商人过河问题数学建模

合集下载

数学建模:研究商人过河问题

数学建模:研究商人过河问题

数学建模试验一陈述 【1 】试验标题:研讨商人过河问题一.试验目标:编写一个程序(可所以C,C++或Mathlab )实现商人安然过河问题.二.试验情形:Turbo c 2.0..Matlab 6.0以上三.试验请求:请求该程序不但能找出一组安然过河的可行筹划,还可以得到所有的安然过河可行筹划.并且该程序具有必定的可扩大性,即不但可以实现3个商人,3个侍从的过河问题.还应能实现n 个商人,n 个侍从的过河问题以及n 个不合对象且每个对象有m 个元素问题(解释:对于3个商人,3个侍从问题分离对应于n=2,m=3)的过河问题.从而给出课后习题5(n=4,m=1)的全部安然过河筹划.四.试验步调:第一步:问题剖析.这是一个多步决议计划进程,涉及到每一次船上的人员以及要斟酌此岸和此岸上残剩的商人数和侍从数,在安然的前提下(两岸的侍从数不比商人多),经有限步使全部人员过河.第二步:剖析模子的组成.记第k 次渡河前此岸的商人数为k x ,侍从数为k y , 2,1=k ,n y x k k 2,1,=,(具有可扩大性),将)(k k y x ,界说为状况,状况聚集成为许可状况聚集(S ).S={2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x )(}记第k 次渡船的商人数为k u ,侍从数为k v ,决议计划为),(k k v u ,安然渡河前提下,决议计划的聚集为许可决议计划聚集.许可决议计划聚集记作D,所以D={2,1,0,,21|,=<+<v u v u v u )(|1<u+v<2,u,v=0,1,2},因为k 为奇数时船从此岸驶向此岸,k 为偶数时船由此岸驶向此岸,所以状况k s 随决议计划k d 变更的纪律是k k k k d s s )1(1-+=-,此式为状况转移律.制订安然渡河筹划归结为如下的多步决议计划模子:求决议计划)2,1(n k D d k =∈,使状况S s k ∈按照转移律,由初始状况)3,3(1=s 经有限n 步到达)0,0(1=+n s第三步:模子求解.#include "stdio.h"#include "string.h"#include <memory>#include <stdlib.h>#include <iostream>using namespace std;#include "conio.h"FILE *fp;/*设立文件指针,以便将它用于其他函数中*/struct a{long m,s;struct a *next;};/*数组类型a :记载各类情形下船上的商人和家丁数,m :代表商人数 s :代表家丁数*/ struct a *jj,head;/*head 为头指针的链表单元(船上的人数的各类情形的链表)*/ int n,total=0,js=0;/*total 暗示船上各类情形总数*/struct aim {long m1,s1,m2,s2;int n;struct aim *back,*next;};/*用于树立双向的指针链表,记入相符的情形,m1,s1暗示要过岸的商人数和家丁数;m2,s2暗示过岸了的商人数和家丁数,n暗示往返的次数*/ int k1,k2;void freeit(struct aim *p){struct aim *p1=p;p1=p->back;free(p);if(p1!=NULL)p1->next=NULL;return;}/*释放该单元格,并将其上的单元格的next指针还原*/int determ(struct aim *p){ struct aim *p1=p;if(p->s1>k2)return -1;/*家丁数不克不及超出总家丁数*/if(p->m1>k1)return -1;/*商人数不克不及超出总商人数*/if(p->s2>k2)return -1;/*对岸,同上*/if(p->m2>k1)return -1;/*对岸,同上*/if(p->s1<0)return -1;/*家丁数不克不及为负*/if(p->s2<0)return -1;/*商人数不克不及为负*/if(p->m1<0)return -1;/*对岸,同上*/if(p->m2<0)return -1;/*对岸,同上*/if(p->m1!=0)if(p->s1>p->m1)return -1;if(p->m2!=0)if(p->s2>p->m2)return -1;/*两岸商人数均不克不及小于家丁数*/while(p1!=NULL){p1=p1->back;if(p1!=NULL)if(p1->n%2==p->n%2)if(p1->s1==p->s1)if(p1->s2==p->s2)if(p1->m1==p->m1)if(p1->m2==p->m2)return -1;}/*用于解决反复,算法思惟:即将每次算出的链表单元与以前的比拟较,若反复,则暗示消失轮回*/if(p->s1==0&&p->m1==0)if(p->n%2==0)return 1;else return -1;/*显然假如达到前提就解释ok了*/return 0;}/*断定函数*/int sign(int n){if(n%2==0)return -1;return 1;}/*符号函数*/void copyit(struct aim *p3,struct aim *p){p3->s1=p->s1;p3->s2=p->s2;p3->m1=p->m1;p3->m2=p->m2;p3->n=p->n+1;p3->back=p;p3->next=NULL;}/*复制内容函数,将p中的内容写入p3所指向的链表单元中*/ void print(struct aim *p3){struct aim *p=p3;js++;while(p->back){p=p->back;}printf("\n第%d种办法:\n",js);fprintf(fp,"\n第%d种办法:\n",js);int count=0;while(p){ printf("%ld,%ld::%ld,%ld\t",p->m1,p->s1,p->m2,p->s2); fprintf(fp,"%ld,%ld::%ld,%ld\t",p->m1,p->s1,p->m2,p->s2);p=p->next;count++;}cout<<"一共有"<<count<<"步完成"<<endl;}/*打印函数,将p3所指的内容打印出来*/void trans(struct aim *p){struct aim *p3;/*p3为申请的构造体指针*/struct a *fla;int i,j,f;fla=&head;p3=(struct aim *)malloc(sizeof(struct aim));f=sign(p->n);for(i=0;i<total;i++){copyit(p3,p);p3->s1-=fla->m*f;p3->m1-=fla->s*f;p3->s2+=fla->m*f;p3->m2+=fla->s*f;/*运算进程,即过河进程*/ j=determ(p3);/*断定,j记载断定成果*/if(j==-1){if(i<total-1){continue;}else{freeit(p3);break;}}int count1=0;if(j==1){if(i<total-1){print(p3);count1++;continue;}else{print(p3);freeit(p3);break;}//cout<<cout1<<endl;printf("%d",count1);printf("\n");}if(j==0)trans(p3);}return;}/*转移函数,即将人转移过河*//*n=0*/void main(){ struct aim *p,*p1;int j,a,e,f;struct a *flag;/*flag是用与记载头指针*/FILE*fpt;if((fpt=fopen("c:result.dat","w+"))==0){printf("can't creat it\n");exit(0);}fp=fpt;system("cls");printf("问题描写:三个商人各带一个侍从乘船过河,一只划子只能容纳X人,由他们本身荡舟.三个商人窃听到侍从们谋害,在河的随意率性一岸上,只要侍从的人数比上人多,就杀失落商人.但是若何乘船渡河的决议计划权在商人手里,商人们若何安插渡河筹划确保自身安然?\n");printf("\n");p=(struct aim *)malloc(sizeof(struct aim));p->back=NULL;p->next=NULL;p->s2=0;p->m2=0;p->n=1;/*设立初始头指针*/printf("please input the total of people on the board\n");fprintf(fp,"\n请输入船上的人数\n");scanf("%d",&n);fprintf(fp,"\n%d\n",n);flag=&head;for(e=0;e<=n;e++)for(f=0;f<=n;f++)if(e+f>0&&e+f<=n){ total++;jj=(struct a*)malloc(sizeof(struct a));jj->m=e;jj->s=f;flag->next=jj;jj->next=NULL;flag=jj;}/*********************************/printf("please input the total of merchant and salvent as follow: mechant,salvent;\n"); fprintf(fp,"\nplease input the total of merchant and salvent as follow: mechant,salvent;\n"); scanf("%ld,%ld",&p->m1,&p->s1);fprintf(fp,"\n%ld,%ld\n",p->m1,p->s1);/**********************************/k1=p->m1;k2=p->s1;trans(p);fclose(fpt);getch();}第一步:三个商人,三个侍从的模子求解答案为:运行后的成果为:第1 种筹划:(3,3) 到(0,0).(3,1) 到(0,2).(3,2) 到(0,1).(3,0) 到(0,3).(3,1) 到(0,2).(1,1) 到(2,2).(2,2) 到 (1,1).(0,2) 到 (3,1).(0,3) 到 (3,0).(0,1) 到 (3,2).(0,2) 到 (3,1).(0,0) 到 (3,3)第2 种筹划:(3,3) 到(0,0).(3,1) 到(0,2).(3,2) 到(0,1).(3,0) 到(0,3).(3,1) 到(0,2).(1,1) 到(2,2).(2,2) 到 (1,1).(0,2) 到 (3,1).(0,3) 到 (3,0).(0,1) 到 (3,2).(1,1) 到 (2,2).(0,0) 到 (3,3)第3 种筹划:(3,3) 到(0,0).(2,2) 到(1,1).(3,2) 到(0,1).(3,0) 到(0,3).(3,1) 到(0,2).(1,1) 到(2,2).(2,2) 到 (1,1).(0,2) 到 (3,1).(0,3) 到 (3,0).(0,1) 到 (3,2)(.0,2) 到 (3,1).(0,0) 到 (3,3)第4 种筹划:(3,3) 到(0,0).(2,2) 到(1,1).(3,2) 到(0,1).(3,0) 到(0,3).(3,1) 到(0,2).(1,1) 到(2,2).(2,2) 到 (1,1).(0,2) 到 (3,1).(0,3) 到 (3,0).(0,1) 到 (3,2).(1,1) 到 (2,2)(0,0) 到 (3,3)第二步:四个商人三个侍从,其成果为:第1种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第2种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第3种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第4种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第5种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第6种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第7种办法:4,3::0,0 3,2::1,1 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第8种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第9种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第10种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第11种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第12种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第13种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第14种办法:4,3::0,0 3,2::1,1 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第15种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第16种办法:2,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第17种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第18种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第19种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第20种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第21种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第22种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,10,3::4,0 0,1::4,2 1,1::3,2 0,0::4,3 一共有14步完成第23种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 2,1::2,2 1,0::3,3 1,1::3,20,0::4,3 一共有16步完成第24种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第25种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 0,1::4,2 1,1::3,2 0,0::4,3 一共有14步完成第26种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第27种办法:4,3::0,0 3,2::1,1 3,3::1,0 2,2::2,1 4,2::0,14,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 1,0::3,3 1,1::3,2 0,1::4,2 0,2::4,10,0::4,3 一共有16步完成第28种办法:4,0::0,3 4,1::0,2 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第29种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 1,1::3,2 0,0::4,3 一共有14步完成第30种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 2,1::2,2 1,0::3,3 1,1::3,20,0::4,3 一共有16步完成第31种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 0,2::4,10,3::4,0 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第32种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 0,1::4,2 1,1::3,2 0,0::4,3 一共有14步完成第33种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第34种办法:2,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 1,0::3,3 1,1::3,2 0,1::4,2 0,2::4,10,0::4,3 一共有16步完成第35种办法:4,3::0,0 4,1::0,2 4,2::0,1 3,2::1,1 3,3::1,02,2::2,1 3,2::1,1 2,1::2,2 2,2::2,1 1,1::3,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第36种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第37种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第38种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第39种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第40种办法:2,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第41种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第42种办法:4,3::0,0 4,1::0,2 4,2::0,1 2,2::2,1 3,2::1,12,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成第43种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,21,1::3,2 0,0::4,3 一共有12步完成第44种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,22,1::2,2 1,0::3,3 1,1::3,2 0,0::4,3 一共有14步完成第45种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 0,2::4,1 0,3::4,0 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第46种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,21,1::3,2 0,0::4,3 一共有12步完成第47种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 0,1::4,20,2::4,1 0,0::4,3 一共有12步完成第48种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,1::4,2 0,2::4,1 0,0::4,3 一共有14步完成第49种办法:4,3::0,0 4,1::0,2 4,2::0,1 4,0::0,3 4,1::0,22,1::2,2 2,2::2,1 1,1::3,2 2,1::2,2 1,0::3,31,1::3,2 0,0::4,3 一共有12步完成。

数学建模案例作业

数学建模案例作业

数学建模案例作业作业1 商人过河问题三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行(六个人都会划船)。

随从们密谋,无论何时,一旦随从的人数比商人多,就杀人越货。

但是如何乘船渡河的决定权掌握在商人手中。

商人们怎样才能安全渡河?示意图如下: 随从:商人: 一、状态变量一次决策),(k k k y x S = 3,2,1=k 表示第k 次渡河时,此岸的商人数,随从数. 最初 )3,3(0=S 且为整数)3,0(≤≤k k y x)}0,0(),1,0(),2,0(),3,0(),0,1(),1,1(),2,1(),3,1(),0,2(),1,2(),2,2(),3,2(),0,3(),1,3(),2,3(),3,3{(=S要安全过河,需保证彼岸此岸都安全,及随从数不能大于商人数,所以安全的情况有10种,即)}0,0(),1,0(),2,0(),3,0(),1,1(),2,2(),0,3(),1,3(),2,3(),3,3{(=S ② 二、决策变量设),(k k k v u d =2,0(≤≤k k v u 且)21≤+≤k k v u 表示第k 次渡河时,船上的商人数和随从数 )}1,0(),0,1(),2,0(),1,1(),0,2{(=D与状态变量相结合,安全的情况有三种,即 )}1,0(),2,0(),1,1{((=D ③ 三、状态转移方程奇数次(此案到彼岸)k k k d S S -=+1 偶数次(彼岸到此案)k k k d S S +=+1 即k k k k d S S )1(1-+=+ ① 数学建模:由①确定的转移方程下,经过n 次决策,将初始状态转移到最终状态)0,0(=n S . 每次的决策取自③式,每次到达的状态在②中. 图解法:①从右上角移到左下角,每次最多移两步;②奇数次渡河往左下方,偶数次渡河往右下方。

建立平面直角坐标系如图:n S 过河方案:从A 点)3,3(0=S 出发到D 点)0,0(=n S 结束① 小船一次最多能载两人,所以每次最多移动两个格子② 由此岸即彼岸时人员减少,即奇数遍时向左下方行走;有彼岸及此岸时人员增加,即偶数遍时向右上方行走。

日常生活中的数学建模

日常生活中的数学建模

改进模型:
l1: 鱼的有效长度 A1:横截面积
V l1 A 1
l1 l
2 A s 1
W kls
2
W V
数学建模
模型检验
在钓鱼比赛期间收集了有关数据:
第i条鱼 长度li
腰围si
所钓鱼的长度、腰围与重量 cm, g
1 36.83
2 31.75
3

5 32.07
6
7
8 32.07
决策 ~ 每一步(此岸到彼岸或彼岸到此岸)船上的人员 要求 ~ 在商人安全的前提下(两岸的随从数都不比商人多), 经有限步使全体人员过河。
数学建模
模型建立及求解
xk~第k次渡河前此岸的商人数 xk, yk=0,1,2,3; 设 yk~第k次渡河前此岸的随从数 k=1,2, sk=(xk , yk)~过程的状态,S ~允许状态集合 S={(x , y) x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2}
态转方程,由 s1=(3,3)到达 sn+1=(0,0)。
数学建模
模型求解
穷举法 ~ 编程上机 图解法
状态s=(x,y) ~ 16个格点
3 2
y
s1
d1
S={(x , y) x=0, y=0,1,2,3;
x=3, y=0,1,2,3; x=y=1,2} 允许状态 ~ 10个 点
1
d11 0sn+1 1 2 3 x
sk+1=sk+(-1)k dk
~状态转移方程
uk~第k次渡船上的商人数 uk, vk=0,1,2; vk~第k次渡船上的随从数 k=1,2, D={(u , v) u+v=1, 2} ~允许决策集合

数学建模作业(商人过河问题)

数学建模作业(商人过河问题)

数学建模作业(四)——商人过河问题一.问题描述有四名商人各带一名仆人过河,但船最多能载二人,商人已获得仆人的阴谋:在河的任一岸,只要仆人数超过商人数,仆人会将商人杀死并窃取财物且安排如何乘船的权力掌握在商人手中。

试为商人制定一个安全过河的方案。

二.解决方案用递归的源程序如下:开始时商人,强盗所在的河的这边设为0状态,另一边设为1状态(也就是船开始时的一边设为0,当船驶到对岸是设为1状态,在这两个状态时,都必须符合条件)#include <stdlib.h>struct node /*建立一个类似栈的数据结构并且可以浏览每一个数据点*/ {int x;int y;int state;struct node *next;};typedef struct node state;typedef state *link;link PPointer1=NULL;link PPointer2=NULL;int a1,b1;int a2,b2;/*栈中每个数据都分为0,1状态*/void Push(int a,int b,int n){link newnode;newnode=(link)malloc(sizeof(state));newnode-> x=a;newnode-> y=b;newnode-> state=n;newnode-> next=NULL;if(PPointer1==NULL){PPointer1=newnode;PPointer2=newnode;}else{PPointer2-> next=newnode;PPointer2=newnode;}}void Pop()/*弹栈*/{link pointer;if(PPointer1==PPointer2){free(PPointer1);PPointer1=NULL;PPointer2=NULL;}pointer=PPointer1;while(pointer-> next!=PPointer2)pointer=pointer-> next;free(PPointer2);PPointer2=pointer;PPointer2-> next=NULL;}int history(int a,int b,int n) /*比较输入的数据和栈中是否有重复的*/ {link pointer;if(PPointer1==NULL)return 1;else{pointer=PPointer1;while(pointer!=NULL){if(pointer-> x==a&&pointer-> y==b&&pointer-> state==n)return 0;pointer=pointer-> next;}return 1;}}int judge(int a,int b,int c,int d,int n)/*判断这个状态是否可行,其中使用了history函数*/{if(history(a,b,n)==0) return 0;if(a> =0&&b> =0&&a <=3&&b <=3&&c> =0&&d> =0&&c <=3&&d <=3&&a+c==3&&b+d==3){switch(n){case 1:{if(a==3){Push(a,b,n);return 1;}else if(a==0){Push(a,b,n);return 1;}else if(a==b){Push(a,b,n);return 1;}else return 0;}case 0:{if(a==3){Push(a,b,n);return 1;}else if(a==0){Push(a,b,n);return 1;}else if(a> =b){Push(a,b,n);return 1;}else return 0;}}}else return 0;}int Duhe(int a,int b,int n)/*递归法解决商人渡河问题,如果这一个状态符合*/ {/*则判断下一个状态,直至问题解决*/ if(a==0&&b==0) return 1;if(n==0)/*判断0状态时,商匪状态是否符合要求*/{if(judge(a-1,b-1,4-a,4-b,1)){if(Duhe(a-1,b-1,1)==1)return 1;}if(judge(a,b-2,3-a,5-b,1)){if(Duhe(a,b-2,1)==1)return 1;}if(judge(a-2,b,5-a,3-b,1)){if(Duhe(a-2,b,1)==1)return 1;if(judge(a-1,b,4-a,3-b,1)){if(Duhe(a-1,b,1)==1)return 1;}if(judge(a,b-1,3-a,4-b,1)){if(Duhe(a,b-1,1)==1)return 1;}else{Pop(0);return 0;}}if(n==1)/*判断0状态时,商匪状态是否符合要求*/{if(judge(a+1,b+1,2-a,2-b,0)){if(Duhe(a+1,b+1,0)==1)return 1;}if(judge(a,b+2,3-a,1-b,0)){if(Duhe(a,b+2,0)==1)return 1;}if(judge(a+2,b,1-a,3-b,0)){if(Duhe(a+2,b,0)==1)return 1;}if(judge(a+1,b,2-a,3-b,0)){if(Duhe(a+1,b,0)==1)return 1;}if(judge(a,b+1,3-a,2-b,0))if(Duhe(a,b+1,0)==1)return 1;}else{Pop(1);return 0;}}return 0;}main(){link pointer;Push(3,3,0);Duhe(3,3,0);pointer=PPointer1;while(pointer!=NULL){printf( "%d,%d---%d\n ",pointer-> x,pointer-> y,pointer-> state);pointer=pointer-> next;}getch();}。

数学建模 商人过河

数学建模   商人过河

数学建模商人过河(hjh)
问题
随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货.
乘船渡河的方案由商人决定.商人们怎样才能安全过河?
分析问题
(1),数据及其关系?(2)如何存储?(3)过程中数据上的操作?
(4)操作过程中需借助什么结构实现?
解答
(1)数据:河两岸的商人数x∈(0,3)和随从人数y∈(0,3)
关系:线性关系
(2)存储:用二维数组来实现。

(3)操作:前进(过河)、后退(返回)
(4)操作过程中需借助栈结构实现
具体分析
此岸商人数与随从人数为C【x】【y】,彼岸商人数与随从人数为B【3-x】【3-y】,C与B数组中x必须大于等于y。

C与B数组中,各个数组中每相邻两个二维数组|x+y|之差不得超过2。

其中过河途中船上人数用数组A表示A【x1】【y1】,返回途中船上人数A【x2】【y2】。

x1,x2,y1,y2=0,1,2。

x1+y1=1或2;y2+x2=1或2。

从此岸来考察,要从最开始的C【3】【3】变到C【0】【0】。

1,C【3】【3】→C【3】【1】,C【3】【1】→C【3】【2】;
2,C【3】【2】→C【3】【0】,C【3】【0】→C【3】【1】;3,C【3】【1】→C【1】【1】,C【1】【1】→C【2】【2】;4,C【2】【2】→C【0】【2】,C【0】【2】→C【0】【3】;5,C【0】【3】→C【0】【1】,C【0】【1】→C【0】【2】;6,C【0】【2】→C【0】【0】。

操作过程中需借助栈结构实现,具体如下图所示:
此岸人数已经全部转移到彼岸,任务圆满完成,商人们安全过河。

数学建模:研究商人过河问题

数学建模:研究商人过河问题

数学建模实验一报告实验题目:研究商人过河问题一、实验目的:编写一个程序(可以是C,C++或Mathlab )实现商人安全过河问题。

二、实验环境:Turbo c 2.0、Microsoft Visual C++ 6.0、Matlab 6.0以上 三、实验要求:要求该程序不仅能找出一组安全过河的可行方案,还可以得到所有的安全过河可行方案。

并且该程序具有一定的可扩展性,即不仅可以实现3个商人,3个随从的过河问题。

还应能实现 n 个商人,n 个随从的过河问题以及n 个不同对象且每个对象有m 个元素问题(说明:对于3个商人,3个随从问题分别对应于n=2,m=3)的过河问题。

从而给出课后习题5(n=4,m=1)的全部安全过河方案。

四、实验步骤:第一步:问题分析。

这是一个多步决策过程,涉及到每一次船上的人员以及要考虑此岸和彼岸上剩余的商人数和随从数,在安全的条件下(两岸的随从数不比商人多),经有限步使全体人员过河。

第二步:分析模型的构成。

记第k 次渡河前此岸的商人数为k x ,随从数为k y ,2,1=k ,n y x k k 2,1,=,(具有可扩展性),将)(k k y x ,定义为状态,状态集合成为允许状态集合(S )。

S={2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x )(}记第k 次渡船的商人数为k u ,随从数为k v ,决策为),(k k v u ,安全渡河条件下,决策的集合为允许决策集合。

允许决策集合记作D ,所以D={2,1,0,,21|,=<+<v u v u v u )(|1<u+v<2,u,v=0,1,2},因为k 为奇数时船从此岸驶向彼岸,k 为偶数时船由彼岸驶向此岸,所以状态k s 随决策k d 变化的规律是k k k k d s s )1(1-+=-,此式为状态转移律。

制定安全渡河方案归结为如下的多步决策模型:求决策)2,1(n k D d k =∈,使状态S s k ∈按照转移律,由初始状态)3,3(1=s 经有限n 步到达)0,0(1=+n s第三步:模型求解。

商人过河问题数学建模

商人过河问题数学建模

商人过河一、问题重述问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。

随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货。

乘船渡河的方案由商人决定。

商人们怎样才能安全过河?问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。

二、问题分析问题可以看做一个多步决策过程。

每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。

用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。

问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。

三.问题假设1.过河途中不会出现不可抗力的自然因素。

2.当随从人数大于商人数时,随从们不会改变杀人的计划。

3.船的质量很好,在多次满载的情况下也能正常运作。

4.随从会听从商人的调度。

四、模型构成x(k)~第k次渡河前此岸的商人数x(k),y(k)=0,1,2,3,4;y(k)~第k次渡河前此岸的随从数k=1,2,…..s(k)=[x(k),y(k)]~过程的状态S~允许状态集合S={(x,y)x=0,y=0,1,2,3,4;x=4,y=0,1,2,3,4;x=y=1,2,3}u(k)~第k次渡船上的商人数u(k),v(k)=0,1,2;k(1) kv(k)~ 第 k 次渡船上的随从数k=1,2…..d(k)=( u(k), v(k))~过程的决策 D~允许决策集合D={u,v u+v=1,2,u,v=0,1,2}状态因决策而改变 s(k+1)=s(k)+(-1)^k*d(k)~状态转移律 求 d(k)D(k=1,2,….n), 使 s(k)S 并 按 转 移 律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0)随从 y商人 x数学模型:S k+1=S +(-1)D kx + x ' = 4kky + y ' = 4k k(2)(3)x ≥ y k.k (4)x ' ≥ y 'kk模型分析:由(2)(3)(5)可得(5)4 - x ≥ 4 - ykk化简得(( ( (( ( k(10) k综合(4)可得x = yk还要考虑x ≤ ykkk 和 S k = { x k , y k ) | x k = 0, y k = 0,1,2,3,4 }(6)S ' = { x ', y ') | x ' = 0, y ' = 0,1,2,3,4 }kkkkk(7)把(2)(3)带入(7)可得S = {(4 - x ,4 - y ) | 4 - x = 0,4 - y = 0,1,2,3,4 }kk k k k化简得S = { x , y ) | x = 4, y = 0,1,2,3,4 }kk k k k综合(6)(7)(8)式可得满足条件的情况满足下式S = { x , y ) | x = 0,4, y = 0,1,2,3,4; x = ykkkkk k k所以我们知道满足条件的点如上图所示:点移动由}(8)(9)S = { x , y ) | x = 4, y = 0,1,2,3,4 }kkkkk(8)到达S = { x , y ) | x = 0, y = 0,1,2,3,4 }kkkkk(6)时,可以认为完成渡河。

商人过河问题数学建模c语言

商人过河问题数学建模c语言

商人过河问题数学建模c语言商人过河问题是一个经典的数学建模问题,通过建立数学模型,我们可以更深入地理解问题的本质,并找到最优的解决方案。

本文将通过C语言来实现这个问题的数学建模。

一、问题描述假设有n个商人要过河,每艘船只能承载一定数量的货物,而过河需要消耗一定的时间。

为了在最短的时间内完成过河任务,我们需要考虑商人的数量、船只的承载量以及过河的时间等因素,建立相应的数学模型。

二、数学建模1. 变量定义我们需要定义一些变量来描述过河过程中的各种因素,如商人的数量、船只的数量、船只的承载量、过河的时间等。

2. 算法设计算法的核心思想是利用贪心策略,尽可能多地利用船只,以减少过河的时间。

具体步骤如下:(1) 分配船只:根据船只的承载量,将商人分配到不同的船只上;(2) 计算过河时间:根据当前船只的位置和目标河岸的位置,计算每艘船只的过河时间;(3) 更新船只位置:根据过河时间,更新每艘船只的位置;(4) 重复以上步骤,直到所有商人过河。

3. C语言实现以下是一个简单的C语言程序,实现了上述算法:```c#include <stdio.h>#include <stdlib.h>int main() {int n, m, t, i, j, k;scanf("%d%d", &n, &m); // 输入商人数量和船只数量int cargo[n], time[n]; // 定义变量数组,用于存储商人和船只的信息scanf("%d%d", &cargo[0], &time[0]); // 输入第一个商人和他的过河时间for (i = 1; i < n; i++) { // 输入剩余商人和他们的过河时间scanf("%d%d", &cargo[i], &time[i]);}int boat[m]; // 定义船只数组,用于存储船只的承载量和位置信息for (j = 0; j < m; j++) { // 输入船只的承载量和位置信息scanf("%d", &boat[j]);}for (k = 0; k < n; k++) { // 模拟过河过程for (j = 0; j < m; j++) { // 遍历所有船只if (boat[j] >= cargo[k]) { // 如果船只承载量足够承载当前商人time[k] += time[k] / boat[j]; // 根据过河时间和船只速度计算剩余时间boat[j] += cargo[k]; // 将商人转移到指定位置的船只上break; // 如果找到了足够承载商人的船只,跳出当前循环继续下一轮操作}}}printf("%d\n", time[n - 1]); // 输出最后一个商人的过河时间return 0;}```三、总结通过上述C语言程序,我们可以实现商人过河问题的数学建模。

商人渡河数学模型

商人渡河数学模型

商人渡河数学模型
1、商人渡河数学模型
商人渡河是一类有趣的动态规划问题,其本质是一类路径规划问题,用数学模型可以描述为:
假设有n种物品,体积大小分别为W1,W2,……,Wn,以及一艘能承重V的船,每次船只能装载一些物品,要求在尽可能少的船次内,将物品搬运到对岸。

令Xij表示第i次船运载物品的状态,其中0≤Xij≤1,Xij=1表示船上装有第j个物品,Xij=0表示船上没有第j个物品,那么商人渡河问题就可以用下面的数学模型表示:
目标函数:
(1) Min Z=X11+X12+ (Xi)
约束条件:
(2) W1X11+W2X12+……+WnXin≤V
(3) X11+X12+……+Xin=1
(4) 0≤Xij≤1
其中,约束条件(2)表示第i次船运的负载不超过容量V,约束条件(3)表示每次船运必须装一些物品,约束条件(4)表示每次船运的物品的数量限制在0与1之间。

商人过河案例建模

商人过河案例建模

商人过河设有三名商人,各带一个随从,欲乘一小船渡河,小船只能容纳两人,须由他们自己划行。

随从们密约,在河的任何一岸,一旦随从的人数比商人多,就杀人越货。

而如何乘船渡河的大权掌握在商人们的手中。

商人们怎样才能安全渡河呢?因这已经是一个相当清晰的理想化问题,所以直接讨论其模型描述以及模型求解。

这里将其描述为一个动态决策问题:记第k次渡河前此岸的商人数为,随从数为, k=1,…,n。

将二维向量定义为状态,安全渡河条件下的状态集合称为允许状态集合,记作S, 。

记第k次渡船上的商人数为,随从数为, k=1,…,n。

将二维向量定义为决策。

考虑小船载人数的限制,应满足,而称为允许决策集合。

因为k为奇数时,船从此岸驶向彼岸;k为偶数时,船从彼岸驶回此岸,所以状态随决策的变化规律是(状态转移规律)。

求决策,使状态按照状态转移规律,由初始状态经有限步n到达状态。

接下来讨论模型的求解,设是某个可行的渡河方案所对应的状态序列,若存在某,且同为奇数或同为偶数,满足,则称所对应的渡河方案是可约的。

这时也是某个可行的渡河方案所对应的状态序列。

显然,一个有效的渡河方案应当是不可约的。

设渡河已进行到第k步,为当前的状态,记,,为保证构造的渡河方案不可约,则当前的决策除了应满足:1),且当k为奇数时,,当k为偶数时,;还须满足:2)当k为奇数时,;当k为偶数时,。

通过作图,可以得到两种不可约的渡河方案,如下图:思考题:(1)四名商人各带一名随从的情况(小船同前)。

(2)n名商人各带n名随从的情况(小船同前)。

数学建模商人过河__论文

数学建模商人过河__论文

组长:王鹏道110714组员:任利伟110713、孙祎110706小组成员负责情况:王鹏道:选择论文题目、设计论文版面字体、分配成员任务、总结任利伟:一、问题提出、关键、分析。

二、模型假设、三、模型建立孙祎:四、模型求解、五、模型的检验、拓展及延伸2014年11月24日摘要为了求解3个商人与3个随从的过河问题,用数学分析方法,建立数学模型,并且加以求解,展示动态规划思想的应用步骤。

最后利用计算机蝙程进行求解,获得过河问题的完整求解过程;有效地求解类似多步决策问题的作用。

关键词:多步决策计算机求解状态转移律图解法一、问题的提出随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货,但就是乘船渡河的方案由商人决定、商人们怎样才能安全过河?二、问题的关键解决的关键集中在商人与随从的数量上,以及小船的容量上,该问题就就是考虑过河步骤的安排与数量上。

各个步骤对应的状态及决策的表示法也就是关键。

三、问题的分析在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。

由于船上人数限制,这需要多步决策过程,必须考虑每一步船上的人员。

动态规划法正就是求解多步决策的有效方法。

它要求把解的问题一层一层地分解成一级一级、规模逐步缩小的子问题。

直到可以直接求出其解的子问题为止。

分解成所有子问题按层次关系构成一棵子问题树.树根就是原问题。

原问题的解依赖于子问题树中所有子问题的解。

四、模型假设记第k 次过河前A 岸的商人数为X K ,随从数为Y K k=1,2,⋯X K ,Y K =0,1,2,3,将二维向量S K =(X K ,Y K )定义为状态.把满足安全渡河条件下的状态集合称为允许状态集合。

记作S 。

则S={(X K ,Y K )|(X K =0,Y K =0,1,2,3),(X K =3,Y K =0,1,2,3),(X K =Y K =1)(X K =Y K =2)} 记第k 次过河船上的商人数为U K随从数为V K将二维向量D K =(U K ,V K )定义为决策.由小船的容量可知允许决策集合(记作D)为D={(U K ,V K )|U K +V K =l,2}={(O,1);(O,2);(1,O);(1,1);(2,O)}五、 模型建立:动态规划法正就是求解多步决策的有效方法。

最新4商人过河问题汇总

最新4商人过河问题汇总
4商人过河问题
模型建立
此问题可视为一个多步决策问题,每一步就是一 次渡河,每次渡河就是一次状态转移。
用三维变量(x,y,z)表示状态: x ------商人数, y ------随从数
x,y的取值范围:{0,1,2,3} z ------船
z的取值范围:{0,1} 那么安全状态可表示为
x=0,3, y=0,1,2,3 或 x=1,2, y=x
(3,3,1) (3,2,1) (3,1,1) (2,2,1) (3,0,1) (0,3,1) (0,2,1) (1,1,1) (0,1,1)
(3,2,0) (3,1,0) (2,2,0) (3,0,0) (0,3,0) (0,2,0) (1,1,0) (0,1,0) (0,0,0)
这就是此问题的数学模型。 2
4
如下图所示: 这样可得到所有答案:
5
由此可得ห้องสมุดไป่ตู้渡河策略:
(2,2,0) (3,3,1)
(3,2,1)→(3,0,0)→(3,1,1)→(1,1,0)→
(3,1,0)
(2,2,1)→(0,2,0)→(0,3,1)→(0,1,0)
(1,1,1) (0,2,1)
(0,0,0)
6
模型求解法二
状态平面分析法
10
(2) m名商人m个随从(m≥4)无法安全渡河,如m=4 时的图(如下图),d7就无法作不重复的转移。
11
探索
(1) 夫妻过河问题 有三对夫妻要过河,船最多可载两人。 约束条件是根据法律,任一女子不得在其
丈夫不在场的情况下与另外男子在一起,问 此时这三对夫妻能否过河? 四对夫妻呢 (2) 人、狗、鸡、米过河问题
模型求解
这样问题要求由(3,3,1)变到(0,0,0)的一条道路。 根据题意,状态转移时要满足一定的规则: 1. Z从1变为0与从0变为1交替进行; 2. 当Z从1变为0时,即船从此岸到对岸,此岸人数减

(完整word版)商人过河问题数学建模

(完整word版)商人过河问题数学建模

作业1、2:商人过河一、问题重述问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。

随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货。

乘船渡河的方案由商人决定。

商人们怎样才能安全过河?问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。

二、问题分析问题可以看做一个多步决策过程。

每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。

用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。

问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。

三.问题假设1. 过河途中不会出现不可抗力的自然因素。

2. 当随从人数大于商人数时,随从们不会改变杀人的计划。

3.船的质量很好,在多次满载的情况下也能正常运作。

4. 随从会听从商人的调度。

四、模型构成x(k)~第k次渡河前此岸的商人数x(k),y(k)=0,1,2,3,4;y(k)~第k次渡河前此岸的随从数k=1,2,…..s(k)=[ x(k), y(k)]~过程的状态S~允许状态集合S={(x,y) x=0,y=0,1,2,3,4; x=4,y=0,1,2,3,4;x=y=1,2,3}u(k)~第k次渡船上的商人数u(k), v(k)=0,1,2;v(k)~ 第k次渡船上的随从数k=1,2…..d(k)=( u(k), v(k))~过程的决策 D~允许决策集合D={u,v |u+v=1,2,u,v=0,1,2}状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律求d(k) ∈D(k=1,2,….n),使s(k)∈S 并按转移律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0)数学模型:k+1k S =S +k k D (-1) (1)'4k k x x += (2)'4k k y y += (3)k.k x y ≥ (4)''k k x y ≥ (5)模型分析:由(2)(3)(5)可得44kk x y -≥- 化简得k k x y ≤综合(4)可得k k x y = 和 {}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)还要考虑 {}'(',')|'0,'0,1,2,3,4kk k k k S x y x y === (7) 把(2)(3)带入(7)可得{}(4,4)|40,40,1,2,3,4k k k k k S x y x y =---=-=化简得{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 综合(6)(7)(8)式可得满足条件的情况满足下式{}(,)|0,4,0,1,2,3,4;k k k k k k k S x y x y x y ==== (9)所以我们知道满足条件的点如上图所示:点移动由{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 到达{}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)时,可以认为完成渡河。

11对商仆过河问题数学建模.

11对商仆过河问题数学建模.

数学建模论文商仆过河问题摘要本文针对商人安全渡河的问题,采用多步决策的过程建立数学模型,求解得到了在随从没有杀人越货的情况下的渡河方案。

对于本题而言,在11名商人、11名随从、船的最大容量为6人的情况下,首先定义了渡河前此岸的状态,并设安全渡河条件下的状态集定义为允许状态集合,接着得到渡河方案的允许决策集合,然后得到状态随渡河方案变化的规律,利用matlab 7.0,win 7软件,编译运行程序得到了一种商人安全渡河的方案,并输出了允许的状态向量和允许的决策向量。

但是,本文不仅仅是为了拼凑出一个可行方案,而是希望能找到求解这类问题的规律性,并建立数学模型,用以解决更为广泛的问题。

一 .问题的提出当今社会每个人都想当王者,谁都想成为富翁,所以就在这个问题中仆人们也想成为商人。

仆人们密约,在河的任何一边,只要仆人的数量超过商人的数量,仆人就会联合起来将商人杀死并抢夺其财物,十一名商人各带一个随从乘船渡河,一只小船只能容纳六人,由他们自己划行。

在河的任意一岸,一旦随从的人数比商人多,商人就有危险.但是如何乘船渡河的大权掌握在商人们手中。

商人们怎样才能安全渡河呢?同时,推广到M名商人带M名随从又如何?二. 模型假设3 模型假设(1)每个商人和随从都会划船;(2)只有一条船,且每条船上最多只能乘坐六个人;(3)所有商人与随从之间没有矛盾,不会出现有人不愿意同坐一条船的现象;(4)船在渡河的过程中不受外界环境的影响。

三.问题符号说明3符号说明A初始状态下,商人和随从所在的一岸;B初始状态下,商人和随从欲到达的一岸;S 商仆对数K 船最多载人的数目四 .问题分析安全渡河问题可以看成一个多步决策过程。

每一步,即船由此岸驶向彼岸或从彼岸驶回此岸,都要对船上的人员(商人随从各几人)作出决策,在保证安全的前提下(两岸的商人数都不比随从数少),在有限步内使人员全部过河。

用状态(变量)表示某一岸的人员状况,决策(变量)表示船上的人员状况,可以找出状态随决策变化的规律。

数学模型——商人过河问题

数学模型——商人过河问题

#include<stdio.h>#include<conio.h>#include<stdlib.h>struct Node{int x;int y;int state;struct Node *next;};typedef struct Node state;typedef state *link;link pt1=NULL;link pt2=NULL;int a1,b1;int a2,b2;/*栈中每个数据都分为,状态*/void Push(int a,int b,int n){link newNode;newNode=(link)malloc(sizeof(state)); newNode-> x=a;newNode-> y=b;newNode-> state=n;newNode-> next=NULL;if(pt1==NULL){pt1=newNode;pt2=newNode;}else{pt2-> next=newNode;pt2=newNode;}}void Pop() /*弹栈*/{link pointer;if(pt1==pt2){free(pt1);pt1=NULL;pt2=NULL;}pointer=pt1;while(pointer-> next!=pt2)pointer=pointer-> next;free(pt2);pt2=pointer;pt2-> next=NULL;}int origin(int a,int b,int n)/*比较输入的数据和栈中是否有重复的*/ {link pointer;if(pt1==NULL)return 1;else{pointer=pt1;while(pointer!=NULL){if(pointer-> x==a&&pointer-> y==b&&pointer-> state==n) return 0;pointer=pointer-> next;}return 1;}}int judge(int a,int b,int c,int d,int n)/*判断状态是否可行*/{if(origin(a,b,n)==0) return 0;if(a>=0&&b>=0&&a<=3&&b<=3&&c>=0&&d>=0&&c<=3&&d<=3&&a+c==3 &&b+d==3){switch(n){case 1:{if(a==3){Push(a,b,n);return 1;}else if(a==0){Push(a,b,n);return 1;}else if(a==b){Push(a,b,n);return 1;}else return 0;}case 0:{if(a==3){Push(a,b,n);return 1;}else if(a==0){Push(a,b,n);return 1;}else if(a>=b){Push(a,b,n);return 1;}else return 0;}}}else return 0;}int Duhe(int a,int b,int n) /*递归*/ {if(a==0&&b==0) return 1;if(n==0) /*判断状态时,商人和随从状态是否符合要求*/ {if(judge(a-1,b-1,4-a,4-b,1)){if(Duhe(a-1,b-1,1)==1)return 1;}if(judge(a,b-2,3-a,5-b,1)){if(Duhe(a,b-2,1)==1)return 1;}if(judge(a-2,b,5-a,3-b,1)){if(Duhe(a-2,b,1)==1)return 1;}if(judge(a-1,b,4-a,3-b,1)){if(Duhe(a-1,b,1)==1)return 1;}if(judge(a,b-1,3-a,4-b,1)){if(Duhe(a,b-1,1)==1)return 1;}else{Pop();return 0;}if(n==1) /*判断状态时,商人和随从状态是否符合要求*/ {if(judge(a+1,b+1,2-a,2-b,0)){if(Duhe(a+1,b+1,0)==1)return 1;}if(judge(a,b+2,3-a,1-b,0)){if(Duhe(a,b+2,0)==1)return 1;}if(judge(a+2,b,1-a,3-b,0)){if(Duhe(a+2,b,0)==1)return 1;}if(judge(a+1,b,2-a,3-b,0)){if(Duhe(a+1,b,0)==1)return 1;}if(judge(a,b+1,3-a,2-b,0)){if(Duhe(a,b+1,0)==1)return 1;}else{Pop();return 0;}}return 0;}main(){link pointer;Push(3,3,0);Duhe(3,3,0);pointer=pt1;printf("第一个数是此岸商人数量,第二个数是此岸随从数量,0表示船在此岸,代表船在彼岸:\n");while(pointer!=NULL){printf("%d,%d——%d\n",pointer-> x,pointer-> y,pointer-> state);pointer=pointer-> next;}}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业1、2:
商人过河
一、问题重述
问题一:4个商人带着4个随从过河,过河的工具只有一艘小船,只能同时载两个人过河,包括划船的人。

随从们密约, 在河的任一岸, 一旦随从的人数比商人多, 就杀人越货。

乘船渡河的方案由商人决定。

商人们怎样才能安全过河?
问题二:假如小船可以容3人,请问最多可以有几名商人各带一名随从安全过河。

二、问题分析
问题可以看做一个多步决策过程。

每一步由此岸到彼岸或彼岸到此岸船上的人员在安全的前提下(两岸的随从数不比商人多),经有限步使全体人员过河。

用状态变量表示某一岸的人员状况,决策变量表示船上的人员情况,可以找出状态随决策变化的规律。

问题就转换为在状态的允许变化范围内(即安全渡河条件),确定每一步的决策,达到安全渡河的目标。

三.问题假设
1. 过河途中不会出现不可抗力的自然因素。

2. 当随从人数大于商人数时,随从们不会改变杀人的计划。

3.船的质量很好,在多次满载的情况下也能正常运作。

4. 随从会听从商人的调度。

四、模型构成
x(k)~第k次渡河前此岸的商人数x(k),y(k)=0,1,2,3,4;
y(k)~第k次渡河前此岸的随从数k=1,2,…..
s(k)=[ x(k), y(k)]~过程的状态S~允许状态集合
S={(x,y) x=0,y=0,1,2,3,4; x=4,y=0,1,2,3,4;x=y=1,2,3}
u(k)~第k次渡船上的商人数u(k), v(k)=0,1,2;
v(k)~ 第k次渡船上的随从数k=1,2…..
d(k)=( u(k), v(k))~过程的决策 D~允许决策集合
D={u,v |u+v=1,2,u,v=0,1,2}
状态因决策而改变s(k+1)=s(k)+(-1)^k*d(k)~状态转移律
求d(k) ∈D(k=1,2,….n),使s(k)
∈S 并按转移律s(k+1)=s(k)+(-1)^k*d(k)由(4,4)到达(0,0)
数学模型:
k+1k S =S +k k D (-1) (1)
'4k k x x += (2)
'4k k y y += (3)
k.k x y ≥ (4)
''k k x y ≥ (5)
模型分析:
由(2)(3)(5)可得
44k
k x y -≥- 化简得
k k x y ≤
综合(4)可得
k k x y = 和 {}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)
还要考虑 {}'(',')|'0,'0,1,2,3,4k
k k k k S x y x y === (7) 把(2)(3)带入(7)可得
{}(4,4)|40,40,1,2,3,4k k k k k S x y x y =---=-=
化简得
{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 综合(6)(7)(8)式可得
满足条件的情况满足下式
{}(,)|0,4,0,1,2,3,4;k k k k k k k S x y x y x y ==== (9)
所以我们知道满足条件的点如上图所示:点移动由
{}(,)|4,0,1,2,3,4k k k k k S x y x y === (8) 到达
{}(,)|0,0,1,2,3,4k k k k k S x y x y === (6)
时,可以认为完成渡河。

因为移动的格数小于等于2,只有中心点(2,2)到(6)点和(8)点的距离为2,所以中心点(2,2)成为渡河的关键点。

当我们移动到(2,2)点时,就无法进行下去。

故4个商人,4个随从,船容量为2人时,无法安全渡河。

对于问题二,我们可以建立模型为:
k+1k S =S +k k D (-1) (10)
'k k x x M
+= (11) 'k k y y M += (12)
k.k x y ≥ (13)
''k k x y (14)
u(k), v(k)=0,1,2,3; (15)
通过类似于问题一的步骤可以知道:坐标上的关键点是(3,3),最多可以五名商人带五名随从过去。

需要确定五名商人带五名随从的方案可行再确定六名商人带六名随从的方案不可行
1、五名商人带五名随从的情况:
(1)首先不可能有三名商人先过河,两名商人一名随从过河,一名商人两名随从过河
(2)三个随从先过河(5,2),回来一个随从(5,3),过去两个随从(5,1)回来一个随从(5,2),再过去三个商人(2,2),回来一个商人一个随从(3,3),再过去三个商人(0,3),回来一个随从(0,4),过去三个随从(0,1),回来一个随从(0,2)再过去两个随从(0,0)
综上可知:五名商人带五名随从,小船可以载三个人可以过河
2、六名商人带六名随从的情况:
(1)首先不可能有三名商人先过河,两名商人一名随从过河,一名商人两名随从过河
(2)三个随从先过河(6,3),回来一个随从(6,4),过去两个随从(6,2)回来一个随从(6,3),过去三个商人(3,3),此时两岸都是(3,3),由坐标法分析知,这是最接近终点的临界点,但是如果回来的时候一定是回来一个商人和一个随从,如果这一步可行,后面就进行不去
综上所述,六个商人带六个随从,小船载三个人的情况下不能渡河
结合1、2知,当小船最多载三个人的时候,最多五名商人各带一个随从可以过河。

五、模型的检验与评价
由少数人的过河问题推广到了更多数人的过河问题,使得问题变得明了有规律。

六、参考文献
[1]章胤,2014年燕山大学全国大学生数学建模竞赛培训ppt,2014年4月17日。

相关文档
最新文档