2015秋八年级数学上册 12.2 三角形全等的判定ASA,AAS(第3课时)导学案1 (新版)新人教版
人教版八年级数学上册1三角形全等的判定-第三课时“角边角”(ASA)“角角边”(AAS)判定
12.2 三角形全等的判定 第三课时 “角边角” (ASA)
“角角边”(AAS)判定
1. 掌握全等三角形的“角边角”(ASA)判 定定理,并能运用其解决问题。
2. 通过结合ASA定理及三角形内角和定理, 推出并熟练掌握“角角边”(AAS)定理。
动脑想一想
• 什么是判定三角形全等的“边角边”定理? • 两边和它们的夹角分别相等的两个三角形
不能判定三角形全等的组合有两个! AAA,SSA!
学完本节课你应该知道
ASA定理: 两角和它们的夹边分别 相等的两个三角形全等
AAS定理: 两角和其中一角的对边分 别相等的两个三角形全等
数学语言 表示和证明
动笔练一练
• 如图,线段AD,BC相 交于点O,若OA=OB, 为了用“ASA”判定 △AOC≌△BOD,应
• 如图,点B、F、C、 E在同一直线上。 ∠A=∠D,AC=DF, 且AC∥DF。试证: △ABC≌△DEF。
动笔练一练
证明:
∵AC∥DF ∴∠ACB=∠DFE 在△ABC与△DEF中:
∠A=∠D AC=DF ∠ACB=∠DFE ∴△ABD ≌△ ACE(ASA)
课后练一练
请同学们独立完成配套课后练习题。
下课!
谢谢同学们!
F
总结:ASA和AAS
• 联系:这两个定理都告诉我们,已知两个
角和一条边对应相等,就可以判定两个三 角形全等。
• 区别:ASA中的相等的边必须为两角夹边,
AAS中相等的边必须为其中一个角的对边。 不要弄混。
一个小结
• 到目前为止,我们一共学习了四种判定两 个三角形全等的定理:
SSS,SAS,ASA,AAS
画图思路
人教版数学八年级上册12.2全等三角形的判定(3)ASA和AAS教案
1.引入新课:通过复习全等三角形的定义和SSS、SAS判定定理,自然过渡到本节课的ASA和AAS判定定理。
2.演示与探索:利用多媒体演示ASA和AAS判定定理的动态过程,引导学生观察并思考两个三角形全等的条件。
3.分组讨论:将学生分组,每组讨论一个实际例题,运用ASA和AAS判定定理证明两个三角形全等。
-难点三:在实际问题中的应用。学生需学会将ASA和AAS定理应用于解决实际问题,如计算未知长度或角度。
-举例:在房屋建筑中,如何使用ASA或AAS定理来确定两个墙面的全等关系,从而计算材料需求。
-难点四:证明过程的逻辑性和条理性。学生需要学会清晰、有条理地写出证明过程,避免逻辑错误。
-举例:指导学生如何逐步写出证明步骤,确保每一步都有理有据。
2.练习评价:根据学生完成练习题的正确率和速度,评估学生对ASA和AAS判定定理的理解和掌握程度。
3.课堂问答:通过提问方式,检查学生对ASA和AAS判定定理的记忆和理解情况。
4.课后作业:布置课后作业,要求学生运用所学知识解决实际问题,进一步巩固全等三角形的判定方法。
五、教学建议
1.注重启发式教学,引导学生主动发现问题和解决问题。
4.课堂讲解:针对学生在讨论中遇到的问题,进行讲解和解析,强调ASA和AAS判定定理的关键点。
5.练习巩固:布置一些具有代表性的练习题,让学生独立完成,巩固所学知识。
6.总结提升:对本节课的内容进行总结,强调ASA和AAS判定定理在实际问题中的应用。
四、教学评价
1.过程性评价:观察学生在分组讨论中的参与程度、思考问题的方式和解决问题的策略。
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形判定相关的实际问题。
八年级数学上册 第十二章 全等三角形 12.2 三角形全等的判定 第3课时 运用“角边角”和“角角边
17
8. 如图,在四边形 ABCD 中,AD∥BC,EF 过 AC 的中点 O,分别交 AD,BC 于点 E,F.
(1)求证:OE=OF; (2)若直线 EF 绕点 O 旋转一定角度后,与 AD,BC 分别交于点 E′,F′,仍有 OE′=OF′吗?为什么? (3)EF 绕点 O 旋转到何处时,线段 EF 最短?
∠2.又∵∠1=∠2,
∴∠1=∠BEO,∴∠AEC=∠BED.
∠A=∠B,
在△ AEC 和△ BED 中,
AE=BE, ∠AEC=∠BED,
∴△AEC≌△BED(ASA).
(2)∵△AEC≌△BED , ∴EC = ED , ∠C = ∠BDE.
在△ EDC 中,∠1=42°,∴∠C=∠EDC=69°,∴∠BDE
第十二章 全等三角形 12.2 三角形全等的判定
第3课时 运用“角边角”和“角角边” 证三角形全等
1
三角形全等的判定方法三: 两角和它们的夹边对
应相等 的两个三角形全等(简写为“ 角边角 ”或
“ ASA ”).由于三角形的内角和为 180° ,所以,
我们也可以得到:两个角和其中一个角的对边对应相
等
=∠C=69°.
6
知识点 利用“AAS”判定三角形全等
4. 如图,C,B 是线段 AD 上的两点,已知 AM=CN,
∠A=∠DCN,下列条件中不能判定△ ABM≌△CDN 的
是( C )
A.∠M=∠N
B.AC=BD
C.BM=DN
D.BM∥DN
7
5. 如图,已知△ ABC 的六个元素,则对于甲、乙、 丙三个三角形,判断正确的是( C )
12.2三角形全等的判定(3)ASA、AAS说课稿-2022-2023学年人教版八年级上册数学
12.2 三角形全等的判定(3)ASA、AAS说课稿-2022-2023学年人教版八年级上册数学引言《2022-2023学年人教版八年级上册数学》中的第12章是关于三角形的全等的判定的内容,本节课主要介绍了ASA(角边角)和AAS(角角边)两种判定全等的方法。
通过本节课的学习,学生可以了解到三角形全等的几个重要判定方法,提高他们的逻辑思维能力和证明能力。
学情分析在初中数学课程中,全等三角形的判定是非常重要的一部分内容。
在之前的学习中,学生已经学习了SSS、SAS两种判定全等的方法。
本节课主要引入了ASA和AAS这两种新的判定方法,增加了学生的全等三角形判定技巧。
在此之前,学生已经学习过三角形的基本性质、相似三角形的判定和性质等相关内容,为学习本课内容打下了坚实的基础。
在学习ASA和AAS这两种判定方法之前,学生已经学习了角的概念、角的类型和性质等内容。
学生已经具备了对角的认识和理解,并能够运用角的基本知识解决问题。
本节课的学习将进一步拓展学生对角和三角形的认识,培养他们的证明思维和逻辑思维能力。
教学目标•知识目标:了解ASA和AAS这两种判定全等的方法,掌握其应用技巧。
•能力目标:运用ASA和AAS的判定方法解决实际问题,提高证明能力和逻辑思维能力。
•情感目标:培养学生对数学的兴趣和学习的积极态度,培养合作意识和团队精神。
教学重点和难点教学重点•ASA和AAS这两种判定全等的方法的介绍和运用。
•正确理解全等三角形的定义和性质,掌握判定方法的使用技巧。
教学难点•判定问题的证明过程,培养学生的证明能力和逻辑思维能力。
教学过程导入新课1.教师出示两个相似三角形,让学生观察并找出它们的相似性质。
2.引导学生回顾之前学习的相似三角形的判定方法,并复习相似三角形的定义和性质。
提出问题1.教师出示一个例子,让学生观察并思考两个全等三角形的条件。
2.引导学生思考如何判定两个三角形全等。
引入ASA的判定方法1.明确学习目标:学习ASA的判定方法,了解其原理和条件。
八年级数学上册第十二章全等三角形12.2三角形全等的判定第3课时用“ASA”或“AAS”判定三角形全等 新人教版
2019/7/13
最新中小学教学课件
27
谢谢欣赏!
2019/7/13
最新中小学教学课件
28
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔课内容——对实际材料的讲解课可能需要做大量的笔记。 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很
全的人,主要是担心漏掉重要内容,影响以后的复习与思考.,这样不仅失去了做笔记的意义,也将课堂“听”与“记”的关系本末倒置了﹙太忙于记录, 便无暇紧跟老师的思路﹚。 如果只是零星记下一些突出的短语或使你感兴趣的内容,那你的笔记就可能显得有些凌乱。 做提纲式笔记因不是自始至终全都埋头做笔记,故可在听课时把时间更多地用于理解所听到的内容.事实上,理解正是做好提纲式笔记的关键。 课堂笔记要注意这五种方法:一是简明扼要,纲目清楚,首先要记下所讲章节的标题、副标题,按要点进行分段;二是要选择笔记语句,利用短语、数 字、图表、缩写或符号进行速记;三是英语、语文课的重点词汇、句型可直接记在书页边,这样便于复习时查找﹙当然也可以记在笔记本上,前提是你 能听懂﹚;四是数理化生等,主要记老师解题的新思路、补充的定义、定理、公式及例题;五是政治、历史等,着重记下老师对问题的综合阐述。
`122 三角形全等的判定(第3课时)(人教版八年级上)
D O B
E
C
∴BD=CE
在△ABC和△DEF中,∠A=∠D,∠B=∠E ,BC=EF,
△ABC与△DEF全等吗?能利用角边角条件证明你的结论吗? A C B D
E
F
有两角和其中一个角所对的边对应相等的两个
三角形全等(简写成“角角边”或“AAS”).
有几种填法?
B
1.如图,应填什么就有 △AOC≌ △BOD C ∠A=∠B(已知) AC=BD (已知) _______ ∠C=∠D(已知) ∴△AOC≌△BOD( ASA )
=∠C(即使两角和它们的夹边对应相等).
(3)把你画好的Δ A′B′C′放到刚才同桌的Δ ABC上重叠 (对应角对齐,对应边对齐).你发现了什么? (4)所画得三角形和同桌画的三角形都能相互( 重合).
三角形全等判定三
两角和它们的夹边对应相等的两个三角形全等 (可以简写成“角边角”或“ASA”).
O D
A
B
如图,应填什么就有△AOC≌△BOD∠A源自∠B(已知)C O
)
CO=DO ________ (已知)
∠C=∠D (已知)
∴△AOC≌△BOD( AAS
D
A
B
如图,应填什么就有△AOC≌△BOD ∠A=∠B(已知)
C O D
AO=BO (已知) _______
∠C=∠D (已知) ∴△AOC≌△BOD( AAS )
A
4 2
1
E
3
F
D
B
C
G
【解析】 (1)∵四边形ABCD是正方形,∴AB=AD.
2 1 在△ABE和△DAF中, AB DA 4 3
∴△ABE≌△DAF(ASA).
12.2.3三角形全等的判定(3)(ASA、AAS)
A
D
C
E
F
在△ABC与△DEF中 ∠A= ∠D AB=DE ∠B= ∠E ∴△ABC≌△DEF(ASA)
已知如图,B、F、C、E在 一条直 例1:
线上,FB=CE,AB∥DE, AC ∥DFAB , =DE 求证:
A
B
C F D
E
探究:在△ABC与△DEF中, ∠A=∠D,∠B=∠E,BC=EF, △ABC与△DEF全等吗?能利用角 边角(ASA)证明你的结论吗?
即证明角角边(AAS)是不是判定方法
A
D
B
C
E
F
A
D
B
C
E
F
已知∠A=∠D,∠B=∠E, BC=EF. 求证:△ABC≌△DEF.
证明:∵∠A=∠D,∠B=∠E 又∵∠C=180°-∠A-∠B, ∠F=180°-∠D-∠E 两角和它们其中 ∴∠C=∠F 一角的对边对应 在△ABC和△DEF中 ∠B=∠E BC=EF ∠C=∠F
12.2 三角形全等的判定(3) (ASA 、AAS)
1. 边边边公理内容:
三边对应相等的两个三角形全等 _________________________________________
_____________________________ 简称“边边边”或“SSS” 2. 边角边公理内容: _________________________________________ 有两边和它们的夹角对应相等的两个 三角形全等 _________________
相等的两个三角 形全等. (简写为“角角 ∴△ABC≌△DEF(ASA) 边”或“AAS”)
几何语言
BADຫໍສະໝຸດ CEF在△ABC与△DEF中
12.2 第3课时三角形的全等的判定(三)数学人教版八上同步课堂教案
第十二章全等三角形12.2 三角形全等的判定第3课时三角形的全等的判定(三)(ASA,AAS)一、教学目标1.探索并正确理解三角形全等的判定方法“ASA”和“AAS”.2.能熟练利用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.二、教学重难点重点:理解三角形全等的判定方法“ASA”和“AAS”.难点:利用三角形全等的判定方法“ASA”和“AAS”证明两个三角形全等.三、教学过程【新课导入】[复习导入]1.回顾我们已经学习过的判定三角形全等的两个定理.(边边边(SSS):三边分别相等的两个三角形全等.)(边角边(SAS):两边和它们的夹角分别相等的两个三角形全等.)2.两判定定理的几何语言:(在△ABC 和△ A'B'C'中,AB=A'B',BC=B'C',CA=C'A',∴△ABC≌△A'B'C'(SSS).)(在△ABC 和△ A'B'C'中,AB=A'B',∠B=∠B′,BC=B'C',∴△ABC≌△A'B'C'(SAS).)3.(1)我们已经总结过的找相等边的方法.(①公共边.②正多边形的边相等.③等边加同边,其和还是等边.④等边减同边,其差还是等边.)(2)我们已经总结过的找相等角的方法.(①利用平行线可找到相等的角.②对顶角.③等角加同角,其和还是等角.④等角减同角,其差还是等角.⑤等角的补角相等.⑥正多边形的内角相等.)4.当两个三角形满足六个条件中的“三个对应条件相等”时,有以下四种情况:教师带领学生复习全等三角形判定定理SSS和SAS的相关知识,从而引出今天要探讨的内容“两个角和一条边对应相等”时,三角形的全等情况.【新知探究】知识点1 “ASA”证全等[提出问题]如果已知一个三角形的两角及一边,那么这两个角与这一条边的位置上有几种可能性呢?[学生思考]给学生思考的时间,可同桌之间讨论.[课件展示]教师利用多媒体展示如下两种情况,学生对照自己的思考结果,对不同的结果举手发言,教师给予纠正.1.边夹在两个角的中间,形成两角夹一边的情况.2.边不夹在两个角的中间,形成两角及其中一角对边的情况.[提出问题]两者是否都能判定两个三角形全等?我们先来讨论第一种情况:两角夹一边.先任意画出一个△ABC.再画一个△A′B′C′,使得A′B′=AB,∠A′=∠A,∠B′=∠B(即两角和它们的夹边分别相等).把画好的△A′B′C′剪下来,放在△ABC上,它们全等吗?[动手操作]学生根据老师的要求,在准备好的卡纸上作图,试一试做出来的两个三角形是否全等.教师可提醒学生:如果两个三角形能够重合,那么两者就是全等三角形.[学生回答]教师点名学生回答是如何制作△A′B′C′的,对于回答不完整的,请另一名学生补充.[课件展示]教师利用多媒体展示画△A′B′C′的作法,学生检查自己的作法是否正确:作法:(1)画A'B'=AB;(2)在A'B'的同旁画∠DA'B'=∠A,∠EB'A '=∠B,A'D,B'E相交于点C'.[提出问题]△A′B′C′与△ABC全等吗?[课件展示]教师利用多媒体展示画△A′B′C′与△ABC的重合过程.很明显两者是全等的.[提出问题]这两个三角形全等满足的是哪三个条件?[课件展示]教师利用多媒体展示满足的三个条件,从而得到答案:两角一夹边.[归纳总结]两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).该判定定理的几何语言:在△ABC 和△ A'B'C'中,B=∠B′,,C=∠C′,∴△ABC≌△A'B'C'(ASA).注意:利用该判定定理时,边必须是两角的夹边.[课件展示]教师利用多媒体展示以下例题:例在△ABC和△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.【分析】如果能证明∠C=∠F,就可以利用“角边角”证明△ABC和△DEF全等,由三角形内角和定理可以证明∠C=∠F.证明:在△ABC中,∠A+∠B+∠C=180°.∴∠C=180°-∠A-∠B.同理∠F=180°-∠D-∠E.又∠A=∠D,∠B=∠E,∴∠C=∠F.在△ABC 和△DEF中,B=∠E,,C=∠F,ABC≌△DEF(ASA).[提出问题]“角角边”也能证明三角形全等?知识点2 “AAS”证全等[提出问题]已知在△ABC中,∠B=60°,∠C=45°,AB=3cm,你能画出△A′B′C′,使△A′B′C′≌△ABC吗?[动手操作]学生根据老师的要求,在准备好的卡纸上作图,试一试做出△A′B′C′,大部分学生无从下手.教师提示学生联想例1和“ASA”的探究过程来作图.[提出问题]说一说你是怎么画的?[学生回答]教师点名学生回答制作过程,教师根据学生的回答,口头总结画法和步骤.此时,AAS可转化为ASA,从而得到△A′B′C′≌△ABC.[归纳总结]两角分别相等且其中一组等角的对边相等的两个三角形全等.(可以简写成“角角边”或“AAS”).该判定定理的几何语言:在△ABC 和△ A'B'C'中,A=∠A′,B=∠B′,,∴△ABC≌△A'B'C'(AAS).[课件展示]跟踪训练如图,已知∠ACB=∠DBC,∠ABC=∠CDB,判别下面的两个三角形是否全等,并说明理由.解:不全等,因为BC虽然是公共边,但不是对应边.提醒学生:有两角和一边分别相等的两个三角形不一定全等.知识点3 “AAA”不能证全等[提出问题]三角分别相等的两个三角形全等吗?假设三个角分别为30°,60°和90°.[动手操作]学生在准备好的卡纸上做出满足条件的三角形,之后剪下来,和同桌所作的三角形进行比较,看两者是否能够重合(发现不重合,个别可能有重合的现象,所以得到结论是“不一定全等”).之后教师利用多媒体展示示例,验证结论.[归纳总结]判定两个三角形全等的方法有SSS,SAS,ASA,AAS.注意:SSA和AAA不能判定两个三角形全等.【课堂小结】【课堂训练】1.如图,小明不慎将一块三角形模具打碎为三块,他想配一块与原来一样的三角形模具,为了方便,应该带哪块去商店?( A )A.1B.2C.3D.三块都带去2.(2021•重庆)如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB 全等的是( B )A.∠ABC=∠DCB B.AB=DC C.AC=DB D.∠A=∠D【解析】已知∠ACB=∠DBC,BC=BC,A:当∠ABC=∠DCB时,可用ASA证明;B:当AB=DC时,不能证明两三角形全等;C:当AC=DB时,可用SAS证明;D:当∠A=∠D时,可用AAS证明.故选B.3.(2021•齐齐哈尔)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是 .(只需写出一个条件即可)【解析】∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD.∵AC=AD,∴当添加∠B=∠E 时,可根据“AAS”判断;当添加∠C=∠D时,可根据“ASA”判断;当添加AB=AE时,可根据“SAS”判断.(任选其中一个条件即可).4.(2021•衡阳)如图,点A、B、D、E在同一条直线上,AB=DE,AC∥DF,BC∥EF.求证:△ABC≌△DEF.证明:∵AC∥DF,∴∠CAB=∠FDE.∵BC∥EF,∴∠CBA=∠FED.在△ABC和△DEF中,,∴△ABC≌△DEF(ASA).5.(2021•泸州)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.证明:在△ABE与△ACD中,,∴△ABE≌△ACD(ASA).∴AD=AE.∴AB-AD=AC-CE,即BD=CE.提醒学生:等边减等边,其差还是等边.6.(2021•铜仁市)如图,AB交CD于点O,在△AOC与△BOD中,有下列三个条件:①OC=OD,②AC =BD,③∠A=∠B.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法).(1)你选的条件为 、 ,结论为 ;(2)证明你的结论.解:选的条件为①、③,结论为②. 证明:在△AOC和△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD.解:选的条件为②、③,结论为①.证明:在△AOC和△BOD中,AOC=∠BOD,A=∠B,AC=BD,∴△AOC≌△BOD(AAS),∴OC=OD.提问:选的条件为①、②,结论为③,可以吗?若选的条件为①、②,再结合∠AOC=∠BOD,得不到结论③,因为“SSA”不能作为判定全等的定理.7.(2021•陕西模拟)如图,在△DAE和△ABC中,D是AC上一点,AD=AB,DE∥AB,∠E=∠C.求证:AE=BC.证明:∵DE∥AB,∴∠ADE=∠BAC.在△ADE和△BAC中,,∴△ADE≌△BAC(AAS),∴AE=BC.8.如图,点E、C、D、A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.求证:BC=EF.证明:∵AB∥DF,∴∠B=∠CPD,∠A=∠FDE,∵∠E=∠CPD.∴∠B=∠E.在△ABC和△DEF中,∠B=∠E,AB=DE,∠FDE=∠A,∴△ABC≌△DEF(ASA).∴BC=EF.9.(2021•西安一模)如图,在△ABC中,∠ABC=90°,BD⊥AC于点D,点E在DB的延长线上,DE=BC,∠1=∠2,求证:DF=AB.证明:∵BD⊥AC,∴∠EDF=90°.∴∠EDF=∠ABC.∵∠1=∠2,∠1+∠C=90°,∠2+∠E=90°,∴∠E=∠C.在△DEF和△BCA中,,∴△DEF≌△BCA(ASA),∴DF=AB.对学生强调:等角的余角相等.【教学反思】本节课的教学仍是采用之前两节课的教学方法,让学生通过实验,自己发现ASA和AAS的识别方法,鉴于前两节课的经验,这节课在实验的过程中,给予了学生足够的观察思考的时间,拓展了学生研究全等三角形的空间,使学生在探索、发现知识的过程中体验到成功的乐趣,学生乐于学,这样有效地激发了学生的学习主动性.但仍然存在问题,比如,学生书写仍有不规范的点,不能找到证明全等所需的条件等等,在今后的教学中,仍要加强学生对图形的敏感度的训练.。
12.2 第3课时 三角形全等的判定(ASA,AAS)
先在AB的垂线BF上取两点C,D,使
CD=BC,再定出BF的垂线DE,使A, C,E在一条直线上(如图12-2-29所 示),可以说明△EDC≌△ABC,从而 图12-2-29 ( B ) D.边边角
可得ED=AB,因此测得ED的长就是AB的长,判定 △EDC≌△ABC最恰当的理由是 A.边角边 B.角边角 C.边边边
[2015· 温州]如图12-2-26,点 C,E,F,B在同一直线上,点A,D在BC
异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=DC; (2)若AB=CF,∠B=30°,求
图12-2-26
∠D的度数.
数学
人教版八年级上册
课件目录
首
页
末
页
(1)证明:∵AB∥CD, ∴∠B=∠C,
∵AE=DF,∠A=∠D,
数学
人教版八年级上册
课件目录
首
页
末
页
类型之一
利用“ASA”或“AAS”证明两个三角形全等
如图12-2-25,已知D是AC
上一点,AB=DA,DE∥AB,∠B=
∠DAE.求证:BC=AE. 【解析】根据两直线平行,内错 图12-2-25
角相等求出∠CAB=∠EDA,然后利用“角边角”证明△ABC和 △DAE全等,再根据全等三角形对应边相等证明.
( D )
D.两条边和一条边所对的角对应相等
数学
人教版八年级上册
课件目录
首
页
末
页
2.如图12-2-27所示,已知△ABC的六个元素,则甲、乙、丙 三个三角形中和△ABC全等的图形是 ( B )
图12-2-27 A.甲和乙 B.乙和丙 C.只有乙 D.只有丙
12.2 三角形全等的判定 第3课时 用“ASA”或“AAS”判定三角形全等
17.如图,把一个三角板(AB=BC,∠ABC=90°)放入一个“U”形
槽中,使三角板的三个顶点A,B,C分别在槽的两壁及底边上滑
动,已知∠D=∠E=90°. (1)在滑动过程中你发现线段AD与BE有什么关系?试说明你的结 论; (2)若AD=a,EC=b,求槽底DE的宽度.
解:(1)AD=BE.证明:∵∠ABC=90°,∴∠ABD+∠CBE= 90°.∵∠DAB+∠ABD=90°,∴∠DAB=∠CBE.又∵∠D=
璃店去配一块完全一样的玻璃,那么最省事的办法是(
A.带①去 B.带②去 C.带③去 D.带①和②去
C)
11.如图,将正方形 OABC 放在平面直角坐标系中,点 O 是原点, 点 A 的坐标为(1, 3),则点 C 的坐标为( A.(- 3,1) B.(-1, 3) C.( 3,1) D.(- 3,-1)
A
)
12.如图,∠A=∠D,∠ACB=∠DBC,若BC=4,△AOB的周长 14 为10,则△DCB的周长为______.
13.如图,在△AFD和△CEB中,点A,E,F,C在一条直线上,AE
=CF,∠B=∠D,AD∥BC.求证:AD=BC.
解:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF, 即AF=CE,在△ADF和△CBE中,∵∠B=∠D,∠A=∠C,AF= CE,∴△ADF≌△CBE(AAS),∴AD=BC
八年级上册数学(人教版)
第十二章
第3课时
全等三角形
12.2 三角形全等的判定
用“ASA”或“AAS”判定三角形全 等
知识点1:用“ASA”判定两个三角形全等
1.如图①,已知△ABC的边和角,则图②中,甲、乙、丙三个三角 形和△ABC全等的是( A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
12.2 三角形全等的判定 第3课时 用“ASA”或“AAS”判定三角形全等
2.如图,F,C为AD上两点,已知∠A=∠D,∠1=∠2,那么要得 到△ABC≌△DEF,在下列关系式中还应给出的条件是( D ) A.∠E=∠B B.ED=BC C.AB=EF D.AF=DC
3.如图,∠1=∠2,当BC=BD时,△ABC≌△ABD的依据是 ___S_A__S__;当∠3=∠4时,△ABC≌△ABD的依据是___A__S_A__.
A.(- 3,1) B.(-1, 3) C.( 3,1) D.(- 3,-1)
12.如图,∠A=∠D,∠ACB=∠DBC,若BC=4,△AOB的周长 为10,则△DCB的周长为___1_4__.
13.如图,在△AFD和△CEB中,点A,E,F,C在一条直线上,AE =CF,∠B=∠D,AD∥BC.求证:AD=BC. 解:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF, 即AF=CE,在△ADF和△CBE中,∵∠B=∠D,∠A=∠C,AF= CE,∴△ADF≌△CBE(AAS),∴AD=BC
八年级上册数学(人教版)
第十二章 全等三角形
12.2 三角形全等的判定
第3课时 用“ASA”或“AAS”判定三角形全 等
知识点1:用“ASA”判定两个三角形全等 1.如图①,已知△ABC的边和角,则图②中,甲、乙、丙三个三角 形和△ABC全等的是( B) A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙
14.如图,已知∠BAC=∠DAE,∠ABD=∠ACE,BD=CE,试 判断AB与AC的大小关系,并说明理由. 解:AB=AC.理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又 ∵∠ABD=∠ACE,BD=CE,∴△ABD≌△ACE(AAS),∴AB=
AC
15.如图,D是AC上一点,BE∥AC,BE=AD,AE分别交BD,BC 于点F,G.图中哪个三角形与△FAD全等?证明你的结论. 解:△FEB≌△FAD.证明:∵BE∥AC,∴∠ADB=∠EBF,∠DAF =∠BEF.又∵BE=AD,∴△FEB≌△FAD(ASA)
三角形全等的判定-人教版数学八年级上第十二章12.2第三课时教案
第十二章全等三角形12.2 三角形全等的判定第三课时“角边角”(ASA)和“角角边”(AAS)判定1 教学目标1.1 知识与技能:[1]掌握全等三角形的“角边角”(ASA)判定定理,并能运用其解决问题。
[2]熟练掌握“角角边”(AAS)定理,并能运用其解决问题。
1.2过程与方法:[1]通过探究过程,观察并归纳出ASA定理。
[2]通过结合ASA定理及三角形内角和定理,推出AAS定理。
1.3 情感态度与价值观:[1]通过学习AAS,ASA定理,运用其进行几何证明,在逻辑推导中培养良好的数学思维。
2 教学重点/难点/易考点2.1 教学重点[1]ASA,AAS判定定理。
2.2 教学难点[1]数学语言表达和证明三角形全等。
[2]区分ASA和AAS定理,避免在证明过程中标错原由3 专家建议ASA和AAS定理非常相似,只是相等的角的位置是不同的,因此教师应该在教学中注意强调这两个定理的区别,防止学生混淆定理运用错误。
此外,用数学语言证明全等也是一大挑战,学生因为此前的几何基础还不牢固,需要强调和巩固。
4 教学方法观察归纳——得到结论——补充讲解——练习提高5 教学用具多媒体,教学用尺规,学生课前准备好尺规。
6 教学过程6.1 引入新课【师】同学们好。
上节课我们学习了判定三角形全等的SAS定理,大家还记得么?【生】两边和它们的夹角分别相等的两个三角形全等。
【师】那如果相等的角不是夹角,能不能判定两个三角形全等呢?【生】不能,没有边边角定理。
【师】没错。
那我们今天来继续学习两种新的判定三角形全等的方法。
【板书】第十二章全等三角形12.2 三角形全等的判定第三课时6.2 新知介绍[1]探究活动:带走哪一块玻璃碎片最方便【师】毛手毛脚的小明又回来了,这次他打碎了教室的一块三角形玻璃。
请大家看投影,现在只有这三块碎片,如果小明要再配一模一样的,至少要带走哪块儿呢?我们一块一块地来分析,首先看,只带走第一块可以吗?【生】相当于只知道一个角,只带第一块不行。
人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第3课时》教学设计
人教版八年级数学上册第十二章《全等三角形12.2三角形全等的判定第3课时》教学设计一. 教材分析本节课为人教版八年级数学上册第十二章《全等三角形》的第3课时,主要讲解三角形全等的判定方法。
在此之前,学生已经学习了全等图形的概念和全等三角形的性质,本节课将进一步引导学生探究三角形全等的判定方法,培养学生解决实际问题的能力。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象力,但对三角形全等的判定方法可能还存在一定的困惑。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生通过观察、操作、思考、交流等活动,逐步掌握三角形全等的判定方法。
三. 教学目标1.理解并掌握三角形全等的判定方法(SAS、ASA、AAS)。
2.能够运用三角形全等的判定方法判断两个三角形是否全等。
3.培养学生的观察能力、操作能力、逻辑思维能力和空间想象力。
4.渗透数学转化思想,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:三角形全等的判定方法(SAS、ASA、AAS)。
2.教学难点:三角形全等判定方法的灵活运用。
五. 教学方法1.情境教学法:通过生活实例引入课题,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、思考、交流,培养学生解决问题的能力。
3.实践操作法:让学生动手操作,加深对三角形全等判定方法的理解。
4.小组合作学习:培养学生团队合作精神,提高解决问题的效率。
六. 教学准备1.教学课件:制作课件,展示三角形全等的判定方法及相关实例。
2.教学素材:准备一些三角形模型或图片,用于实践操作和举例说明。
3.教学视频:收集相关教学视频,用于引导学生观察和分析。
七. 教学过程1.导入(5分钟)利用生活实例引入三角形全等的概念,激发学生的学习兴趣。
例如,讲解一个变形金刚玩具,展示其形状发生变化但仍保持原貌的特点,引导学生思考三角形全等的问题。
2.呈现(10分钟)展示三角形全等的判定方法(SAS、ASA、AAS),并用课件或板书进行解释。
12.2 三角形全等的判定(第三课时ASA、AAS)(解析版)
八年级数学上分层优化堂堂清十二章三角形12.2三角形全等的判定第三课时ASA、AAS(解析版)学习目标:1、掌握三角形全等的“角边角”“角角边”条件.能运用全等三角形的条件,解决简单的推理证明问题2.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.3、积极投入,激情展示,体验成功的快乐。
【学习重点】已知两角一边的三角形全等探究.【学习难点】灵活运用三角形全等条件证明老师对你说:知识点1 全等三角形的判定3:角边角(ASA)(1)两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).(2)书写格式:如图12-2-5所示,在列举两个三角形全等的条件时,如:在△ABC和△A′B′C′中,∠A=∠A′AB=A′B′∠B=∠B′∴△ABC≌△A′B′C′(SAS).知识点2 全等三角形判定4——“角角边”(AAS)(1)两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)(2)书写格式:如图12-2-5所示,在列举两个三角形全等的条件时,如:图12-2-5在△ABC和△A′B′C′中,∠A=∠A′∠B=∠B′AC=A′C′∴△ABC≌△A′B′C′(SAS).由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.知识点3 判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法一边一角对应相等SAS AAS ASA两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.注意:三个角对应相等的两个三角形不一定全等.如图,在△ABC和△ADE中,如果DE∥BC,那么∠ADE=∠B,∠AED=∠C,又∠A=∠A,但△ABC 和△ADE不全等.这说明,三个角对应相等的两个三角形不一定全等.知识点1 全等三角形的判定3:角边角(ASA ) 【例1-1】如图,点A 、D 、B 、E 在同一条直线上,若AD =BE ,∠A =∠EDF ,∠E =∠ABC.求证:AC =DF .【答案】见解析【分析】由AD=BE 知AB =ED ,结合∠A =∠EDF ,∠E =∠ABC ,依据“ASA ”可判定△ABC ≌△DEF ,依据两三角形全等对应边相等可得AC =DF .【详解】证明:∵AD =BE ,∴AD +BD =BE +BD ,即AB =ED ,在△ABC 和△DEF 中,∠ABC =∠E AB =ED ∠A =∠EDF,∴△ABC≌△DEF (ASA),∴AC =DF .【点评】本题主要考查全等三角形的判定与性质,掌握全等三角形的判定与性质是解题的关键.【例1-2】在平行四边形ABCD 中,AD =2AB ,F 是AD 的中点,过点C 作CE ⊥AB ,垂足E 在线段AB 上,接EF 、CF ,则下列结论错误的是( )A.∠DCF=1∠BCD B.∠DFE=3∠AEF2C.EF=CF D.S△BEC=2S△CEF【答案】D【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF,得出对应线段之间关系进而得出答案.【详解】解:∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项A正确;2设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°−x,∴∠EFC=180°−2x,∴∠EFD=90°−x+180°−2x=270°−3x,∵∠AEF=90°−x,∴∠DFE=3∠AEF,故此选项B正确;延长EF,交CD延长线于M,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF ,∵F 为AD 中点,∴AF =FD ,在△AEF 和△DFM 中,A FDM AF FDAFE DFM Ð=Ðìï=íïÐ=Ðî,∴△AEF ≌△DMF (ASA ),∴EF =MF ,∠AEF =∠M ,∵CE ⊥AB ,∴∠AEC =90°,∴∠AEC =∠ECD =90°,∵EF =MF ,∴CF =MF ,即CF =EF ,故选项C 正确;∵EF =MF ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC故S △BEC =2S △CE F 错误;故选项D 不成立;故选D【点拨】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF ≌△DMF是解题关键.【例1-3】如图,点C 在线段BD 上,在ABC V 和DEC V 中,A D AB DE B E Ð=Ð=Ð=Ð,,.求证:AC DC =.证明见解析【分析】直接利用ASA 证明ABC DEC ≌△△,再根据全等三角形的性质即可证明.【详解】解:在ABC V 和DEC V 中,A D AB DEB E Ð=Ðìï=íïÐ=Ðî∴()ASA ABC DEC ≌V V ∴AC DC =.【点拨】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.知识点2 全等三角形判定4——“角角边”(AAS )【例2-1】如图,在△ABC 中,D 为BC 边上一点,∠1=∠2=∠3,AC=AE .求证:△ABC≌△ADE .【答案】证明见解析【分析】由三角形外角的性质及∠1=∠2=∠3可得到∠ADE =∠B ,再结合图形并利用恒等变换可得到∠BAC =∠DAE ,最后利用AAS 即可得证.【详解】证明:∵∠ADC=∠1+∠B,即∠ADE+∠3=∠1+∠B,∵∠1=∠2=∠3,∴∠ADE=∠B,∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,∴∠BAC=∠DAE,在△ABC和△ADE中,∠ABC=∠ADE∠BAC=∠DAEAC=AE,∴△ABC≌△ADE(AAS).【点评】本题考查三角形全等的判定,三角形外角的性质.掌握三角形全等的判定是解题的关键.【例2-2】如图,将等腰直角三角形ABC的直角顶点置于直线l上,且过A,B两点分别作直线的垂线,垂足分别为D,E,请你在图中找出一对全等三角形,并写出证明它们全等的过程.【答案】△ADC与△CEB全等,证明见解析【分析】先证明∠CAD=∠BCE,然后根据AAS证明△ADC≌△CEB,即可求解.【详解】解:△ADC与△CEB全等理由如下:根据题意可知:AC=CB,∠ADC=∠CEB=∠ACB=90°;在Rt△ADC中,∠CAD+∠ACD=90°,又∵∠ACD+∠BCE=90°,∴∠CAD=∠BCE.在△ADC与△CEB中,(1)求证:△BDF≌(2)若AD=5,CE=【答案】(1)见解析(2)10知识点3 判定方法的选择【例3-1】如图,AC∥BD,AE,BE 分别平分∠CAB 和∠DBA ,CD 经过点E .求证:CE =DE .【答案】证明见解析【分析】在AB 上截取AF =AC ,连接EF ,通过证明△ACE≌△AFE 和△BEF≌ΔBED ,然后根据全等三角形的性质分析求证.【详解】证明:在AB 上截取AF =AC ,连接EF .∵AE ,BE 分别平分∠CAB 和∠DBA ,∴∠CAE =∠FAE,∠EBF =∠EBD .∵AC∥BD ,∴∠C +∠D =180°,在△ACE 和△AFE 中AC =AF ∠CAE =∠FAE AE =AE,∴△ACE≌△AFE ,∴∠C =∠AFE,CE =EF ,∵∠AFE +∠EFB =180°,∠C +∠D =180°,∴∠EFB =∠D ,在△BEF 和△BED 中∠EFB =∠D ∠EBF =∠EBD BE =BE,∴△BEF≌ΔBED ,∴EF =ED ,∴CE =DE .【点评】本题考查全等三角形的判定和性质,通过添加辅助线构造全等三角形是解题关键.【例3-2】如图,在ABC V 中60A Ð=°,BE 、CF 是ABC V 的角平分线,且BE 、CF 相交于点O .求证:OF OE =.【分析】先根据三角形内角和定理得到120ABC ACB Ð+Ð=°,再利用角平分线的定义以及三角形内角和得到BOC Ð的度数;在BC 上截取BG BF =,先证明()SAS BOF BOG V V ≌得到BOF BOG Ð=Ð,OF OG =,再得到COE COG Ð=Ð,接着证明()ASA COG COE V V ≌得到OG OE =,然后利用等线段代换得到结论.解:∵180A ABC ACB Ð+Ð+Ð=°,60A Ð=°,∴120ABC ACB Ð+Ð=° ,∵BE ,CF 均为ABC V 的角平分线,∴12OBC ABC Ð=Ð,12OCB ACB ÐÐ=,∴()1602ABC ACB OBC OCB Ð+Ð=°ÐÐ+=,∴()180120BOC OBC OCB Ð=°-Ð+Ð=°.在BC 上截取BG BF =,如图所示:∵OB 平分ABC Ð,∴ABO CBO Ð=Ð,∵在BOF V 和BOG △中BF BG FBO GBO BO BO =ìïÐ=Ðíï=î,∴()SAS BOF BOG V V ≌,∴BOF BOG Ð=Ð,OF OG =,∵120BOC Ð=°,∴60BOF COE Ð=Ð=°,∴60BOG Ð=°,∴1206060COG Ð=°-°=°,∴COE COG Ð=Ð,∵OC 平分ACB Ð,∴ACO BCO Ð=Ð,∵在COG V 和COE V 中GCO ECO CO COGOC EOC Ð=Ðìï=íïÐ=Ðî,∴()ASA COG COE V V ≌,∴OG OE =,∴OF OE =.【点拨】本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定方法.也考查了角平分线的定义.能力强化提升训练1.如图,线段AB 与CF 交于点E ,点D 为CF 上一点,连接AD 、AF 、BC ,已知AD BC =,12Ð=Ð.(1) 请添加一个条件________使ADF BCE V V ≌,并说明理由.(2) 在(1)的条件下请探究AE 与BE 的数量关系,并说明理由.(1)DF CE =,理由见分析;(2)AE BE =,理由见分析.【分析】(1)利用SAS 判定定理,添加DF CE =即可判断;(2)利用全等三角形的判定与性质,再结合等角对等边即可判断.(1)解:添加条件:DF CE =,理由如下:∵AD BC =,12Ð=Ð,DF CE =,∴()SAS ADF BCE ≌△△;(2)解:AE BE =,理由如下:∵ADF BCE V V ≌,∴F CEB =∠∠,AF BE=∵CEB AEF Ð=Ð,∴F AEF Ð=Ð,∴AE AF =,∴AE BE =.【点拨】本题考查了全等三角形的判定与性质以及等角对等边,掌握全等三角形的判定定理是解题的关键.2 .如图,AB =AC ,BE ⊥AC 于E ,CD ⊥AB 于D ,BE 、CD 交于点O ,求证:OB =OC .【分析】证△ABE ≌△ACD ,推出∠B =∠C ,AD =AE ,求出BD =CE ,证△BDO ≌△CEO ,根据全等三角形的性质推出即可.证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠AEB =90°,在△ABE 和△ACD 中A A AEB ADC AB AC Ð=ÐìïÐ=Ðíï=î∴△ABE ≌△ACD (AAS ),∴∠B =∠C ,AD =AE ,∵AB =AC ,∴BD =CE ,在△BDO 和△CEO 中DOB EOC B CBD CE Ð=ÐìïÐ=Ðíï=î∴△BDO ≌△CEO (AAS ),∴OB =OC .【点拨】本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.3 .(1)如图1,在等腰直角△ABC 中,∠ACB =90°,AC =BC ,过点C 作直线DE ,AD ⊥DE 于D ,BE ⊥DE 于E ,求证:△ADC≌△CEB ;(2)如图2,在等腰直角△ABC 中,∠ACB =90°,AC =BC ,过点C 作直线CE ,AD ⊥CE 于D ,BE ⊥CE 于E ,AD =2.5cm ,DE =1.7cm ,求BE 的长;(3)如图3,在平面直角坐标系中,A (−1,0),C (1,3),△ABC 为等腰直角三角形,∠ACB =90°,AC =BC ,求点B 坐标.【答案】(1)证明见解析(2)0.8cm (3)4,1【分析】(1)由题意知∠D =∠E =90°,由∠ACD +∠BCE =180°−∠ACB =90°,∠ACD +∠CAD =180°−∠D =90°,可得∠CAD =∠BCE ,进而结论得证;(2)同理(1)证明△ADC≌△CEB (AAS),则BE =CD ,CE =AD =2.5cm ,根据BE =CD =CE−DE 计算求解BE 的值即可;(3)如图3,过点C 作平行于x 轴的直线DE ,过A 作AD ⊥DE 于D ,过B 作BE ⊥DE 于E ,由(1)可得△ACD≌△CBE ,则CE =AD =3,BE =CD =2,进而可求B 点坐标.【详解】(1)证明:∵AD ⊥DE ,BE ⊥DE ,∴∠D =∠E =90°,∵∠ACD +∠BCE =180°−∠ACB =90°,∠ACD +∠CAD =180°−∠D =90°,∴∠CAD =∠BCE ,在△ADC 和△CEB 中,∵∠D =∠E ∠CAD =∠BCE AC =BC,∴△ADC≌△CEB (AAS);(2)解:∵AD ⊥CE ,BE ⊥CE ,∴∠ADC =∠E =90°,∵∠ACD +∠CAD =180°−∠ADC =90°,∠ACD +∠BCE =180°−∠E =90°,∴∠CAD =∠BCE ,在△ADC 和△CEB 中,∵∠ADC =∠E ∠CAD =∠BCE AC =BC,∴△ADC≌△CEB (AAS),∴BE =CD ,CE =AD =2.5cm ,∴BE =CD =CE−DE =0.8cm ,∴BE 的长为0.8cm ;(3)解:如图3,过点C 作平行于x 轴的直线DE ,过A 作AD ⊥DE 于D ,过B 作BE ⊥DE 于E ,由(1)可得△ACD≌△CBE ,∴CE =AD =3,BE =CD =2,∴B 4,1.【点评】本题考查了三角形内角和定理,全等三角形的判定与性质等知识.解题的关键在于证明三角形全等.堂堂清一、选择题(每小题4分,共32分)1.如图,,,AB BF ED BF CD CB ^^=,判定△EDC≌△ABC 的理由是( )A .ASAB .SASC .SSSD .无法确定【答案】A【解析】解:∵,AB BF ED BF ^^,∴90ABC EDC Ð=Ð=°,∵ACB Ð和ECD Ð为对顶角,∴Ð=ÐACB ECD ,又∵CD CB =,∴()EDC ABC ASA ≌△△.故选:A .2 .王强同学用10块高度都是2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚可以放进一个等腰直角三角板(AC=BC, ∠ACB=90°)点C 在DE 上,点A 和B 分别与木墙的顶端重合,则两堵木墙之间的距离为( )A .10cmB .14cmC .20cmD .6cm【答案】C 【解析】解:∵AC BC =,90ACB Ð=°,AD DE ^,BE DE ^,∴90ADC CEB Ð=Ð=°,∴90ACD BCE Ð+Ð=°,90ACD DAC Ð+Ð=°,∴BCE DAC Ð=Ð,∵在ADC D 和CEB D 中,ADC CEB DAC BCE AC BC Ð=ÐìïÐ=Ðíï=î∴()ADC CEB AAS D D ≌;∴6cm EC AD ==,14cm DC BE ==,∴20(cm)DE DC CE =+=,故选:C .3 .如图,AC 与DB 交于点O ,下列条件不能证明ABC DCB D @D 的是( )A .AB DC =,AC DB=B .A D Ð=Ð,ABC DCB Ð=ÐC .BO CO =,A DÐ=ÐD .AB DC =,ACB DBCÐ=Ð【解析】解:A .在ABC D 和DCB D中,Q AB DC AC BD BC BC =ìï=íï=î,()ABC DCB SSS \D @D ,故A 选项不合题意;B .在ABCD 和DCB D 中,Q A D ABC DCB BC BC Ð=ÐìïÐ=Ðíï=î,()ABC DCB AAS \D @D ,故B 选项不合题意;C .BO CO =Q ,ACB DBC \Ð=Ð,在ABC D 和DCB D 中,Q A D ABC DBC BC BC Ð=ÐìïÐ=Ðíï=î,()ABC DCB AAS \D @D ,故C 选项不合题意;D .AB DC =Q ,ACB DBC Ð=Ð,不能证明ABC DCB D @D ,故D 选项符合题意;故选:D .4 .如图,ADC ADB Ð=Ð,添加一个条件,仍不能说明ABD ACD D @D 的是( )A .AB AC =B .BAD CAD Ð=ÐC .B C Ð=ÐD .BD CD=【解析】解:A 、添加AB AC =,利用SSA 不能判定ABD ACD D @D ,故此选项符合题意;B 、添加BAD CAD Ð=Ð,利用ASA 能判定ABD ACD D @D ,故此选项不合题意;C 、添加B C Ð=Ð,利用AAS 能判定ABD ACD D @D ,故此选项不合题意;D 、添加BD CD =,可利用SAS 能判定ABD ACD D @D ,故此选项不合题意;故选:A .5 .如图,测量河两岸相对的两点A ,B 的距离时,先在AB 的垂线BF 上取两点C 、D ,使CD BC =,再过点D 画出BF 的垂线DE ,当点A ,C ,E 在同一直线上时,可证明EDC ABC @△△,从而得到ED AB =,则测得ED 的长就是两点A ,B 的距离,判定EDC ABC @△△的依据是( )A .“SSS ”B .“ASA ”C .“HL ”D .“SAS ”【答案】B 【解析】解:根据题意得AB ⊥BC ,DE ⊥CD ,∴∠ABC=∠EDC=90°,∵CD=BC ,∠ACB=∠ECD ,∴根据“ASA”可判断△EDC ≌△ABC .故选:B .6. 如图,在ABC V 中,D 是AB 的中点,//,//DE BC DF AC ,若20AE =,则DF 的值为( )A .10B .15C .20D .25【答案】C 【解析】解:∵D 是AB 的中点,∴AD DB =,∵//,//DE BC DF AC ,∴,B ADE BDF A Ð=ÐÐ=Ð,∴△ADE≌△DBF (ASA ),∴20DF AE ==.故选:C .7 .如图,经过平行四边形ABCD 的对角线AC 中点的直线分别交边CB ,AD 的延长线于E ,F ,则图中全等三角形的对数是( )A .3对B .4对C .5对D .6对【答案】C 【解析】:Q 四边形ABCD 为平行四边形,EF 经过AC 的中点,AB CD \=,AD BC =,AO CO =,AOE COF Ð=Ð,F E Ð=Ð,又AOF COE Ð=Ð,AOE COF Ð=Ð,BAF DCE Ð=Ð,()\D @D AOH COG ASA ,()D @D AOF COE ASA ,()FDG EBH ASA D @D ,()ABC CDA SSS D @D ,()D @D AFH CEG ASA .故图中的全等三角形共有5对.故选:C8 .如图,在△ABC 中,∠ABC =90°,AB =BC ,AE 是中线,过点B 作BF ⊥AE 于点F ,过点C 作CD ⊥BC 交BF的延长线于点D .下列结论:①BE =CE ;②AE =BD ;③∠BAE =∠CBD ;④∠EAC =∠BAE ;⑤BC =2CD .正确的个数是( )A .2个B .3个C .4个D .5个【答案】C 【解析】解:①∵AE 是中线,∴BE =CE ,故①正确;②∵DC ⊥BC ,BF ⊥AE ,∴∠DBC+∠D =∠DBC+∠BEA =90°.∴∠D =∠BEA .∵∠DCB =∠ABE =90°,在△DBC 与△ABE 中,90DCB EBA D AEB BC AB ÐаìïÐÐíïî==== ,∴△BCD ≌△ABE (AAS ).∴BD =AE ,故②正确;③∵△BCD ≌△ABE ,∴∠BAE =∠CBD ;故③正确;④∵AE 是中线,∴∠EAC≠∠BAE ,故④错误;⑤∵△BCD ≌△ABE ,∴BE =CD ,∵BC =2BE ,∴BC =2CD ,故⑤正确.∴正确的结论有①②③⑤,共4个.故选:C .二、填空题(每小题4分,共20分)9 .已知,如图,D A Ð=Ð,//EF BC ,添加一个条件: (AC DF AB DE ==或)BC EF = ,使得ABC DEF D @D.【解析】解://EF BC Q ,ACB DFE \Ð=Ð,又D A Ð=ÐQ ,\添加条件AC DF =,可以使得()ABC DEF ASA D @D ,添加条件AB DE =,可以使得()ABC DEF AAS D @D ,添加条件BC EF =,可以使得()ABC DEF AAS D @D ,故答案为:(AC DF AB DE ==或)BC EF =.10 .如图,已知ABC D 中,点D ,E 分别在边AC ,AB 上,连接BD ,DE ,180C AED Ð+Ð=°,请你添加一个条件,使BDE BDC D @D ,你所添加的条件是 CBD EBD Ð=Ð (只填一个条件即可).【解析】解:添加的条件是:CBD EBD Ð=Ð,理由是:180C AED Ð+Ð=°Q ,180DEB AED Ð+Ð=°,C DEB \Ð=Ð,在BDE D 和BDC D 中EBD CBD DEB CBD BD Ð=ÐìïÐ=Ðíï=î,()BDE BDC AAS \D @D ,故答案为:CBD EBD Ð=Ð.11 .如图,在Rt ABC V 中,90BAC Ð=°,AB AC =,分别过点B 、C 作经过点A 的直线的垂线段BD 、CE,若6BD =厘米,8CE =厘米,则DE 的长为______.【答案】14厘米【解析】解:90BAC Ð=°Q 90DAB EAC \Ð+Ð=°,BD DE CE DE ^^Q 90DAB DBA \Ð+Ð=°DBA EAC\Ð=Ð在Rt △ADB 与Rt △CEA 中90ADB CEA DBA EAC AB AC Ð==°ìïÐ=Ðíï=î∴Rt △ADB ≅Rt △CEA(AAS),DB AE DA EC\==8614DE DA AE EC DB \=+=+=+=故答案为:14厘米.12 .如图,为了测量B 点到河对面的目标A 之间的距离,在B 点同侧选择了一点C ,测得∠ABC =65°,∠ACB =35°,然后在M 处立了标杆,使∠MBC =65°,∠MCB =35°,得到△MBC ≌△ABC ,所以测得MB 的长就是A ,B 两点间的距离,这里得到△MBC ≌△ABC 的依据是 ______.【答案】ASA【解析】解:在△ABC 和△MBC 中,ABC MBC BC BC ACB MCB Ð=Ðìï=íïÐ=Ðî,∴△MBC ≌△ABC (ASA ),故答案为:ASA .13 .如图,在△ACD 中,∠CAD =90°,AC =4,AD =6,AB ∥CD ,E 是CD 上一点,BE 交AD 于点F ,若AB =DE ,则图中阴影部分的面积为 _____.【答案】12【解析】解://AB CD Q ,BAD D \Ð=Ð,在BAF D 和EDF D 中,BFA EFD BAD D AB DE Ð=ÐìïÐ=Ðíï=î,()BAF EDF AAS \D @D ,BAF EDF S S D D \=,\图中阴影部分面积11461222BAF ACD ACEF S S S AC AD D D =+==××=´´=四边形,故答案为:12.三、解答题(共6小题,48分)14 .(8分)点B 、F 、C 、E 在直线l 上(F 、C 之间不能直接测量),点A 、D 在l 异侧,//AB DE ,A D Ð=Ð,AB DE =.(1)试说明△ABC 与△DEF 全等;(2)若10m BE =,3m BF =,求FC 的长度.【答案】(1)证明见解析;(2)4m .【解析】(1)//AB DE Q ,∴ABC DEB Ð=Ð,在△ABC 和△DEF 中,A D AB DE ABC DEB Ð=Ðìï=íïÐ=Ðî,∴△ABC ≌△DEF (ASA )(2)∵△ABC ≌△DEF ,∴BC=EF ,∴BC-FC=EF-FC ,即BF=CE ,∵10m BE =,3m BF =,∴FC=EF-BF-CE=10-3-3=4m .15 .(8分)如图,已知BC =EF ,AC ∥DF ,∠A =∠D .求证:△ACB ≌△DFE.【分析】先根据平行线的性质得到∠ACB=∠F,再利用AAS即可证明△ACB≌△DFE.【解答】证明:∵AC∥DF,∴∠ACB=∠F,在△ACB与△DFE中,,∴△ACB≌△DFE(AAS).【点评】本题主要考查了全等三角形的判定,平行线的性质,熟知全等三角形的判定定理是解题的关键.16 .(8分)已知△ABC≌△DCE,且B、C、E三点在同一直线上,△ABC与△DCE在直线BE的同一侧,AC与BD交于点F,图中还有全等三角形吗?请写出来,并说明理由.【分析】由△ABC≌△DCE,得到AB=CD,∠ABC=∠DCE,因此AB∥CD,推出∠A=∠DCF,∠ABF =∠CDF,即可证明△ABF≌△CDF(ASA).【解答】解:还有△ABF≌△CDF,理由如下:∵△ABC≌△DCE,∴AB=CD,∠ABC=∠DCE,∴AB∥CD,∴∠A=∠DCF,∠ABF=∠CDF,在△ABF和△CDF中,∴△ABF≌△CDF(ASA).【点评】本题考查全等三角形的判定和性质,关键是由△ABC≌△DCE,推出AB∥CD,得到∠A=∠DCF,∠ABF=∠CDF.17 .(8分)已知:如图∠1=∠2,∠3=∠4,求证:△ABE≌△ADE.【分析】先利用AAS判定△DEC≌△BEC,从而得出DE=BE,再利用SAS判定△ABE≌△ADE.【解答】证明:在△DEC和△BEC中∵,∴△DEC≌△BEC(ASA).∴DE=BE.∵∠3=∠4,∴∠DEA=∠BEA.∵DE=BE,AE=AE,在△ABE和△ADE中∵,∴△ABE≌△ADE(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18 .(8分)如图,在△ABC 中,∠B=∠C ,过BC 的中点D 作DE ⊥AB ,DF ⊥AC ,垂足分别为点E 、F .(1)求证∶DE=DF ;(2)若∠BDE=55°,求∠BAC 的度数.【答案】(1)见解析;(2)110゜【解析】(1):∵DE ⊥AB ,DF ⊥AC ,∴∠BED=∠CFD=90°,∵D 是BC 的中点,∴BD=CD ,在△BED 与△CFD 中BED CFD B CBD CD Ð=ÐìïÐ=Ðíï=î∴△BED≌△CFD (AAS ),∴DE=DF ;(2解:∵55,,BDE DE AB Ð=°^∴∠C=∠B=35°,∴∠BAC=1803535110.°-°-°=°19 .(8分)在Rt △ABC 中,∠C =90°,AC =BC ,如图1所示,BC 边在直线l 上,若Rt △ABC 绕点C 沿顺时针方向旋转α,过点A 、B 分别作l 的垂线,垂足分别为点D 、E .(1) 当0<α<90°时,证明:△ACD ≌△CBE ,并探究线段AD 、BE 和DE 的数量关系并说明理由;(2) 当90°<α<180°,且α≠135°时,探究线段AD 、BE 和DE 的数量关系(直接写出结果).【答案】(1)DE =AD +BE ,理由见分析;(2)AD =DE +BE【分析】(1)由“AAS”可证△BCE ≌△CAD ,可得BE =CD ,AD =CE ,可得结论;(2)由“AAS”可证△BCE ≌△CAD ,可得BE =CD ,AD =CE ,可得结论.(1)解:DE =AD +BE ,理由如下:证明:∵BE ⊥ED ,AD ⊥DE ,∴∠BEC =∠ADC =90°=∠ACB ,∴∠ACD +∠BCE =90°=∠ACD +∠DAC ,∴∠DAC =∠BCE ,在△ACD 和△CBE 中,ADC BEC DAC BCE AC BC Ð=ÐìïÐ=Ðíï=î,∴△ACD ≌△CBE (AAS ),∴CD =BE ,AD =CE ,∴DE =AD +BE ;(2)解: AD =DE +BE ,理由如下:如图,∵BE ⊥ED ,AD ⊥DE ,∴∠BEC =∠ADC =90°=∠ACB ,∴∠ACD +∠BCE =90°=∠ACD +∠DAC ,∴∠DAC =∠BCE ,在△BCE 和△CAD 中,BEC ADC BCE DAC BC AC Ð=ÐìïÐ=Ðíï=î,∴△BCE≌△CAD(AAS),∴BE=CD,AD=CE,∴AD=DE+BE.【点拨】本题考查了全等三角形的判定和性质,证明三角形全等是解题的关键.拓展培优*冲刺满分1 .如图,∠BCD=90°,BC=DC,直线PQ经过点D.设∠PDC=α(45°<α<135°),BA⊥PQ于点A,将射线CA绕点C按逆时针方向旋转90°,与直线PQ交于点E.(1)判断:∠ABC________∠PDC(填“>”或“=”或“<”);(2)猜想△ACE的形状,并说明理由;【答案】(1)=;(2)△ACE是等腰直角三角形;理由见解析;(3)45°<α<90°.【分析】(1)由四边形ABCD的内角和与邻补角的性质证明∠EDC=∠ABC,即可得到结论.(2)由旋转的性质可得:∠ACE=∠BCD=90°,证明∠ECD=∠BCA,再证明△ECD≌△ACB,从而可得结论;(3)当∠PDC=∠ABC=α=90°时,△ABC的外心在其斜边上,∠ABC=α>90°时,△ABC的外心在其外部,从而可得到答案.【详解】解:(1)∵AB⊥AD,∠DCB=90°,∴∠CDA+∠ABC=360°−90°−90°=180°,∵∠CDA+∠CDE=180°,∴∠EDC=∠ABC.故答案为:=.(2)△ACE是等腰直角三角形.理由如下:由旋转可得:∠ACE=∠BCD=90°,∴∠ECD+∠DCA=90°=∠DCA+∠BCA,∴∠ECD=∠BCA,在△ECD与△ACB中,{∠ECD=∠BCA CD=CB∠EDC=∠ABC∴△ECD≌△ACB(ASA)∴EC=AC,又∵∠ACE=90°∴△ACE是等腰直角三角形.【点评】本题考查的是四边形的内角和,三角形的外接圆的性质,旋转的性质,三角形全等的判定与性质,掌握以上知识是解题的关键.2 .在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到如下图所示的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到如下图所示的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,不必证明;(3)当直线MN绕点C旋转到如图的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,不必证明.【答案】(1)①见解析;②见解析(2)AD=BE+DE(3)BE=AD+DE【分析】(1)①用AAS证明△ADC≌△CEB即可;②根据全等三角形的性质,得出AD=CE,BE=CD,进而得出DE=BE+CD;(2)先证明△ACD≌△CBE(AAS),可得AD=CE,BE=CD,进而得出AD=CD+DE=BE+DE;(3)先证明△ACD≌△CBE(AAS),可得AD=CE,BE=CD,进而得出BE=CD=CE+DE=AD+DE.【详解】(1)证明:①∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∵∠BCA=90°,∴∠ACD+∠BCE=90°,∠BCE+CBE=90°,∴∠ACD=∠CBE,在△ADC和△CEB中,∵∠ADC=∠CEB=90°∠ACD=∠CBEAC=BC,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴AD=CE,BE=CD,∴DE=DC+CE=BE+AD.(2)解:AD=BE+DE.∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠CBE=90°,∴∠ACD=∠CBE,在△ACD和△CBE中,∵∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,BE=CD,∴AD=CD+DE=BE+DE.(3)解:BE=AD+DE.∵AD⊥MN,BE⊥MN,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠CBE=90°,∴∠ACD=∠CBE,在△ACD和△CBE中,∵∠ADC=∠CEB∠ACD=∠CBEAC=BC,∴△ACD≌△CBE(AAS),∴AD=CE,BE=CD,∴BE=CD=CE+DE=AD+DE.【点评】本题主要考查了全等三角形的判定与性质,垂线的定义,余角的性质.解题的关键熟练掌握三角形全等的条件,证明△ACD≌△CBE.3. 如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)存在,理由:①若△ACP≌△BPQ,则AC=BP,AP=BQ,则,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,则,解得:;综上所述,存在或,使得△ACP与△BPQ全等.【点评】本题主要考查了全等三角形的判定与性质,两边及其夹角分别对应相等的两个三角形全等.在解题时注意分类讨论思想的运用.。
12.2全等三角形的判定(第3课时AAS+ASA)课件
课堂练习
1.已知,如图,∠1=∠2,∠C=∠D
D
求证:AC=AD
1 A2 B
C
课堂练习
2.如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线, ∠1=∠B,点E在AB边上,求证:AB=AC+CD
提升练习
1. 如图,在△ABC中,∠C=2∠B、,AD是△ABC的角平分线, ∠1=∠B,求证AB=AC+CD
A 12
B
D
C
归纳总结
1.目前,我们学习的全等三角形的判定方法有几种?
2.我们可以利用全等证明什么?
点O,AB=AC,∠B=∠C. 求证:BD=CE .
A
D O
B
E C
课堂练习
证明 :在△ADC和△AEB中
A
∠A=∠A(公共角)
AC=AB(已知)
D
∠C=∠B(已知)
O
∴△ACD≌△ABE(ASA)
B
∴AD=AE(全等三角形的对应边相等)
又∵AB=AC(已知)
∴BD=CE
E C
课堂练习
变式、如图,AB=AC,CD⊥AB于点D,BE⊥AC于点E,BE与CD相交于点 O.求证:△BOD≌△COE.
在△ABC和△ A’B’C’中,
A
∠A= ∠A’ ,
AB=A’B’
∠B= ∠B’
A/
∴ △ ABC≌ △ A’B’C’ (ASA).
C
B
C/
B
/
课堂练习
1.一张教学用的三角形硬纸板不小心被撕坏了,如图,你能制作一张 与原来同样大小的新教具吗?能恢复原来三角形的原貌吗?
课堂练习
初中数学_12.2三角形全等的判定(第3课时)教学设计学情分析教材分析课后反思
12.2三角形全等的判定(第3课时)教学目标知识技能1.经历探索三角形全等的过程,使学生掌握角边角、角角边判定两个三角形全等的方法,会运用这两种方法解决问题;2.能灵活运用全等三角形的证明方法解决线段和角相等的问题;3.培养学生的动手画图和观察识图的能力以及空间观念,推理能力,发展有条理的归理能力.过程方法探究本课的两个判定方法,使学生经历“实践——观察——猜想——验证——归纳——概括”的认知过程,培养学生良好的个性思维品质.情感态度1.经历和体验数学活动的过程以及数学在现实生活中的应用,树立学好数学的信心.2.通过课堂学习,培养学生敢于实践,勇于发现,大胆探索,合作创新的精神.3.通过实践比较,在探索中体验发现数学规律的乐趣.重点掌握角边角和角角边两个判定三角形全等的方法及简单应用.难点探究“ASA”定理的过程,准确应用“ASA”和“AAS”定理判定两个三角形全等,并能正确的书写证明过程.环节教学内容师生活动设计意图情境引入自主探究一、自主探究(享受探究的快乐!)1.你能帮帮小红老师吗?小红老师的一张教学用三角形硬纸板不小心被撕坏了(如图),你能制作一张与原来形状、大小都相同的新教具吗?能恢复三角形硬纸板的原貌吗?2.动手实践(用你灵巧的小手画一画,用你明亮的眼睛去观察,用你智慧的语言去总结!)探究一先任意画出一个△ABC,再画一个△'''A B C,使''A B AB=,'A A∠=∠,'B B∠=∠(即两角和它们的夹边分别相等).把画好的△'''A B C剪下来,放到△ABC上,它们全等吗?教师提出问题;学生思考并做出选择;师生共同分析为什么选这一块.同时引入新课.教师引导学生分析画图步骤,用电脑演示画图过程. 同学之间观察对比,通过两个三角形叠放到一起,引导学生观察、猜想.教师用视频演示规教师通过设置问题情境,让学生加深作一个三角形需要三个条件,引导学生回顾前2节作图验证满足3个条件分别相等的三角形全等,从而引出本节课继续探索3个条件分别相等的三角形:两角及它们的夹边.同时激发学生的兴趣.通过学生动手画图,让学生明确已知两角及夹边怎样画出三角形.通过学生展示作品,以及同学之间观察对比,让学生确信结论的正确性.同时让学生经历了操作、探究、发现、总结的过程,无论是知识的发生还是发展,都是由学生自主完成,突破了难点,提高了能力.自主探究总结规律:.符号表示:3.探究二如图,在△ABC 和△DEF 中,∠A =∠D,∠B =∠E,BC=EF.求证:△ABC ≌△DEF .证明:总结发现:.符号表示:考考你1、如图,已知AB=DE,∠A =∠D ,∠B=∠E,则△ABC≌△DEF的理由是:2、如图,已知AB=DE ,∠A=∠D,∠C=∠F,则△ABC≌△DEF的理由是:范的尺规作图法.学生总结并展示结论;教师给予评价,并规范语言的准确性,板书在黑板上;学生尝试用符号语言表示这一结论;教师点拨:哪两个角都行,但边必须是这两个角的夹边.教师提出问题,学生思考,找寻证明方法.学生可讨论、板演教师提示:能不能应用ASA证明两个三角形全等.师生共同总结角角边的判定方法,给出符号语言的规范格式.教师引导学生分析,并口述问题答案.教师提出:角角角三个条件能不能使三让学生进一步体验尺规作图法的好处,让同学学以致用.老师通过规范的引导,让学生明确了“ASA”的规范书写格式.通过本题的练习,让学生在尝试运用角边角判定两个三角形全等的过程中,进一步加深对三个条件的理解.同时,训练学生的表达能力,使学生能清晰、有条理地表达自己的思考过程,做到言之有理、落笔有据.巩固判定方法,同时体会确定使用哪一种判定方法,是与它们具备的条件决定的.总结三个条件可判定三角形全等的方法.尝试应用成果展示二、尝试应用,小试锋芒(试一试,你一定能行!)1.如图,AB⊥BC,AD⊥DC,垂足分别为B,D,∠1=∠2,△ABC和△ADC______(填全等或不全等),依据是______________.1题图2.如图,∠1=∠2,∠3=∠4.求证AC=AD.感悟:三、成果展示(把你的智慧分享给大家)1.如图,点D 在AB上,点E 在AC上,AB =AC,∠B =∠C.求证:AD =AE.变式一:如图,点D 在AB上,点E 在AC上,BE =CD,∠B =∠C.求证:AD角形全等.学生举例“大的和小的等边三角形不全等”.学生练习并展示解答过程,教师提问:本题其他的证明方法吗?由学生口答.教师点拨:直接条件、间接条件和隐含条件的使用.学生练习并展示例3解答过程,教师展示规范解答过程.学生对照过程及时修改.教师利用课件展示一组例3变式题,引导学生思考,并分析解题思路.通过两个小题的练习,强化学生对两个判定条件的理解,并让学生变换方法推理证明,通过一题多解,培养学生学会从不同角度思考问题的方法.在寻找三角形全等的条件时,有的条件不足,让学生有意识的应用其他条件证明出想要的条件,再进行判定.本题设置的目的是给学生应用“角边角”解决问题做出示范,而且加深学生对判定应用的印象,知道证明线段相等,是可以通过证明全等三角形的对应边相等.教师根据例1设置四个变式练,让学生知道题题相通,并通过一题多变、一题多解体会角边角、角角边定理的应用.A BCD EF成果展示总结归纳=AE.变式二:(1)如图,点D 在AB上,点E 在AC上,AB =AC,∠B =∠C.求证:BD=CE.(2)如图,点D 在AB上,点E 在AC上,AB =AC,∠B =∠C.求证:BO=CO.变式三:如图,AB =AC,∠B=∠C ,∠1=∠2.求证:CD =BE.变式四:如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).四、课堂总结1.三角形全等的判定方法有几种?证明三角形全等有什么作用?2.探索三角形全等的条件,其基本思路是什么?学生讨论,并个人展示;老师引导学生思考多种方法.教师引导学生总结,并展示发言;教师展示两个幻灯片,点拨学生从两个方面总结知识点.变式一:条件变,结论不变变式二:条件不变,结论变变式三:图形变.变式为开放题,学生使用SAS、ASA、AAS都可以证明三角形全等,教师引导学生回顾已掌握的四种判定方法,加深记忆.通过练习,促使学生运用所学知识解决不同的问题,体现数学知识间的联系与转化,提高学生解决问题的能力;让学生说理,有意识的培养学生有条理的思考和语言表达能力.让学生总结本节课的收获:知识点的收获,方法与思想的收获一是对本节课的总结二是对全等判定方法的总结.通过师生共同思考、回顾、梳理判定方法,利用多媒体直观展示,加深学生对各种判定方法的理解, 明确三角形全等条件的探索过程,让学生体会“实验几何”与作业布置五、布置作业,学有所用(世上有一种伟大的语言,是数学语言,请你用它解决生活中的问题吧!)的八年级10班学生到野外活动,为测量一池塘两端A,B的距离,甲、乙、丙三位同学分别设计出如下几种方案:甲:如图①,先在平地取一个可直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的长即为A,B的距离.乙:如图②,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于点E,则测出DE的长即为A,B的距离.丙:如图③,过点B作BD⊥AB,再由点D观测,在AB的延长线上取一点C,使∠BDC=∠BDA,这时只要测出BC的长即为A,B的距离.(1)以上三位同学所设计的方案,可行的有;(2)请你选择一可行的方案,说说它可行的理由.课下作业“推理论证”在解决问题中的作用.学生通过作业,巩固判定三角形全等的方法,并能得到生活经验,并能知道数学知识用途很广泛,激发学生学习数学的性趣.为加强本节课所学内容与实际生活的联系,在教学设计中,加入了一个应用所学知识解决实际问题的环节,使学生了解数学知识可以为生活和生产的需要服务.数学是各式各样的证明技巧。
12.2 第3课时 三角形全等的判定(ASA,AAS)
分层作 业
1.[2018·成都]如图 12-2-30,已知∠ABC=∠DCB,添加以下条件,不能判定
△ABC≌△DCB 的是( C )
A.∠A=∠D
B.∠ACB=∠DBC
C.AC=DB
D.AB=DC
图 12-2-30
2.如图 12-2-31,点 D,E 分别在线段 AB,AC 上,AE=AD,不添加新的线 段和字母,要使△ABE≌△ACD,需添加的一个条件是 ∠ADC=∠AEB或 ∠CEB=∠BDC或∠C=∠B或AB=AC或B(D只=写C一E个条件即可).
线上,可以说明△EDC≌△ABC,从而可得 ED=AB,因此测得 ED 的长就是 AB
的长,判定△EDC≌△ABC 最恰当的理由是( B )
A.边角边
B.角边角
C.边边边
D.边边角
图 12-2-28
4.[2017·黔东南州]如图 12-2-29,点 B,F,C,E 在同一条直线上,已知 FB =CE,AC∥DF,请你添加一个适当的条件:(答案不唯一)如AC=FD或∠B,= 使得△ABC≌△DEF.
5.[2018·昆明]如图 12-2-34,在△ABC 和△ADE 中,AB=AD,∠B=∠D, ∠1=∠2.
求证:BC=DE.
图 12-2-34
证明:∵∠1=∠2, ∴∠1+∠DAC=∠2+∠DAC, 即∠BAC=∠DAE. 在△ABC 和△ADE 中,
∠ABB==A∠DD,, ∠BAC=∠DAE,
求证:BC=AE.
图 12-2-25
证明:∵DE∥AB,∴∠CAB=∠EDA. 在△ABC 和△DAE 中,
∠CAB=∠EDA, AB=DA, ∠B=∠DAE,
∴△ABC≌△DAE(ASA), ∴BC=AE.
人教版八年级数学上册课件 12.2 第3课时 用“ASA”或“AAS‘判定三角形全等
C
C'
A
B A'
B'
课后作业
➢ 从课后习题中选取 ➢ 完成练习册本课时的习题
A.150° B.40°
C.80°
D.90°
综合运用
2. 如图,AB⊥BC,AD⊥DC,垂足分别为B,D, ∠1=∠2. 求证 AB=AD. 【课本P41 练习 第1题】 证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°
在△ABC和△ADC中,
∠B=∠D, ∠1=∠2, AC=AC,
∴△ABC≌△ADC(AAS) ∴AB=AD
A
B A'
B'
∴△ABC ≌△A′B′C′ (AAS)
例题
如图,已知:在△ABC中,∠BAC=90°,AB=AC,直线m
经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.
求证(1)△BDA≌△AEC;
证明:∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,
∴∠ABD+∠BAD=90°,∵∠BAC=90°
∠BAC=∠BAE+∠CAF,且∠BED=∠BAC,
∴∠ABE=∠CAF.同理∠BAE=∠ACF.
在△ABE和△CAF中,
∠ABE=∠CAF
B GM
AB=CA ∠BAE=∠ACF
A
∴△ABE≌△CAF(ASA)
FD
E
C HN
拓展延伸
②解:EF+CF=BE.理由如下:
∵△ABE≌△CAF,
∴AE=CF,BE=AF.
∠A=∠A(公共角) AB=AC(已知) ∠B=∠C(已知)
例题
如图,点 D 在 AB 上,点 E 在 AC上,AB=AC,∠B =∠C. 求证 AD =AE.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形全等的判定(ASA ,AAS )
1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.
2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等
.
阅读教材P39“探究4”和教材P40例3,理解和掌握全等三角形判定方法“ASA ”,独立完成下列问题: 自学反馈
(1)能确定△ABC ≌△DEF 的条件是(D )
A.AB =DE ,BC =EF ,∠A =∠E
B.AB =DE ,BC =EF ,∠C =∠E
C.∠A =∠E ,AB =EF ,∠B =∠D
D.∠A =∠D ,AB =DE ,∠B =∠E
(2)阅读下题及一位同学的解答过程:如图,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C.那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由
.
解:△AOD ≌△COB.
证明:在△AOD 和△COB 中,
⎪⎩
⎪⎨⎧∠=∠=∠=∠,对顶角相等,
已知,已知)COB(AOD )OB(OA )C(A ∴△AOD ≌△COB(ASA).
问:这位同学的回答及证明过程正确吗?为什么?
应用ASA 证全等三角形时应注意边是对应角的夹边.
阅读教材P40-41“例4”,理解和掌握全等三角形判定方法“AAS ”,独立完成下列问题:
自学反馈 (1)如图,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是(B
)
A.甲和乙
B.乙和丙
C.只有乙
D.只有丙
(2)AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是(C )
A.DE =DF
B.AE =AF
C.BD =CD
D.∠ADE =∠
ADF
应用AAS 证三角形全等时应注意边是对应角的对边.
阅读教材P41“思考”,试总结全等三角形判定方法,师生共同总结
. 三角形全等的条件至少需要三对相等的元素(其中至少需要一条边相等
).
活动1 小组讨论
例1 已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ.求证:HN =PM.
证明:∵MQ⊥PN,
∴∠MQP=∠MQN=90°.
∵NR⊥MP,∴∠MRN=90°.
∴∠RMH+∠RHM=∠QHN+∠QNH=90°.
又∵∠RHM=∠QHN,∴∠PMQ=∠QNH.
在△PMQ与△HNQ中,∵∠MQP=∠MQN=90°,MQ=NQ,∠PMQ=∠QNH,∴△PMQ≌△HNQ.∴HN=PM.
有直角三角形就有互余的角,利用同角(等角)的余角相等是证角相等的常用方法.
例2 已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.
证明:∵AB⊥AE,AD⊥AC,
∴∠CAD=∠BAE=90°.
∴∠CAD+∠BAD=∠BAE+∠BAD.∴∠CAB=∠DAE.
在△ABC与△AED中,
∵∠CAB=∠DAE,∠B=∠E,CB=DE,
∴△ABC≌△AED.∴AD=AC.
利用角的和证角相等.
活动2 跟踪训练
1.已知:如图,PM=PN,∠M=∠N.求证:AM=BN.
∵PM=PN,∴要证AM=BN,只要证PA=PB,只要证△PBM≌△PAN.
2.P41页练习1、2题.
善于挖掘隐藏条件“公共边、公共角、对顶角”等.
活动3 课堂小结
1.本节内容是已知两个角和一条边对应相等得全等,三个角对应相等不能确定全等.
2.三角形全等的判定和全等三角形的性质常在一起进行综合应用,有时还得反复用两次或两次以上,从而达到解决问题的目的.
教学至此,敬请使用学案当堂训练部分.。