《长方体和正方体的体积》精品ppt_课件
合集下载
最新人教版五年级数学下册《第3单元3.第2课时 长方体和正方体的体积(1)》精品PPT优质课件
第2课时 长方体和正方体的体积(1)
R·五年级下册
回顾
物体所占空间的大小叫做物体的( 体积 )。
计量体积要用体积单位,常用的体积单位 有( 立方厘米 )、( 立方分米 )和 ( 立方米 ),可以分别写成( cm3 )、 ( dm3)和( m3 ) 。
苹果醋饮料箱:长、宽、高分别是70厘米、50厘米、60厘米; 芒果汁饮料箱:长、宽、高分别是80厘米、60厘米、40厘米; 它们的体积分别是多少?
a·a·a也可以写作“a3”, 读作“a的立方”,表 示3个a相乘。
正方体的体积公式一般写成: V=a3
计算下面图形的体积。
V=a b h =7×3×4 =84(cm3)
V=a3 =63 =6×6×6 =216(dm3)
乘飞机的行李规定 ◎生活中的数学◎
50cm 65cm 40cm
机场行李托运一般不超过此规格。
12
12
观察上表,你发现了什么?
1.长方体所含体积单位的数量就是长方体的体积。 2.长方体的体积正好等于长×宽×高的积。
长方体的体积=长×宽×高
如果用字母V表示长方体的体积,用a,
b,h分别表示长方体的长、宽、高,那么
V=a b h
根据长方体和正方体
的关系,你能想出正
方体的体积怎样计算 吗?
正方体的体积=棱长×棱长×棱长 V=a ·a ·a
最小
最大
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
V=a b h
V=a ·a ·a
课堂作业
1.从书本练习中选择题目, 完成与本课时相关练习;
2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
R·五年级下册
回顾
物体所占空间的大小叫做物体的( 体积 )。
计量体积要用体积单位,常用的体积单位 有( 立方厘米 )、( 立方分米 )和 ( 立方米 ),可以分别写成( cm3 )、 ( dm3)和( m3 ) 。
苹果醋饮料箱:长、宽、高分别是70厘米、50厘米、60厘米; 芒果汁饮料箱:长、宽、高分别是80厘米、60厘米、40厘米; 它们的体积分别是多少?
a·a·a也可以写作“a3”, 读作“a的立方”,表 示3个a相乘。
正方体的体积公式一般写成: V=a3
计算下面图形的体积。
V=a b h =7×3×4 =84(cm3)
V=a3 =63 =6×6×6 =216(dm3)
乘飞机的行李规定 ◎生活中的数学◎
50cm 65cm 40cm
机场行李托运一般不超过此规格。
12
12
观察上表,你发现了什么?
1.长方体所含体积单位的数量就是长方体的体积。 2.长方体的体积正好等于长×宽×高的积。
长方体的体积=长×宽×高
如果用字母V表示长方体的体积,用a,
b,h分别表示长方体的长、宽、高,那么
V=a b h
根据长方体和正方体
的关系,你能想出正
方体的体积怎样计算 吗?
正方体的体积=棱长×棱长×棱长 V=a ·a ·a
最小
最大
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
V=a b h
V=a ·a ·a
课堂作业
1.从书本练习中选择题目, 完成与本课时相关练习;
2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
长方体和正方体体积计算之课件
干海子小学
李兵
怎样知道这个魔方的体积呢?
2 厘 米 4厘米 3厘米
9
思考:是否能用一个公式把它 计算出来呢?
观察操作
探究长方体的体积公式
例1 用准备好的24块1立方厘米 的正方体积木,任意摆出不同的 长方体,然后把相关数据填入下 表。
54×44.5×38=91314(立方厘米) 答:它的体积是91314立方厘米
棱 长
a
吗积正 ?公方 式体 你的 会体
棱长 a
棱长 a
正方体的体积=棱长×棱长×棱长 V=a×a×a
3
=a
例2 光明纸盒厂生产一种正方体 纸箱,棱长是5分米。体积是 多少立方分米?
当堂作业
请同学们
审题认真
书写规范
1、口答:
思考:长方体所含小正方体的个数,与长宽高有什么
关系?
长
(厘米)
宽
(厘米)
高
(厘米)
积木的数量 长方体体积
(立方厘米)
8
3
1
24
24
4
3
3
2
2
4 4
24
24
24
24
2
3
24
24
观发现
长方体的体积等于长方体所含体
积单位的数量,所含体积单位的数 量正好等于长方体长、宽、高的乘 积。
1厘米
1厘米 4厘米
二、常用的体积单位有立方厘米,立方分米 3, 3 , 3。 和立方米,可以分别写成成 cm dm m
三、 1、棱长是1cm的正方体,体积是1 cm 3
2、棱长是1dm的正方体,体积是1 dm3 3 3、棱长是1m的正方体,体积是1 m
李兵
怎样知道这个魔方的体积呢?
2 厘 米 4厘米 3厘米
9
思考:是否能用一个公式把它 计算出来呢?
观察操作
探究长方体的体积公式
例1 用准备好的24块1立方厘米 的正方体积木,任意摆出不同的 长方体,然后把相关数据填入下 表。
54×44.5×38=91314(立方厘米) 答:它的体积是91314立方厘米
棱 长
a
吗积正 ?公方 式体 你的 会体
棱长 a
棱长 a
正方体的体积=棱长×棱长×棱长 V=a×a×a
3
=a
例2 光明纸盒厂生产一种正方体 纸箱,棱长是5分米。体积是 多少立方分米?
当堂作业
请同学们
审题认真
书写规范
1、口答:
思考:长方体所含小正方体的个数,与长宽高有什么
关系?
长
(厘米)
宽
(厘米)
高
(厘米)
积木的数量 长方体体积
(立方厘米)
8
3
1
24
24
4
3
3
2
2
4 4
24
24
24
24
2
3
24
24
观发现
长方体的体积等于长方体所含体
积单位的数量,所含体积单位的数 量正好等于长方体长、宽、高的乘 积。
1厘米
1厘米 4厘米
二、常用的体积单位有立方厘米,立方分米 3, 3 , 3。 和立方米,可以分别写成成 cm dm m
三、 1、棱长是1cm的正方体,体积是1 cm 3
2、棱长是1dm的正方体,体积是1 dm3 3 3、棱长是1m的正方体,体积是1 m
五年级下册长方体与正方体体积课件人教版(34张PPT)
A.4
B.6
C.8
D.12
4.长方体玻璃缸,长4dm,宽3dm,高5dm,缸中的水深2.5dm,水
的体积是( )dm3
A.30
B.37.5
C.50
D.60
5
填上合适的数.
10m3= ( )dm3
3020cm3= (
230mL= ( )L
3.05L3= (
2.7m3= (
)dm3= (
)L
)dm3 )cm3
长方体与正方体体积
1
你来填写
1.一个长方体截去一个棱长为5厘米的正方体后,所剩 下的 长方体的体积是75立方厘米,则原长方体的最长的棱是 ______厘米. 2.一个长方体表面积为40平方厘米,上、下两个面为正方形, 如果正好可以截成两个相等体积的正方体,则这个长方体的 体积是_____立方厘米. 3.一个长方体,长与宽之比是2:1,宽与高之比是3:2,已 知全部棱长之和是220cm,长方体的体积是______立方厘米
的体ቤተ መጻሕፍቲ ባይዱ是( )dm3
A.30
B.37.5
C.50
D.60
4
你来选择
1.一个棱长是8厘米的正方体的体积与一个长方体体积相等,这个长方
体高16厘米,它的底面积是( )
A.32厘米2 B.9厘米 C.15厘米 D.120厘米
2.至少需要( )个小正方体可以拼成大正方体.
A.4
B.6
C.8
D.12
3.正方体的表面积是底面积的( )倍.
2
你来填写
1.一个长方体截去一个棱长为5厘米的正方体后,所剩 下的长方体的体积是75立方厘 米,则原长方体的最长的棱是8厘米. 解:75÷(5×5)=75÷25=3(厘米),3+5=8(厘米), 2.一个长方体表面积为40平方厘米,上、下两个面为正方形,如果正好可以截成两个 相等体积的正方体,则这个长方体的体积是 16立方厘米. 解:40÷10=4(平方厘米),因为2×2=4,所以小正方体的棱长是2厘米,则体积是: 2×2×2×2=16(立方厘米) 3.一个长方体,长与宽之比是2:1,宽与高之比是3:2,已知全部棱长之和是220cm, 长方体的体积是4500立方厘米 解:根据“长与宽之比为2:1,宽与高之比为3:2”,可得:长:宽:高=6:3:2, 利用棱长总和求出一组长宽高的和是:220÷4=55厘米,由此再利用长宽高的比分别求 出这个长方体的长宽高,再根据长方体3的体积公式V=abh,即可解答.
长方体正方体表面积和体积ppt(共21张PPT)
长方体的体积=长×宽×高 V=abh
长方体的体积=长×宽×高
=底面积×高
V=Sh
正方体的体积=长×宽×高 =棱长×棱长×棱长
V=a3
长=a
高=h 宽=b
第三节 长方体正方体的体积
习题:
1、求下列图形的体积。
3
第长二方节 体上面(长或方下体面正)方的体面的积表=面长积×宽
长做方一体 个或如正图方所体示6的个长面方的体总纸面盒积,,长叫6厘做米它,的宽表5面厘积米。,高4 厘米,至少要用多少平方厘米硬纸板?
4面第5×积三24、是 节=2_0光_(_平_明方_长_厘纸_3方_米_体盒_)正__厂方__体生__的_产_体_;积一1 种正方形1纸2 板箱,棱长是8分米,体积是多少立方分米?
=棱上长面是积1d+m下的面正积方+前体面,积体+积后是面1积d+m左3 面;积+右面积=30 ×2 +24 ×2 +20 ×2 =148(平方厘米)
第三节
长方体正方体的体积
需要引入的概念
计算体积,常用到的体积单位:立方厘米,立方分米,立方米,也可以写成:cm3,dm3,m3
棱长是1cm的正方体,体积是1 cm3 ;
棱长是1m的正方体,体积是1m3
一个手指尖的体积大约是1 cm3
可以用3根1m的木条做成一个互 成直角的架子,放到墙角,看看 体积为1 m3 是多大哦!
4cm 5 第棱二长节 是1dm的长正方方体体正,方体体积的是表1面d积m3 ;
dm
8cm 第5×一4节=20(平方回厘米顾)
第做三一节 个如图所长示方的体长正方方体体纸的盒体,积长6厘米,宽5厘米,高4 厘米,至少要用多少平方厘米硬纸板?
长方体的体积=长×宽×高
=底面积×高
V=Sh
正方体的体积=长×宽×高 =棱长×棱长×棱长
V=a3
长=a
高=h 宽=b
第三节 长方体正方体的体积
习题:
1、求下列图形的体积。
3
第长二方节 体上面(长或方下体面正)方的体面的积表=面长积×宽
长做方一体 个或如正图方所体示6的个长面方的体总纸面盒积,,长叫6厘做米它,的宽表5面厘积米。,高4 厘米,至少要用多少平方厘米硬纸板?
4面第5×积三24、是 节=2_0光_(_平_明方_长_厘纸_3方_米_体盒_)正__厂方__体生__的_产_体_;积一1 种正方形1纸2 板箱,棱长是8分米,体积是多少立方分米?
=棱上长面是积1d+m下的面正积方+前体面,积体+积后是面1积d+m左3 面;积+右面积=30 ×2 +24 ×2 +20 ×2 =148(平方厘米)
第三节
长方体正方体的体积
需要引入的概念
计算体积,常用到的体积单位:立方厘米,立方分米,立方米,也可以写成:cm3,dm3,m3
棱长是1cm的正方体,体积是1 cm3 ;
棱长是1m的正方体,体积是1m3
一个手指尖的体积大约是1 cm3
可以用3根1m的木条做成一个互 成直角的架子,放到墙角,看看 体积为1 m3 是多大哦!
4cm 5 第棱二长节 是1dm的长正方方体体正,方体体积的是表1面d积m3 ;
dm
8cm 第5×一4节=20(平方回厘米顾)
第做三一节 个如图所长示方的体长正方方体体纸的盒体,积长6厘米,宽5厘米,高4 厘米,至少要用多少平方厘米硬纸板?
《长方体和正方体的体积》ppt课件
06 课堂小结与回顾
关键知识点总结
长方体和正方体的体积公式
长方体的体积V=a×b×c,正方体的体积V=a^3,其中a、 b、c分别为长方体的长、宽、高,a为正方体的棱长。
体积单位的认识与换算
常见的体积单位有立方厘米(cm³)、立方分米(dm³)、立方 米(m³)等,需掌握各单位之间的换算关系。
实际问题的应用
提出改进方案
03
针对可能出现的误差,提出相应的改进方案,如提高测量精度、
使用更精确的计算方法等。
05 拓展延伸:不规则物体体 积估算方法
排水法原理及应用
原理
将不规则物体完全浸没于水中,通过计算物体排开水的体积来估 算物体的体积。
应用
适用于易溶于水或与水发生反应的物体以外的任何不规则物体。 如石块、金属块等。
公式应用注意事项
单位统一
在应用公式计算体积时,需要确 保长度、宽度和高度的单位统一,
避免出现错误结果。
公式适用范围
长方体和正方体的何体需要采用其他方
法进行计算。
公式变形应用
在实际应用中,可以根据需要对 公式进行变形,如已知体积和其
中两个维度求第三个维度等。
体积单位换算
1立方米=1000立方分米,1立 方分米=1000立方厘米。
实物体积感受
常见物体体积
列举生活中常见物体的体积,如 一个苹果的体积约为200立方厘米, 一个电冰箱的体积约为0.5立方米
等。
体积比较
通过比较不同物体的体积大小,让 学生感受体积的概念。
体积估算
通过估算物体的体积,培养学生的 空间想象力和估算能力。
02 长方体和正方体认识
长方体特点与性质
01
02
《长方体和正方体的体积计算》长方体和正方体PPT课件2
13立方米=( 13000)立方分米=(13000000)立方厘米
2320立方分米=( 2.32 )立方米 3.6平方米=( 360 )平方分米 7.8米=( 78 )分米
算算这个正方体的体积是多少? 正方体的体积=棱长 ×棱长×棱长
10 × 10× 10 = 1 000 ( cm3 )
10cm 10cm
长方体和正方体体积和表面积的比较
类别
表 长方体 面 积 正方体
意义
6 个面 的总面 积
计量 单位
计算方法 条件
平方厘米 (长×宽+长×
长 宽
高+宽×高)×2 高
平方分米
平方米
棱长×棱长×6
棱 长体 积ຫໍສະໝຸດ 长方体 正方体立方厘米
所占空 间的大 立方分米
小
立方米
长×宽×高 棱长×棱长×棱长
长 宽 高 棱 长
体积
物积占空间 的大小
容积
一個容器能容纳物体 的体积
立方厘米(cm3) 立方米(m3)
毫升(mL) = 立方厘米(cm3)
升(L) 1 升 = 1 立方分米 1 升 = 1 000 毫升
思考问題
× 物体所占地面的大小叫做物体的体积。 × 容积和体积的的计算方法相同,意义
也一样。
× 体积是100立方分米的水箱,容积一定
3
长 宽 高 体积
3 × 2 × 2 = 12
体积 长 宽 高
1 1 5 = 5× 1 ×1
5
1 3 15 = 5 × 3 × 1
5
2 2
3
12 = 3 × 2 × 2
h b
a
长方体的体积=长×宽×高
V abh
V = abh
五年级下册数学《长方体和正方体体积计算》课件
长方体和正方体的体积计算实例
1
长方体体积计算实例
通过平面图或直接测量确定长、宽、高,
正方体体积计算实例
2
代入公式计算出长方体的体积。
通过直接测量边长,代入公式计算出正 方体的体积。
体积的单位换算
不同单位之间的换算
本节将介绍不同单位如立方米、立方分米、毫升之 间的换算公式。
实例分析和解决
通过实际的例子来演示不同单位之间的换算,加深 大家的理解。
五年级下册数学《长方体 和正方体体积计算》PPT 课件
本PPT课件详细介绍了长方体和正方体的定义、体积计算公式、体积计算实例、 单位换算以及在生活中的应用。欢迎大家观看学习。
长方体和正方体的定义
长方体的定义和特点
长方体是一种长、宽、高不相等的立体图形,有六 面,相邻两面的以长和宽为底的矩形是相等的。
正方体的定义和特点
正方体是一种长、宽、高相等的立体图形。它有六 个完全相等的面,每个面均为正方形。
体积计算公式
长方体体积计算公式
长方体的体积公式是V=长×宽×高。本节还会介 绍长方体体积计算公式的推导及应用。
正方体体积计算公式
正方体的体积公式是V=边长³。本节还会介绍正 方体体积计算公式的推导及应用。
长方体和正方体在生活中的应用
1
长方体和正方体的应用范围
长方体和正方体的应用范围十分广泛,涵盖了建筑、数学、生产等领域。
2
实际生活中的应用案例
通过生活中常
1 定义和特点回顾
通过本节课程,大家了解 了长方体和正方体的定义 和特点。
2 体积计算公式和单位
的换算回顾
本节还介绍了长方体和正 方体体积计算公式的推导 及应用,以及不同单位之 间的换算。
《长方体和正方体体积计算2》PPT课件
一块正方体的方钢,棱长是 一块正方体的方钢,棱长是20cm,把它锻 , 造成一个高80cm的长方体模具。这个长方 的长方体模具。 造成一个高 的长方体模具 体模具的底面积是多少平方厘米? 体模具的底面积是多少平方厘米?
20×20×20÷80 × × ÷ =8000÷80 ÷ =100(平方厘米) 平方厘米) 平方厘米
计算下面长方体和正方体的体积。
做一做
4cm 5dm 5dm
8cm
做一做
一根长方体木料, 5m, 一根长方体木料,长5m,横截面 的面积是0.06m 的面积是0.06m2。这根木料的体 积是多少? 积是多少?
V=Sh
=0.06×5
=0.3(m³) 0.06m2 答;这根木料的体积是0.3m³。 这根木料的体积是
一个长方体的钢肧, 一个长方体的钢肧,横截面的面积是 8dm²,长是 长是0.7dm.十个这样的钢肧体 长是 十个这样的钢肧体 积一共是多少? 积一共是多少? 8×0.7×10 =5.6×10 =56(dm³) 答十个这样的钢肧体积一共是 十个这样的钢肧体积一共是56dm³。 十个这样的钢肧体积一共是 。
答:这个长方体模具的底面积是100平方 这个长方体模具的底面积是 平方 厘米。 厘米。
作业: 作业:
A练习七 练习七5---7题 练习七 题
B练习七 、6题 练习七5、 题 练习七
判断
1. 物体的大小叫做物体的体积 物体的大小叫做物体的体积. 2. 把一块正方体橡皮泥捏成一个长方体后, 把一块正方体橡皮泥捏成一个长方体后, 虽然它的形状变了, 虽然它的形状变了,但是它所占有的空间大小 不变. 不变 3. 在一个长方体中,从一个顶点出发的三条 在一个长方体中, 棱的和是7.5分米,这个长方体的棱长总和是 分米, 棱的和是 分米 30分米. 分米. 分米 4. 一个正方体的棱长是原来的 倍,它的体 一个正方体的棱长是原来的2倍 积是原来的4倍 积是原来的 倍.
《长方体和正方体的表面积、体积》完整版ppt课件
21
0.4m
做一个微波炉的包装箱, 至少要用多少平方米的硬纸板?
这里要求的是这个长方 体包装箱的表面积。
上、下每个面,长_0_._7_m_,宽_0_._5_m_,面积是_0_._3_5_m__2; 前、后每个面,长_0_._7_m_,宽_0_._4_m_,面积是_0_._2_8_m__2; 左、右每个面,长_0_._5_m_,宽_0_._4_m_,面积是_0_._2_m__2_。
精选ppt课件2021
7
折叠后,哪些图形能围成左侧的正 方体?在括号中画“√”。
(√)
(√)
(×)
精选ppt课件2021
8
亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易 衣柜换布罩(如下图,没有底面)。至少需要用布多少 平方米?
0.75×0.5+0.5×1.6×2+0.75×1.6×2 =0.375+1.6+2.4 =4.375(m2) 答:至少需要用布4.375m2。
★解法一:
7×5 ×5-7 ×5 ×3 =175 -105 =70(立方分米)
答:这个铁球的体积是70立方分米。
★解法二
7×5 ×(5-3) =35 ×2 =70(立方分米)
答:这个铁球的体积是70立方分米。
精选ppt课件2021
44
一根长方体木料,长5m,横截面的 面积是0.06m2。这根木料的体积是多少?
精选ppt课件2021
24
计量体积要用体积单位,常用的体积单位有: 立方厘米,立方分米和立方米。
可以分别写成cm3,dm3和m3。 (1)棱长是1cm的正方体,体积是1cm3。
一个手指尖的体积 大约是1cm3。
1cm3
(2)棱长是1dm的正方体,体积是1dm3。
长方体与正方体的体积课件(32张PPT)
棱4c长m 正方体体积= 棱长 × 棱长 ×棱长
正方体体积 = 棱长×棱长×棱长
V = a . a . a = a3
棱长
棱长
a3读作a的立方
表示3个a相乘
23怎么读?表示什么?算式是?
读作:2的立方 表示:3个2相乘 算式:2×2×2=8 13 = ( 1 )×( 1 )×( 1 ) =( 1 ) 33 = ( 3 )×( 3 )×( 3 ) =( 27 ) 103 = (10 )×(10 )×(10 ) =(1000)
( 6×5×3=90 )c块m3。
长×宽 ×高=长方体的体积
3 cm
5 cm
结论
长方体体积=长×宽×高
应用
学校操场需要搭建一个长方体的舞台,它的长为8米, 宽为5米,高为2米,这个舞台的体积是多少立方米?
解:V = abh = 8×5×2 = 80(m3)
答:这个舞台的体积是80立方米。
5m 4m
5cm 3cm
4cm
4×3×5 =60 (cm3) 答:这个长方体的体积 是60立方厘米。
0.2m 0.2m 0.2m
0.2×0.2×0.2 =0.008 (dm 答:这个正方体的3)体积 是0.008立方米。
10cm 10cm
B
10cm
25cm
C
6cm 7cm
10 × 10 × 10=1000 (cm3) 25× 7 × 6=1050 (cm3) 1000 cm3<1051dm3
4分米
4×3
2.5分米 3分米
1dm3
4分米
4×3
2.5分米 3分米
1dm3
4分米
4×3
2.5分米 3分米
1dm3
《长方体和正方体的体积》长方体和正方体PPT课件
长方体的体积=长×宽×高
× 一层小正方体的个数
几层
h
×
a
b
V = abh
13
1、正方体的棱长有什么特点? 2、可以怎样求正方体的体积? 3、与同学交流你的想法。
棱长
棱长
棱长
长正方体的体积 = 棱长长 × 棱宽长× 棱高长
V正= a • a • a
棱长a a棱长
棱a长
正方体的体积V == 棱a长长a×a棱宽长 ×棱高长
每排个数 排数 层数
4
3
1
体积 12
3
2
2
12
12
1
1
12
6
2
1
12
每排个 数
排数
4
3
3
2
12
1
6
2
层数
小正方 长方体 体数量 的体积
1 12 12
2 12 12
1 12 12
1 12
12
议一议,你从表中你发现了什么?
每排的个数×排数×层数=长方体的体积
= = =
长
宽
高
长:4 厘米 宽:31 厘米 高:21 厘米 体积:12424 立方厘米
体积的大小看什么 ? 一个物体中含有多少个体积单位,它的体 积就是多少。
?
体积是12立方厘米 因为含有12个1立方厘米
操作提示:
1、用12个棱长1厘米的正方体摆成形状不同的长方体,可以摆几 种?
(1)看看摆出的长、宽、高分别是多少?
(2)说一说,怎样计算长方体中所含的小正方体个数?
(3)把小组内摆出不同的长方体的相关数据填入表内。
第一单元 · 长方体和正方体
长方体正方体的认识课件ppt课件
物流运输 在物流运输中,长方体和正方体常被用作货物的装载单元, 通过合理的空间利用和堆放方式,提高运输效率和降低成 本。
艺术设计
长方体和正方体也是艺术设计中常用的元素之一,通过对 其进行变形、组合、叠加等操作,可以创造出丰富多样的 艺术效果和视觉冲击力。
06
练习题与课堂互动环节
判断题练习
正方体的六个面都是正 方形。
THANK YOU
感谢聆听
建筑结构
在建筑结构中,长方体和正方 体常被用作承重结构的基本单 元,如梁、柱、楼板等,其坚 固耐用的特性保证了建筑物的 安全性。
建筑装饰
长方体和正方体也被广泛应用 于建筑装饰中,如门窗、隔断、 装饰画等,通过不同的材质和 颜色搭配,营造出丰富多彩的 室内环境。
包装设计领域应用实例分析
包装容器
长方体和正方体是包装设计中常 用的容器形状,如纸箱、木箱、 塑料盒等,其规整的形态便于堆 放和运输,同时也方便消费者携
长方体与正方体关系
长方体与正方体都属于六面体 的范畴。
正方体是长方体的一种特殊情 况,当长方体的长、宽、高都 相等时,就变成了正方体。
长方体和正方体在几何性质上 有很多相似之处,如都有6个面、 12条棱、8个顶点等。但在一些 特定的性质上,如面的形状和 大小、棱的长度等,两者又有 所不同。
02
长方体与正方体性质探究
计算长方体水池的容积、长方体木块的体积等。
正方体体积公式推导及应用
1 2
正方体体积公式 V = a^3
公式推导 正方体每个面都是正方形,面积相等,因此体积 等于一个面的面积乘以高(即边长)。
3
应用举例 计算正方体骰子的体积、正方体砖块的体积等。
复杂组合图形体积计算方法
艺术设计
长方体和正方体也是艺术设计中常用的元素之一,通过对 其进行变形、组合、叠加等操作,可以创造出丰富多样的 艺术效果和视觉冲击力。
06
练习题与课堂互动环节
判断题练习
正方体的六个面都是正 方形。
THANK YOU
感谢聆听
建筑结构
在建筑结构中,长方体和正方 体常被用作承重结构的基本单 元,如梁、柱、楼板等,其坚 固耐用的特性保证了建筑物的 安全性。
建筑装饰
长方体和正方体也被广泛应用 于建筑装饰中,如门窗、隔断、 装饰画等,通过不同的材质和 颜色搭配,营造出丰富多彩的 室内环境。
包装设计领域应用实例分析
包装容器
长方体和正方体是包装设计中常 用的容器形状,如纸箱、木箱、 塑料盒等,其规整的形态便于堆 放和运输,同时也方便消费者携
长方体与正方体关系
长方体与正方体都属于六面体 的范畴。
正方体是长方体的一种特殊情 况,当长方体的长、宽、高都 相等时,就变成了正方体。
长方体和正方体在几何性质上 有很多相似之处,如都有6个面、 12条棱、8个顶点等。但在一些 特定的性质上,如面的形状和 大小、棱的长度等,两者又有 所不同。
02
长方体与正方体性质探究
计算长方体水池的容积、长方体木块的体积等。
正方体体积公式推导及应用
1 2
正方体体积公式 V = a^3
公式推导 正方体每个面都是正方形,面积相等,因此体积 等于一个面的面积乘以高(即边长)。
3
应用举例 计算正方体骰子的体积、正方体砖块的体积等。
复杂组合图形体积计算方法
《长方体和正方体的体积》ppt课件
长方体和正方体的实际应用
建筑与工程
长方体和正方体的体积计算在建筑和工程领域中广泛应用,用于计算材料的数量运输行业,长方体和正方体的体积计算用于优化货物的装载和运输空间的利用。
家居设计
长方体和正方体的体积计算在家居设计中起着重要的作用,用于规划家具的摆放和布局。
正方体的图示
以下是一个正方体的示意图,展示了其各个面以及 边长的标记。
如何测量长方体和正方体的体积
1 长方体的测量方法
使用尺子分别测量长方体的长度、宽度和高度,并将这些值代入体积公式中进行计算。
2 正方体的测量方法
使用尺子测量正方体的边长,并将边长值代入体积公式中进行计算。
计算示例和练习
让我们通过一些实际的计算示例和练习,加深对长方体和正方体体积计算的理解和应用能力。
《长方体和正方体的体积》
欢迎来到《长方体和正方体的体积》ppt课件。在这个课程中,我们将探索长 方体和正方体的定义、计算公式以及测量体积的方法。
长方体和正方体的定义
长方体是一个具有六个面的几何体,其中的对立面平行且相等。正方体是一 个特殊的长方体,其六个面都是正方形。
长方体的公式和图示
长方体的公式
结论和要点
长方体和正方体的体积计算是应用广泛且重要的数学概念。通过理解其定义、公式和实际应用,我们可以应用 这些知识解决现实生活中各种问题。
长方体的图示
长方体的体积可以通过公式 V = l × w × h 来计算,
以下是一个长方体的示意图,展示了其各个面以及
其中 l、w 和 h 分别代表长方体的长度、宽度和高度。 长度、宽度和高度的标记。
正方体的公式和图示
正方体的公式
正方体的体积可以通过公式 V = a × a × a 来计算, 其中 a 代表正方体的边长。
《长方体和正方体的认识》PPT课件
包装设计应用
包装容器
长方体和正方体是常见的 包装容器形状,如纸箱、 木箱等,用于装载和保护 物品。
节约空间
在物流运输和仓储过程中 ,使用长方体和正方体形 状的包装可以更有效地利 用空间,降低成本。
美观实用
长方体和正方体的包装设 计可以实现美观与实用的 平衡,提升产品的整体形 象和市场竞争力。
其他领域应用
02
长方体和正方体性质探究
长方体性质
01
长方体有6个面,每个面 都是矩形,相对的两个 面完全相同。
02
长方体有12条棱,其中 4条长、4条宽、4条高 ,分别对应三组相对的 面。
03
长方体有8个顶点,每个 顶点由3条棱相交而成。
04
长方体的对角线相等, 且互相平分。
正方体性质
01
02
03
04
正方体是特殊的长方体,它的 6个面都是正方形,且每个面
正方体表面积公式推导
正方体表面积 = 6 × 边长^2
公式推导:正方体有6个面,每个面的面积都是边长×边长。因为正方体所有面都 相等,所以表面积计算公式为上述公式。
实例分析与计算
实例1
一个长方体的长、宽、高分别为5cm、 3cm、2cm,求其表面积。
实例2
一个正方体的边长为4cm,求其表面积。
计算
根据长方体表面积公式,表面积 = 2 × (5cm × 3cm + 5cm × 2cm + 3cm × 2cm) = 2 × (15cm^2 + 10cm^2 + 6cm^2) = 2 × 31cm^2 = 62cm^2。
计算
根据正方体表面积公式,表面积 = 6 × 4cm^2 = 96cm^2。
《正方体的体积》PPT
V = a×a×a = a·a·a
如果用V表示正方体的体积,用a表示正方体的棱长,那么正方体的体积公式可以写成:
V = a³
a³读作“a的立方”,表示三个a相乘。
自己总结正方体的体积公式。
长方体和正方体的体积公式有什么相同点?
长方体和正方体底面的面积叫ቤተ መጻሕፍቲ ባይዱ底面积。
长方体(或正方体)的体积=底面积×高如果用S表示底面积,上面的公式可以写成:
- .
第 五 单元 长方体和正方体的体积
第 3 课时 正方体的体积
例4、计算下面正方体的体积。
3×3×3=27(立方厘米)
用长方体的体积公式能计算正方体的体积吗?为什么?
可以,因为正方体是长、宽、高都相等的长方体……
这样计算:
正方体的体积=棱长×棱长×棱长
4.5
再求15根木料的体积:0.3×15 = 4.5(立方米)
用体积为1立方厘米的立方体摆出下面的立体图形。写出各个立体图形的体积。
32
20
18
12
24
练一练: 计算下面长方体和正方体的面积。
20×20×5=2000(cm³)
8×12×4=384(dm³)
2×2×2=8(m³)
V = Sh
下面的图形是用棱长1cm的小正方体拼成的,说出它们的体积各是多少?
9立方厘米
8立方厘米
6立方厘米
4立方厘米
例5、一根长方体木料,长是5米,横断面的面积是0.06平方米。15根这样的木料的体积是多少立方米?
先求什么,再求什么?
答:15根这样的木料的体积是( )立方米。
先求一根木料的体积:0.06×5=0.3(平方米)
如果用V表示正方体的体积,用a表示正方体的棱长,那么正方体的体积公式可以写成:
V = a³
a³读作“a的立方”,表示三个a相乘。
自己总结正方体的体积公式。
长方体和正方体的体积公式有什么相同点?
长方体和正方体底面的面积叫ቤተ መጻሕፍቲ ባይዱ底面积。
长方体(或正方体)的体积=底面积×高如果用S表示底面积,上面的公式可以写成:
- .
第 五 单元 长方体和正方体的体积
第 3 课时 正方体的体积
例4、计算下面正方体的体积。
3×3×3=27(立方厘米)
用长方体的体积公式能计算正方体的体积吗?为什么?
可以,因为正方体是长、宽、高都相等的长方体……
这样计算:
正方体的体积=棱长×棱长×棱长
4.5
再求15根木料的体积:0.3×15 = 4.5(立方米)
用体积为1立方厘米的立方体摆出下面的立体图形。写出各个立体图形的体积。
32
20
18
12
24
练一练: 计算下面长方体和正方体的面积。
20×20×5=2000(cm³)
8×12×4=384(dm³)
2×2×2=8(m³)
V = Sh
下面的图形是用棱长1cm的小正方体拼成的,说出它们的体积各是多少?
9立方厘米
8立方厘米
6立方厘米
4立方厘米
例5、一根长方体木料,长是5米,横断面的面积是0.06平方米。15根这样的木料的体积是多少立方米?
先求什么,再求什么?
答:15根这样的木料的体积是( )立方米。
先求一根木料的体积:0.06×5=0.3(平方米)
小学五年级数学教学课件《长方体和正方体的体积》
长方体或正方体底面的面积叫作底面积。
底面
底面
长方体的体积=长×宽×高 正方体的体积=棱长×棱长×棱长
底面积
底面积
长方体(或正方体)的体积=底面积×高 V = Sh
五 实践应用,内化知识
一块长方体豆腐的尺寸如下图所示,它的体积是多少?
V=abh Biblioteka 15×7×5 =525(cm3)【选自教材P31 做一做 第1题】
七、作业设计
(见“状元成才路”系列丛书《创优作业100分》对应课时作业。)
一、计算下面各立体图形的体积。
V=abh =10×4×5 =200(cm3)
V=a3 =7×7×7 =343(m3)
二、把下表中长方体或正方体的相关数据补充完整。
512 m3
15 cm
52 dm2
1.启发思考。
讨论一下:怎样计算长方体的体积?
求长方体的体积就 是看长方体有多少 个体积单位。
把长方体分成若干 单位体积的小正方 体,就可以……
2.操作实验。
用 12 个棱长为 1 cm 的小正方体拼摆不同形状的长方体,它们的长、宽、 高各是多少?体积又是多少呢?四人一小组,一起动手操作并填写表格。
小正方体 长方体的 的个数 体积
12 1 1
12
12
431
12
12
621
12
12
322
12
12
长方体所含体积单位的 个数就是长方体的体积。
长方体的体积 = 每行的个数×行数×层数 长方体的体积 = 长 × 宽 × 高
如果用字母 V 表示长方体的体积,用 a、b、h 分别表示长方体的长、宽、高。
长方体的体积=长×宽×高
答:它的体积是525cm3。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小正方体个数 体积(cm3)
(个)
12 24
12 24
D
长(cm) 宽(cm) 高(cm) 4 3 1 长方体A 4 3 2 长方体B 4 3 3 长方体C 11 5 8 长方体D
小正方体个数(个)
体积 (cm3)
12 24 36
440
12 24 36 440
想一想:长方体的体积与它的长、宽、高 有什么关系? 长方体的体积正好是长、宽、高的乘积。
V = abh = 6×2.2×0.4 = 5.28(立方米)
正方体的体积 = 棱长×棱长×棱长
如果用字母V表示正 方体的体积,用a表示它 的棱长,那么正方体的体 积公式可以写成:
a
a a
V = a3
一块正方形的石料,棱长是 6 dm。这块石 料的体积是多少立方分米? 解: 石料的体积 V= a3= 63= 6×6×6 = 216(dm3)
7×4×3=84(立方分米)
(2)、一个长方体纸板箱的占地面积是100平方 厘米,高是50厘米,它的体积是多少立方厘 米?
100×50=5000(立方厘米)
(3) 、一个长方体的底面边长是2分米, 高是10分米,它的体积是多少立方分米?
2×2×10=40(立方分米)
2分米 2分米
综合应用
某体育场有一个长6.5米、宽4米、深0.5米 的长方体沙坑,已知每立方米黄沙重1.7吨,填满这个 沙坑需要用黄沙多少吨?
答:这个铁球的体积是70立方分米。
★解法二
7×5 ×(5-3)
=35 ×2
=70(立方分米)
答:这个铁球的体积是70立方分米。
1cm3
(2)棱长是1dm的正方体,体积是1dm3。 (3)棱长是1m的正方体,体积是1m3。
棱长
体积
1厘米(cm) 1分米(dm) 1米(m)
1立方厘米(cm3) 1立方分米(dm3) 1立方米(m3)
说一说1cm,1cm2,1cm3分别是用来计算什么 量的单位,他们有什么不同?
下列各图都是由体积为1立方厘 米的小正方体组成的,根据要求 完成下表。
大石小学 王戈
思考:把一块石头放入有水的玻璃杯中,水 面就上升,这是为什么?
下面的各个物体,哪一个物体体积大?
怎样比较这三个物体的体积呢?
计量体积要用体积单位,常用的体积单位有: 立方厘米,立方分米和立方米。 可以分别写成cm3,dm3和m3。 (1)棱长是1cm的正方体,体积是1cm3。
一个手指尖的体积 大约是1cm3。
1.7 ×(6.5 ×4 ×0.5) = 1.7 ×13 = 22.1(吨) 答:填满这个沙坑需要用黄沙22.1吨。
考考你
5分米
3分米 5分米
7分米
一个长方体水箱,长7分米,宽5分米,水深3分米。把一个铁球浸 没在水中,水面升高到5分米。这个铁球的体积是多少立方分米?
★解法一:
7 × 5 × 5- 7 × 5 × 3 =175 -105 =70(立方分米)
答:这块石料的体积是216dm3。
长方体或正方体底面的面积叫做底面积。
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
底面积
底面积
所以,长方体和正方体的体积也可以这样来计算。 长方体(或正方体)的体积=底面积×高 如果用字母表示底面积,上面的公式可以写成: V=Sh
综合练习
(1)、一个长方体石块,长7分米,宽4分米,高3 分米,它的体积是多少立方分米?
A
B
C
小正方体 数量\个
长\cm 宽\cm 高\cm
体积\ cm3
长方体A 长方体B 长方体C 长方体D
A
长(cm) 宽(cm) 高(cm) 长方体A 长方体B 长方体C 长方体D
4 3 1
小正方体个数 (个)
体积
12
12
B
长(cm) 宽(cm) 高(cm) 4 3 1 长方体A 4 长方体B 3 2 长方体C 长方体D
长方体的体积 = 长×宽×高
如果用字母V表示长 方体的体积,用a、b、h 分别表示长方体的长、宽、 高,那么长方体的体积公 式可以写成:
h a b
V = abh
计算下面长方体的体积
0.8 分米
3 分米 6 米 2. 2 米 0. 4 米
2 分米
V = abh = 2×0.8×3 = 4.8(立方分米)