单位圆与三角函数线_ ppt课件
单位圆与任意角的三角函数课件-高一下学期数学北师大版(2019)必修第二册
分析:如图设角的终边与单位圆交于点,则点
, ,且 = 1。点 , 在角的终边上,
则 = 2 + 2 ,分别过点, 作轴的垂线, ,
垂足为, ,易知△ ∽△ ,所以
点 , ,那么:
三角函数
的正弦函
数
的余弦函
数
定义
记法
符号表示
点的纵坐标
=
点的横坐标
=
概念剖析:
(1)是一个任意角,也就是实数(弧度数)所以,设是一个任意角实际上就
是说明它是一个任意的实数
(2)终边与单位圆的交点 , ,实际上给出了两对对应关系
2 11
,
3
6
上的最值。
例7、比较函数值的大小
(1)下列结论正确的是( )
A、400 > 50
B、220 < 590
C、130 > 500
D、 −40 < 310
(2)比较下列各组数的大小
6
6
①3, 4
② ,
对 点 练 习
1、在单位圆中, = − :(1)画出角;(2)求角的正弦函数值和余弦函数
4
值。
2、若角的终边过点
1 3
,
2 2
,求,。
3、已知角的顶点为坐标原点,始边为轴的非负半轴,若 4, 是角终边上一
点,且 =
2 5
− ,求的值。
5
3、常见的特殊角的三角函数值
实数对应点的纵坐标,实数对应点的横坐标。
由于对于任意一个角,它的终边是唯一确定的,所以交点 , 唯一确定,也
高中数学必修4 1.2.2单位圆与三角函数线
利用三角函数线比较函数值大小课后作业:一、选择题1.对三角函数线,下列说法正确的是( ) A .对任何角都能作出正弦线、余弦线和正切线 B .有的角正弦线、余弦线和正切线都不存在C .任何角的正弦线、正切线总是存在,但余弦线不一定存在D .任何角的正弦线、余弦线总是存在,但是正切线不一定存在2.角α(0<α<2π)的正弦线与余弦线长度相等且符号相同,那么α的值为( )A.π4或34πB.5π4或74πC.π4或54πD.π4或74π 3.若角α的正切线位于第一象限,则角α属于( )A .第一象限B .第一、二象限C .第三象限D .第一、三象限 4.下列命题中为真命题的是( )A .三角形的内角必是第一象限的角或第二象限的角B .角α的终边在x 轴上时,角α的正弦线、正切线都变成一个点C .终边在第二象限的角是钝角D .终边相同的角必然相等5.若-3π4<α<-π2,则sin α、cos α、tan α的大小关系是( )A .sin α<tan α<cos αB .tan α<sin α<cos αC .cos α<sin α<tan αD .sin α<cos α<tan α6.在[0,2π]上满足sin x ≥12的x 的取值范围是( )A .[0,π6]B .[π6,5π6]C .[π6,2π3]D .[5π6,π]7.在(0,2π)内使cos x >sin x >tan x 成立的x 的取值范围是( )A .(π4,3π4)B .(5π4,3π2)C .(3π2,2π)D .[3π2,7π4]8.如果cos α=cos β,则角α与β的终边除可能重合外,还有可能( )A .关于x 轴对称B .关于y 轴对称C .关于直线y =x 对称D .关于原点对称9.设a =sin 5π7,b =cos 2π7,c =tan 2π7,则( )A .a <b <cB .a <c <bC .b <c <aD .b <a <c 10.函数x x y cos sin -+=的定义域是( )A .))12(,2(ππ+k k ,Z k ∈B .])12(,22[πππ++k k ,Z k ∈C .])1(,2[πππ++k k , Z k ∈ D .[2k π,(2k+1)π],Z k ∈二、填空题11.不等式cos α≤12的解集为________.12.若θ∈(3π4,π),则下列各式错误的是________.①sin θ+cos θ<0;②sin θ-cos θ>0;③|sin θ|<|cos θ|;④sin θ+cos θ>0.13.若0≤sin θ<32,则θ的取值范围是________.14.函数y =sin x +cos x -12的定义域是____________.。
09三角函数在单位圆的表示方法
09三角函数在单位圆的表示方法1在理解任意角三角函数定义的基础上,理解三角函数在单位圆上的表示方法,理解正弦线、余弦线,并能由图象讲出三角函数的值域和已知三角函数值作出对应的角。
三角函数(正弦、余弦)在单位圆的表示已知三角函数值作出对应的角。
讲授与讨论相结合三角函数在单位圆的表示方法课本P14 图4-12MP y yr y ====1sin α -1≤sin α≤1 -1≤cos α≤1例 题 OM x xr x ====1cos α例 题P20 第2 题一、三角函数的定义,指出:“定义”从代数的角度揭示了三角函数是一个“比值”,三角函数的定义已经明确告诉角的终边上取点具有任意性,如果我们在角的终边上取适当的点,使比值中的分母为1,那末三角函数就可以用相应的一个坐标表示,这样讨论三角函数就比较方便。
二、单位圆的定义在直角坐标系中,以原点为圆心,以1为半径的圆。
三、角α的正弦、余弦在单位上的表示1.作图:(课本P14 图4-12 )此处略 …… …… ……… …… ……设任意角α的顶点在原点,始边与x 轴的非负半轴重合,角α的终边与单位圆交于P 过P(x,y)作PM ⊥x 轴于M ,简单介绍“向量”(带有“方向”的量—用正负号表示),“有向线段”(带有方向的线段),方向可取与坐标轴方向相同,长度用绝对值表示。
例:有向线段OM ,OP 长度分别为y x ,当OM=x 时 若0>x OM 看作与x 轴同向 OM 具有正值x若0<x OM 看作与x 轴反向 OM 具有负值x2.MP y y r y ====1sin α OM x x r x ====1cos α 这就是说:角α的正弦等于它的终边和单位圆的交点的纵坐标,而它的余弦则等于交点的横坐标。
有向线段MP,OM,分别称作α角的正弦线,余弦线。
由图可知, -1≤sin α≤1 -1≤cos α≤1即sin α与cos α的值域都是[-1,1]。
《三角函数的概念》PPT教学课件(第1课时三角函数的概念)
象限.
(2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最
后判断乘积的符号.
栏目导航
25
(1)C
[因为点P在第四象限,所以有tan cos
α>0, α<0,
由此可判断角α终边
在第三象限.]
(2)[解] ①∵145°是第二象限角,
∴sin 145°>0,
∵-210°=-360°+150°,
终边关于
x
轴对称,若
sin
α=15,则
交于点P(x,y), 则角β的终边与单位圆相交于点
sin β=________.
Q(x,-y),
由题意知y=sin α=15,所以sin β
=-y=-15.]
栏目导航
4.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos253π+tan-154π. [解] (1)sin 180°+cos 90°+tan 0°=0+0+0=0. (2)cos253π+tan-154π =cos8π+π3+tan-4π+π4 =cosπ3+tanπ4=12+1=32.
栏目导航
24
三角函数值符号的运用
【例 2】 (1)已知点 P(tan α,cos α)在第四象限,则角 α 终边在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
(2)判断下列各式的符号:
①sin 145°cos(-210°);②sin 3·cos 4·tan 5.
[思路点拨] (1)先判断 tan α,cos α 的符号,再判断角 α 终边在第几
5.公式一
sin α cos α tan α
8
栏目导航
1.sin(-315°)的值是( )
课件10:1.2.2 单位圆与三角函数线
得 sin α=ON=MP,tan α=AT,又α= 的长,
所以 S△AOP= 1 ·OA·MP= 1 sin α,
2
2
1 S 扇形 AOP= ·
的长·OA= 1 ·
的长= 1 α,
2
2
2
S△AOT= 1 ·OA·AT= 1 tan α.
2
2
又因为 S△AOP<S 扇形 AOP<S△AOT,所以 sin α<α<tan 圆于 C、D 两点,连接 OC 与 OD,则 OC 与 OD 2
围成的区域(图②阴影部分)即为角α的终边的范围.故满足条件的角α
的集合为{α|2kπ+ 2π≤α≤2kπ+ 4π,k∈Z}.
3
3
方法技巧 利用三角函数线根据三角函数值的范围求角α的范围.
变式训练 2-1:角 x 在[0,2π]上满足 sin x≥ 1 ,则 x 的取值范围是( ) 2
(2)以A为原点建立y′轴与y轴同向,y′轴与α的终边(或其反向延长 线)相交于点T(或T′)(图②所示),则tan α=AT(或AT′).
我们把轴上向量 OM , ON 和 AT (或 AT )分别叫做α的 余弦线 、 正弦线 和 正切线 .
【拓展延伸】 理解三角函数线应注意的问题 对三角函数线的图形,要弄清以下几点: (1)三角函数线的位置:正弦线在y轴上,余弦线在x轴上,正切线在 过单位圆与x轴正方向的交点的切线上,三条有向线段中两条在 坐标轴上,一条与单位圆相切. (2)三角函数线的方向:正弦线与余弦线由原点指向垂足;正切线 由切点指向α终边(或其反向延长线)与切线的交点. (3)三角函数线的正负,即三条有向线段的正负:凡与x轴或与y轴同 向的为正值,反向的为负值.
单位圆和三角函数线课件(说课)
问题二、P点位于什么位置时,角 的正弦值和
余弦值表示最简单?这时P点的坐标是什么?
问题三、如何用轴上向量表示出角 的正弦值、
余弦值?
.
y
定义:我们把轴上向量OM
,
ON
叫做的 的余弦线、正弦线。
其中 cos = OM ,sin = ON .
B(0,1) N
A`(-1,0) O
P(cosa,sina)
三、教学方法
2、学法分析
类比学习:由正弦线、余弦线的分析类比到正 切线的学习.
探究定向性学习:学生在教师建立的问题构架 下,通过思考、分析、操作、探索,归纳得出 三种三角函数线的定义.
主动合作式学习:学生在归纳得出三种三角函 数线的定义时,通过小组讨论,纠正错误理 解,使问题得以圆满解决.
三、教学方法
练习2、分别作出下列各角的正切线:
(1) (2)5 (3) 2 (4) 13
3
6.
3
6
步骤:1、以A为原点建立 y轴与 y轴同向;
2、y轴与 的终边或其反向延长线相交于点T ,T源自正切线 ATAT四、教学设计
(三)巩固应用,能力形成
例1、分别作出 0,的正弦线、余弦线、正切线:
2
例2、 设是第一象限的角,作 的正弦线、余弦 线、正切线,由图证明下列各等式:
单位圆与三角函数线
2、正切函数线
例2
练习2
三、应用举例 例1
四、课堂小结, 五、布置作业
教学环节 复习引入 概念形成 能力形成 反思小结 布置作业
时间分配 5分钟 9分钟 25分钟 5分钟 1分钟
一、教材分析 二、学情分析 三、教学方法 四、教学设计 五、设计说明
一、教材分析
1.2.1(2)单位圆与三角函数线(高中数学人教A版必修四).ppt
π 5π (2)如图所示,在 0~2π 内作出正切值等于 1 的角:4和 4 , 则在图中所示的阴影区域内的每个角 x(不包括终边在 y 轴上的 角)均满足 tanx≤1.
π 5π π 所以所求的角 x 的集合为: {x|2kπ+2<x≤ 4 +2kπ 或-2+ π π π 2kπ<x≤4+2kπ,k∈Z}={x|kπ-2<x≤kπ+4,k∈Z}.
cos OM tan AT
O P
A(1,0)
α的终边
终边落在第四象限
y
α
sin MP
M A(1,0)
O
P
T
x
cos OM tan AT
α的终边
α的终边 y P α
M
三角函数线
y α的终边 P T x
A(1,0) T
α
O y
O
M A(1,0)
x
sin MP cos OM
3. 特殊情况: ① 当角的终边在x轴上时,点P与点M重合, 点T与点A重合,这时正弦线与正切线都变成 了一点,数量为零,而余弦线OM=1或-1。 ② 当角的终边在y轴上时,正弦线MP=1或-1 余弦线变成了一点,它表示的数量为零,正切 线不存在。
用 途
三角函数线的具体作用 :
1.比较两个三角函数值的大小
实例
剖析
3π 例1、作出 2π 的正弦线、余弦线和正切线.. 4 3
解:在直角坐标系中作单位圆如图示 2
y y
以x轴的正半轴为始边作出 的角, 3 其终边与单位圆交于P点,作PM x轴,垂足
为M,由单位圆与x轴的正半轴的交点A作 x轴的垂线, 与OP的反向延长线交于T点,
P
详细版单位圆与三角函数线.ppt
.精品课件.
5
新课讲授
一、单位圆:
1、定义:一般地,我们把半径为1的圆称为单位圆。
y
2、单位圆与x轴的交点:(1,0)和(-1,0)
N
PT
单位圆与y轴的交点:(0,1)和(0,-1)
o
α
MA
x
3、正射影:过P作PM垂直X轴于点M,
PN垂直Y轴于点N,则点M、N分别
是点P在X轴、Y轴上的正射影
.精品课件.
6
正弦线和余弦线
问题1:如图,设角α为第一象限角,其终边与单位圆
的交点为P(x,y),则 cos x ,sin y 都是正数,
你能分别用一条线段表示角α的正弦值和余弦值吗?
| MP | y sin
y
P(x,y)
| OM | x cos
OM x
.精品课件.
7
正弦线和余弦线 问题2:若角α为第三象限角,其终边与单位圆的交点
为P(x,y),则 sin y ,cos x 都是负数,
此时角α的正弦值和余弦值分别用哪条线段表示?
y
| MP | y sin
| OM | x cos
M Ox
P(x,y)
.精品课件.
8
正切线 问题1:如图,设角α为第一象限角,其终边与单 位圆的交点为P(x,y),则 tan y 是正数,用 哪条有向线段表示角α的正切值最合x适?
单位圆与三角函数线
.精品课件.
1
复习引入
初中锐角三角函数是如何定义的?
α O
P
┍ M
sinα=
cosα= tan α=
MP 当OP=1时,sinα=MP
OP
OM
cos α=OM
新教材2023版高中数学新人教B版必修第三册:单位圆与三角函数线课件
3
;cos
2
1
α≤- .
2
3
,cos
2
1
α=- 的角的终边,然后根据已
2
状元随笔 作出满足sin α=
知条件和三角函数的单调性确定角α终边的范围.
(2)设a=cos
A.a<c<b
C.b<c<a
【答案】
B
2
3
2
,b=sin ,c=tan ,则(
5
5
5
B.a<b<c
D.b<a<c
)
方法归纳
(1)通过解答本题,我们可以总结出用三角函数线来探讨三角函数不
6
2
6
课堂探究·素养提升
题型1 三角函数线的概念
例1 作出下列各角的正弦线、余弦线、正切线:
3
14
(1) ;(2)- ;(3)- ;(4)
.
4
6
4
3
方法归纳
(1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后
过此交点作x轴的垂线,得到垂足,从而得到正弦线和余弦线.
(2)作正切线时,应从A(1,0)点引单位圆的切线交角的终边于一点T,
(0, ) ∪ ( ,2π)
到α的取值范围是_______________;
3
3
解析:利用单位圆作出正弦线、余弦线,
π
3
5π
3
所以α的范围是0<α< 或 <α<2π.
3
,cos
2
1
α> ,利用三角函数线得
2
(2)已知0≤x≤2π,且sin x<cos x,则x的取值范围是(
角函数的定义与单位圆、三角函数线
利用单位圆解决三角函数问题
题目1
已知sinα = 3/5,α为第二象限角,求cosα, tanα的值。
题目2
已知cosβ = -4/5,β为第三象限角,求sinβ, tanβ的值。
三角函数线在综合题中应用
题目1
题目2
题目3
已知函数f(x) = sin(ωx + φ) (ω > 0, |φ| < π/2) 的图象与x轴的 交点中,相邻两个交点之间的距 离为π/2,且图象上一个最低点 为M(2π/3, -2)。求f(x)的解析式。
三角恒等式与三角不等式
三角恒等式是描述三角函数之间关系的等式,如正弦定理、余弦定理等。三角不等式则是描述三角函数 值大小关系的不等式,如正弦函数在第一象限内单调递增等。这些恒等式和不等式在解决三角形问题、 振动问题等领域有广泛应用。
THANKS
感谢观看
REPORTING
https://
单位圆与三角函数关系
REPORTING
WENKU DESIGN
单位圆定义及性质
单位圆的定义
在平面直角坐标系中,以原点O为圆心,1为半径的圆称为单位圆。
单位圆的性质
单位圆上的任意一点P(x,y)都满足$x^2+y^2=1$的关系。特殊地,当射线OP与x轴正半轴形成的角为α时,P点 的坐标可表示为$(cosalpha, sinalpha)$。
余弦函数(cosine)
余弦函数表示一个角的余弦值与角度之间的关系,记作cos(x)。在单位圆中,余弦值等于 对应角的邻边长度与斜边长度的比值。
正切函数(tangent)
正切函数表示一个角的正切值与角度之间的关系,记作tan(x)。在单位圆中,正切值等于 对应角的对边长度与邻边长度的比值。
三角函数的概念 完整版PPT课件
余弦函数 y cosx, x R
正切函数 y tanx, x k (k Z )
2
注意:
y
的终边
(1)正弦就是交点的纵坐标, 余弦就是交点的横坐标 正切就是交点的纵坐标与横坐标的比值.
(x, y)
x o
(2) 正弦函数、余弦函数总有意义.当α 的终边在y 轴上时,点P 的
单位圆半径不变,点P的横、纵坐标只与α的大小有关, α确定时,p的坐标能唯一确定。
任意角的三角函数定义
设 α是一个任意角, R ,它的终边与单位圆交于点 P(x, y)
那么:(1) y 叫做 α的正弦函数,记作 sin α 即 y = sin α
(2) x 叫做 α的余弦函数,记作 cos α 即 x = cos α
.
证明:如图,设角 的终边与单位圆交于点 P0 (x0 , y0 )
分别过点P, P0 作 x 轴的垂线PM , P0M 0 ,垂足分别为 M , M0
则 | P0M0 || y0 |,| PM || y |,| OM0 || x0 |,| OM || x |,
OMP ∽ OM0P0
于是,| P0M 0 | | PM
P c
b
O
a
M
b
sin c
a
cos c
b
tan a
问题引入
问题:匀速圆周运动是现实生活中周期现象的代表,在前面的 学习中,我们知道函数是描述客观世界变化规律的重要数学模 型,那么匀速圆周运动的运动规律该用什么函数模型刻画呢?
新课学习
如图,以单位圆的圆心O 为坐标原点,以射线OA为 x轴的非负半轴,建立直角坐标系 xOy,点 A的坐标是
高一数学人必修课件单位圆与三角函数线
06
课程总结与拓展延伸
课程重点内容回顾
单位圆的定义与性质
单位圆是以原点为圆心,半径为1的圆。其方程为 $x^2+y^2=1$。单位圆在三角函数中具有重要 地位,因为三角函数的定义和性质都与单位圆密 切相关。
三角函数的基本性质
三角函数具有周期性、奇偶性、单调性等基本性 质。这些性质可以通过单位圆和三角函数线的图 像进行直观理解。
有界性
正弦线和余弦线的值域都是[1,1],而正切线的值域是R(实 数集)。
单调性
正弦线和余弦线在各自周期内 具有单调性,而正切线在定义
域内不具有单调性。
三角函数线与单位圆的关系
要点一
单位圆定义
在平面直角坐标系中,以原点O为圆 心、1为半径的圆称为单位圆。
要点二
三角函数线与单位圆 的交点
正弦线、余弦线和正切线与单位圆的 交点分别对应着角α的正弦值、余弦 值和正切值。具体来说,当角α的终 边与单位圆交于点P(x,y)时,sinα=y ,cosα=x,tanα=y/x(x≠0)。
02 03
分析
学生的解答中,sinγ的值计算正确,但cosγ的值计算错误。根据三角函 数的定义,cosγ=x/r,其中x为点M的横坐标,r为OM的长度。因此, 正确的解法应该是cosγ=-1/√5。
纠正
在解题时,要认真审题,注意三角函数定义中的符号问题。同时,要熟 练掌握同角三角函数的基本关系式,以便在解题时能够灵活运用。
性质
单位圆上的任意一点P(x,y)都满足 x²+y²=1。
单位圆上的点与三角函数值的关系
01
任意角α的终边与单位圆交于点 P(x,y),则sinα=y,cosα=x。
02
通过单位圆可以直观地理解三角 函数的定义域、值域、周期性、 奇偶性等性质。
课件1:1.2.2 单位圆与三角函数线
的正弦线为MP,余弦线为OM
, 正切线为AT
点评:根据三角函数线的定义作出三角函数线,有向 线段 MP、OM、AT为正弦线、余弦线、正切线.关键 是作出各个点,O点为坐标原点,点A(1,0)为单位圆与 X正半轴的交点,点P为任意角α 的终边与单位圆的交 点P(x,y),过P作X 轴的垂线 ,垂足为M ;过点A(1,0) 作 单位圆的切线,它与角α 的终边或其反向延长线交 与点T .
点评:三角函数线是一个角的三角函数直观 体现,从三角函数线的方向可以看出三角函数值 的正负,其长度是三角函数值的绝对值.因此, 比较两个三角函数值的大小,可以借助三角函数 线.
2.比较下列各组数的大小.
(1)sin1和sin
3
(2)cos4 和cos 5
7
7
解析:(1)sin1< sin (2)cos 4 >cos 5
O
x
PT
(Ⅳ)
α的终边
自主探究
4.当角α的终边在坐标轴上时,角α的正切线的几何含
义如何?
y
P
P
Ox
当角α的终边在x轴上时,角α的正切线是一个点; 当角α的终边在y轴上时,角α的正切线不存在.
预习测评
1.对三角函数线,下列说法正确的是( D ) A.对任何角都能作出正弦线、余弦线和正切线 B.有的角正弦线、余弦线和正切线都不存在 C.任何角的正弦线、正切线总是存在,但余弦线不 一定存在 D.任何角的正弦线、余弦线总是存在,但是正切线 不一定存在 解析:当角的终边落在Y轴上时,正切线不存在, 故选D.
3
D. (0, )
3
(5 ,2 )
3
解析:A明显范围不对,B、C都不全面,故选D.
误区解密:因忽略有向线段的方向而出错
10三角函数在单位圆的表示方法
09-10三角函数在单位圆的表示方法2 三四1、2在理解任意角三角函数定义的基础上,理解三角函数在单位圆上的表示方法,理解正弦线、余弦线与正切线,并能由图象讲座三角函数的值域和已知三角函数值,作出对应的角。
三角函数在单位圆的表示正切线正切在单位圆上的表示讲授与讨论相结合三角函数在单位圆的表示方法课本P14 图4-12MP y yr y ====1sin α -1≤sin α≤1 -1≤cos α≤1例 题 OM x xr x ====1cos α例 题P20 第2 题一、三角函数的定义,指出:“定义”从代数的角度揭示了三角函数是一个“比值”,三角函数的定义已经明确告诉角的终边上取点具有任意性,如果我们在角的终边上取适当的点,使比值中的分母为1,那末三角函数就可以用相应的一个坐标表示,这样讨论三角函数就比较方便。
二、单位圆的定义在直角坐标系中,以原点为圆心,以1为半径的圆。
三、角α的正弦、余弦在单位上的表示1.作图:(课本P14 图4-12 )此处略 …… …… ……… …… ……设任意角α的顶点在原点,始边与x 轴的非负半轴重合,角α的终边与单位圆交于P 过P(x,y)作PM ⊥x 轴于M ,简单介绍“向量”(带有“方向”的量—用正负号表示),“有向线段”(带有方向的线段),方向可取与坐标轴方向相同,长度用绝对值表示。
例:有向线段OM ,OP 长度分别为y x ,当OM=x 时 若0>x OM 看作与x 轴同向 OM 具有正值x若0<x OM 看作与x 轴反向 OM 具有负值x2.MP y y r y ====1sin α OM x x r x ====1cos α 这就是说:角α的正弦等于它的终边和单位圆的交点的纵坐标,而它的余弦则等于交点的横坐标。
有向线段MP,OM,分别称作α角的正弦线,余弦线。
由图可知, -1≤sin α≤1 -1≤cos α≤1即sin α与cos α的值域都是[-1,1]。
三角函数线
1 单位圆的定义:圆心在圆点,半径等于单位长的圆叫做单位圆。
2 三角函数的定义:如图,设是一个任意角,它的终边与单位圆交于点,那么得到六个三角函数
有向线段:有大小和方向的线段。
3,正弦线作法:
(1)设角的终边与单位圆交于点P(x,y),过点P作x轴的垂线,垂足M,
得有向线段MP叫做角的正弦线,当线段MP与y轴同向时,MP的方向为正向,且y有正值;当线段MP与y 轴反向时,MP的方向为负向,且y有负值。
同理可得余弦线等其它线。
正弦线的方向以上为正,且永远为从点P在x轴的投影点M指向终边与单位圆的交点P,
余弦线的方向以右为正,且永远为从原点O指向终边与单位圆的交点P在x轴的投影点M,
4. 正切线作法:
根据正切函数的定义与相似三角形的知识,借助有向线段,我们有
正切线的方向以上为正, 正切线的方向永远从(1,0)指向角终边所在直线,
且正切线永远在y轴右边,正切线在过单位圆与轴正方向的交点的切线上。
角终边落在1、3象限正切线为正,2、4象限时正切线为负,
常用的三种三角函数线的作法:
第一步:作出角的终边,与单位圆交于点P;
第二步:过点P作X轴的垂线,设垂足为M,得正弦线MP、余弦线OM;
第三步:过点A(1,0)作单位圆的切线,它与角的终边或其反向延长线的交点设为T,得角的正切线AT.
特别注意:三角函数线是有向线段,在用字母表示这些线段时,要注意它们的方向,分清起点和终点,书写时要带上方向符号。
五、三角函数线的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o (Ⅲ)
x
单位圆与三角函数线_
M
o
x
P
α的终边 (Ⅳ)
α的终边 y
P
A
Mo
x
y α的终边 T
P o MA x
(Ⅱ)
T
y
y (Ⅰ)
M
P α的终边
T
o
Ax
(Ⅲ)
单位圆与三角函数线_
MA
o
x
PTα的终ຫໍສະໝຸດ (Ⅳ)练一练例1.作出下列各角的正弦线,余弦线,正切线.
(1) ;(2) 2 .
3
比大小可以利用什么性质?
单位圆与三角函数线_
例3.在单位圆中作出符合下列条件的角的终边:
⑴sin 1;
2
⑵ sin 1 .
2
角的终边
y
1
●N
P
y 1 2
-1 O
1
x
-1
单位圆与三角函数线_
3cos1 4cos1
2
y2
1 3
-1 O
2k3,2k53kZ-1 单位圆与三角函数线_
1
x1 x
2
5
3
变式: 写出满足条件
1 2
≤cosα<
3 的角α 2
的集合.
2
y
3
1
6
-1 O
1
x
11
4
-1
3
6
(2 k 6 |2,2 kk 6 2<k2 3 α≤ 4 单2位 ≤k圆2 α与k <三角2函3 数2, 线4 k3 _或,2 1k 1, k1 6 Z) 1 k Z
3
6
课堂回顾:
1、三角函数定义的几何表示 2、三角函数线的画法 3、三角函数线的应用: ①利用三角函数线比较三角函数值的大小; ②利用三角函数线确定角的集合或范围.
单位圆与三角函数线_
探究:
1) sinα- cosα>0
2) sinα+cosα>0 ?
用定义 转化为直线
用三角函数线
单位圆与三角函数线_
单位圆与三角函数线_
必修四 三角函数
1.2.2
单位圆与三角函数线_
本节课的任务:
11、、将会三画角任函意数角值的用三图角形函表数示线出。来。 2、会简单应用三角函数线。
单位圆与三角函数线_
复习引入:
1、角的弧度制的定义? 2、在直角坐标系内画出弧度为2、3、
4、5的角的终边的大体位置。 3、三角函数的定义是什么? 4、当半径r为1时,角的弧度制和三角
y P
α的终边
α
x
O
M A(1,0)
u M u u P r 称 为 角 的 正 弦 线 , 即: sinMP
O u u M u u r 称 为 角 的 余弦线 即 : cosOM
思考: 正切线等如何构造?
单位圆与三角函数线_
α的终边 y P
Mo
x
(Ⅱ) y
y α的终边 P
oM x y (Ⅰ)
M
1、有向线段
或由原点指向外面
u u u ru 大 u u 小 u r: u u r 长 u u 度 r 记 作 : M P 、 O M 、 N Q 、 O N
2、有向线段的数量
y
正负:与坐标轴同向为正
反向为负
Q
大小:长度
B NO
PPOM,MP
M Ax
OA 1 OB1 单位圆与三角函数线_
三角函数线
3
2问、题你:能1否、找它到们其的它三的角角函与数 值有的何三关角系函?数值
关系?
3 单位圆与三角函数线_
例2.比较大小: (1) sin1和sin1.5; (2) cos1和cos1.5; (3) tan2和tan3.
解:由三角函数线得 sin1<sin1.5 cos1>cos1.5
思考:正弦值有无最大值?
函数的定义会怎样?
单位圆与三角函数线_
单位圆 我们把 半径为1的圆叫做单位圆
在单位圆上,角终边和圆交
点的横坐标就是 ( cos)
纵坐标就是( sin ) y P(cos,sin)
x
单位圆与三角函数线_
坐标能否用图像表示?
y PPOM,MP
Q
QON, NQ?
NO M x
单位圆与三角函数线_
方向:由轴上的点指向外面