2001年高考全国卷理科数学试题及答案

合集下载

2001年全国Ⅱ高考数学试题(理)

2001年全国Ⅱ高考数学试题(理)

13.若一个圆锥的轴截面是等边三角形,其面积为 3 ,则这个圆锥的侧面积是

x2 14.双曲线 9
的距离为
y 1的两个焦点为 F , F ,点 P 在双曲线上.若 PF
2
16
1
2
1

PF ,则 P 点到 x
2
15. 设 数 列 an 是 公 比 为 q 的 等 比 数 列 , Sn 是 它 的 前 n 项 和 . 若 S 是 等 差 数 列 , 则 q n
(2)当复数 z 满足| z | 1 ,求| z z 1| 的最大值.
19.(本小题满分 12 分)设抛物线 y 2 px( p 0) 的焦点为 F ,经过 F 的直线交抛物线于 A
2
, B 两点,点C 在抛物线的准线上,且 BC ∥ x 轴.证明:直线 AC 经过原点O .
20.(本小题满分 12 分)已知i , m , n 是正整数,且1 i m n .
D. y
arccos(x 1)(0 x 2)
7.若椭圆经过原点,且焦点为 F1(1,0), F2(3, 0) ,则其离心率为
3 A. 4
2 B. 3
1 C. 2
1 D. 4
8.若 0 A. a b
, sin cos 4
B. a b
a , sin cos b ,则
C. ab 1
D. ab 2
9.在正三棱柱 ABC A1B1C1 中,若 AB
2 sin(
) 的图形是 4
O 1
A.
x
O
Hale Waihona Puke x11O
1
x
x
O
B.
C.
D.
第 1 页 (共 9 页)2001 年全国Ⅱ高考数学试题(理).doc

2001年高考数学试卷 (江西、山西、天津卷)理科类

2001年高考数学试卷  (江西、山西、天津卷)理科类

2001年高考数学试卷 (江西、山西、天津卷)理科类第Ⅰ卷 (选择题共60分)参考公式: 正棱锥、圆锥的侧面积公式 如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的 概率是P ,那么n 次独立重复试 验中恰好发生k 次的概率 k n k k n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)函数)32sin(3π+=xy 的周期、振幅依次是(A )4π、3(B )4π、-3(C )π、3(D )π、-3(2)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是(A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列(D )既非等比数列又非等差数列(3)过点A (1,-1)、B (-1,1)且圆心在直线x +y-2=0上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x(D )4)1()1(22=+++y x(4)若定义在区间(-1,0)内的函数a x f x x f a 则满足,0)()1(log )(2>+=的取值范围是(A ))21,0((B )]21,0((C )),21(+∞(D )),0(+∞(5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c=(A )21-a +23b (B )21a -23b (C )23a 21-b (D )-23a 21+b(6)若A 、B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|.若直线PA 的方程为 01=+-y x ,则直线PB 的方程是cl S 21=锥侧其中c 表示底面周长,l 表示斜高或母线长. 棱锥、圆锥的体积公式 sh V 31=锥体其中s 表示底面积,h 表示高.(C )042=--x y (D )072=-+y x(7)若则,cos sin ,cos sin ,40b a =+=+<<<ββααπβα(A )b a <(B )b a >(C )1<ab(D )2>ab(8)函数331x x y -+=有(A )极小值-1,极大值1 (B )极小值-2,极大值3 (C )极小值-2,极大值2(D )极小值-1,极大值3(9)某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分, 一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有(A )3种(B )4种(C )5种(D )6种(10)设坐标原点为O ,抛物线x y 22=与过焦点的直线交于A 、B 两点,则=⋅(A )43 (B )-43 (C )3 (D )-3(11)一间平房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜。

2001年普通高等学校招生全国统一考试数学试题及答案(理)

2001年普通高等学校招生全国统一考试数学试题及答案(理)

2001年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回.参考公式:一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) 若siniθcosθ>0,则θ在( )(A) 第一、二象限(B) 第一、三象限(C) 第一、四象限(D) 第二、四象限(2) 过点A (1,-1)、B (-1,1)且圆心在直线x+y-2 = 0上的圆的方程是( )(A) (x -3) 2+(y +1) 2 = 4 (B) (x +3) 2+(y -1) 2 = 4 (C) (x -1) 2+(y -1) 2 = 4(D) (x +1) 2+(y +1) 2 = 4(3) 设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 ( ) (A) 1(B) 2(C) 4(D) 6(4) 若定义在区间(-1,0)的函数f (x ) = log 2a (x +1)满足f (x )>0,则a 的取值范围是( )(A)(210,)(B)⎥⎦⎤ ⎝⎛210,(C) (21,+∞) (D) (0,+∞)(5) 极坐标方程)4sin(2πθρ+=的图形是( )(6) 函数y = cos x +1(-π≤x ≤0)的反函数是 ( )(A) y =-arc cos (x -1)(0≤x ≤2) (B) y = π-arc cos (x -1)(0≤x ≤2) (C) y = arc cos (x -1)(0≤x ≤2)(D) y = π+arc cos (x -1)(0≤x ≤2)(7) 若椭圆经过原点,且焦点为F 1 (1,0) F 2 (3,0),则其离心率为 ( )(A)43 (B)32 (C)21 (D)41 (8) 若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则 ( )(A) a <b(B) a >b(C) ab <1(D) ab >2(9) 在正三棱柱ABC -A 1B 1C 1中,若12BB AB =,则AB 1 与C 1B 所成的角的大小为 ( )(A) 60°(B) 90°(C) 105°(D) 75°(10) 设f (x )、g (x )都是单调函数,有如下四个命题:① 若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ② 若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③ 若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减; ④ 若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减. 其中,正确的命题是 ( )(A) ①③(B) ①④(C) ②③(D) ②④(11) 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 ( ) (A) P 3>P 2>P 1(B) P 3>P 2 = P 1(C) P 3 = P 2>P 1(D) P 3 = P 2 = P 1(12) 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为( )(A) 26 (B) 24(C) 20(D) 19第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是(14)双曲线116922=-y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为(15)设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则 q =(16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17) (本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,21=AD . (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. (18) (本小题满分12分) 已知复数z 1 = i (1-i ) 3. (Ⅰ)求arg z 1及1z ;(Ⅱ)当复数z 满足1z =1,求1z z -的最大值. (19) (本小题满分12分)设抛物线y 2 =2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .(20) (本小题满分12分)已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明in i i m i P m P n <;(Ⅱ)证明(1+m ) n > (1+n ) m . (21) (本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41.(Ⅰ)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n 的表达式; (Ⅱ)至少经过几年旅游业的总收入才能超过总投入? (22) (本小题满分14分)设f (x ) 是定义在R 上的偶函数,其图像关于直线x = 1对称.对任意x 1,x 2∈[0,21]都有f (x 1+x 2) = f (x 1) · f (x 2).且f (1) = a >0. (Ⅰ)求f (21) 及f (41); (Ⅱ)证明f (x ) 是周期函数;(Ⅲ)记a n = f (2n +n21),求()n n a ln lim ∞→.2001年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)B (2)C (3)B (4)A (5)C (6)A (7)C (8)A (9)B (10)C (11)D (12)D二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(13)2π (14)516(15)1 (16)2n (n -1)三.解答题:(17)本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分. 解:(Ⅰ)直角梯形ABCD 的面积是M 底面()43125.0121=⨯+=⋅+=AB AD BC , ……2分 ∴ 四棱锥S —ABCD 的体积是⨯⨯=SA V 31M 底面43131⨯⨯= 41=. ……4分 (Ⅱ)延长BA 、CD 相交于点E ,连结SE 则SE 是所求二面角的棱. ……6分∵ AD ∥BC ,BC = 2AD , ∴ EA = AB = SA ,∴ SE ⊥SB ,∵ SA ⊥面ABCD ,得SEB ⊥面EBC ,EB 是交线, 又BC ⊥EB ,∴ BC ⊥面SEB , 故SB 是CS 在面SEB 上的射影, ∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角. ……10分 ∵ 22AB SA SB +=2=,BC =1,BC ⊥SB ,∴ tan ∠BSC =22=SB BC . 即所求二面角的正切值为22. ……12分 (18)本小题考查复数基本性质和基本运算,以及分析问题和解决问题的能力.满分12分. 解:(Ⅰ)z 1 = i (1-i ) 3 = 2-2i , 将z 1化为三角形式,得⎪⎭⎫⎝⎛+=47sin47cos 221ππi z , ∴ 47arg 1π=z ,221=z . ……6分 (Ⅱ)设z = cos α+i sin α,则z -z 1 = ( cos α-2)+(sin α+2) i , ()()22212sin 2cos ++-=-ααz zsin 249+=(4πα-), ……9分当sin(4πα-) = 1时,21z z -取得最大值249+.从而得到1z z -的最大值为122+. ……12分(19)本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分.证明一:因为抛物线y 2 =2px (p >0)的焦点为F (2p,0),所以经过点F 的直线的方程可设为 2pmy x +=; ……4分 代入抛物线方程得y 2 -2pmy -p 2 = 0,若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2 = -p 2. ……8分因为BC ∥x 轴,且点c 在准线x = -2p上,所以点c 的坐标为(-2p ,y 2),故直线CO 的斜率为111222x y y p p y k ==-=. 即k 也是直线OA 的斜率,所以直线AC 经过原点O . ……12分证明二:如图,记x 轴与抛物线准线l 的交点为E ,过A 作AD ⊥l ,D 是垂足.则AD ∥FE ∥BC . ……2分 连结AC ,与EF 相交于点N ,则ABBF AC CN AD EN ==,,ABAF BCNF = ……6分 根据抛物线的几何性质,AD AF =,BC BF =, ……8分∴ NF ABBC AF ABBF AD EN =⋅=⋅=,即点N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O . ……12分 (20)本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分. (Ⅰ)证明: 对于1<i ≤m 有im p = m ·…·(m -i +1),⋅-⋅=m m m m m p i i m 1…mi m 1+-⋅, 同理 ⋅-⋅=n n n n n p i in 1…ni n 1+-⋅, ……4分由于 m <n ,对整数k = 1,2…,i -1,有mkm n k n ->-, 所以 i im i i n mp n p >,即im i i n i p n p m >. ……6分(Ⅱ)证明由二项式定理有()in ni i nC m m ∑==+01, ()i mmi i mCn n ∑==+01, ……8分由 (Ⅰ)知i n i p m >im i p n (1<i ≤m <n =,而 !i p C i m im=,!i p C i n in =, ……10分所以, im i i n i C n C m >(1<i ≤m <n =.因此,∑∑==>mi im i mi i niC n Cm 22. 又 10000==m n C n C m ,mn nC mC m n ==11,()n i m C m in i ≤<>0.∴∑∑==>mi im i ni i niC n Cm 0. 即 (1+m )n >(1+n )m . ……12分(21)本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分.解:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-51)万元,……,第n 年投入为800×(1-51)n -1万元. 所以,n 年内的总投入为a n = 800+800×(1-51)+…+800×(1-51)n -1∑=--⨯=nk k 11)511(800= 4000×[1-(54)n]; ……3分 第1年旅游业收入为400万元,第2年旅游业收入为400×(1+41)万元,……,第n 年旅游业收入为400×(1+41)n -1万元.所以,n 年内的旅游业总收入为b n = 400+400×(1+41)+…+400×(1+41)n -1∑=-⨯=nk k 11)45(400= 1600×[ (54)n-1]. ……6分 (Ⅱ)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即 1600×[(45)n -1]-4000×[1-(54)n ]>0. 化简得 5×(54)n +2×(54)n -7>0, ……9分设=x (54)n ,代入上式得5x 2-7x +2>0,解此不等式,得52<x ,x >1(舍去). 即 (54)n <52,由此得 n ≥5.答:至少经过5年旅游业的总收入才能超过总投入. ……12分(22)本小题主要考查函数的概念、图像,函数的奇偶性和周期性以及数列极限等基础知识;考查运算能力和逻辑思维能力.满分14分.(Ⅰ)解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2) = f (x 1) · f (x 2),所以=)(x f f (2x ) · f (2x )≥0,x ∈[0,1]. ∵ =)1(f f (2121+) = f (21) · f (21) = [f (21)]2,f (21)=f (4141+) = f (41) · f (41) = [f (41)]2. ……3分0)1(>=a f ,∴ f (21)21a =,f (41)41a =. ……6分(Ⅱ)证明:依题设y = f (x )关于直线x = 1对称, 故 f (x ) = f (1+1-x ),即f (x ) = f (2-x ),x ∈R . ……8分 又由f (x )是偶函数知f (-x ) = f (x ) ,x ∈R , ∴ f (-x ) = f (2-x ) ,x ∈R , 将上式中-x 以x 代换,得f (x ) = f (x +2),x ∈R .这表明f (x )是R 上的周期函数,且2是它的一个周期. ……10分 (Ⅲ)解:由(Ⅰ)知f (x )≥0,x ∈[0,1].∵ f (21)= f (n ·n 21) = f (n 21+(n -1)·n 21) = f (n 21) · f ((n -1)·n 21)= f (n 21) · f (n 21) · … ·f (n 21)= [ f (n21)]n,f (21) = 21a ,∴ f (n21) = n a 21.∵ f (x )的一个周期是2,∴ f (2n +n 21) = f (n21),因此a n = n a 21, ……12分∴ ()∞→∞→=n n n a lim ln lim (a nln 21) = 0. ……14分====Word行业资料分享--可编辑版本--双击可删====源-于-网-络-收-集。

【高考数学试题】2001年高考.全国卷.理科数学试题及答案

【高考数学试题】2001年高考.全国卷.理科数学试题及答案

【高考数学试题】2001年普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至9页。

共150分。

考试时间120分钟。

第I 卷(选择题 60分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos ()()[]βαβαβα-++=cos cos 21cos cos ()()[]βαβαβα--+-=cos cos 21sin sin 正棱台、圆台的侧面积公式 ()l c c S +'=21台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1) 若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限(2)过点()()1,11,1--B A 、且圆心在直线02=-+y x 上的圆的方程是(A )()()41322=++-y x (B )()()41322=-++y x (C )()()41122=-+-y x (D )()()41122=+++y x (3)设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1 (B )2 (C )4 (D )6(4)若定义在区间()01,-内的函数()()1log 2+=x x f a 满足0)(>x f ,则a 的取值范围是 (A )(0,21) (B )(0,21] (C )(21,+∞) (D )(0,+∞) (5)极坐标方程)4sin(2πθρ+=的图形是(A ) (B ) (C ) (D )(6)函数)0(1cos ≤≤-+=x x y π的反函数是 (A ))20)(1arccos(≤≤--=x x y (B ))20)(1arccos(≤≤--=x x y π(C ))20)(1arccos(≤≤-=x x y (D ))20)(1arccos(≤≤-+=x x y π(7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为(A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则 (A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小为(A )60° (B )90° (C )105° (D )75°(10)设)()(x g x f 、都是单调函数,有如下四个命题:○1若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增; ○2若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增; ○3若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减; ○4若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减; 其中,正确的命题是(A )○1○3 (B )○1○4 (C ) ○2○3 (D )○2○4(11)一间民房的屋顶有如图三种不同的盖法:○1单向倾斜;○2双向倾斜;○3四向倾斜.记三种盖法屋顶面积分别为321P P P 、、.①② ③若屋顶斜面与水平面所成的角都是α,则 (A )123P P P >>(B )123P P P =>(C )123P P P >=(D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。

2001年高考数学试题(全国理)及答案

2001年高考数学试题(全国理)及答案

2001年全国普通高等学校招生全国统一考试数学(理工农医类)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A)第一、二象限 (B)第一、三象限 (C)第一、四象限 (D)第二、四象限 (2)过点A(1,-1),B(-1,1)且园心在直线x+y-2=0上的圆珠笔的方程是 (A)(x-3)2+(y+1)2=4 (B)(x+3)2+(y-1)2=4 (C)(x-1)2+(y-1)2=4 (B)(x+1)2+(y+1)2=4(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 (A)1 (B)2 (C)4 (D)6(4)若定义在区间(-1,0)内的函数f (x )= log 2a (x + 1)满足f (x )> 0,则 a 的取值范围是 (A)(0,21) (B) (0,21] (C) (21,+∞) (D) (0,+∞)(5)极坐标方程)4sin 2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是 (A) )20)(1arccos(≤≤--=x x y(B) )20)(1arccos(≤≤--=x x y π(C) )20)(1arccos(≤≤-=x x y (D) )20)(1arccos(≤≤-+=x x y π(7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为 (A)43 (B)32 (C)21 (D)41 (8)若b a =+=+<<<ββααπβαcos sin ,cos sin ,40,则(A)a <b(A)a >b(A)ab <1(D)ab >2(9)在正三棱柱ABC -A 1 B 1C 1中,若AB =2BB 1,则AB 与C 1B 所成的角的大小为 (A)60° (B)90° (C)105° (D)75°(10)设f (x )、g (x )都是单调函数,有如下四个命题:①若f (x )单调速增,g (x )单调速增,则f (x )-g (x ))单调递增; ②若f (x )单调速增,g (x )单调速减,则f (x )-g (x ))单调递增; ③若f (x )单调速减,g (x )单调速增,则f (x )-g (x ))单调递减;④若f (x )单调速减,g (x )单调速减,则f (x )-g (x ))单调递减; 其中,正确的命题是 (A)①③ (B)①④ (C)②③ (D)②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 (A)P 3>P 2>P 1 (B) P 3>P 2=P 1 (C) P 3=P 2>P 1 (D) P 3=P 2=P 1(12)如图,小圆圈表示网络的结点,结点之间的连线表承它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的 路线同时传递.则单位时间内传递的最大信息量为(A)26; (B)24; (C)20; (D)19二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是_________.(14)双曲线116922=+y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF ⊥PF 2,则点P 到x 轴的距离为_________。

2001年高考数学(理科)真题及答案[全国卷I]

2001年高考数学(理科)真题及答案[全国卷I]

2001年全国普通高等学校招生全国统一考试数学(理工农医类)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A)第一、二象限 (B)第一、三象限 (C)第一、四象限 (D)第二、四象限 (2)过点A(1,-1),B(-1,1)且园心在直线x+y-2=0上的圆珠笔的方程是 (A)(x-3)2+(y+1)2=4 (B)(x+3)2+(y-1)2=4 (C)(x-1)2+(y-1)2=4 (B)(x+1)2+(y+1)2=4(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 (A)1 (B)2 (C)4 (D)6(4)若定义在区间(-1,0)内的函数f (x )= log 2a (x + 1)满足f (x )> 0,则 a 的取值范围是(A)(0,21) (B) (0,21] (C) (21,+∞) (D) (0,+∞)(5)极坐标方程)4sin 2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A) )20)(1arccos(≤≤--=x x y (B) )20)(1arccos(≤≤--=x x y π (C) )20)(1arccos(≤≤-=x x y (D) )20)(1arccos(≤≤-+=x x y π (7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为(A) 43(B) 32 (C) 21 (D) 41(8)若ba =+=+<<<ββααπβαcos sin ,cos sin ,40,则(A)a <b (A)a >b(A)ab <1(D)ab >2(9)在正三棱柱ABC -A 1 B 1C 1中,若AB =2BB 1,则AB 与C 1B 所成的角的大小为(A)60°(B)90°(C)105°(D)75°(10)设f(x)、g(x)都是单调函数,有如下四个命题:①若f(x)单调速增,g(x)单调速增,则f(x)-g(x))单调递增;②若f(x)单调速增,g(x)单调速减,则f(x)-g(x))单调递增;③若f(x)单调速减,g(x)单调速增,则f(x)-g(x))单调递减;④若f(x)单调速减,g(x)单调速减,则f(x)-g(x))单调递减;其中,正确的命题是(A)①③(B)①④(C)②③(D)②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则(A)P3>P2>P1 (B) P3>P2=P1(C) P3=P2>P1(D) P3=P2=P1(12)如图,小圆圈表示网络的结点,结点之间的连线表承它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A)26(B)24(C)20(D)19二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是_________.(14)双曲线116922=+yx的两个焦点为F1、F2,点P在双曲线上.若PF⊥PF2,则点P到x轴的距离为_________。

2001年普通高等学校招生全国统一考试数学试卷全国卷理

2001年普通高等学校招生全国统一考试数学试卷全国卷理

2001年普通高等学校招生全国统一考试数学(理工农医类)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)若θθcos sin >0,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限 (2)过点A (1,-1)、B (-1,1)且圆心在直线x 十y -2=0上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x (D )4)1()1(22=+++y x (3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1(B )2(C )4(D )6(4)若定义在区间(-1,0)内的函数)1(log )(2+=x x f a 满足)(x f >0,则a 的取值范围是(A ))21,0((B )]21,0( (C )),21(∞+(D )),0(∞+(5)极坐标方程)4sin(2πθρ+=的图形是(6)函数y =x +1)0(≤≤-x π的反函数是(A )y =-arccos (x -1) (0≤x ≤2) (B )y =π-arccos (x -1) (0≤x ≤2) (C )y =arccos (x -1) (0≤x ≤2)(D )y =π+arccos (x -1) (0≤x ≤2)(7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为(A )43(B )32 (C )21(D )41(8)若ba =+=+<<<ββααπβαcos sin ,cos sin ,40,则(A)a<b (B)a>b (C)ab<1 (D)ab>2(9)在正三棱柱ABC-A1B1C1中,若AB=2BB1,则AB1与C1B所成的角的大小为(A)60°(B)90°(C)105°(D)75°(10)设f (x)、g (x)都是单调函数,有如下四个命题:①若f (x)单调递增,g (x)单调递增,则f (x)-g (x)单调递增;②若f (x)单调递增,g (x)单调递减,则f (x)-g (x)单调递增;③若f (x)单调递减,g (x)单调递增,则f (x)-g (x)单调递减;④若f (x)单调递减,g (x)单调递减,则f (x)-g (x)单调递减.其中,正确的命题是(A)①③(B)①④(C)②③(D)②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;②四向倾斜.记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则(A)P3>P2>P1 (B)P3>P2=P1 (C)P3=P2>P1(D)P3=P2=P1(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A)26 (B)24 (C)20 (D)19第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是.(14)双曲线116922=-yx的两个焦点为F1、F2,点P在双曲线上.若PF1⊥PF2,则点P到x轴的距离为 .(15)设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则q = . (16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)如图,在底面是直角梯形的四棱锥S -ABCD 中,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =21.(Ⅰ)求四棱锥S -ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.(18)(本小题满分12分) 已知复数z 1=i (1-i )3. (Ⅰ)求arg z 1及| z |;(Ⅱ)当复数z 满足| z |=1,求| z -z 1 |的最大值. (19)(本小题满分12分)设抛物线)0(22>=p pxy 的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O . (20)(本小题满分12分)已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明in i i m i P m P n <; (Ⅱ)证明mn n m )1()1(+>+.(21)(本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41.(Ⅰ)设n 年内(本年度为第一年)总投人为a n 万元,旅游业总收入为b n 万元.写出a n ,b n的表达式;(Ⅱ)至少经过几年旅游业的总收人才能超过总投入? (22)(本小题满分12分)设f (x )是定义在R 上的偶函数。

2001年高考试题全国卷(L)

2001年高考试题全国卷(L)

2001年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第1卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号填写在试题卷指定地方.并将姓名、考试科目、准考证号用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号徐黑.如需改动,用橡皮擦干净后,再选涂其它答案.不能答在试题卷上.3. 考试结束,监考人员将本试卷和答题卡一并收回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若θθcos sin >0,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限(2)过点A (1,—1)、B (—1,1)且圆心在直线x 十y —2=0上的圆的方程是(A )4)1()3(22=++-y x(B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x (D )4)1()1(22=+++y x(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1 (B )2 (C )4 (D )6(4)若定义在区间(—1,0)内的函数)1(log )(2+=x x f a 满足)(x f >0,则a 的取值范围是正棱台、圆台侧面积公式 表示高,分别表示上、下底面积、其中台体体积公式表示斜高或母线长长,分别表示上、下底面周、其中台体台侧h S S h S S S S V l c c l c c S '+'+'='+'=)(1)(21 三角函数积化和差公式: )]()([21)]()([21)]()([21)]()([21βαβαβαβαβαβαβαβαβαβαβαβα--+-=-++=--+=-++=cos cos sin sin cos cos cos cos sin sin sin cos sin sin cos sin(A ))21,0( (B )]21,0( (C )),21(∞+ (D )),0(∞+(5)极坐标方程)4sin(2πθρ+=的图形是(6)函数y =x +1)0(≤≤-x π的反函数是(A )y =-arccos (x -1) (0≤x ≤2) (B )y =π-arccos (x -1) (0≤x ≤2)(C )y =arccos (x -1) (0≤x ≤2) (D )y =π+arccos (x -1) (0≤x ≤2)(7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为(A )43 (B )32 (C )21 (D )41 (8)若b a =+=+<<<ββααπβαcos sin ,cos sin ,40,则 (A )a <b (B )a >b (C )ab <1 (D )ab >2(9)在正三棱柱ABC —A 1B 1C 1中,若AB =2BB 1,则AB 1与C 1B 所成的角的大小为(A )60° (B )90° (C )105° (D )75°(10)设f (x )、g (x )都是单调函数,有如下四个命题:①若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增;②若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增;③若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减;④若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减.其中,正确的命题是(A )①③ (B )①④ (C )②③ (D )②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;②四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3 .若屋顶斜面与水平面所成的角都是α,则(A )P 3>P 2>P 1 (B )P 3>P 2=P 1 (C )P 3=P 2>P 1 (D )P 3=P 2=P 1(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A )26 (B )24 (C )20 (D )19第Ⅱ卷(非选择题共90分)注意事项:1. 第Ⅱ卷共6页,用钢笔或圆珠笔将答案直接答在试卷上.2. 答卷前将密封线内的项目填写清楚.3. 座位号填写准考证号最末尾两位数.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 . (14)双曲线116922=-y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为 .(15)设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则q= .(16)圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC =90°,SA ⊥面ABCD ,SA =AB =BC =1,AD =1. (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值.S A DC B已知复数z1=i(1—i)3.(Ⅰ)求arg z1及| z |;(Ⅱ)当复数z满足| z |=1,求| z—z1 |的最大值.设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O .已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明i n i i m i P m P n <;(Ⅱ)证明m n n m )1()1(+>+.从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (Ⅰ)设n 年内(本年度为第一年)总投人为a n 万元,旅游业总收入为b n 万元.写出a n ,b n 的表达式;(Ⅱ)至少经过几年旅游业的总收人才能超过总投入?设f (x )是定义在R 上的偶函数。

2001年全国高考理科数学(江西、山西、天津)卷

2001年全国高考理科数学(江西、山西、天津)卷

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2001年全国统一高考数学试卷(理科)及其参考考答案

2001年全国统一高考数学试卷(理科)及其参考考答案

2001年全国统一高考数学试卷(理科)一、选择题:本大题12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限(2)过点)1,1(-A 、)1,1(-B 且圆心在直线02=-+y x 上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x(C )4)1()1(22=-+-y x (D )4)1()1(22=+++y x(3)设}{n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1 (B )2 (C )4 (D )6(4)若定义在区间)0,1(-内函数)1(log )(2+=x x f a 满足0)(>x f ,则a 的取值范围是(A ))21,0( (B )]21,0( (C )),21(+∞ (D )),0(+∞(5)极坐标方程)4sin(2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A ))1arccos(--=x y (20≤≤x ) (B ) )1arccos(--=x y π(20≤≤x )(C ))1arccos(-=x y (20≤≤x ) (D ))1arccos(-+=x y π(20≤≤x )(7)若椭圆经过原点,且焦点为)0,1(1F ,)0,3(2F ,则其离心率为(A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,12BB AB =,则1AB 与B C 1所成角的大小为(A )︒60 (B )︒90 (C )︒105 (D )︒75(10)设)(x f 、)(x g 都是单调函数,有如下四个命题:①若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增;②若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增;③若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减;④若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减;其中,正确的命题是(A )①② (B )①④ (C )②③ (D )②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜,记三种盖法屋顶面积分别为1P 、2P 、3P若屋顶斜面与水平面所成的角都是α,则(A )123P P P >> (B )123P P P => (C )123P P P >= (D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线肤表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A )26 (B )24(C )20 (D )19二、填空题:本大题共4个小题,每小题4分,共16分.把答案填空在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 . (14)双曲线116922=-y x 的两个焦点为1F 、2F ,点P 在双曲线上.若21PF PF ⊥,则迠P 到x 轴的距离为 .(15)设}{n a 是公比为q 的等比数列,n S 是它的前n 项和.若}{n S 是等差数列,则q =(16)圆周上有n 2个等分点(1>n ),以其中三个点为顶点的直角三角形的个数为三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分12分)如图,在底面是直角梯形的四棱锥ABCD S -中,︒=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,21=AD . (1)求四棱锥ABCD S -的体积;(2)求面SCD 与面SBA 所成的二面角的正切值.(18)(本小题满分12分)已知复数31)1(i i z -=.(1)求1arg z 及||1z ;(2)当复数z 满足1||=z ,求||1z z -的最大值.(19)(本小题12分)设抛物线px y 22=(0>p )的焦点F ,经过点F 的直线交抛物线于A 、B 两点。

2001年高考全国卷理科数学试题及答案

2001年高考全国卷理科数学试题及答案

普通高等学校招生全国统一考试数 学(理工农医类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。

第I 卷1至2页。

第II 卷3至9页。

共150分。

考试时间120分钟。

第I 卷(选择题 60分)注意事项:1. 答第I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写 在答题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需 改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。

3.考试结束,监考人将本试卷和答题卡一并收回。

参考公式:三角函数的积化和差公式()()[]βαβαβα-++=sin sin 21cos sin ()()[]βαβαβα--+=sin sin 21sin cos()()[]βαβαβα-++=cos cos 21cos cos()()[]βαβαβα--+-=cos cos 21sin sin正棱台、圆台的侧面积公式()l c c S +'=21台侧 其中c '、c 分别表示上、下底面周长,l 表示斜高或母线长台体的体积公式()h S S S S V +'+'=31台体 其中S '、S 分别表示上、下底面积,h 表示高一、 选择题:本大题共12小题;第每小题5分,共60分。

在每小题给出的 四个选项中,只有一项是符合题目要求的。

(1) 若0cos sin >θθ,则θ在(A )第一、二象限 (B )第一、三象限 (C )第一、四象限 (D )第二、四象限 (2)过点()()1,11,1--B A 、且圆心在直线02=-+y x 上的圆的方程是 (A )()()41322=++-y x (B )()()41322=-++y x(C )()()41122=-+-y x (D )()()41122=+++y x(3)设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是(A )1 (B )2 (C )4 (D )6(4)若定义在区间()01,-内的函数()()1log 2+=x x f a 满足0)(>x f ,则a 的取值范围是 (A )(0,21) (B )(0,21] (C )(21,+∞) (D )(0,+∞) (5)极坐标方程)4sin(2πθρ+=的图形是(A ) (B ) (C ) (D )(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A ))20)(1arccos(≤≤--=x x y (B ))20)(1arccos(≤≤--=x x y π (C ))20)(1arccos(≤≤-=x x y (D ))20)(1arccos(≤≤-+=x x y π (7)若椭圆经过原点,且焦点为)0,3(),0,1(21F F ,则其离心率为 (A )43 (B )32 (C )21 (D )41 (8)若40πβα<<<,a =+ααcos sin ,b =+ββcos sin ,则(A )b a < (B )b a > (C )1<ab (D )2>ab(9)在正三棱柱111C B A ABC -中,若12BB AB =,则1AB 与B C 1所成的角的大小为(A )60° (B )90° (C )105° (D )75° (10)设)()(x g x f 、都是单调函数,有如下四个命题: ○1若)(x f 单调递增,)(x g 单调递增,则)()(x g x f -单调递增; ○2若)(x f 单调递增,)(x g 单调递减,则)()(x g x f -单调递增; ○3若)(x f 单调递减,)(x g 单调递增,则)()(x g x f -单调递减; ○4若)(x f 单调递减,)(x g 单调递减,则)()(x g x f -单调递减; 其中,正确的命题是(A )○1○3 (B )○1○4 (C ) ○2○3 (D )○2○4(11)一间民房的屋顶有如图三种不同的盖法:○1单向倾斜;○2双向倾斜;○3四向倾斜.记三种盖法屋顶面积分别为321P P P 、、.①② ③若屋顶斜面与水平面所成的角都是α,则(A )123P P P >>(B )123P P P =>(C )123P P P >=(D )123P P P ==(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。

2001年高考数学试卷 (江西、山西、天津卷)理科类及答案

2001年高考数学试卷  (江西、山西、天津卷)理科类及答案

2001年高考数学试卷 (江西、山西、天津卷)理科类第Ⅰ卷 (选择题共60分)参考公式: 正棱锥、圆锥的侧面积公式 如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的 概率是P ,那么n 次独立重复试 验中恰好发生k 次的概率 k n k k n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)函数)32sin(3π+=xy 的周期、振幅依次是(A )4π、3(B )4π、-3(C )π、3(D )π、-3(2)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是(A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列(D )既非等比数列又非等差数列(3)过点A (1,-1)、B (-1,1)且圆心在直线x +y-2=0上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x(D )4)1()1(22=+++y x(4)若定义在区间(-1,0)内的函数a x f x x f a 则满足,0)()1(log )(2>+=的取值范围是(A ))21,0((B )]21,0((C )),21(+∞(D )),0(+∞(5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c=(A )21-a +23b (B )21a -23b (C )23a 21-b (D )-23a 21+b(6)若A 、B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|.若直线PA 的方程为 01=+-y x ,则直线PB 的方程是cl S 21=锥侧其中c 表示底面周长,l 表示斜高或母线长. 棱锥、圆锥的体积公式 sh V 31=锥体其中s 表示底面积,h 表示高.(C )042=--x y (D )072=-+y x(7)若则,cos sin ,cos sin ,40b a =+=+<<<ββααπβα(A )b a <(B )b a >(C )1<ab(D )2>ab(8)函数331x x y -+=有(A )极小值-1,极大值1 (B )极小值-2,极大值3 (C )极小值-2,极大值2(D )极小值-1,极大值3(9)某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分, 一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有(A )3种(B )4种(C )5种(D )6种(10)设坐标原点为O ,抛物线x y 22=与过焦点的直线交于A 、B 两点,则=⋅(A )43 (B )-43 (C )3 (D )-3(11)一间平房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜。

2001年高考数学试卷 (江西、山西、天津卷)理科类

2001年高考数学试卷  (江西、山西、天津卷)理科类

2001年高考数学试卷 (江西、山西、天津卷)理科类第Ⅰ卷 (选择题共60分)参考公式: 正棱锥、圆锥的侧面积公式 如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的 概率是P ,那么n 次独立重复试 验中恰好发生k 次的概率 k n k k n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)函数)32sin(3π+=xy 的周期、振幅依次是(A )4π、3(B )4π、-3(C )π、3(D )π、-3(2)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是(A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列(D )既非等比数列又非等差数列(3)过点A (1,-1)、B (-1,1)且圆心在直线x +y-2=0上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x(D )4)1()1(22=+++y x(4)若定义在区间(-1,0)内的函数a x f x x f a 则满足,0)()1(log )(2>+=的取值范围是(A ))21,0((B )]21,0((C )),21(+∞(D )),0(+∞(5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c=(A )21-a +23b (B )21a -23b (C )23a 21-b (D )-23a 21+b(6)若A 、B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|.若直线PA 的方程为 01=+-y x ,则直线PB 的方程是cl S 21=锥侧其中c 表示底面周长,l 表示斜高或母线长. 棱锥、圆锥的体积公式 sh V 31=锥体其中s 表示底面积,h 表示高.(C )042=--x y (D )072=-+y x(7)若则,cos sin ,cos sin ,40b a =+=+<<<ββααπβα(A )b a <(B )b a >(C )1<ab(D )2>ab(8)函数331x x y -+=有(A )极小值-1,极大值1 (B )极小值-2,极大值3 (C )极小值-2,极大值2(D )极小值-1,极大值3(9)某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分, 一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有(A )3种(B )4种(C )5种(D )6种(10)设坐标原点为O ,抛物线x y 22=与过焦点的直线交于A 、B 两点,则=⋅(A )43 (B )-43 (C )3 (D )-3(11)一间平房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜。

2001年全国Ⅱ高考数学试题(理)

2001年全国Ⅱ高考数学试题(理)

2001 年一般高等数学招生全国一致考试(全国Ⅱ)理科数学参照公式:正棱台、圆台的侧面积公式三角函数的积化和差公式:sin cossin() sin()S (c c)l此中c 、 c 分别表示上、下底面1台侧122cos sin1sin( ) sin()周长, l表示斜高或母线长 .2cos cos1 ) cos() 球的体积公式:球4 r 3 ,此中 R 表示球的cos(V32sin sin1cos() cos()半径.2第Ⅰ卷(选择题共 60 分)一、选择题:本大题共 12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的 .1.若 sin cos0 ,则 在A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限2.过点 A(1, 1) , B( 1,1) 且圆心在直线 xy 2 0 上的圆的标准方程是A . ( x 3)2 ( y 1)2 4B .C . ( x 1)2( y 1)24D .( x 3)2( y 1)2 4 (x 1)2( y1)2 43.设 a n 是递加等差数列,前三项的和为12,前三项的积为48,则它的首项是A .1B . 2C . 4D . 64( 1,0)内的函数 f (x)log 2 a ( x 1)知足 f ( x) 0,则 a 的取值范围是.若定义在区间A . 0,1B . 0,1C .225.极坐标方程2sin() 的图形是4OxOx111O1 , D . 0,21xxO6.函数y cos x 1(x 0) 的反函数是A .y arccos(x 1)(0 x 2)B.C.y arccos(x 1)(0 x 2)D.y arccos(x1)(0x2) y arccos(x1)(0x2)7.若椭圆经过原点,且焦点为F1(1,0) , F2 (3,0) ,则其离心率为3211A .B.C. D .43248.若0,sin cos a ,sin cos b,则4A .a b B.a b C.ab1 D .ab2 9.在正三棱柱ABC A1B1C1中,若AB2BB1,则 AB 与C1B所成的角的大小为A .60°B. 90°C. 105° D . 75°10.设f ( x),g( x)都是单一函数,有以下四个命题:①若 f ( x) 单一递加,②若 f ( x) 单一递加,③若 f ( x) 单一递减,④若 f ( x) 单一递减,g(x) 单一递加,则g(x) 单一递减,则g(x) 单一递加,则g(x) 单一递减,则f ( x)g( x) 单一递加;f ( x)g( x) 单一递加;f ( x)g( x) 单一递减;f ( x)g( x) 单一递减.此中,正确的命题是A .①③B.①④C.②③ D .②④11.一间民房的屋顶犹如图三种不一样的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1, P2, P3.若屋顶斜面与水平面所成的角都是,则A.P P P B.P P P C.P P P D.P P P 321321321321①②③12.如图,小圆圈表示网络的结点,结点之间的连线表53示它们有网线相联,连线标明的数字表示该段网线单位4612现从结点 A 向结点 B 传B7A时间内能够经过的最大信息量,6612递信息,信息能够分开沿不一样的路线同时传达,则单位8时间内传达的最大信息量为A .26B. 24C. 20D.19第Ⅱ卷(非选择题共90 分)注意事项:用钢笔或圆珠笔挺接答在答题卡上.二、填空题:本大题共 4 小题,每题 4 分,共 20 分,把答案填在题中横线上.13.若一个圆锥的轴截面是等边三角形,其面积为 3 ,则这个圆锥的侧面积是.x2y2PF1 PF2,则P点到 x 的14.双曲线 1 的两个焦点为 F1, F2,点P在双曲线上.若916距离为.15.设数列a n是公比为 q 的等比数列,S n是它的前n项和.若 S n是等差数列,则 q =.16.圆周上有n 个平分点 ( n 1) ,以此中三个点为极点的直角三角形的个数为.三、解答题:本大题共 6 小题,共 74 分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)如图,在底面是直角梯形的四棱锥SS ABCD 中,ABC90o,SA ABCD ,面SA AB BC1, AD 1B.C 2( 1)求四棱锥S ABCD 的体积;AD ( 2)求面SCD与面SBA所成的二面角的正切值.18.(本小题满分 12 分)已知复数z1i (1i )3.(1)求arg z1及| z1|;( 2)当复数z 知足 | z | 1 ,求 | z z1 |的最大值.19.( 本小题满分 12 分)设抛物线 y 2 2 px( p 0) 的焦点为 F ,经过 F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且 BC ∥ x 轴.证明:直线 AC 经过原点 O .20.( 本小题满分 12 分)已知 i , m , n 是正整数,且1 i m n .( 1)证明: n i P m i m i P n i ;( 2)证明: (1 m )n (1 n ) m .21.(本小题满分 12 分)从社会效益和经济效益出发,某地投入资本进行生态环境建设,并以此 发展旅行家产.依据规划,今年度投入800 万元,此后每年投入将比上年减少1.今年度当地旅5游业收入估计为 400 万元,因为该项建设对旅行业的促使作用,估计此后旅行业收入每年会比上年增添 1.4( 1)设 n 年内(今年度为第一年)总投入为 a n 万元,旅行业总收入为 b n 万元.写出 a n , b n 的表达式;( 2)起码经过几年旅行业的总收入才能超出总投入?22.( 本小题满分 12 分)设 f ( x) 是定义在 R 上的偶函数,其图像对于直线 x 1 对称,对随意x 1 , x 20,1,都有 f (x 1 x 2 ) f ( x 1 ) f ( x 2 ) .2( 1)求 f ( 1) 及 f (1) ;2 4( 2)证明 f (x) 是周期函数;( 3)记 a nf (2n1) ,求 lim(ln a n ) .2nn数学试题参照答案一、,本考基知,基本观点和基本运算能力号123456789101112答案二、填空.本考基知,基本观点和基本运算技巧13.14.15.16.三、解答17.数学试题 (理工农医类 )参照答案及评分标准一.:本考基本知和基本运算.每小 5 分,分60 分.(1)B(2)C(3)B(4)A(5)C(6)A(7)C(8)A(9)B(10)C(11)D(12)D二.填空:本考基本知和基本运算.每小 4 分.分16 分.16(13)2π(14)5(15)1(16)2n(n-1)三.解答.(17)本小考面关系和棱体算,以及空想象能力和推理能力.分12 分.解: (I) 直角梯形 ABCD 的面是M 底面=1( BC+AD)AB=10.5 13⋯⋯2 分224∴四棱推 S-ABCD 的体是V1SA M底面 1 1 31⋯⋯ 4分3344(II) 延 BA、 CD 订交于点E, SE, SE 是所求二面角的棱⋯⋯6分∵AD∥ BC, BC=2AD ∴ EA =AB =SA ,∴ SE⊥SB∵SA⊥面 ABCD ,得面 ASB ⊥面 ESC, EB 是交,又 BC⊥ EB,∴ BC⊥面 SEB,故 SB 是 CS 在面 SEB 上的射影,∴ CS⊥SE,所以∠ BSC 是所求二面角的平面角.⋯⋯10分SBSA2AB22, BC 1,BC SB tg BSC BC2SB2即所求二面角的正切 2 .⋯⋯12分(18) 本小考复数的基天性和基本运算,以及剖析和解决的能力.分12 分.解 : (I )z1 | z z1 |2i(1i )3 2 2i KK3分将 z1化成三角形式 , 得z122(cos 77arcz17i sin),,| z1 | 2 2 444(II )设 z cos i sin , 则z z1 (cos2) (sin2)i| z z1 |2(cos2) 2(sin2)2942 sin()KK9分4当 sin()1时 ,| z z1 |2取最大值 942进而得到 |z z1 |的最大值为 2 2 1KK12分4(19) 本小考抛物的观点和性,直的方程和性,运算能力和推理能力.分12分.明一:因抛物y2 =2pc(p>0)的焦点F( p,0 ),所以点 F 的直 AB 的方程可x=my+p代人抛物方程得 y2-2pcmy-p2=022若 A(x1,y1 ), B(x2,y2), x1,y2是方程的两个根,所以y1y2= -p2因 BC ∥x ,且点 C 在准 x=- p上,所以点 C 的坐2(-p, y2),故直y2 2 p y1 2CO 的斜率ky1x1p2即 k 也是直 OA 的斜率,所以直AC 原点 O.明二:如, x 与抛物准l 的交点 E,A 作 AD⊥ l ,D 是垂足.AD∥ FE∥ BC.⋯⋯2 分AC,与 EF 订交锋点 N,| EN ||CN ||BF |,|NF ||AF | |AD||AC||AB||BC ||AB|依据抛物的几何性,|AF|=|AD |, |BF |=|BC|⋯⋯8分|EN ||AD| |BF||AF ||BC||NF|, |AB||AB|即点 N 是 EF 的中点,与抛物的点O 重合,所以直AC 原点 O.⋯⋯ 12 分(20) 本小考摆列、合、二式定理、不等式的基本知和推理能力.分12 分.第 6 页 (共 9 页)2001 年全国Ⅱ高考试题(理)(I )证明 : 对于 1 i m,有 p m im K (m i 1),p m i m m 1 K m i 1,同理p n in n 1 K n i 1,KK 4分m i m mmn i n n n因为 m n, 对整数 k 1,2,K ,i1,有 n k m k, 所以 p n i p m i i ii i KK6分n m n ii ,即 m p nn p mmn m(II )证明 : 由二项式定理有 (1 m)n 由(I )知 m i P n i n i P m i (1 i m n),所以 m iC n i n i C m i (1 im n).m i C n i , (1 n)mn i C m i ,i 0i而C m iP m i ,C n i P n i KK10分i !i !mm所以m i C n in i C m i .i 2i 2又m 0 C n 0 n 0C m 0 , mC n 1 nC m 1 mn, m i C n i 0(m in).mmm i C n in i C m i . 即(1 m)n (1 n)m .KK12分i 0i 0(21) 本小 主要考 成立函数关系式、数列乞降、不等式等基 知 ;考 合运用数学知 解决 的能力. 分 12 分.解. (I) 第 1 年投入 800 万元.第 2 年投入 800×(1-1 n 年投入)万元,⋯⋯,第 15n800× (1- ) -1万元.5所以, n 年的 收入11n14) L L ) n 1 ) k 1n ]; L L 分 a n 800 800 (1800 (1800 (14000 [1 ( )355k 15 5第1 年旅行 收入 400 万元,第2 年旅行 收入 400 × (1+ 1)万元,⋯⋯,第 n 年旅4游收人400×1 n万元.所以, n 年内的旅行 收入(1+) -141 )(1 1)n 1n(1 1 )k 11600 [( 4) n1];L L 6分b n 400 400(1 LL 40040044k 145(11) 起码 n 年旅行 的 收入才能超 投入,由此b n即 [( 4 ) n1] 40004 n] 0 化简得 5 ( 4 ) n 4 ) n7 0 L L 9 分a n 0 16005[1 ()52 (55设 x ( 4)n, 代入上式 5x27x2 0解此不等式得 x2, x 1(舍去 )即( 4)n2 ,由此得 n 5 555 5答:起码5 年旅行 的 收入才能超 投入⋯ 12 分(22) 本小 主要考 函数的观点、 象,函数的奇偶性和周期性以及数列极限等基 知 ;考运算能力和 思 能力, 分14 分.(I )解 :因为 x 1 , x 2 [0, 1], 都有 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ), 所以 f ( x)f ( x ) f ( x) 0, x [0,1].2 2 2Q f (1)1 1f ( 1 1 ) [ 1 2 1 1 1 1 1 1 2 , L L 分 f (, ))f (f ( )] , f ( )f ( ,) f ( )f ( )[ f ()]32 21221224 44440 f ( 1)1)f (1) aa 2, f ( a 4.L L 6分2 4(II ) 证明 依题意y f ( x) 对于直线x 对称:1,故f (x) f ( x 1 x),即 f (x) f (2 x), x R,分8又由 f ( x)是偶函数知 f ( x)f (x), xR,f ( x) f (2 x), x R,将上式中的 以 代换 得x x ,f (x) f (x 2), x R这表示 是 上的周期函数 , 且 是它的一个周期. 分f ( x) R2 10(III )解 :由( I ) 知 f ( x)0, x [0,1].f ( 1)f (n1 ) f ( 1(n 1) 1 )2 2n2n2n1) f (( n 1)1f ()2n2nf ( 1 ) f ( 1)f ( 1 ) [ f ( 1)] n ,2n 2n 2n 2nf ( 1) 1a 2 ,2f (11) a 2n ,2nf (x)的一个周期是 2,12分1 ) f ( 1),所以 a n 1f (2na 2 n ,2n2n lim (ln a n )lim (1ln a)14分nn2n。

2001年高考数学(理科)真题及答案[全国卷I]

2001年高考数学(理科)真题及答案[全国卷I]

2001年全国普通高等学校招生全国统一考试数学(理工农医类)一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若0cos sin >θθ,则θ在(A)第一、二象限 (B)第一、三象限 (C)第一、四象限 (D)第二、四象限 (2)过点A(1,-1),B(-1,1)且园心在直线x+y-2=0上的圆珠笔的方程是 (A)(x-3)2+(y+1)2=4 (B)(x+3)2+(y-1)2=4 (C)(x-1)2+(y-1)2=4 (B)(x+1)2+(y+1)2=4(3)设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 (A)1 (B)2 (C)4 (D)6(4)若定义在区间(-1,0)内的函数f (x )= log 2a (x + 1)满足f (x )> 0,则 a 的取值范围是(A)(0,21) (B) (0,21] (C) (21,+∞) (D) (0,+∞)(5)极坐标方程)4sin 2πθρ+=的图形是(6)函数)0(1cos ≤≤-+=x x y π的反函数是(A) )20)(1arccos(≤≤--=x x y (B) )20)(1arccos(≤≤--=x x y π (C) )20)(1arccos(≤≤-=x x y (D) )20)(1arccos(≤≤-+=x x y π (7)若椭圆经过原点,且焦点为F 1(1,0),F 2(3,0),则其离心率为(A) 43(B) 32 (C) 21 (D) 41(8)若ba =+=+<<<ββααπβαcos sin ,cos sin ,40,则(A)a <b (A)a >b(A)ab <1(D)ab >2(9)在正三棱柱ABC -A 1 B 1C 1中,若AB =2BB 1,则AB 与C 1B 所成的角的大小为(A)60°(B)90°(C)105°(D)75°(10)设f(x)、g(x)都是单调函数,有如下四个命题:①若f(x)单调速增,g(x)单调速增,则f(x)-g(x))单调递增;②若f(x)单调速增,g(x)单调速减,则f(x)-g(x))单调递增;③若f(x)单调速减,g(x)单调速增,则f(x)-g(x))单调递减;④若f(x)单调速减,g(x)单调速减,则f(x)-g(x))单调递减;其中,正确的命题是(A)①③(B)①④(C)②③(D)②④(11)一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P1、P2、P3.若屋顶斜面与水平面所成的角都是α,则(A)P3>P2>P1 (B) P3>P2=P1(C) P3=P2>P1(D) P3=P2=P1(12)如图,小圆圈表示网络的结点,结点之间的连线表承它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为(A)26(B)24(C)20(D)19二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是_________.(14)双曲线116922=+yx的两个焦点为F1、F2,点P在双曲线上.若PF⊥PF2,则点P到x轴的距离为_________。

2001年高考数学试卷 (江西、山西、天津卷)理科类

2001年高考数学试卷  (江西、山西、天津卷)理科类

2001年高考数学试卷 (江西、山西、天津卷)理科类第Ⅰ卷 (选择题共60分)参考公式: 正棱锥、圆锥的侧面积公式 如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的 概率是P ,那么n 次独立重复试 验中恰好发生k 次的概率 k n k k n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)函数)32sin(3π+=xy 的周期、振幅依次是(A )4π、3(B )4π、-3(C )π、3(D )π、-3(2)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是(A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列(D )既非等比数列又非等差数列(3)过点A (1,-1)、B (-1,1)且圆心在直线x +y-2=0上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x(D )4)1()1(22=+++y x(4)若定义在区间(-1,0)内的函数a x f x x f a 则满足,0)()1(log )(2>+=的取值范围是(A ))21,0((B )]21,0((C )),21(+∞(D )),0(+∞(5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c=(A )21-a +23b (B )21a -23b (C )23a 21-b (D )-23a 21+b(6)若A 、B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|.若直线PA 的方程为 01=+-y x ,则直线PB 的方程是cl S 21=锥侧其中c 表示底面周长,l 表示斜高或母线长. 棱锥、圆锥的体积公式 sh V 31=锥体其中s 表示底面积,h 表示高.(C )042=--x y (D )072=-+y x(7)若则,cos sin ,cos sin ,40b a =+=+<<<ββααπβα(A )b a <(B )b a >(C )1<ab(D )2>ab(8)函数331x x y -+=有(A )极小值-1,极大值1 (B )极小值-2,极大值3 (C )极小值-2,极大值2(D )极小值-1,极大值3(9)某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分, 一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有(A )3种(B )4种(C )5种(D )6种(10)设坐标原点为O ,抛物线x y 22=与过焦点的直线交于A 、B 两点,则=⋅(A )43 (B )-43 (C )3 (D )-3(11)一间平房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜。

2001年高考数学试卷 (江西、山西、天津卷)理科类

2001年高考数学试卷  (江西、山西、天津卷)理科类

2001年高考数学试卷 (江西、山西、天津卷)理科类第Ⅰ卷 (选择题共60分)参考公式: 正棱锥、圆锥的侧面积公式 如果事件A 、B 互斥,那么 P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么 P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中发生的 概率是P ,那么n 次独立重复试 验中恰好发生k 次的概率 k n k k n n P P C k P --=)1()(一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1)函数)32sin(3π+=xy 的周期、振幅依次是(A )4π、3(B )4π、-3(C )π、3(D )π、-3(2)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是(A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列(D )既非等比数列又非等差数列(3)过点A (1,-1)、B (-1,1)且圆心在直线x +y-2=0上的圆的方程是(A )4)1()3(22=++-y x (B )4)1()3(22=-++y x (C )4)1()1(22=-+-y x(D )4)1()1(22=+++y x(4)若定义在区间(-1,0)内的函数a x f x x f a 则满足,0)()1(log )(2>+=的取值范围是(A ))21,0((B )]21,0((C )),21(+∞ (D )),0(+∞(5)若向量a =(1,1),b =(1,-1),c =(-1,2),则c=(A )21-a +23b (B )21a -23b(C )23a 21-b(D )-23a 21+b(6)若A 、B 是x 轴上的两点,点P 的横坐标为2且|PA|=|PB|.若直线PA 的方程为 01=+-y x ,则直线PB 的方程是cl S 21=锥侧其中c 表示底面周长,l 表示斜高或母线长. 棱锥、圆锥的体积公式 sh V 31=锥体其中s 表示底面积,h 表示高.(C )042=--x y (D )072=-+y x(7)若则,cos sin ,cos sin ,40b a =+=+<<<ββααπβα(A )b a <(B )b a >(C )1<ab(D )2>ab(8)函数331x x y -+=有(A )极小值-1,极大值1 (B )极小值-2,极大值3 (C )极小值-2,极大值2(D )极小值-1,极大值3(9)某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分, 一球队打完15场,积33分,若不考虑顺序,该队胜、负、平的情况共有(A )3种(B )4种(C )5种(D )6种(10)设坐标原点为O ,抛物线x y 22=与过焦点的直线交于A 、B 两点,则=⋅OB OA(A )43 (B )-43 (C )3 (D )-3(11)一间平房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
面积分别为 P1、P2、P3 .



若屋顶斜面与水平面所成的角都是 ,则
(A) P3 P2 P1 (B) P3 P2 P1 (C) P3 P2 P1 (D) P3 P2 P 1
(12)如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联。连线标注的数字表示该段
网线单位时间内可以通过的最大信息量。现从结点 A 向结点 B 传递信息,信息可以分开沿不同的路线同
.
(16)圆周上有 2n 个等分点( n 1),以其中三个点为顶点的直角三角形的个数为 .
三、解答题:本大题共 6 小题;共 74 分,解答应写出文字说明、证明过程或
演算步骤。
(17)(本小题满分 12 分)
如图,在底面是直角梯形的四棱锥 S ABCD 中, ∠ ABC 90°, SA⊥面 ABCD , SA AB BC 1,
(13)若一个椭圆的轴截面是等边三角形,其面积为 3 ,则这个椭圆的侧面积是
x2 (14)双曲线 9
y2 16
1 的两个焦点为 F 、F ,点 P 在双曲线上.若 PF ⊥ PF ,则点 P 到 x 轴的距离
1
2
1
2

.
(15)设 a n 是公比为 q 的等比数列, S n 是它的前 n 项和.若 S n 是等差数列,则 q
(5)极坐标方程 2 sin(
) 的图形是
4
o
1
x
o 1
x o1
x
1 ox
(A)
(B)
(C)
(6)函数 y cos x 1( x 0) 的反函数是
(D)
(A) y aΒιβλιοθήκη ccos(x 1)(0 x 2) (B) y
arccos(x 1)(0 x 2)
(C) y arccos(x 1)(0 x 2) (D) y
y 12 4
(3)设 a n 是递增等差数列,前三项的和为 12,前三项的积为 48,则它的首项是
(A)1 (B)2 (C)4 (D)6
(4)若定义在区间 1,0 内的函数 f x log2a x 1 满足 f (x) 0 ,则 a 的取值范围是
1 (A)(0, 2 )
(B)(0,
1 2
]
(C)( 1 ,+ ) (D)(0,+ ) 2
(20)(本小题满分 12 分)
已知i, m, n 是正整数,且1 i m n .
(Ⅰ)证明 n P m P
ii
ii

(Ⅱ)证明 (1 mm)n (1n n)m
(1) 若 sin cos 0 ,则 在
(A)第一、二象限 (B)第一、三象限 (C)第一、四象限 (D)第二、四象限
(2)过点 A 1, 1 、B 1,1 且圆心在直线 x y 2 0 上的圆的方程是
(A) x 3 2 y 1 2 4
(B) x 3 2 y 1 2
4
(C) x
2
1
y 12 4
(D) x 1 2
sin sin
1 cos 2
sin sin cos
cos
正棱台、圆台的侧面积公式
S台侧 1 c c l 2
其中 c 、 c 分别表示上、下底面周长,l 表示斜高或母线长
台体的体积公式
V台体 1 S S S S h 3
其中 S 、 S 分别表示上、下底面积, h 表示高
一、 选择题:本大题共 12 小题;第每小题 5 分,共 60 分。在每小题给出的 四个选项中,只有一项是符合题目要求的。
AD
1 2
.
(Ⅰ)求四棱锥 S
ABCD 的体积;
(Ⅱ)求面 SCD 与面 SBA所成的二面角的正切值.
(18) (本小题满分 12 分)
已知复数 z
1
i(1 i) 3 .
(Ⅰ)求 arg z1 及 z1 ;
(Ⅱ)当复数 z 满足 z 1,求 z z1 的最大值.
(19)(本小题满分 12 分)
设抛物线 y 2 px( p 0) 的焦点为 F,经过点 F 的直线交抛物线于 A、B 两点. 点 C 在抛物线的准线 上,且 BC ∥2 x 轴. 证明直线 AC 经过原点O .
在答题卡上。 2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需
改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。 3.考试结束,监考人将本试卷和答题卡一并收回。
参考公式:
三角函数的积化和差公式
sin cos
1 sin 2
cos sin
1 sin 2
cos cos
1 cos 2
(9)在正三棱柱 ABC A1B1C1 中,若 AB
(A)60° (B)90° (C)105°
2BB1 ,则 AB1 与 C1 B 所成的角的大小为
(D)75°
(10)设 f (x)、g(x) 都是单调函数,有如下四个命题:
○1若 f (x) 单调递增, g(x) 单调递增,则 f (x) g(x) 单调递增;
时传递。则单位时间内传递的最大信息量为
(A)26 (B)24
(C)20 (D)19
第 II 卷(非选择题 90 分) 注意事项:
1. 第 II 卷共 7 页,用钢笔或圆珠笔直接答在试题卷中。 2. 答卷前将密封线内的项目填写清楚。 二.填空题:本大题共 4 小题;每小题 4 分,共 16 分,把答案填在题中横 线上。
普通高等学校招生全国统一考试
数 学(理工农医类) 本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分。第 I 卷 1 至 2 页。第 II 卷 3 至 9 页。共 150 分。考试时间 120 分钟。
第 I 卷(选择题 60 分)
注意事项: 1. 答第 I 卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写
○2 若 f (x) 单调递增, g(x) 单调递减,则 f (x) g(x) 单调递增;
○3若 f (x) 单调递减, g(x) 单调递增,则 f (x) g(x) 单调递减;
○4若 f (x) 单调递减, g(x) 单调递减,则 f (x) g(x) 单调递减;
其中,正确的命题是 (A)○1 ○3 (B)○1 ○4 (C) ○2 ○3 (D)○2 ○4 (11)一间民房的屋顶有如图三种不同的盖法:○1 单向倾斜;○2 双向倾斜;○3 四向倾斜.记三种盖法屋顶
arccos(x 1)(0 x 2)
(7)若椭圆经过原点,且焦点为 F1 (1,0), F2 (3,0),则其离心率为
3 (A) 4
2 (B) 3
1 (C) 2
1 (D) 4
(8)若 0
, sin cos a , sin cos 4
(A) a b (B) a b (C) ab 1 (D) ab 2
b ,则
相关文档
最新文档