;
②尽量使三角函数种类最少; ④尽量使分母不含三角函数;
⑤尽量使被开方数不含三角函数;
⑥必要时将 1 与 sin 2 cos2 进行
替换 化简的方法:弦切互化,异名化同名,异角化同角,降幂或升幂等
两角和公式 sin(A+B)= sin(A-B)= cos(A+B)= cos(A-B)= tan(A+B)= tan(A-B)= 倍角公式 tan2α=
cos2α=
sin2α= 半角公式 sin^2(α/2)= cos^2(α/2)= tan^2(α/2)=
和差化积 2sinAcosB= 2cosAsinB= 2cosAcosB= -2sinAsinB= 积化和差公式 sinαsinβ= cosαcosβ= sinαcosβ=
角函数公式复习
和差化积 2sinΑcosB=sin(Α+B)+sin(Α-B) 2cosΑsinB=sin(Α+B)-sin(Α-B) ) 2cosΑcosB=cos(Α+B)+cos(Α-B) -2sinΑsinB=cos(Α+B)-cos(Α-B)
积化和差公式 sin(α)sin(β)=—1/2*[cos(α+β)-cos(α-β)] cos(α)cos(β)=1/2*[cos(α+β)+cos(α-β)] sin(α)cos(β)=1/2*[sin(α+β)+sin(α-β)]
2 sin 100
2 sin 100
cos100 2sin(300 100 ) cos100 2sin 300 cos100 2 cos 300 sin100
高二数学三角函数三角恒等变换解三角形试题答案及解析
高二数学三角函数三角恒等变换解三角形试题答案及解析1..【答案】【解析】故答案为:.【考点】两角和与差的三角公式.2.若函数在区间上单调递增,则的最小值是()A.B.C.D.【答案】D【解析】依题意,,令,在区间上,,单调递增,,所以;【考点】1.导数与单调性;2.化归的思想;3.函数在内是()A.增函数B.减函数C.有增有减D.不能确定【答案】A【解析】函数,可得,所以函数在内是增函数.故选:A.【考点】利用导数研究函数的单调性.4.(12分).已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若,求sinA·sinC的值.【答案】(1);(2)【解析】(Ⅰ)已知等式左边利用同角三角函数间的基本关系化简,整理后根据sinC不为0求出cosB的值,即可确定出B的度数;(Ⅱ)已知等式去分母整理后得到关系式,利用余弦定理列出关系式,把得出关系式及cosB的值代入,并利用正弦定理化简,即可求出sinAsinC的值试题解析:(Ⅰ)已知等式变形得:sinAcosA+sinBcosB=2sinCcosA,去分母得:sinAcosB+sinBcosA=2sinCcosB,即sin(A+B)=2sinCcosB=sinC,∵sinC≠0,∴cosB=12,则B=60°;(Ⅱ)由,整理得:,∵cosB=12,∴,由正弦定理得:sin2B=2sinA·sinC=,则sinA·sinC=【考点】1.同角间三角函数关系;2.正弦定理5.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.B.C.D.【答案】D【解析】将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图像,再将所得图象向左平移个单位,则所得函数图象对应的解析式为.故选D.【考点】三角函数图像变换:周期变换、左右平移.6.已知在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且,则tanC等于()A.B.C.D.【答案】C【解析】【考点】1.余弦定理解三角形;2.同角间三角函数关系7.已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若+=3,求sin Asin C的值.【答案】(1);(2)【解析】(1)由题意切化弦,同分可得,整理可得,即可求得;(2)根据已知式子同分可得,由余弦定理得到,再结合正弦定理即可得到试题解析:(1)由题意可得:因为,所以,又因为,所以(2)有题意可得:即由余弦定理可得:,得到有正弦定理:【考点】1.正余弦定理;2.化简求值8.(本题满分11分)若的内角所对的边分别为,且满足(1)求;(2)当时,求的面积.【答案】(1);(2).【解析】(1)因为正弦定理,所以化为,因为三角形内角有,所以即,所以;(2)由余弦定理,得,而,,得,即,因为三角形的边,所以,则.试题解析:(1)因为由正弦定理,得,又,从而,由于所以(2)解法一:由余弦定理,得,而,,得,即因为,所以,故面积为.解法二:由正弦定理,得从而又由知,所以故,所以面积为.【考点】1.正弦定理与余弦定理;2.三角形的面积公式.9.在中,已知,,则的长为____________________.【答案】【解析】由正弦定理可得【考点】正弦定理解三角形10.(本小题满分10分)在△ABC中,是方程的一个根,(1)求;(2)当时,求△ABC周长的最小值.【答案】(1)(2)【解析】(1)解一元二次方程得到方程的根,结合三角函数有界性得到的值,从而求得大小;(2)由三角形余弦定理结合,可将转化为的表达式,从而求得其最小值,得到周长的最小值试题解析:(1)又是方程的一个根(2)由余弦定理可得:则:当时,c最小且,此时△ABC周长的最小值为.【考点】1.余弦定理解三角形;2.一元二次方程的根11.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-c)cosA=acosC,则cosA=_____【答案】【解析】由正弦定理可将已知条件转化为【考点】正弦定理与三角函数基本公式12.在△ABC中,cosA=,sinB=,则cosC的值为.【答案】【解析】由cosA=,sinB=得【考点】三角函数基本公式13.在△ABC中,如果,且为锐角,试判断此三角形的形状.【答案】等腰直角三角形.【解析】判定三角形的形状由三角形的三边长或三个角来确定.由可确定.根据正弦定理,可确定角,从而确定三角形的形状.试题解析:因为,所以,又为锐角,所以.,.由正弦定理得:,即展开得:,即,则,所以△ABC是等腰直角三角形.【考点】1.三角形形状;2.正弦定理;14.在△中,分别为角所对的边,若,则此三角形一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【答案】C【解析】,三角形为等腰三角形【考点】1.正弦定理解三角形;2.三角函数基本公式15.在中,、、分别是三内角A、B、C的对应的三边,已知(1)求角C的大小;(2)满足的是否存在?若存在,求角A的大小.【答案】(1);(2)不存在【解析】(1)由正弦定理将变形可得到关于角C的关系式,进而求得角C的大小;(2)结合角C的大小将变形求解A角,若A角存在则三角形存在试题解析:(1)由正弦定理,得因为由则(2)由(1)知,于是=这样的三角形不存在。
训练【四】三角函数及其恒等变换
【高考冲刺】三角函数及其恒等变换参考答案与试题解析一、选择题(共20小题)1.已知为第二象限角,则tan(α+)=()A.B.C.3D.﹣3考点:两角和与差的正切函数;同角三角函数间的基本关系.2361035专题:计算题.分析:由α为第二象限角,根据cosα的值,利用同角三角函数间的基本关系求出sinα的值,再利用同角三角函数间的基本关系弦化切求出tanα的值,然后把所求的式子利用两角和与差的正切函数公式及特殊角的三角函数值化简后,将tanα的值代入即可求出值.解答:解:∵α为第二象限角,cosα=﹣,∴sinα==,∴tanα==﹣2,则tan(α+)===﹣.故选A点评:此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.2.已知sin()=,则cos(π﹣2θ)等于()A.B.C.D.考点:二倍角的余弦;运用诱导公式化简求值.2361035专题:三角函数的求值.分析:利用诱导公式化简已知的等式,求出cosθ的值,将所求式子利用诱导公式变形后,再利用二倍角的余弦函数公式化简,把cosθ的值代入计算,即可求出值.解答:解:∵sin(+θ)=cosθ=,∴cos(π﹣2θ)=﹣cos2θ=1﹣2cos2θ=1﹣2×()2=.故选D点评:此题考查了二倍角的余弦函数公式,以及运用诱导公式化简求值,熟练掌握公式是解本题的关键.3.曲线和直线在y轴右侧的交点按横坐标从小到大依次记为P1,P2,P3,…,则|P2P6|=()A.πB.2πC.3πD.4π考点:两角和与差的正弦函数;两角和与差的余弦函数;三角函数的周期性及其求法.2361035专题:计算题.分析:将y=2sin(x+)cos(x﹣)的解析式利用诱导公式,二倍角的余弦函数公式化简得y=sin2x+1,令y=,解得x=kπ+±(k∈N),代入易得|P2P6|的值.解答:解:∵y=2sin(x+)cos(x﹣)=2sin(x﹣+)cos(x﹣)=2cos(x﹣)cos(x﹣)=cos[2(x﹣)]+1=cos(2x﹣)+1=sin2x+1,若y=2sin(x+)cos(x﹣)=,∴2x=2kπ+±(k∈N),即x=kπ+±(k∈N),则|P2P6|=2π.故选B点评:此题考查了诱导公式,二倍角的余弦函数公式,直线与曲线的相交的性质,求两个函数图象的交点间的距离,关键是要求出交点的坐标,然后根据两点间的距离求法进行求解.4.已知α、β为锐角,2tanα+3sinβ=7,tanα﹣6sinβ=1,则sinα的值是()A.B.C.D.考点:同角三角函数间的基本关系.2361035分析:根据题中所给方程组可求出tanα的值,再根据三角函数定义和角的范围可直接得答案.解答:解:∵2tanα+3sinβ=7,tanα﹣6sinβ=1,∴tanα=3∵tanα=,sin2α+cos2α=1∴∵α为锐角∴故选C.点评:本题主要考查同角三角函数的基本关系,属基础题.这里注意角的取值范围影响三角函数的符号.5.sin71°cos26°﹣sin19°sin26°的值为()D.A.B.1C.﹣考点:两角和与差的正弦函数.2361035专题:计算题.分析:把sin71°化为cos19°,利用两角差的余弦公式,把要求的式子化为cos(19°+26°),从而求得式子的值.解答:解:sin71°cos26°﹣sin19°sin26°=cos19°cos26°﹣sin19°sin26°=cos(19°+26°)=cos45°=. 故选:D .点评: 本题主要考查诱导公式、两角和差的余弦公式的应用,把要求的式子化为cos (19°+26°),是解题的关键.6.已知﹣π<α<0,且,则=( )A .B .C .D .考点: 二倍角的正弦;两角和与差的正弦函数.2361035 专题: 计算题.分析: 利用两角和与差的正切函数公式及特殊角的三角函数值将已知等式化简,求出tanα的值,由α的范围,得出sinα小于0,cosα大于0,利用同角三角函数间的基本关系求出sinα的值,将所求式子分子第二项利用二倍角的正弦函数公式化简,分子提取2sinα,分母利用两角和与差的余弦函数公式及特殊角的三角函数值化简,约分后把sinα的值代入即可求出值.解答: 解:∵tan (α+)==,∴tanα=﹣<0,∵﹣π<α<0,∴cosα==,∴sinα=﹣,则==2sinα=﹣.故选C点评: 此题考查了二倍角的正弦函数公式,两角和与差的正切、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.7.函数是( ) A . 周期为π的奇函数 B . 周期为π的偶函数 C . 周期为2π的奇函数 D . 周期为2π的偶函数考点: 诱导公式一;三角函数的周期性及其求法.2361035 专题: 计算题.分析: 利用诱导公式化简函数解析式后,找出ω的值,代入周期公式求出函数的最小正周期,再根据余弦函数为偶函数,即可得到正确的选项. 解答: 解:y=sin (﹣2x )=cos2x ,∵ω=2,∴T==π,又余弦函数为偶函数,则原函数是周期为π的偶函数.故选B点评:此题考查了三角函数的周期性及其求法,以及函数的奇偶性,其中利用诱导公式将函数解析式化为一个角的余弦函数是解本题的关键.8.平面直角坐标系中,点(3,t)和(2t,4)分别在顶点为原点,始边为x轴的非负半轴的角α,α+45°的终边上,则t的值为()A.±6或±1 B.6或1 C.6D.1考点:两角和与差的正切函数;任意角的三角函数的定义.2361035专题:综合题.分析:根据任意角的三角函数定义分别求出tanα和tan(α+45°),然后利用两角和与差的正切函数公式及特殊角的三角函数值得到一个关于t的方程,求出t的值,然后利用α和α+45°是始边为x轴的非负半轴的角,得到满足题意t的值即可.解答:解:由题意得tanα=,tan(α+45°)==而tan(α+45°)===,化简得:t2+5t﹣6=0即(t﹣1)(t+6)=0,解得t=1,t=﹣6因为点(3,t)和(2t,4)分别在顶点为原点,始边为x轴的非负半轴的角α,α+45°的终边上,所以t=﹣6舍去则t的值为1故选D点评:此题考查学生掌握任意角的三角函数的定义,灵活运用两角和与差的正切函数公式化简求值,是一道中档题.9.若,则sinx•cosx的值为()A.B.C.D.考点:诱导公式的作用;二倍角的正弦.2361035专题:计算题.分析:利用诱导公式化简方程,方程两边平方,即可求出sinx•cosx的值.解答:解:因为,所以﹣cosx+sinx=,则,所以sinx•cosx=;故选A.点评:本题考查三角方程的解法,正确利用诱导公式是解题的前提,利用平方求出结果是关键,考查计算能力.10.已知A为三角形的一个内角,且sinAcosA=﹣,则cosA﹣sinA的值为()A.﹣B.±C.±D.﹣考点:同角三角函数间的基本关系.2361035专题:计算题.分析:由A为三角形的内角且sinAcosA=﹣可知sinA>0,cosA<0即cosA﹣sinA<0,而(cosA﹣sinA)2=1﹣2siAcosA,代入可求解答:解:由A为三角形的内角且sinAcosA=﹣可知sinA>0,cosA<0∴cosA﹣sinA<0而(cosA﹣sinA)2=1﹣2siAcosA=∴故选:D点评:本题主要考查了三角函数中同角平方关系的应用,解题的关键是根据已知判断出sinA,cosA 的符号,在结合由A为三角形的(cosA﹣sinA)2=1﹣2siAcosA进行求解,本题容易漏掉对sinA﹣cosA的符号的判断错选成C11.(1+tan25°)(1+tan20°)的值是()A.﹣2 B.2C.1D.﹣1考点:同角三角函数基本关系的运用.2361035专题:计算题.分析:观察可知25°+20°=45°,先根据两角和的正切函数公式得到对等式两边取正切得到一个关系式,然后利用多项式的乘法法则化简原式,整体代入可得值.解答:解:因为1=tan45°=tan(25°+20°)=,所以tan25°+tan20°=1﹣tan25°tan20°,则(1+tan25°)(1+tan20°)=1+tan250+tan200+tan250tan200=1+1﹣tan250tan200+tan250tan200=2故选B点评:此题为一道基础题,要求学生灵活运用两角和的正切函数公式.本题的关键点是45°=25°+20°角度的变换.12.如果,则=()A.B.C.4019 D.﹣4019考点:三角函数中的恒等变换应用.2361035专题:计算题.分析:将分式转化为整式,利用和、差角的正弦公式展开进行合并整理是解决本题的关键,注意正弦、余弦、正切之间的转化问题,注意切化弦的方法和整体思想的运用.解答:解:由题意可得2010sinαcosβ﹣2010cosαsinβ=2009sinαcosβ+2009cosαsinβ,∴sinαcosβ=4019cosαsinβ,得tanα=4019tanβ,∴.故选C.点评:本题考查三角恒等变换的基本知识,考查了两角和与差的正弦公式,主要寻找角之间的关系和函数名称之间的关系,考查同角三角函数的基本关系式,注意整体思想的运用.考查转化与化归思想的应用.13.函数对任意的x∈R都有f(x1)≤f(x)≤f(x2)成立,则|x2﹣x1|的最小值为()A.B.1C.2D.4考点:三角函数的恒等变换及化简求值;三角函数的周期性及其求法.2361035专题:计算题;函数的性质及应用.分析:先将函数写出分段函数,再确定|x2﹣x1|的最小值为相邻最小值与最大值处横坐标差的绝对值,由此可得结论.解答:解:由题意可得,f(x)=,f(x1)为函数的最小值,f(x2)为函数的最大值.|x2﹣x1|的最小值为相邻最小值与最大值处横坐标差的绝对值由于x=时,函数取得最大值2,x=时,sinπx=cosπx=﹣,函数取得最小值∴|x2﹣x1|的最小值为﹣=,故选A.点评:本题考查绝对值函数,考查三角函数的性质,确定|x2﹣x1|的最小值为相邻最小值与最大值处横坐标差的绝对值是关键,属于中档题.14.=()A.B.C.D.考点:两角和与差的正弦函数;运用诱导公式化简求值.2361035专题:计算题.分析:由于sin(α+)+cosα=sin(α+)=,可求得sin(α+)=,利用诱导公式即可求得sin(α+).解答:解:∵sin(α+)+cosα=sinα+cosα+cosα=sinα+cosα=sin(α+)=,∴sin(α+)=.∴sin(α+)=﹣sin(α+)=﹣.故选C.点评:本题考查两角和与差的正弦函数,考查诱导公式在化简求值中的应用,属于中档题.15.若对所有实数x,均有sinkx•sinkx+coskx•coskx=cosk2x,则k=()A.6B.5C.4D.3考点:三角函数恒等式的证明;函数恒成立问题.2361035专题:计算题.分析:记f(x)=sinkx•sinkx+coskx•coskx﹣cosk2x,则由条件f(x)恒为0,取,得k为奇数,设k=2n﹣1,上式成为,因此n为偶数,令n=2m,则k=4m﹣1.解答:解:记f(x)=sinkx•sinkx+coskx•coskx﹣cosk2x,则由条件f(x)恒为0,取,得,则k为奇数.设k=2n﹣1,上式成为,因此n为偶数,令n=2m,则k=4m﹣1,故选择支中只有k=3满足题意,故选D.点评:本题考查函数的恒成立问题,体现了特殊值的思想,得到k为奇数,设k=2n﹣1,在得到n为偶数,这是解题的难点.16.已知,则sinα•cosα=()A.B.C.D.考点:二倍角的正弦;两角和与差的正切函数.2361035专题:计算题.分析:解法一:利用两角和与差的正切函数公式及特殊角的三角函数值化简已知的等式,得到关于tanα的方程,求出方程的解得出tanα的值,然后把所求的式子分母“1”根据同角三角函数间的基本关系变形为sin2α+cos2α,分子分母同时除以cos2α,利用同角三角函数间的基本关系弦化切后,将tanα的值代入即可求出值;解法二:利用两角和与差的正切函数公式及特殊角的三角函数值化简已知的等式,得到关于tanα的方程,求出方程的解得出tanα的值,然后把所求的式子利用二倍角的正弦函数公式化简后,再利用万能公式变形,将tanα的值代入即可求出值.解答:解:法一:由tan(+α)==﹣3,整理得:1+tanα=﹣3+3tanα,解得:tanα=2,则sinα•cosα====;法二:由tan(+α)==﹣3,整理得:1+tanα=﹣3+3t anα,解得:tanα=2,则sinα•cosα=sin2α=×==.故选A点评:此题考查了两角和与差的正切函数公式,同角三角函数间的基本关系,万能公式,以及特殊角的三角函数值,熟练掌握公式及基本关系是解本题的关键.17.若,则tanβ=()A.10 B.5C.D.﹣8考点:角的变换、收缩变换.2361035专题:计算题.分析:利用两角和的正切公式求出tan(β﹣)=tan[(β﹣α)+(α﹣)]的值,再由tan(β﹣)=求出tanβ 的值.解答:解:∵,∴tan(β﹣)=tan[(β﹣α)+(α﹣)]===,故=,∴tanβ=﹣8.故选:D.点评:本题主要考查两角和差的正切公式的应用,角的变换是解题的关键,属于中档题.18.设,则()A.b<a<c B.b<c<a C.a<b<c D.c<a<b考点:二倍角的余弦;余弦函数的单调性.2361035专题:计算题.分析:把a利用特殊角的三角函数值及两角和与差的余弦函数公式化简为一个余弦值,b利用二倍角的余弦函数公式也化为一个余弦值,c利用特殊角的三角函数值化为一个余弦值,根据余弦函数在(0,90°]为减函数,且根据角度的大小即可得到三个余弦值的大小,从而得到a,b及c的大小关系.解答:解:化简得:a=(sin17°+cos17°)=cos45°cos17°+sin45°sin17°=cos(45°﹣17°)=cos28°,b=2cos213°﹣1=cos26°,c==cos30°,∵余弦函数y=cosx在(0,90°]为减函数,且26°<28°<30°,∴cos26°>cos28°>cos30°则c<a<b.故选D点评:此题考查了两角和与差的余弦函数公式,二倍角的余弦函数公式,特殊角的三角函数值,以及余弦函数的单调性,利用三角函数的恒等变形把a,b及c分别变为一个角的余弦值是解本题的关键.19.已知sin+cos=,且cosα<0,那么tanα等于()A.B.﹣C.D.﹣考点:二倍角的正弦;任意角的三角函数的定义;同角三角函数间的基本关系.2361035专题:三角函数的求值.分析:将已知等式左右两边平方,利用同角三角函数间的基本关系及二倍角的正弦函数公式化简,求出sinα的值,再由cosα的值小于0,利用同角三角函数间的基本关系求出cosα的值,即可确定出tanα的值.解答:解:将已知等式左右两边平方得:(sin+cos)2=,即1+sinα=,可得sinα=﹣,∵cosα<0,∴cosα=﹣=﹣,则tanα==.故选C点评:此题考查了二倍角的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.20.本式的值是()A.1B.﹣1 C.D.考点:运用诱导公式化简求值.2361035专题:计算题.分析:利用诱导公式及三角函数的奇偶性化简可得值.解答:解:原式=sin(4π﹣)﹣cos(4π+)+tan(4π+)=﹣sin﹣cos+tan=﹣+×+×=1故选A点评:此题为一道基础题,要求学生会灵活运用诱导公式化简求值,掌握三角函数的奇偶性.化简时学生应注意细心做题,注意符号的选取.二、填空题(共1小题)(除非特别说明,请填准确值)21.已知扇形的周长为10,求此扇形的半径r与面积S之间的函数关系式及其定义域.考点:扇形面积公式.2361035专题:计算题.分析:求出扇形的弧长,利用扇形面积公式表示二者关系,求出定义域即可.解答:解:扇形的周长为10,扇形的半径r,扇形弧长为10﹣2r所以s==5r﹣r2,r∈(0,5)定义域(0,5).点评:本题考查扇形面积公式,考查计算能力,是基础题.。
高三数学三角恒等变换试题答案及解析
高三数学三角恒等变换试题答案及解析1.已知,则()A.B.C.D.【答案】B【解析】将两边平方得,,可得,故选B.【考点】同角基本关系以及二倍角公式.2.已知cos(α-)+sinα=,则sin(α+)的值是()A.-B.C.-D.【答案】C【解析】cos(α-)+sinα=⇒sinα+cosα=⇒sin(α+)=,所以sin(α+)=-sin(α+)=-.3.已知函数f(x)=cos2ωx+sinωxcosωx-(ω>0)的最小正周期为π.(1)求ω值及f(x)的单调递增区间;(2)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f()=,求角C 的大小.【答案】(1)增区间为[kπ-,kπ+](k∈Z)(2)当B=时,C=π--=;当B=时,C=π--=.【解析】解:(1)f(x)=+sin2ωx-=sin(2ωx+).∵T=π,∴ω=1,∴f(x)=sin(2x+),增区间为[kπ-,kπ+](k∈Z).(2)∵f()=sin(A+)=,角A为△ABC的内角且a<b,∴A=.又a=1,b=,∴由正弦定理得=,也就是sinB==×=.∵b>a,∴B=或B=,当B=时,C=π--=;当B=时,C=π--=.4.已知α,β∈(0,),满足tan(α+β)=4tanβ,则tanα的最大值是()A.B.C.D.【答案】B【解析】tanα=tan[(α+β)-β]==≤=,当且仅当tanβ=时等号成立.5.在中,若分别为的对边,且,则有()A.a、c、b成等比数列B.a、c、b成等差数列C.a、b、c成等差数列D.a、b、c成等比数列【答案】D【解析】由已知得,,故,又,而,故,所以,故,从而a、b、c成等比数列.【考点】1、两角和与差的余弦公式;2、二倍角公式;3、正弦定理.6.在△ABC中,角A,B,C的对边分别为a,b,c,已知,b sin=a+c sin,则C= .【答案】【解析】由已知得,所以,由,应用正弦定理,得,.整理得,即,由于,从而,又,故.【考点】1正弦定理;2正弦两角和差公式。
期末专题02 三角恒等变换小题综合解析版
期末专题02三角恒等变换小题综合一、单选题1.(2022春·江苏南通·高一统考期末)已知cos α+π4 =35,则sin2α=()A.725B.1825C.-725D.-1825【答案】A【分析】根据两角和的余弦公式及平方关系,结合正弦的二倍角公式即可求解.【详解】由cos α+π4 =35,得cos αcos π4-sin αsin π4=35,即cos α-sin α=325,两边平方,得2sin αcos α=725,即sin2α=725.故选:A .2.(2022春·江苏镇江·高一统考期末)计算:23sin70°-3sin10°cos10°=()A.1B.2C.3D.4【答案】C【分析】根据两角差的正弦公式化简求解即可.【详解】23sin70°-3sin10°cos10°=23sin (60°+10°)-3sin10°cos10°=2332cos10°+12sin10°-3sin10°cos10°=3cos10°cos10°=3,故选:C3.(2022春·江苏宿迁·高一统考期末)若sin α+5π12 =13,则cos 2α-π6的值为()A.429B.-429C.79D.-79【答案】D【分析】设θ=α+5π12,再表达出2α-π6=2θ-π,从而根据诱导公式与二倍角公式求解即可【详解】设θ=α+5π12,则α=θ-5π12,故2α-π6=2θ-5π6-π6=2θ-π,故sin θ=13,则cos 2α-π6 =cos 2θ-π =-cos2θ=2sin 2θ-1=-79故选:D 4.(2022春·江苏淮安·高一统考期末)已知a =sin1,b =2cos1sin1,c =2tan12,则a ,b ,c 的大小关系为()A.a >b >cB.b >c >aC.c >a >bD.c >b >a【答案】D【详解】b =2cos1sin1=sin2=sin (π-2),又π2>π-2>1>0,所以sin (π-2)>sin1,即b >a ,利用三角函数线可以证明x 为锐角时,tan x >x ,如图,在单位圆中,以Ox 为始边,O 为顶点作出角x ,其终边与单位圆交于点P ,过单位圆与x 轴正半轴交点A 作x 轴的垂线,角x 的终边与这条垂线交于点T ,则AT =tan x ,劣弧PA的长为l =x ,扇形OPA 的面积为S 1=12lr =12x ,△OAT 面积为S 2=12OA AT =12tan x ,由图形,易知S 2>S 1,即12tan x >12x ,所以tan x >x ,所以c =2tan 12>2×12=1,b =sin2<1,所以c >b >a .故选:D .5.(2022春·江苏南通·高一金沙中学校考期末)在平面直角坐标系xOy 中,若曲线y =sin2x 与y =32tan x 在区间π6,π上交点的横坐标为α,则α的值为()A.π3 B.2π3C.3π4D.5π6【答案】D 【分析】在区间π6,π 上,联立y =sin2x y =32tan x ,即可解出.【详解】在x ∈π6,π 上,由y =sin2x y =32tan x可得2sin x cos x =32×sin x cos x ,而sin x ≠0,所以,cos 2x =34,即cos x =32或cos x =-32,而x ∈π6,π ,所以x =5π6.故选:D .6.(2022春·江苏苏州·高一统考期末)已知向量a =3sin α,-2 ,b =1,1-cos α ,若a ⋅b =-2,则tan2α=【分析】根据向量数量积的坐标表示a ⋅b=x 1x 2+y 1y 2,结合题意整理可得tan α,再代入二倍角的正切公式tan2α=2tan α1-tan 2α运算求解.【详解】由题意可得:a ⋅b =3sin α-21-cos α =-2,整理得3sin α=-2cos α,即tan α=-23∴tan2α=2tan α1-tan 2α=2×-23 1--23 2=-125故选:C .7.(2022春·江苏常州·高一统考期末)已知a =22cos1°-sin1° ,b =1-tan 222.5°1+tan 222.5°,c =sin22°cos24°+cos22°sin24°,则a ,b ,c 的大小顺序为( ).A.b >a >cB.c >b >aC.c >a >bD.b >c >a【答案】B【分析】利用和差角正弦公式及商数关系可得a =sin44°、b =sin45°、c =sin46°,根据正弦函数的性质判断大小.【详解】a =cos1°sin45°-sin1°cos45°=sin44°,b =1-tan 222.5°1+tan 222.5°=cos 222.5°-sin 222.5°cos 222.5°+sin 222.5°=cos45°=sin45°,c =sin22°cos24°+cos22°sin24°=sin46°,所以c >b >a .故选:B8.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)下列等式不正确的是()A.cos15°-sin15°=22B.1+tan15°1-tan15°=3C.sin22°sin38°-cos22°sin52°=12D.1-cos30°2=6-24【答案】C【分析】A 应用差角正弦公式化简;B 应用和角正切公式化简;C 应用诱导公式及差角正弦公式化简;D 写出特殊角的函数值,将分子因式分解化简求值.【详解】A :cos15°-sin15°=2(sin45°cos15°-cos45°sin15°)=2sin30°=22,正确;B :1+tan15°1-tan15°=tan45°+tan15°1-tan45°tan15°=tan60°=3,正确;C :sin22°sin38°-cos22°sin52°=sin22°cos52°-cos22°sin52°=-sin30°=-12,错误;D :1-cos30°2=2-34=4-238=(3-1)28=3-122=6-24,正确;故选:Cππ10【分析】由三角恒等变换将等式化简为cos x-π4=55,即可求出sin x-π4,进一步求出sin x,cos x,即可求出tan x.【详解】因为sin x+sin x+π2=105,则sin x+cos x=2cos x-π4=105,则cos x-π4=55,因为x∈π2,π,所以x-π4∈π4,3π4,所以sin x-π4=255,所以sin x=sin x-π4+π4=sin x-π4cosπ4+cos x-π4sinπ4=255×22+55×22=31010,因为x∈π2,π,所以cos x=-1010,tan x=sin xcos x=-3.故选:A.10.(2022春·江苏南通·高一金沙中学校考期末)已知α,β∈0,π,tan(α-β)=12,tanβ=-17,则2α-β=()A.5π4B.π4C.-π4D.-3π4【答案】D【分析】结合式子中角的特点以及范围,分别求tanα=tan[(α-β)+β],tan(2α-β)=tan[(α-β)+α],再根据正切值缩小α,β的范围,从而得到2α-β的范围,即可得到角2α-β的大小.【详解】因为tanα=tanα-β+β=tanα-β+tanβ1-tanα-βtanβ=12-171+12×17=13<1,tan(2α-β)=tan[(α-β)+α]=tan(α-β)+tanα1-tan(α-β)tanα=12+131-12×13=1,而α,β∈(0,π),tanβ=-17>-1,所以0<α<π4,3π4<β<π,-π<-β<-3π4,-π<2α-β<-π4,所以2α-β=-3π4.故选:D.11.(2022春·江苏扬州·高一统考期末)已知0<α<β<π,函数f(x)=5sin x-π6,若f(α)=f(β)=3,则sin(β-α)=( ).A.2425B.-2425C.1D.-35【答案】A【分析】由已知条件,结合三角函数的性质可得π<α<2π,2π<β<7π,从而利用sinβ-α=【详解】解:令f x =5sin x -π6 =0,0<x <2π,则x =π6或x =7π6,令f x =5sin x -π6 =5,0<x <2π,则x =2π3,又0<α<β<π,f α =f β =3,所以π6<α<2π3,2π3<β<7π6,sin α-π6 =35,sin β-π6 =35,因为0<α-π6<π2,π2<β-π6<π,所以cos α-π6 =45,cos β-π6 =-45,所以sin β-α =sin β-π6 -α-π6 =sin β-π6 cos α-π6 -cos β-π6 sin α-π6 =35×45+45×35=2425,故选:A .12.(2022春·江苏常州·高一统考期末)已知0°<α<90°,且sin18°1+sin2α =2cos 29°cos2α,则α=()A.9°B.18°C.27°D.36°【答案】D【分析】根据二倍角公式和逆用余弦的差角公式化简得到cos 2α+9° =sin9°,结合0°<α<90°得到2α+9°=90°-9°,求出α.【详解】因为sin18°1+sin2α =2sin9°cos9°1+sin2α ,所以2cos 29°cos2α=2sin9°cos9°1+sin2α ,整理得:cos9°cos2α=sin9°sin2α+sin9°,cos9°cos2α-sin9°sin2α=sin9°,cos 2α+9° =sin9°,因为0°<α<90°,所以9°<2α+9°<189°,所以2α+9°=90°-9°,解得:α=36°故选:D .13.(2022春·江苏连云港·高一统考期末)如图,屋顶的断面图是等腰三角形ABC ,其中AC =BC ,横梁AB 的长为8米,∠BAC =α,为了使雨水从屋顶(设屋顶顶面为光滑斜面)上尽快流下,则α的值应为()A.30°B.45°C.60°D.75°【答案】B【分析】根据物体受力分析,利用二倍角的正弦公式化简后,由正弦函数的性质求出雨水流下时间的最小值对应α的值.则CD ⊥AB ,且AD =BD =12AB .因为F =mg sin α=ma ,所以a =g sin α;在直角三角形ACD 中,s =AD cos α=12at 2,所以t 2=2AD a cos α=AB g sin αcos α=2AB g sin2α≥2AB g =16g ,当sin2α=1,即α=45°时等号成立,故选:B .14.(2022春·江苏盐城·高一统考期末)已知函数f (x )=2x 2-3x +1,若方程f (sin x )=a +cos2x 在x ∈[0,2π)上恰有四个不同的解,则实数a 的取值范围是()A.-34<a <1 B.34≤a <1 C.-916<a <1 D.-916≤a <1【答案】C【分析】令t =sin x ∈[-1,1],将问题转化为y =a 与g (t )=t (4t -3)有两个交点,注意正弦函数值对应自变量的个数确定a 的范围.【详解】由题设a =f (sin x )-cos2x =sin x (4sin x -3)在x ∈[0,2π)上恰有四个不同的解,令t =sin x ∈[-1,1],则y =a 与g (t )=4t -38 2-916有两个交点,而g (-1)=7>g (1)=1,注意:a =g (-1)时t =-1,则对应x 在[0,2π)上有一个解;g (1)<a <g (-1)或a =g 38 时t 在[-1,1]只有一个对应值,则对应x 在[0,2π)上有两个解;a =g (1)时t =1或t =-14,对应x 在[0,2π)上有三个解;g 38<a <g (1)时t 在[-1,1]只有两个对应值,此时对应x 在[0,2π)上有四个解;综上,-916<a <1.故选:C15.(2022春·江苏南通·高一统考期末)△ABC 中,若A ,B ∈0,π2,sin C =sin A sin B ,则tan A +B 的取值范围是()A.-43,-1B.-43,-1C.1,43D.1,43【答案】A【分析】利用三角函数恒等变换进行化简,可得tan A +tan B =tan A tan B ,利用基本不等式得【详解】∵A ,B ∈0,π2,∴cos A cos B ≠0,∵sin C =sin A sin B ,即sin A +B =sin A sin B ,∴sin A cos B +cos A sin B =sin A sin B ,两边同时除以cos A cos B ,得tan A +tan B =tan A tan B ,∵tan A ,tan B >0,∴tan A +tan B ≥2tan A tan B ,当且仅当tan A =tan B 时等号成立,∴tan A tan B ≥2tan A tan B ,即tan A tan B ≥4,tan (A +B )=tan A +tan B 1-tan A tan B =tan A tan B1-tan A tan B =11tan A tan B-1,∵tan A tan B ≥4,∴0<1tan A ⋅tan B≤14,∴-1<1tan A ⋅tan B-1≤-34,∴-43≤11tan A ⋅tan B -1<-1,即tan A +B 的取值范围是-43,-1 .故选:A .二、多选题16.(2022秋·江苏苏州·高一统考期末)下列选项中,与sin -11π6的值相等的是()A.2sin15°sin75°B.cos18°cos42°-sin18°sin42°C.2cos 215°-1D.tan22.5°1-tan 222.5°【答案】ABD【解析】求出sin -11π6的值,进而利用二倍角的正弦求值判断A ;利用两角和的余弦求值判断B ;利用二倍角的余弦求值判断C ;利用两角和的正切求值判断D .【详解】sin -11π6 =sin -2π+π6 =sin π6=12.对于A ,2sin15°sin75°=2sin15°cos15°=sin30°=12;对于B ,cos18°cos42°-sin18°sin42°=cos 18°+42°=cos60°=12;对于C ,2cos 215°-1=cos30°=32;对于D ,因为tan45°=2tan22.5°1-tan 222.5°=1,可得tan22.5°1-tan 222.5°=12.∴与sin -11π6的值相等的是ABD .故选:ABD .17.(2022秋·江苏连云港·高一校考期末)已知函数f (x )=cos 2x -π-cos2x ,则()B.f (x )的图象关于点7π6,0对称C.f (x )图象的对称轴方程为x =5π12+k π2(k ∈Z )D.f (x )在[0,2π]上有4个零点【答案】ACD【分析】先通过降幂公式、两角和与差的正弦公式及辅助角公式将函数化简,进而结合三角函数的图象和性质解得答案.【详解】f (x )=1+cos 2x -π3 2-cos2x =12+1212cos2x +32sin2x -cos2x =34sin2x -34cos2x +12=32sin 2x -π3 +12,则f x 的最大值为1+32,A 正确;易知f x 图象的对称中心的纵坐标为12,B 错误;令2x -π3=π2+k π(k ∈Z ),得x =5π12+k π2(k ∈Z ),此即f x 图象的对称轴方程,C 正确;由f (x )=32sin 2x -π3 +12=0,得sin 2x -π3 =-33,当x ∈[0,2π]时,2x -π3∈-π3,11π3,作出函数y =sin x x ∈-π3,11π3 的图象,如图所示:所以方程sin 2x -π3 =-33在[0,2π]上有4个不同的实根,即f (x )在[0,2π]上有4个零点,D 正确.故选:ACD .18.(2022秋·江苏无锡·高一江苏省天一中学校考期末)已知函数f x =sin n x +cos n x x ∈N * ,则()A.对任意正奇数n ,f x 为奇函数B.对任意正整数n ,f x 的图象都关于直线x =π4对称C.当n =1时,f x 在-π2,π2上的最小值为-1【分析】对A:取n=1,易得f(x)=sin x+cos x不是奇函数,从而即可判断;对B:利用诱导公式计算fπ2-x=f(x)即可判断;对C:利用三角函数的知识即可求解;对D:n=4时,利用三角恒等变换化简解析式得f(x)=14cos4x+34,从而即可求解.【详解】解:对A:取n=1,则f(x)=sin x+cos x,此时f(0)=1≠0,所以f(x)不是奇函数,故选项A错误;对B:因为fπ2-x=sin nπ2-x+cos nπ2-x=cos n x+sin n x=f(x),所以f(x)的图象关于直线x=π4对称,故选项B正确;对C:当n=1时,f(x)=sin x+cos x=2sin x+π4,因为-π2≤x≤π2,所以-π4≤x+π4≤3π4,所以-22≤sin x+π4≤1,所以-1≤2sin x+π4≤2,所以f x 在-π2,π2上的最小值为-1,故选项C正确;对D:当n=4时,f(x)=sin4x+cos4x=(sin2x+cos2x)2-2sin2x cos2x=1-12sin22x=1-1-cos4x4=14cos4x+34,由2kπ-π≤4x≤2kπ,k∈Z,可得-π4+kπ2≤x≤kπ2,(k∈Z),则f(x)的递增区间为-π4+kπ2,kπ2(k∈Z),故选项D正确.故选:BCD.19.(2022春·江苏盐城·高一统考期末)下列关于函数f x =sin4x+cos4x的说法正确的有()A.最小正周期为πB.在-π4,0上单调递增C.值域为12,1D.若x=x0为f x 的一条对称轴,则f x0=1【答案】BC【分析】利用二倍角公式化简可得f x =14cos4x+34,根据余弦型函数的最小正周期、单调性、值域和对称性的求法依次判断各个选项即可.【详解】f x =sin4x+cos4x=sin2x+cos2x2-2sin2x cos2x=1-12sin22x=14cos4x+34;对于A,f x 的最小正周期T=2π4=π2,A错误;对于B,当x∈-π4 ,0时,4x∈-π,0,∴f x 在-π4 ,0上单调递增,B正确;对于C,∵cos4x∈-1,1,∴14cos4x+34∈12,1,即f x 的值域为12,1,C正确;对于D,若x=x0为f x 的一条对称轴,则f x0=1或12,D错误.故选:BC.1C.cos20°cos40°+sin200°sin140°D.tan20°+tan25°+tan20°tan25°【答案】AC【分析】选项A 逆用二倍角的正弦求值;选项B 逆用二倍角的正切求值;选项C 逆用两角和的余弦公式求值;选项D 利用两角和的正切公式求值.【详解】解:因为2sin75°cos75°=sin 2×75° =12,故选项A 正确;因为3tan15°1-tan 215°=32×2tan15°1-tan 215°=32tan30°=32≠12,故选项B 错误;因为cos20°cos40°-sin20°sin40°=cos60°=12,故选项C 正确;因为1=tan 20°+25° =tan20°+tan25°1-tan20°tan25°,整理得,tan20°+tan25°+tan20°tan25°=1,故选项D错误;故选:AC .21.(2022春·江苏南通·高一统考期末)已知向量a =(sin ωx ,cos ωx )(ω>0),b =sin 2ωx 2+π4 ,cos 2ωx 2,函数f x =a ⋅b,则()A.若f (x )的最小正周期为π,则f (x )的图象关于点3π8,0对称B.若f (x )的图象关于直线x =π2称,则ω可能为12C.若f (x )在-2π5,π6 上单调递增,则ω∈0,32D.若f (x )的图象向左平移π3个单位长度后得到一个偶函数的图象,则ω的最小值为32【答案】BC【分析】首先化简函数f x ,再根据三角函数的周期,对称,单调性,以及图象平移,即可判断选项.【详解】f x =a ⋅b =sin ωx ⋅sin 2ωx 2+π4 +cos ωx ⋅cos 2ωx2=sin ωx ⋅1-cos ωx +π2 2 +cos ωx ⋅1+cos ωx 2 =sin ωx ⋅1+sin ωx 2+cos ωx ⋅1+cos ωx2=12sin ωx +cos ωx +12=22sin ωx +π4 +12,A .若函数的最小正周期为π,则ω=2,即f x =22sin 2x +π4 +12,当x =3π8时,2×3π8+π4=π,此时f x =12,所以函数关于3π8,12对称,故A 错误;B .若函数的图象关于直线x =π2对称,则ω⋅π2+π4=π2+k π,k ∈Z ,得ω=12+2k ,k ∈Z ,所以ω的可能为12,故B 正确;C . 当x ∈-2π5,π6 时,ωx +π4∈-2π5ω+π4,π6ω+π4 ,则-2π5ω+π4≥-π2π6ω+π4≤π2ω>0,解得:0<ω≤32,故C 正确;D .函数f x 的图象向左平移π3个单位长度后得到g x =22sin ωx +π3 +π4 +12,函数g x 是偶函数,则当x =0时,ω⋅π3+π4=π2+k π,k ∈Z ,得ω=34+3k ,k ∈Z ,且ω>0,所以ω的最小值是34,故D 错误.故选:BC22.(2022春·江苏镇江·高一统考期末)tan75°=()A.2+3B.1+cos150°1-cos150°C.sin150°1+cos150°D.tan25°tan35°tan85°【答案】ACD【分析】根据两角和的正切公式及特殊角的三角函数值判断A ,由正切半角公式判断BC ,由tan 60°-α tan 60°+α tan α=tan3α,令α=25°即可判断出D .【详解】tan75°=tan (45°+30°)=tan45°+tan30°1-tan45°tan30°=1+331-33=2+3,故A 正确;由正切的半角公式知tan75°=1-cos150°1+cos150°,故B 错误;tan75°=sin75°cos75°=2sin75°cos75°2cos 275°=sin150°1+cos150°,故C 正确;∵tan 60°-α tan 60°+α tan α=tan3α,令α=25°,得tan75°=tan25°tan35°tan85°,可得D 正确.故选:ACD .23.(2022春·江苏苏州·高一校联考期末)计算下列各式的值,其结果为1的有()A.cos40°1+3tan10°B.121cos80°-3sin80° C.sin140°3-tan190°D.4sin18°⋅sin54°【答案】ACD【分析】由商数关系、诱导公式、和差角公式及倍角公式依次化简求值即可求解.【详解】对于A ,cos40°1+3tan10° =cos40°1+3sin10°cos10° =cos40°⋅cos10°+3sin10°cos10°=cos40°⋅2sin 30°+10° cos10°=2sin40°cos40°cos10°=sin80°cos10°=sin 90°-10° cos10°=cos10°cos10°=1,A 正确;对于B ,121cos80°-3sin80° =12⋅sin80°-3cos80°sin80°cos80°=2sin 80°-60° sin160°=2sin20°sin 180°-20°=2,B错误;对于C ,sin140°3-tan190° =sin140°3-sin190°cos190° =sin140°⋅3cos190°-sin190°cos190°sin 190°+90° cos190°=cos190°cos190°=1,C 正确;对于D ,4sin18°⋅sin54°=4sin 90°-72° ⋅sin 90°-36° =4cos72°⋅cos36°=4cos72°⋅cos36°⋅sin36°sin36°=2cos72°⋅sin72°sin36°=sin144°sin36°=sin 180°-36° sin36°=sin36°sin36°=1,D 正确.故选:ACD .24.(2022春·江苏南京·高一南京市中华中学校考期末)已知函数f (x )=|cos2x |+cos |x |,有下列四个结论,其中正确的结论为()A.f (x )在区间3π4,3π2上单调递增 B.π是f (x )的一个周期C.f (x )的值域为-22,2D.f (x )的图象关于y 轴对称【答案】CD【解析】代入特殊值检验,可得A 错误;求得f (x +π)的表达式,即可判断B 的正误;分段讨论,根据x 的范围,求得cos x 的范围,利用二次函数的性质,即可求得f (x )的值域,即可判断C 的正误;根据奇偶性的定义,即可判断f (x )的奇偶性,即可判断D 的正误,即可得答案.【详解】对于A :因为x ∈3π4,3π2 ,所以2x ∈3π2,3π,f 5π4 =cos 5π2 +cos 5π4 =-22,f (π)=cos2π +cosπ=0,所以f 5π4 <f (π),所以f (x )在区间3π4,3π2上不是单调递增函数,故A 错误;对于B :f (x +π)=|cos2(x +π)|+cos |x +π|=cos2x +cos |x +π|≠cos2x +cos |x |,所以π不是f (x )的一个周期,故B 错误;对于C :f (x +2π)=|cos2(x +2π)|+cos |x +2π|=cos2x +cos |x |=f (x ),所以f (x )的周期为2π,当x ∈0,π4 时,cos x ∈22,1,f (x )=|cos2x |+cos |x |=cos2x +cos x =2cos 2x -1+cos x ∈22,2;当x ∈π4,3π4 时,cos x ∈-22,22,f (x )=|cos2x |+cos |x |=-cos2x +cos x =1-2cos 2x +cos x ∈-22,98;当x ∈3π4,5π4 时,cos x ∈-1,-22 ,f (x )=|cos2x |+cos |x |=cos2x +cos x =2cos 2x -1+cos x ∈-22,0;当x ∈5π4,7π4 时,cos x ∈-22,22,f (x )=|cos2x |+cos |x |=-cos2x +cos x =1-2cos 2x +cos x ∈-22,98;当x ∈7π4,2π 时,cos x ∈22,1 ,f (x )=|cos2x |+cos |x |=cos2x +cos x =2cos 2x -1+cos x ∈综上:f (x )的值域为-22,2,故C 正确;对于D :f (-x )=|cos (-2x )|+cos |(-x )|=|cos2x |+cos |x |=f (x ),所以f (x )为偶函数,即f (x )的图象关于y 轴对称,故D 正确,故选:CD【点睛】解题的关键是根据的f (x )解析式,结合函数的奇偶性、周期性求解,考查分类讨论,化简计算的能力,综合性较强,属中档题.25.(2022秋·江苏无锡·高一统考期末)已知函数f (x )=sin n x +cos n x n ∈N * ,则()A.当n =4时,f (x )的最小正周期是π2B.当n =6时,f (x )的值域是14,1C.当n =2k -1k ∈N * 时,f (x )为奇函数D.对∀n ∈N *,f (x )的图象关于直线x =π4对称【答案】ABD【分析】先把n 值代入函数f (x )的解析式,化简整理成正弦型三角函数,再去求最小正周期、值域;依据定义去判断奇偶性、对称轴即可解决.【详解】选项A :当n =4时,f (x )=sin 4x +cos 4x =sin 2x +cos 2x 2-2sin 2x cos 2x =1-12sin 22x =14cos4x +34最小正周期是π2.判断正确;选项B :当n =6时,f (x )=sin 6x +cos 6x =sin 2x +cos 2x sin 4x -sin 2x cos 2x +cos 4x =sin 2x +cos 2x 2-3sin 2x cos 2x =1-34×1-cos4x 2=38cos4x +58f (x )的值域是14,1.判断正确;选项C :当n =2k -1时,f (x )=sin 2k -1x +cos 2k -1x 则f (-x )=sin 2k -1-x +cos 2k -1-x =-sin 2k -1x +cos 2k -1x 故f (-x )≠-f (x ),即f (x )不是奇函数. 判断错误;选项D :f (x )=sin n x +cos n x n ∈N * f π2-x =sin n π2-x +cos n π2-x =cos n x +sin n x =f (x )则f (x )的图象关于直线x =π4对称. 判断正确.故选:ABD三、填空题26.(2022春·江苏南京·高一统考期末)tan15°=.【答案】2-3##-3+2【分析】利用正切的差角公式进行求解.【详解】tan15°=tan 45°-30° =tan45°-tan30°=1-33=3-3=12-63=2-327.(2022春·江苏镇江·高一统考期末)求值:sinπ8⋅cos π8=.【答案】24【分析】根据二倍角的正弦公式逆用,计算即可得答案.【详解】由题意得sin π8⋅cos π8=12sin 2×π8 =12sin π4=24.故答案为:2428.(2022春·江苏南通·高一统考期末)如图是古希腊数学家希波克拉底研究的几何图形,此图由三个半圆构成,直径分别为直角三角形ABC 的斜边AB ,直角边BC 、AC ,点D 在以AC 为直径的半圆上.已知以直角边AC 、BC 为直径的两个半圆的面积之比为3,cos ∠DAB =45,则cos ∠DAC =.【答案】43+310【分析】由以直角边AC 、BC 为直径的两个半圆的面积之比为3,可得ACBC=3,进而可得∠BAC =π6,从而利用两角差的余弦公式即可求解.【详解】解:因为以直角边AC 、BC 为直径的两个半圆的面积之比为3,所以ACBC=3,所以在直角三角形ABC 中∠BAC =π6,因为cos ∠DAB =45,所以sin ∠DAB =35,所以cos ∠DAC =cos ∠DAB -π6 =cos ∠DAB cos π6+sin ∠DAB sin π6=45×32+35×12=43+310,故答案为:43+310.29.(2022春·江苏扬州·高一统考期末)tan75°的值为.【答案】2+3##3+2【分析】根据tan75°=tan 30°+45° ,结合两角和的正切公式求解即可【详解】tan75°=tan 30°+45° =tan30°+tan45°1-tan30°tan45°=1+331-33=3+13-1=3+1 23-1 3+1=2+330.(2022春·江苏常州·高一校联考期末)已知cos α+sin α-π6=0,则tan2α=.【答案】-3【分析】由两角差的正弦公式展开,由商数关系求得tan α,然后由二倍角的正切公式计算.【详解】cos α+sin α-π6 =cos α+sin αcos π6-cos αsin π6=12cos α+32sin α=0,tan α=-33,tan2α=2tan α1-tan 2α=2×-33 1--332=-3.故答案为:-3.31.(2022春·江苏连云港·高一统考期末)已知α是锐角,sin α=35,则cos α-π4的值是.【答案】7210##7102【分析】结合同角三角函数的基本关系式、两角差的余弦公式求得正确答案.【详解】由于α是锐角,sin α=35,所以cos α=1-sin 2α=45,所以cos α-π4 =cos αcos π4+sin αsin π4=2235+45 =7210.故答案为:721032.(2022秋·江苏常州·高一校考期末)已知tan α、tan β是方程x 2-33x +4=0的两根,且α、β∈-π2,π2,则α+β的值等于.【答案】2π3【分析】根据一元二次方程根与系数关系,结合两角和的正切公式进行求解即可.【详解】已知tan α、tan β是方程x 2-33x +4=0的两根,所以有tan αtan β=4>0tan α+tan β=33>0⇒α、β∈0,π2⇒α+β∈0,π ,tan α+β =tan α+tan β1-tan αtan β=331-4=-3,因为α+β∈0,π ,所以α+β=2π3,故答案为:2π333.(2022春·江苏淮安·高一统考期末)已知cos α+π3 =13,且α∈0,π2 ,则sin 2α+π6的值为.【答案】79【分析】由诱导公式与二倍角公式求解即可π2ππ2π故答案为:7934.(2022春·江苏扬州·高一期末)在△ABC 中,AC =2BC =6,∠ACB 为钝角,M ,N 是边AB 上的两个动点,且MN =2,若CM ⋅CN的最小值为3,则cos ∠ACB =.【答案】2-2109【分析】取线段MN 的中点P ,结合向量数量积求出边AB 上的高CO ,进而求出∠OCA ,∠OCB 的正余弦即可求解作答.【详解】取线段MN 的中点P ,连接CP ,过C 作CO ⊥AB 于O ,如图,PM =12MN =1,依题意,CM ⋅CN =CP +PM ⋅CP -PM =CP 2-PM 2=CP2-1,因CM ⋅CN 的最小值为3,则CP 的最小值为2,因此CO =2,在Rt △AOC 中,cos ∠OCA =CO CA=13,sin ∠OCA =223,在Rt △BOC 中,cos ∠OCB =CO CB =23,sin ∠OCB =53,所以cos ∠ACB =cos (∠OCA +∠OCB )=cos ∠OCA cos ∠OCB -sin ∠OCA sin ∠OCB =2-2109.故答案为:2-2109【点睛】关键点睛:涉及定长的线段两端点向量数量积,取线段的中点,借助向量数量积的计算公式求解是关键.35.(2022春·江苏南京·高一江苏省江浦高级中学校联考期末)如图,正方形ABCD 的边长为10米,以点A 为顶点,引出放射角为π6的阴影部分的区域,其中∠EAB =x ,π12≤x ≤π4,记AE ,AF 的长度之和为f x .则f x 的最大值为.【答案】106【分析】由题意结合三角恒等变换得到f (x )=203sin x +π3sin 2x +π6+12且π12≤x ≤π4,令t =sin x +π3∈6+24,1 ,进一步得到f (x )=g (t )=2032t -1,由函数单调性求最大值即可.而∠FAD=∠EAB+∠EAF∈π4,5π12,故∠DAF=π3-x∈π12,π4,所以AF=ADcosπ3-x=10cosπ3-x,综上,f(x)=101cos x+1cosπ3-x且π12≤x≤π4,所以f(x)=101cos x+2cos x+3sin x=10⋅3cos x+3sin xcos x(cos x+3sin x)=203sin x+π3sin2x+π6+12,令t=sin x+π3∈6+24,1,则t2=sin2x+π3=1-cos2x+2π32=1-cosπ2+2x+π62=1+sin2x+π62,所以sin2x+π6=2t2-1,故f(x)=g(t)=2032t-12t 在t∈6+24,1上递减,所以f(x)max=g(t)max=g6+24=2036+22-26+2=106,此时x=π12或x=π4.故答案为:106。
方法技巧专题19 三角恒等变换(解析版)
方法技巧专题19 三角恒等变换解析版一、三角恒等变换问题知识框架【一】公式顺用、逆用及其变形用1.例题 【例1】计算:(1)cos(-15°); (2)cos 15°cos 105°+sin 15°sin 105°. 【解析】(1)方法一 原式=cos(30°-45°)=cos 30°cos 45°+sin 30°sin 45°=32×22+12×22=6+24. 方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24. (2)原式=cos(15°-105°)=cos(-90°)=cos 90°=0. 【例2】(1)计算:cos 2π12-sin 2π12; 【解析】原式=cos π6=32.(2)计算:1-tan 275°tan 75°;【解析】 1-tan 275°tan 75°=2·1-tan 275°2tan 75°=2·1tan 150°=-2 3.(3)计算:cos 20°cos 40°cos 80°.【解析】原式=12sin 20°·2sin 20°cos 20°cos 40°cos 80°=12sin 20°·sin 40°·cos 40°cos 80°=122sin 20°sin 80°cos 80°=123sin 20°·sin 160°=sin 20°23sin 20°=18.【例3】(1)1+tan 15°1-tan 15°=________.【解析】3 原式=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)=tan 60°= 3.(2)化简:tan 23°+tan 37°+3tan 23°tan 37°. 【解析】方法一 tan 23°+tan 37°+3tan 23°tan 37° =tan(23°+37°)(1-tan 23°tan 37°)+3tan 23°tan 37° =tan 60°(1-tan 23°tan 37°)+3tan 23°tan 37°= 3. 方法二 ∵tan(23°+37°)=tan 23°+tan 37°1-tan 23°tan 37°,∴3=tan 23°+tan 37°1-tan 23°tan 37°,∴3-3tan 23°tan 37°=tan 23°+tan 37°, ∴tan 23°+tan 37°+3tan 23°tan 37°= 3. (3)已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.【解析】 ∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.由cos θ=2cos 2θ2-1,得cos 2θ2=1+cos θ2=15.∵5π4<θ2<3π2,∴cos θ2=- 1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.2.巩固提升综合练习【练习1】化简cos 15°cos 45°+cos 75°sin 45°的值为( )A.12B.32 C .-12 D .-32【解析】Bcos 15°cos 45°+cos 75°sin 45°=cos 15°cos 45°+sin 15°sin 45°=cos(15°-45°)=cos(-30°)=32.【练习2】1-3tan 75°3+tan 75°=________.【解析】-1原式=33-tan 75°1+33tan 75°=tan 30°-tan 75°1+tan 30°tan 75°=tan(30°-75°)=-tan 45°=-1.【练习3】在△ABC 中,A +B ≠π2,且tan A +tan B +3=3tan A tan B ,则角C 的值为( )A.π3B.2π3C.π6D.π4 【解析】A∵tan A +tan B +3=3tan A tan B ⇔tan(A +B )·(1-tan A tan B )=3(tan A tan B -1).(*) 若1-tan A tan B =0,则cos A cos B -s in A sin B =0,即cos(A +B )=0. ∵0<A +B <π,∴A +B =π2与题设矛盾.∴由(*)得tan(A +B )=-3,即tan C = 3.又∵0<C <π,∴C =π3.【练习4】若sin α+cos α=13,则sin 2α= .【解析】由题意,得(sin α+cos α)2=19,∴1+2sin αcos α=19,即1+sin 2α=19,∴sin 2α=-89.1.例题【例1】已知31)3sin(=-πα,则)6cos(πα+ 的值为( ) A .-13 B.13 C.223 D .-223【答案】A 【解析】∵sin )3(πα-=13,∴cos )6(πα+=cos )]3(2[παπ-+=-sin )3(πα-=-13.【例2】已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点⎪⎭⎫⎝⎛--54,53P . 若角β满足sin(α+β)=513,则cos β的值为________.【答案】 -5665或1665【解析】 由角α的终边过点⎪⎭⎫⎝⎛--54,53P ,得sin α=-45,cos α=-35. 由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.【例3】若1sin 63πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+= ⎪⎝⎭( ) A .13 B .13-C .79D .79-【答案】D 【解析】222πππcos 22cos 12cos 13326πααα⎡⎤⎛⎫⎛⎫⎛⎫+=+-=--- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2π272sin 11699α⎛⎫=--=-=- ⎪⎝⎭2.巩固提升综合练习 【练习1】已知33)6tan(=-απ,则=+)65tan(απ________. 【答案】-33【解析】tan )65(απ+=tan )6(αππ+-=tan )]6([αππ--=-tan )6(απ-=-33. 【练习2】若1027)4sin(=+πA ,A ∈),4(ππ,则sin A 的值为( ) A.35 B.45C.35或45D.34【答案】B 【解析】∵A ∈),4(ππ,∴A +π4∈)45,2(ππ, ∴cos (A +π4)=-1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin[(A +π4)- π4]=sin (A +π4)cos π4-cos (A +π4)sin π4=45.【练习3】已知sin(α−3π10)=35,则cos(α+π5)=( ) A.−45 B.45C.−35D.35【答案】C【解析】因为sin(α−3π10)=35,则cos(α+π5)=cos[π2+(α−3π10)]=−sin(α−3π10)=−35.故应选C . 【练习4】若sin (3x π-)=23,则cos (23x π+)=( )A .79B .19C .19-D .79-【答案】C 【解析】令3x πθ=-,则223x ππθ+=-,所以()21cos 2cos 2cos 22sin 139x ππθθθ⎛⎫+=-=-=-=- ⎪⎝⎭,故选C .【练习5】已知3sin 245x π⎛⎫-= ⎪⎝⎭,则sin 4x 的值为( ) A .1825B .1825±C .725D .725±【答案】C【解析】由题意得:297cos 412sin 212242525x x ππ⎛⎫⎛⎫-=--=-⨯=⎪ ⎪⎝⎭⎝⎭7sin 4cos 4225x x π⎛⎫∴=-= ⎪⎝⎭本题正确选项:C1.例题【例1】已知02απ<<,cos()4απ+= (1)求tan()4απ+的值; (2)求sin(2)3απ+的值.【解析】(1)∵02απ<<,cos()4απ+= ∴sin()4απ+==, ∴sin()4tan()24cos()4αααπ+π+==π+. (2)∵tan 1tan()241tan αααπ++==-,∴1tan 3α=, ∴2222sin cos 2tan 3sin 2sin cos tan 15ααααααα===++,2222cos sin cos 2sin cos ααααα-=+221tan 4tan 15αα-==+,3sin(2)sin 2cos cos 2sin 33310αααπππ++=+=.【例2】已知△ABC 中,137cos sin -=+A A ,则tanA= . 【解析】解法一:列出方程组⎪⎩⎪⎨⎧=+-=+1cos sin 137cos sin 22A A A A由第一个方程得,A A sin 137cos --=,代入第二个方程得1)sin 137(sin 22=--+A A , 即016960sin 137sin 2=-+A A , 解得135sin =A 或1312sin -=A , 因为△ABC 中0<A<π, 所以sinA>0,135sin =A ,1312cos -=A ,所以125tan -=A . 答案:125-. 解法二:由已知得sinA>0, cosA<0, |sin A|<|cos A|, tanA>-1, 由137cos sin -=+A A 两边平方,整理得16960cos sin -=⋅A A ,即16960cos sin cos sin 22-=+⋅A A A A , 分子分母同除以A 2cos 得169601tan tan 2-=+A A , 解得125tan -=A .2.巩固提升综合练习【练习1】已知a ∈R ,sina +2cosa =√102,则tan2a =( )A .−34或−35 B .−34C .34D .−35【答案】B 【解析】因为sina +2cosa =√102,所以(sina +2cosa )2=52,所以sin 2a +4cos 2a +4sinacosa =52, 所以sin 2a+4cos 2a+4sin acosasin 2a+cos 2a=52,即tan 2a+4+4tanatan 2a+1=52,解得tana =3或者tana =−13,当tana =3时,tan2a =2tana1−tan 2a =−34,当tana =−13时,tan2a =2tana 1−tan 2a =−34, 综上所述,tan2a =−34,故选B 。
高一数学三角函数三角恒等变换解三角形试题答案及解析
高一数学三角函数三角恒等变换解三角形试题答案及解析1.(本小题满分12分)已知函数.(1)化简;(2)已知常数,若函数在区间上是增函数,求的取值范围;(3)若方程有解,求实数a的取值范围.【答案】(1)f(x)(2)(3)【解析】(1)························· 4分(2) ∵由∴的递增区间为∵在上是增函数∴当k = 0时,有∴解得∴的取值范围是····················· 8分(3) 解一:方程即为从而问题转化为方程有解,只需a在函数的值域范围内∵当;当∴实数a的取值范围为················ 12分解二:原方程可化为令,则问题转化为方程在[– 1,1]内有一解或两解,设,若方程在[– 1,1]内有一个解,则解得若方程在[– 1,1]内有两个解,则解得∴实数a的取值范围是[– 2,]2.已知函数(1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.【答案】(1),单调增区间;(2)【解析】(1)首先借助于基本三角函数公式将函数式化简为的最简形式,周期由的系数求解,求增区间需令,解得的范围得到单调区间;(2)中由的值求得角,借助于三角形余弦定理可得到关于两边的关系式,进而结合不等式性质得到关于的不等式,求得范围试题解析:(1),所以函数的最小正周期为.由得所以函数的单调递增区间为.(2)由可得,又,所以。
简单的三角恒等变换专题及答案
简单的三角恒等变换专题及答案简单的三角恒等变换专题一、选择题1.已知sinα=5115,则cos(π-2α)=()。
答案:B。
通过sinα和cos(π-2α)的关系,可以得到cos(π-2α)=-sinα=-(1/5115)。
2.sin70°/(2cos10°-sin20°)的值是()。
答案:C。
通过三角函数的恒等变换,可以将sin70°/(2cos10°-sin20°)化简为sin70°/cos80°,再使用tan的定义式,得到tan70°=sin70°/cos70°=sin70°/sin10°cos80°=sin70°/sin10°sin10°=1/sin10°=3.3.若sin76°=m,用含m的式子表示cos7°为()。
答案:B。
通过三角函数的恒等变换,可以得到cos(π/2-76°)=sin76°=m,即cos14°=m,再通过三角函数的恒等变换,可以得到cos7°=2cos2(7°)-1=2cos2(14°)cos(π/2-14°)-1=2(1-sin2(14°))-1=1-2sin2(14°)=1-2(cos14°)2=1-2m2.4.若cos2α=-2,则sinα+cosα的值为sin(7π/4)()。
答案:B。
通过cos2α的值可以得到sin2α=1-cos2α=3,再通过三角函数的恒等变换,可以得到sinα+cosα=√2sin(π/4+α)=√2sin(π/4+α-2π)=√2sin(7π/4-α)。
5.已知f(x)=2tanx-2/(x+π/12),则f(π/6)的值为()。
答案:D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两角和与差的正弦、余弦、正切1. 利用两角和与差的正弦、余弦、正切公式进行三角变换;2•利用三角变换讨论三角函数的图象和性质2.1.牢记和差公式、倍角公式,把握公式特征;2•灵活使用(正用、逆用、变形用)两角和与差的正弦、余弦、正切公式进行三角变换,三角变换中角的变换技巧是解题的关键•知识点回顾1 •两角和与差的余弦、正弦、正切公式cos( a—0)= cos acos0+ sin ocsin0(C a- 0cos( a+ 0)= cos. acos _ 0—sin__ asin_ 0(C a+ 0sin( a—0 = sin a cos0- cos ocsin(S a—0sin( a+ 0 = sin a cos0+ cos ocsin0(S a+ 0tan a—tan 卩tan( a—® ;(T a—01 + tan atan 卩tan a+ tan 卩tan(%+ ® = (T a + 01 —tan %tan 02 •二倍角公式sin 2 a= 2sin : cos:;cos 2 a= cos2a—sin2a= 2cos 2a—1 = 1 —2sin2a;2ta n atan 2 a= .1 —tan a3 •在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等•如T a±0可变形为tan a± tan 0= tan( a± 0(1? tan_ %tan_ 0,tan a+ tan 0 tan a—tan 0tan %tan 0= 1 —= —1.tan a+ 0 tan a—04 • 函数f( a= a cos a+ b sin a(a, b 为常数),可以化为f( a = \i a2+ b2sin( a+ 0)或f( %)=':::[a2+b2cos( a—0),其中0可由a, b的值唯一确定.[难点正本疑点清源]三角变换中的三变”(1) 变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是配凑”.(2) 变名:通过变换函数名称达到减少函数种类的目的,其手法通常有切化弦”、升幕与降幕”等.(3) 变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有换”、逆用变用公式”、通分约分”、分解与组合”、配方与平方”等.热身训练2 1 tan a1. 已知sin( a+ , sin( a—3 =—-,贝U 的值为 ____________ .3 5 tan 32. 函数f(x)= 2sin x(sin x+ cos x)的单调增区间为________________________3. (2012江苏)设a为锐角,若cos = 4,则I 6丿5sin a+ COS a1则tan 2 a等于( )4. (2012江西)若=sin a一(cos a23344A.—-B.C.—-D._4433n15. (2011 辽宁)设sin(+4B)= 3,则sin 2 B等于( )7117A.—_B. 一—C- D._9999典例分析题型一三角函数式的化简、求值问题【例1】(1)化简:I 1 a、f—tan _ |a 2 | 1 + tan a •⑵求值:[2sin 50 ° + sin 10 3tan (10 +° 摩in 280 °常值代a tan";2丿变J: i.l兔I在厶ABC中,已知三个内角AA, B, C成等差数列,则tan-2 + tan 值为 _______题型二三角函数的给角求值与给值求角问题【例2]n(1)已知0<仟_<2口r兀、a n,且cos II 2丿1_, sin9求cos(a+ 3的值;1⑵已知a,氏(0, n )且tan(「沪2,tan A1~,求2 a-卩的值.A C—ta n 一的 2 2题型三三角变换的简单应用f 1 \f 兀、【例 3】 已知 f(x) = 1 + ------ [sin 2x — 2sin x +— !'I tan x 丿 < 4 丿(1)若 tan a = 2,求 f ( a 的值;变式训练2 已知COSa=13 nCOS ( a — ®=,且 0< 仟 %<一,求(3.14 2n n求f(x)的取值范围⑵若x€五,2变出讣映3已知函数f(x)= J3sin i 2x厂+2sin2「-巨丿x R)-⑴求函数f(x)的最小正周期;⑵求使函数f(x)取得最大值时x的集合.利用三角变换研究三角函数的性质典例:(12分)(2011 •北京)已知函数f(x) = 4cos x - si(x +巴L 1 I 6丿(1)求f(x)的最小正周期;⑵求f(x)在区间,一上的最大值和最小值•II 6 4总结方法与技巧巧用公式变形和差角公式变形:tan x ± tai y = tan (x 土y ) • ?1tan x tan y );有-a 2 + b 2>|y |. 3.重视三角函数的 三变”:三变”是指变角、变名、变式”;变角:对角的分拆要尽可能化成同名 、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形 式中的差异,再选择适当的三角公式恒等变形 4.已知和角函数值,求单角或和角的三角函数值的技巧 :把已知条件的和角进行加减或二倍角后再加 减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值 ,可使所求的复杂问题简单化. 5.熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构 ,更 要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形 失误与防范1 .运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意1 ”的各种变通.所对应的角 a +卩不是唯一的2 .在(0, n 范围内,Sin( a + (3)=23.在三角求值时,往往要估计角的范围后再求值倍角公式变形:降幕公式cos1 + COS2 a1 — COS2 a2a=, Sin a=配方变形:1 ± sin a =sin2 ± aCOS 2,1 + cos2丿a aa = 2cos 2—, 1 — cos a = 2sin 2—.2 2利用辅助角公式求最值 、单调区间、周期. 由 y = a sin a + b cos a = A / a 2 + b 2sin ( a + 0)(其中 tan 0=_ )过手训练(时间:25分钟,满分:43分)、选择题(每小题5分,共15分)函数 f (x )= sin x + - 3cos x 的A. 最大值是1 ,最小值是一 11B. 最大值是1 ,最小值是一—2C. 最大值是2,最小值是一 2 D .最大值是2,最小值是一 1、填空题(每小题5分,共15分)已知锐角 a 满足cos 2 a= cos贝U sin 2a = 已知cos —= MU 丿13 a€ 0,-, .4cos 2 a 则― sin(2012山东 >若灰一4'2sin 23 A.— 54 B.- 53 D.— 4已知tan (z=5怕…144 '那么tanJIn4等于13 A.— 1813 B.— 223 c.— 221 D7 6n n 当-尹笃时,三、解答题(13分)(2012广东)已知函数f (x ) = 2cos B X +二i (其中o>0 , x € R )的最小正周期为I 6丿⑴求co 的值;课后习题、选择题(每小题5分,共20分)6.设x €0, 一 i,贝V 函数y = 2si n 2x + 1的最小值为sin 2 x:(5、65 \ 阻0, — ,f 5 a+ — nf 5 (3-_n2< 3丿5< 6丿⑵设a ,16=石,求COS (计®的值. (时间:35分钟, 满分:57分)(2012江西)若tan1°+恳4,则sin 2。
等于1 A.— 5 1 B.— 41 c.— 31 D.— 2(2012大纲全国)已知a 为第二象限角,Sin a + COSa =」,则COs 2 a 等于3已知 nA.— 4B .,59 -5 C.亠 9a ,卩都是锐角,若sin_5 a =T ,sin A 肓,则a +卩等于nc.—和 4 4(2011福建)若a € 3 n B.— 4. 10,—,且 sin 2 a + cos 2 a =—,则 c ' 4tan a 的值等于JT10 n.学习参考 二、填空题(每小题5分,共15分)COS 275 ° -fc os 215 ° + cos 75 - :‘3tan 12 °3-三、解答题(共22分)(1)求cos a 的值;3®=—;, 5 D •- 3& (10分)已知 1 — sin a 1 + sin a 1 + sin 1 — sin a =—2tan a ,试确定使等式成立的 a 的取值集合. (12分)已知a€ - <2 a a且 sin —+ cos _=2 2C 的值为6. 4COS 212 -2 sin 12 o-3 sin a =_, 5 cos 3卩=_,其中5 a,⑵若sin( a — ,求 cos(n 兀。